blob: 31850cb42d0ec1f13c076e7da6f9440018e82157 [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/heap/factory.h"
#include "src/accessors.h"
#include "src/allocation-site-scopes.h"
#include "src/ast/ast-source-ranges.h"
#include "src/ast/ast.h"
#include "src/base/bits.h"
#include "src/bootstrapper.h"
#include "src/builtins/constants-table-builder.h"
#include "src/compiler.h"
#include "src/conversions.h"
#include "src/counters.h"
#include "src/hash-seed-inl.h"
#include "src/heap/heap-inl.h"
#include "src/heap/incremental-marking.h"
#include "src/heap/mark-compact-inl.h"
#include "src/ic/handler-configuration-inl.h"
#include "src/interpreter/interpreter.h"
#include "src/isolate-inl.h"
#include "src/log.h"
#include "src/objects/allocation-site-inl.h"
#include "src/objects/api-callbacks.h"
#include "src/objects/arguments-inl.h"
#include "src/objects/bigint.h"
#include "src/objects/cell-inl.h"
#include "src/objects/debug-objects-inl.h"
#include "src/objects/embedder-data-array-inl.h"
#include "src/objects/feedback-cell-inl.h"
#include "src/objects/fixed-array-inl.h"
#include "src/objects/foreign-inl.h"
#include "src/objects/frame-array-inl.h"
#include "src/objects/instance-type-inl.h"
#include "src/objects/js-array-inl.h"
#include "src/objects/js-collection-inl.h"
#include "src/objects/js-generator-inl.h"
#include "src/objects/js-regexp-inl.h"
#include "src/objects/js-weak-refs-inl.h"
#include "src/objects/literal-objects-inl.h"
#include "src/objects/microtask-inl.h"
#include "src/objects/module-inl.h"
#include "src/objects/promise-inl.h"
#include "src/objects/scope-info.h"
#include "src/objects/stack-frame-info-inl.h"
#include "src/objects/struct-inl.h"
#include "src/transitions-inl.h"
#include "src/unicode-cache.h"
#include "src/unicode-inl.h"
namespace v8 {
namespace internal {
namespace {
int ComputeCodeObjectSize(const CodeDesc& desc) {
bool has_unwinding_info = desc.unwinding_info != nullptr;
DCHECK((has_unwinding_info && desc.unwinding_info_size > 0) ||
(!has_unwinding_info && desc.unwinding_info_size == 0));
int body_size = desc.instr_size;
int unwinding_info_size_field_size = kInt64Size;
if (has_unwinding_info) {
body_size = RoundUp(body_size, kInt64Size) + desc.unwinding_info_size +
unwinding_info_size_field_size;
}
int object_size = Code::SizeFor(RoundUp(body_size, kObjectAlignment));
DCHECK(IsAligned(static_cast<intptr_t>(object_size), kCodeAlignment));
return object_size;
}
void InitializeCode(Heap* heap, Handle<Code> code, int object_size,
const CodeDesc& desc, Code::Kind kind,
Handle<Object> self_ref, int32_t builtin_index,
Handle<ByteArray> source_position_table,
Handle<DeoptimizationData> deopt_data,
Handle<ByteArray> reloc_info,
Handle<CodeDataContainer> data_container,
bool is_turbofanned, int stack_slots) {
DCHECK(IsAligned(code->address(), kCodeAlignment));
DCHECK_IMPLIES(
!heap->memory_allocator()->code_range().is_empty(),
heap->memory_allocator()->code_range().contains(code->address()));
constexpr bool kIsNotOffHeapTrampoline = false;
const bool has_unwinding_info = desc.unwinding_info != nullptr;
code->set_raw_instruction_size(desc.instr_size);
code->set_relocation_info(*reloc_info);
code->initialize_flags(kind, has_unwinding_info, is_turbofanned, stack_slots,
kIsNotOffHeapTrampoline);
code->set_builtin_index(builtin_index);
code->set_code_data_container(*data_container);
code->set_deoptimization_data(*deopt_data);
code->set_source_position_table(*source_position_table);
code->set_safepoint_table_offset(desc.safepoint_table_offset);
code->set_handler_table_offset(desc.handler_table_offset);
code->set_constant_pool_offset(desc.constant_pool_offset);
code->set_code_comments_offset(desc.code_comments_offset);
// Allow self references to created code object by patching the handle to
// point to the newly allocated Code object.
if (!self_ref.is_null()) {
DCHECK(self_ref->IsOddball());
DCHECK(Oddball::cast(*self_ref)->kind() == Oddball::kSelfReferenceMarker);
if (FLAG_embedded_builtins) {
auto builder = heap->isolate()->builtins_constants_table_builder();
if (builder != nullptr) builder->PatchSelfReference(self_ref, code);
}
*(self_ref.location()) = code->ptr();
}
// Migrate generated code.
// The generated code can contain embedded objects (typically from handles)
// in a pointer-to-tagged-value format (i.e. with indirection like a handle)
// that are dereferenced during the copy to point directly to the actual heap
// objects. These pointers can include references to the code object itself,
// through the self_reference parameter.
code->CopyFromNoFlush(heap, desc);
code->clear_padding();
#ifdef VERIFY_HEAP
if (FLAG_verify_heap) code->ObjectVerify(heap->isolate());
#endif
}
} // namespace
HeapObject Factory::AllocateRawWithImmortalMap(int size,
PretenureFlag pretenure, Map map,
AllocationAlignment alignment) {
HeapObject result = isolate()->heap()->AllocateRawWithRetryOrFail(
size, Heap::SelectSpace(pretenure), alignment);
result->set_map_after_allocation(map, SKIP_WRITE_BARRIER);
return result;
}
HeapObject Factory::AllocateRawWithAllocationSite(
Handle<Map> map, PretenureFlag pretenure,
Handle<AllocationSite> allocation_site) {
DCHECK(map->instance_type() != MAP_TYPE);
int size = map->instance_size();
if (!allocation_site.is_null()) size += AllocationMemento::kSize;
AllocationSpace space = Heap::SelectSpace(pretenure);
HeapObject result =
isolate()->heap()->AllocateRawWithRetryOrFail(size, space);
WriteBarrierMode write_barrier_mode =
space == NEW_SPACE ? SKIP_WRITE_BARRIER : UPDATE_WRITE_BARRIER;
result->set_map_after_allocation(*map, write_barrier_mode);
if (!allocation_site.is_null()) {
AllocationMemento alloc_memento = AllocationMemento::unchecked_cast(
Object(result->ptr() + map->instance_size()));
InitializeAllocationMemento(alloc_memento, *allocation_site);
}
return result;
}
void Factory::InitializeAllocationMemento(AllocationMemento memento,
AllocationSite allocation_site) {
memento->set_map_after_allocation(*allocation_memento_map(),
SKIP_WRITE_BARRIER);
memento->set_allocation_site(allocation_site, SKIP_WRITE_BARRIER);
if (FLAG_allocation_site_pretenuring) {
allocation_site->IncrementMementoCreateCount();
}
}
HeapObject Factory::AllocateRawArray(int size, PretenureFlag pretenure) {
AllocationSpace space = Heap::SelectSpace(pretenure);
HeapObject result =
isolate()->heap()->AllocateRawWithRetryOrFail(size, space);
if (size > kMaxRegularHeapObjectSize && FLAG_use_marking_progress_bar) {
MemoryChunk* chunk = MemoryChunk::FromHeapObject(result);
chunk->SetFlag<AccessMode::ATOMIC>(MemoryChunk::HAS_PROGRESS_BAR);
}
return result;
}
HeapObject Factory::AllocateRawFixedArray(int length, PretenureFlag pretenure) {
if (length < 0 || length > FixedArray::kMaxLength) {
isolate()->heap()->FatalProcessOutOfMemory("invalid array length");
}
return AllocateRawArray(FixedArray::SizeFor(length), pretenure);
}
HeapObject Factory::AllocateRawWeakArrayList(int capacity,
PretenureFlag pretenure) {
if (capacity < 0 || capacity > WeakArrayList::kMaxCapacity) {
isolate()->heap()->FatalProcessOutOfMemory("invalid array length");
}
return AllocateRawArray(WeakArrayList::SizeForCapacity(capacity), pretenure);
}
HeapObject Factory::New(Handle<Map> map, PretenureFlag pretenure) {
DCHECK(map->instance_type() != MAP_TYPE);
int size = map->instance_size();
AllocationSpace space = Heap::SelectSpace(pretenure);
HeapObject result =
isolate()->heap()->AllocateRawWithRetryOrFail(size, space);
// New space objects are allocated white.
WriteBarrierMode write_barrier_mode =
space == NEW_SPACE ? SKIP_WRITE_BARRIER : UPDATE_WRITE_BARRIER;
result->set_map_after_allocation(*map, write_barrier_mode);
return result;
}
Handle<HeapObject> Factory::NewFillerObject(int size, bool double_align,
AllocationSpace space) {
AllocationAlignment alignment = double_align ? kDoubleAligned : kWordAligned;
Heap* heap = isolate()->heap();
HeapObject result = heap->AllocateRawWithRetryOrFail(size, space, alignment);
#ifdef DEBUG
MemoryChunk* chunk = MemoryChunk::FromHeapObject(result);
DCHECK(chunk->owner()->identity() == space);
#endif
heap->CreateFillerObjectAt(result->address(), size, ClearRecordedSlots::kNo);
return Handle<HeapObject>(result, isolate());
}
Handle<PrototypeInfo> Factory::NewPrototypeInfo() {
Handle<PrototypeInfo> result =
Handle<PrototypeInfo>::cast(NewStruct(PROTOTYPE_INFO_TYPE, TENURED));
result->set_prototype_users(Smi::kZero);
result->set_registry_slot(PrototypeInfo::UNREGISTERED);
result->set_bit_field(0);
result->set_module_namespace(*undefined_value());
return result;
}
Handle<EnumCache> Factory::NewEnumCache(Handle<FixedArray> keys,
Handle<FixedArray> indices) {
return Handle<EnumCache>::cast(NewTuple2(keys, indices, TENURED));
}
Handle<Tuple2> Factory::NewTuple2(Handle<Object> value1, Handle<Object> value2,
PretenureFlag pretenure) {
Handle<Tuple2> result =
Handle<Tuple2>::cast(NewStruct(TUPLE2_TYPE, pretenure));
result->set_value1(*value1);
result->set_value2(*value2);
return result;
}
Handle<Tuple3> Factory::NewTuple3(Handle<Object> value1, Handle<Object> value2,
Handle<Object> value3,
PretenureFlag pretenure) {
Handle<Tuple3> result =
Handle<Tuple3>::cast(NewStruct(TUPLE3_TYPE, pretenure));
result->set_value1(*value1);
result->set_value2(*value2);
result->set_value3(*value3);
return result;
}
Handle<ArrayBoilerplateDescription> Factory::NewArrayBoilerplateDescription(
ElementsKind elements_kind, Handle<FixedArrayBase> constant_values) {
Handle<ArrayBoilerplateDescription> result =
Handle<ArrayBoilerplateDescription>::cast(
NewStruct(ARRAY_BOILERPLATE_DESCRIPTION_TYPE, TENURED));
result->set_elements_kind(elements_kind);
result->set_constant_elements(*constant_values);
return result;
}
Handle<TemplateObjectDescription> Factory::NewTemplateObjectDescription(
Handle<FixedArray> raw_strings, Handle<FixedArray> cooked_strings) {
DCHECK_EQ(raw_strings->length(), cooked_strings->length());
DCHECK_LT(0, raw_strings->length());
Handle<TemplateObjectDescription> result =
Handle<TemplateObjectDescription>::cast(NewStruct(TUPLE2_TYPE, TENURED));
result->set_raw_strings(*raw_strings);
result->set_cooked_strings(*cooked_strings);
return result;
}
Handle<Oddball> Factory::NewOddball(Handle<Map> map, const char* to_string,
Handle<Object> to_number,
const char* type_of, byte kind,
PretenureFlag pretenure) {
Handle<Oddball> oddball(Oddball::cast(New(map, pretenure)), isolate());
Oddball::Initialize(isolate(), oddball, to_string, to_number, type_of, kind);
return oddball;
}
Handle<Oddball> Factory::NewSelfReferenceMarker(PretenureFlag pretenure) {
return NewOddball(self_reference_marker_map(), "self_reference_marker",
handle(Smi::FromInt(-1), isolate()), "undefined",
Oddball::kSelfReferenceMarker, pretenure);
}
Handle<PropertyArray> Factory::NewPropertyArray(int length,
PretenureFlag pretenure) {
DCHECK_LE(0, length);
if (length == 0) return empty_property_array();
HeapObject result = AllocateRawFixedArray(length, pretenure);
result->set_map_after_allocation(*property_array_map(), SKIP_WRITE_BARRIER);
Handle<PropertyArray> array(PropertyArray::cast(result), isolate());
array->initialize_length(length);
MemsetTagged(array->data_start(), *undefined_value(), length);
return array;
}
Handle<FixedArray> Factory::NewFixedArrayWithFiller(RootIndex map_root_index,
int length, Object filler,
PretenureFlag pretenure) {
HeapObject result = AllocateRawFixedArray(length, pretenure);
DCHECK(RootsTable::IsImmortalImmovable(map_root_index));
Map map = Map::cast(isolate()->root(map_root_index));
result->set_map_after_allocation(map, SKIP_WRITE_BARRIER);
Handle<FixedArray> array(FixedArray::cast(result), isolate());
array->set_length(length);
MemsetTagged(array->data_start(), filler, length);
return array;
}
template <typename T>
Handle<T> Factory::NewFixedArrayWithMap(RootIndex map_root_index, int length,
PretenureFlag pretenure) {
static_assert(std::is_base_of<FixedArray, T>::value,
"T must be a descendant of FixedArray");
// Zero-length case must be handled outside, where the knowledge about
// the map is.
DCHECK_LT(0, length);
return Handle<T>::cast(NewFixedArrayWithFiller(
map_root_index, length, *undefined_value(), pretenure));
}
template <typename T>
Handle<T> Factory::NewWeakFixedArrayWithMap(RootIndex map_root_index,
int length,
PretenureFlag pretenure) {
static_assert(std::is_base_of<WeakFixedArray, T>::value,
"T must be a descendant of WeakFixedArray");
// Zero-length case must be handled outside.
DCHECK_LT(0, length);
HeapObject result =
AllocateRawArray(WeakFixedArray::SizeFor(length), pretenure);
Map map = Map::cast(isolate()->root(map_root_index));
result->set_map_after_allocation(map, SKIP_WRITE_BARRIER);
Handle<WeakFixedArray> array(WeakFixedArray::cast(result), isolate());
array->set_length(length);
MemsetTagged(ObjectSlot(array->data_start()), *undefined_value(), length);
return Handle<T>::cast(array);
}
template Handle<FixedArray> Factory::NewFixedArrayWithMap<FixedArray>(
RootIndex, int, PretenureFlag);
Handle<FixedArray> Factory::NewFixedArray(int length, PretenureFlag pretenure) {
DCHECK_LE(0, length);
if (length == 0) return empty_fixed_array();
return NewFixedArrayWithFiller(RootIndex::kFixedArrayMap, length,
*undefined_value(), pretenure);
}
Handle<WeakFixedArray> Factory::NewWeakFixedArray(int length,
PretenureFlag pretenure) {
DCHECK_LE(0, length);
if (length == 0) return empty_weak_fixed_array();
HeapObject result =
AllocateRawArray(WeakFixedArray::SizeFor(length), pretenure);
DCHECK(RootsTable::IsImmortalImmovable(RootIndex::kWeakFixedArrayMap));
result->set_map_after_allocation(*weak_fixed_array_map(), SKIP_WRITE_BARRIER);
Handle<WeakFixedArray> array(WeakFixedArray::cast(result), isolate());
array->set_length(length);
MemsetTagged(ObjectSlot(array->data_start()), *undefined_value(), length);
return array;
}
MaybeHandle<FixedArray> Factory::TryNewFixedArray(int length,
PretenureFlag pretenure) {
DCHECK_LE(0, length);
if (length == 0) return empty_fixed_array();
int size = FixedArray::SizeFor(length);
AllocationSpace space = Heap::SelectSpace(pretenure);
Heap* heap = isolate()->heap();
AllocationResult allocation = heap->AllocateRaw(size, space);
HeapObject result;
if (!allocation.To(&result)) return MaybeHandle<FixedArray>();
if (size > kMaxRegularHeapObjectSize && FLAG_use_marking_progress_bar) {
MemoryChunk* chunk = MemoryChunk::FromHeapObject(result);
chunk->SetFlag<AccessMode::ATOMIC>(MemoryChunk::HAS_PROGRESS_BAR);
}
result->set_map_after_allocation(*fixed_array_map(), SKIP_WRITE_BARRIER);
Handle<FixedArray> array(FixedArray::cast(result), isolate());
array->set_length(length);
MemsetTagged(array->data_start(), ReadOnlyRoots(heap).undefined_value(),
length);
return array;
}
Handle<FixedArray> Factory::NewFixedArrayWithHoles(int length,
PretenureFlag pretenure) {
DCHECK_LE(0, length);
if (length == 0) return empty_fixed_array();
return NewFixedArrayWithFiller(RootIndex::kFixedArrayMap, length,
*the_hole_value(), pretenure);
}
Handle<FixedArray> Factory::NewUninitializedFixedArray(
int length, PretenureFlag pretenure) {
DCHECK_LE(0, length);
if (length == 0) return empty_fixed_array();
// TODO(ulan): As an experiment this temporarily returns an initialized fixed
// array. After getting canary/performance coverage, either remove the
// function or revert to returning uninitilized array.
return NewFixedArrayWithFiller(RootIndex::kFixedArrayMap, length,
*undefined_value(), pretenure);
}
Handle<FeedbackVector> Factory::NewFeedbackVector(
Handle<SharedFunctionInfo> shared, PretenureFlag pretenure) {
int length = shared->feedback_metadata()->slot_count();
DCHECK_LE(0, length);
int size = FeedbackVector::SizeFor(length);
HeapObject result =
AllocateRawWithImmortalMap(size, pretenure, *feedback_vector_map());
Handle<FeedbackVector> vector(FeedbackVector::cast(result), isolate());
vector->set_shared_function_info(*shared);
vector->set_optimized_code_weak_or_smi(MaybeObject::FromSmi(Smi::FromEnum(
FLAG_log_function_events ? OptimizationMarker::kLogFirstExecution
: OptimizationMarker::kNone)));
vector->set_length(length);
vector->set_invocation_count(0);
vector->set_profiler_ticks(0);
vector->set_deopt_count(0);
// TODO(leszeks): Initialize based on the feedback metadata.
MemsetTagged(ObjectSlot(vector->slots_start()), *undefined_value(), length);
return vector;
}
Handle<EmbedderDataArray> Factory::NewEmbedderDataArray(
int length, PretenureFlag pretenure) {
DCHECK_LE(0, length);
int size = EmbedderDataArray::SizeFor(length);
HeapObject result =
AllocateRawWithImmortalMap(size, pretenure, *embedder_data_array_map());
Handle<EmbedderDataArray> array(EmbedderDataArray::cast(result), isolate());
array->set_length(length);
if (length > 0) {
ObjectSlot start(array->slots_start());
ObjectSlot end(array->slots_end());
size_t slot_count = end - start;
MemsetTagged(start, *undefined_value(), slot_count);
}
return array;
}
Handle<ObjectBoilerplateDescription> Factory::NewObjectBoilerplateDescription(
int boilerplate, int all_properties, int index_keys, bool has_seen_proto) {
DCHECK_GE(boilerplate, 0);
DCHECK_GE(all_properties, index_keys);
DCHECK_GE(index_keys, 0);
int backing_store_size =
all_properties - index_keys - (has_seen_proto ? 1 : 0);
DCHECK_GE(backing_store_size, 0);
bool has_different_size_backing_store = boilerplate != backing_store_size;
// Space for name and value for every boilerplate property + LiteralType flag.
int size =
2 * boilerplate + ObjectBoilerplateDescription::kDescriptionStartIndex;
if (has_different_size_backing_store) {
// An extra entry for the backing store size.
size++;
}
Handle<ObjectBoilerplateDescription> description =
Handle<ObjectBoilerplateDescription>::cast(NewFixedArrayWithMap(
RootIndex::kObjectBoilerplateDescriptionMap, size, TENURED));
if (has_different_size_backing_store) {
DCHECK_IMPLIES((boilerplate == (all_properties - index_keys)),
has_seen_proto);
description->set_backing_store_size(isolate(), backing_store_size);
}
description->set_flags(0);
return description;
}
Handle<FixedArrayBase> Factory::NewFixedDoubleArray(int length,
PretenureFlag pretenure) {
DCHECK_LE(0, length);
if (length == 0) return empty_fixed_array();
if (length > FixedDoubleArray::kMaxLength) {
isolate()->heap()->FatalProcessOutOfMemory("invalid array length");
}
int size = FixedDoubleArray::SizeFor(length);
Map map = *fixed_double_array_map();
HeapObject result =
AllocateRawWithImmortalMap(size, pretenure, map, kDoubleAligned);
Handle<FixedDoubleArray> array(FixedDoubleArray::cast(result), isolate());
array->set_length(length);
return array;
}
Handle<FixedArrayBase> Factory::NewFixedDoubleArrayWithHoles(
int length, PretenureFlag pretenure) {
DCHECK_LE(0, length);
Handle<FixedArrayBase> array = NewFixedDoubleArray(length, pretenure);
if (length > 0) {
Handle<FixedDoubleArray>::cast(array)->FillWithHoles(0, length);
}
return array;
}
Handle<FeedbackMetadata> Factory::NewFeedbackMetadata(int slot_count,
PretenureFlag tenure) {
DCHECK_LE(0, slot_count);
int size = FeedbackMetadata::SizeFor(slot_count);
HeapObject result =
AllocateRawWithImmortalMap(size, tenure, *feedback_metadata_map());
Handle<FeedbackMetadata> data(FeedbackMetadata::cast(result), isolate());
data->set_slot_count(slot_count);
// Initialize the data section to 0.
int data_size = size - FeedbackMetadata::kHeaderSize;
Address data_start = data->address() + FeedbackMetadata::kHeaderSize;
memset(reinterpret_cast<byte*>(data_start), 0, data_size);
// Fields have been zeroed out but not initialized, so this object will not
// pass object verification at this point.
return data;
}
Handle<FrameArray> Factory::NewFrameArray(int number_of_frames,
PretenureFlag pretenure) {
DCHECK_LE(0, number_of_frames);
Handle<FixedArray> result = NewFixedArrayWithHoles(
FrameArray::LengthFor(number_of_frames), pretenure);
result->set(FrameArray::kFrameCountIndex, Smi::kZero);
return Handle<FrameArray>::cast(result);
}
template <typename T>
Handle<T> Factory::AllocateSmallOrderedHashTable(Handle<Map> map, int capacity,
PretenureFlag pretenure) {
// Capacity must be a power of two, since we depend on being able
// to divide and multiple by 2 (kLoadFactor) to derive capacity
// from number of buckets. If we decide to change kLoadFactor
// to something other than 2, capacity should be stored as another
// field of this object.
DCHECK_EQ(T::kLoadFactor, 2);
capacity = base::bits::RoundUpToPowerOfTwo32(Max(T::kMinCapacity, capacity));
capacity = Min(capacity, T::kMaxCapacity);
DCHECK_LT(0, capacity);
DCHECK_EQ(0, capacity % T::kLoadFactor);
int size = T::SizeFor(capacity);
HeapObject result = AllocateRawWithImmortalMap(size, pretenure, *map);
Handle<T> table(T::cast(result), isolate());
table->Initialize(isolate(), capacity);
return table;
}
Handle<SmallOrderedHashSet> Factory::NewSmallOrderedHashSet(
int capacity, PretenureFlag pretenure) {
return AllocateSmallOrderedHashTable<SmallOrderedHashSet>(
small_ordered_hash_set_map(), capacity, pretenure);
}
Handle<SmallOrderedHashMap> Factory::NewSmallOrderedHashMap(
int capacity, PretenureFlag pretenure) {
return AllocateSmallOrderedHashTable<SmallOrderedHashMap>(
small_ordered_hash_map_map(), capacity, pretenure);
}
Handle<SmallOrderedNameDictionary> Factory::NewSmallOrderedNameDictionary(
int capacity, PretenureFlag pretenure) {
Handle<SmallOrderedNameDictionary> dict =
AllocateSmallOrderedHashTable<SmallOrderedNameDictionary>(
small_ordered_name_dictionary_map(), capacity, pretenure);
dict->SetHash(PropertyArray::kNoHashSentinel);
return dict;
}
Handle<OrderedHashSet> Factory::NewOrderedHashSet() {
return OrderedHashSet::Allocate(isolate(), OrderedHashSet::kMinCapacity);
}
Handle<OrderedHashMap> Factory::NewOrderedHashMap() {
return OrderedHashMap::Allocate(isolate(), OrderedHashMap::kMinCapacity);
}
Handle<OrderedNameDictionary> Factory::NewOrderedNameDictionary() {
return OrderedNameDictionary::Allocate(isolate(),
OrderedNameDictionary::kMinCapacity);
}
Handle<AccessorPair> Factory::NewAccessorPair() {
Handle<AccessorPair> accessors =
Handle<AccessorPair>::cast(NewStruct(ACCESSOR_PAIR_TYPE, TENURED));
accessors->set_getter(*null_value(), SKIP_WRITE_BARRIER);
accessors->set_setter(*null_value(), SKIP_WRITE_BARRIER);
return accessors;
}
// Internalized strings are created in the old generation (data space).
Handle<String> Factory::InternalizeUtf8String(Vector<const char> string) {
Utf8StringKey key(string, HashSeed(isolate()));
return InternalizeStringWithKey(&key);
}
Handle<String> Factory::InternalizeOneByteString(Vector<const uint8_t> string) {
OneByteStringKey key(string, HashSeed(isolate()));
return InternalizeStringWithKey(&key);
}
Handle<String> Factory::InternalizeOneByteString(
Handle<SeqOneByteString> string, int from, int length) {
SeqOneByteSubStringKey key(isolate(), string, from, length);
return InternalizeStringWithKey(&key);
}
Handle<String> Factory::InternalizeTwoByteString(Vector<const uc16> string) {
TwoByteStringKey key(string, HashSeed(isolate()));
return InternalizeStringWithKey(&key);
}
template <class StringTableKey>
Handle<String> Factory::InternalizeStringWithKey(StringTableKey* key) {
return StringTable::LookupKey(isolate(), key);
}
MaybeHandle<String> Factory::NewStringFromOneByte(Vector<const uint8_t> string,
PretenureFlag pretenure) {
DCHECK_NE(pretenure, TENURED_READ_ONLY);
int length = string.length();
if (length == 0) return empty_string();
if (length == 1) return LookupSingleCharacterStringFromCode(string[0]);
Handle<SeqOneByteString> result;
ASSIGN_RETURN_ON_EXCEPTION(isolate(), result,
NewRawOneByteString(string.length(), pretenure),
String);
DisallowHeapAllocation no_gc;
// Copy the characters into the new object.
CopyChars(SeqOneByteString::cast(*result)->GetChars(no_gc), string.start(),
length);
return result;
}
MaybeHandle<String> Factory::NewStringFromUtf8(Vector<const char> string,
PretenureFlag pretenure) {
DCHECK_NE(pretenure, TENURED_READ_ONLY);
// Check for ASCII first since this is the common case.
const char* ascii_data = string.start();
int length = string.length();
int non_ascii_start = String::NonAsciiStart(ascii_data, length);
if (non_ascii_start >= length) {
// If the string is ASCII, we do not need to convert the characters
// since UTF8 is backwards compatible with ASCII.
return NewStringFromOneByte(Vector<const uint8_t>::cast(string), pretenure);
}
std::unique_ptr<uint16_t[]> buffer(new uint16_t[length - non_ascii_start]);
const uint8_t* cursor =
reinterpret_cast<const uint8_t*>(&string[non_ascii_start]);
const uint8_t* end = reinterpret_cast<const uint8_t*>(string.end());
uint16_t* output_cursor = buffer.get();
uint32_t incomplete_char = 0;
unibrow::Utf8::State state = unibrow::Utf8::State::kAccept;
while (cursor < end) {
unibrow::uchar t =
unibrow::Utf8::ValueOfIncremental(&cursor, &state, &incomplete_char);
if (V8_LIKELY(t <= unibrow::Utf16::kMaxNonSurrogateCharCode)) {
*(output_cursor++) = static_cast<uc16>(t); // The most frequent case.
} else if (t == unibrow::Utf8::kIncomplete) {
continue;
} else {
*(output_cursor++) = unibrow::Utf16::LeadSurrogate(t);
*(output_cursor++) = unibrow::Utf16::TrailSurrogate(t);
}
}
unibrow::uchar t = unibrow::Utf8::ValueOfIncrementalFinish(&state);
if (t != unibrow::Utf8::kBufferEmpty) {
*(output_cursor++) = static_cast<uc16>(t);
}
DCHECK_LE(output_cursor, buffer.get() + length - non_ascii_start);
int utf16_length = static_cast<int>(output_cursor - buffer.get());
DCHECK_GT(utf16_length, 0);
// Allocate string.
Handle<SeqTwoByteString> result;
ASSIGN_RETURN_ON_EXCEPTION(
isolate(), result,
NewRawTwoByteString(non_ascii_start + utf16_length, pretenure), String);
DCHECK_LE(non_ascii_start + utf16_length, length);
DisallowHeapAllocation no_gc;
uint16_t* data = result->GetChars(no_gc);
CopyChars(data, ascii_data, non_ascii_start);
CopyChars(data + non_ascii_start, buffer.get(), utf16_length);
return result;
}
MaybeHandle<String> Factory::NewStringFromUtf8SubString(
Handle<SeqOneByteString> str, int begin, int length,
PretenureFlag pretenure) {
Access<UnicodeCache::Utf8Decoder> decoder(
isolate()->unicode_cache()->utf8_decoder());
int non_ascii_start;
int utf16_length = 0;
{
DisallowHeapAllocation no_gc;
const char* ascii_data =
reinterpret_cast<const char*>(str->GetChars(no_gc) + begin);
non_ascii_start = String::NonAsciiStart(ascii_data, length);
if (non_ascii_start < length) {
// Non-ASCII and we need to decode.
auto non_ascii = Vector<const char>(ascii_data + non_ascii_start,
length - non_ascii_start);
decoder->Reset(non_ascii);
utf16_length = static_cast<int>(decoder->Utf16Length());
}
}
if (non_ascii_start >= length) {
// If the string is ASCII, we can just make a substring.
// TODO(v8): the pretenure flag is ignored in this case.
return NewSubString(str, begin, begin + length);
}
DCHECK_GT(utf16_length, 0);
// Allocate string.
Handle<SeqTwoByteString> result;
ASSIGN_RETURN_ON_EXCEPTION(
isolate(), result,
NewRawTwoByteString(non_ascii_start + utf16_length, pretenure), String);
// Update pointer references, since the original string may have moved after
// allocation.
DisallowHeapAllocation no_gc;
const char* ascii_data =
reinterpret_cast<const char*>(str->GetChars(no_gc) + begin);
auto non_ascii = Vector<const char>(ascii_data + non_ascii_start,
length - non_ascii_start);
// Copy ASCII portion.
uint16_t* data = result->GetChars(no_gc);
for (int i = 0; i < non_ascii_start; i++) {
*data++ = *ascii_data++;
}
// Now write the remainder.
decoder->WriteUtf16(data, utf16_length, non_ascii);
return result;
}
MaybeHandle<String> Factory::NewStringFromTwoByte(const uc16* string,
int length,
PretenureFlag pretenure) {
DCHECK_NE(pretenure, TENURED_READ_ONLY);
if (length == 0) return empty_string();
if (String::IsOneByte(string, length)) {
if (length == 1) return LookupSingleCharacterStringFromCode(string[0]);
Handle<SeqOneByteString> result;
ASSIGN_RETURN_ON_EXCEPTION(isolate(), result,
NewRawOneByteString(length, pretenure), String);
DisallowHeapAllocation no_gc;
CopyChars(result->GetChars(no_gc), string, length);
return result;
} else {
Handle<SeqTwoByteString> result;
ASSIGN_RETURN_ON_EXCEPTION(isolate(), result,
NewRawTwoByteString(length, pretenure), String);
DisallowHeapAllocation no_gc;
CopyChars(result->GetChars(no_gc), string, length);
return result;
}
}
MaybeHandle<String> Factory::NewStringFromTwoByte(Vector<const uc16> string,
PretenureFlag pretenure) {
return NewStringFromTwoByte(string.start(), string.length(), pretenure);
}
MaybeHandle<String> Factory::NewStringFromTwoByte(
const ZoneVector<uc16>* string, PretenureFlag pretenure) {
return NewStringFromTwoByte(string->data(), static_cast<int>(string->size()),
pretenure);
}
namespace {
bool inline IsOneByte(Vector<const char> str, int chars) {
// TODO(dcarney): incorporate Latin-1 check when Latin-1 is supported?
return chars == str.length();
}
bool inline IsOneByte(Handle<String> str) {
return str->IsOneByteRepresentation();
}
inline void WriteOneByteData(Vector<const char> vector, uint8_t* chars,
int len) {
// Only works for one byte strings.
DCHECK(vector.length() == len);
MemCopy(chars, vector.start(), len);
}
inline void WriteTwoByteData(Vector<const char> vector, uint16_t* chars,
int len) {
unibrow::Utf8Iterator it = unibrow::Utf8Iterator(vector);
while (!it.Done()) {
DCHECK_GT(len, 0);
len -= 1;
uint16_t c = *it;
++it;
DCHECK_NE(unibrow::Utf8::kBadChar, c);
*chars++ = c;
}
DCHECK_EQ(len, 0);
}
inline void WriteOneByteData(Handle<String> s, uint8_t* chars, int len) {
DCHECK(s->length() == len);
String::WriteToFlat(*s, chars, 0, len);
}
inline void WriteTwoByteData(Handle<String> s, uint16_t* chars, int len) {
DCHECK(s->length() == len);
String::WriteToFlat(*s, chars, 0, len);
}
} // namespace
Handle<SeqOneByteString> Factory::AllocateRawOneByteInternalizedString(
int length, uint32_t hash_field) {
CHECK_GE(String::kMaxLength, length);
// The canonical empty_string is the only zero-length string we allow.
DCHECK_IMPLIES(
length == 0,
isolate()->roots_table()[RootIndex::kempty_string] == kNullAddress);
Map map = *one_byte_internalized_string_map();
int size = SeqOneByteString::SizeFor(length);
HeapObject result = AllocateRawWithImmortalMap(
size,
isolate()->heap()->CanAllocateInReadOnlySpace() ? TENURED_READ_ONLY
: TENURED,
map);
Handle<SeqOneByteString> answer(SeqOneByteString::cast(result), isolate());
answer->set_length(length);
answer->set_hash_field(hash_field);
DCHECK_EQ(size, answer->Size());
return answer;
}
Handle<String> Factory::AllocateTwoByteInternalizedString(
Vector<const uc16> str, uint32_t hash_field) {
CHECK_GE(String::kMaxLength, str.length());
DCHECK_NE(0, str.length()); // Use Heap::empty_string() instead.
Map map = *internalized_string_map();
int size = SeqTwoByteString::SizeFor(str.length());
HeapObject result = AllocateRawWithImmortalMap(size, TENURED, map);
Handle<SeqTwoByteString> answer(SeqTwoByteString::cast(result), isolate());
answer->set_length(str.length());
answer->set_hash_field(hash_field);
DCHECK_EQ(size, answer->Size());
DisallowHeapAllocation no_gc;
// Fill in the characters.
MemCopy(answer->GetChars(no_gc), str.start(), str.length() * kUC16Size);
return answer;
}
template <bool is_one_byte, typename T>
Handle<String> Factory::AllocateInternalizedStringImpl(T t, int chars,
uint32_t hash_field) {
DCHECK_LE(0, chars);
DCHECK_GE(String::kMaxLength, chars);
// Compute map and object size.
int size;
Map map;
if (is_one_byte) {
map = *one_byte_internalized_string_map();
size = SeqOneByteString::SizeFor(chars);
} else {
map = *internalized_string_map();
size = SeqTwoByteString::SizeFor(chars);
}
HeapObject result = AllocateRawWithImmortalMap(
size,
isolate()->heap()->CanAllocateInReadOnlySpace() ? TENURED_READ_ONLY
: TENURED,
map);
Handle<String> answer(String::cast(result), isolate());
answer->set_length(chars);
answer->set_hash_field(hash_field);
DCHECK_EQ(size, answer->Size());
DisallowHeapAllocation no_gc;
if (is_one_byte) {
WriteOneByteData(t, SeqOneByteString::cast(*answer)->GetChars(no_gc),
chars);
} else {
WriteTwoByteData(t, SeqTwoByteString::cast(*answer)->GetChars(no_gc),
chars);
}
return answer;
}
Handle<String> Factory::NewInternalizedStringFromUtf8(Vector<const char> str,
int chars,
uint32_t hash_field) {
if (IsOneByte(str, chars)) {
Handle<SeqOneByteString> result =
AllocateRawOneByteInternalizedString(str.length(), hash_field);
DisallowHeapAllocation no_allocation;
MemCopy(result->GetChars(no_allocation), str.start(), str.length());
return result;
}
return AllocateInternalizedStringImpl<false>(str, chars, hash_field);
}
Handle<String> Factory::NewOneByteInternalizedString(Vector<const uint8_t> str,
uint32_t hash_field) {
Handle<SeqOneByteString> result =
AllocateRawOneByteInternalizedString(str.length(), hash_field);
DisallowHeapAllocation no_allocation;
MemCopy(result->GetChars(no_allocation), str.start(), str.length());
return result;
}
Handle<String> Factory::NewOneByteInternalizedSubString(
Handle<SeqOneByteString> string, int offset, int length,
uint32_t hash_field) {
Handle<SeqOneByteString> result =
AllocateRawOneByteInternalizedString(length, hash_field);
DisallowHeapAllocation no_allocation;
MemCopy(result->GetChars(no_allocation),
string->GetChars(no_allocation) + offset, length);
return result;
}
Handle<String> Factory::NewTwoByteInternalizedString(Vector<const uc16> str,
uint32_t hash_field) {
return AllocateTwoByteInternalizedString(str, hash_field);
}
Handle<String> Factory::NewInternalizedStringImpl(Handle<String> string,
int chars,
uint32_t hash_field) {
if (IsOneByte(string)) {
return AllocateInternalizedStringImpl<true>(string, chars, hash_field);
}
return AllocateInternalizedStringImpl<false>(string, chars, hash_field);
}
namespace {
MaybeHandle<Map> GetInternalizedStringMap(Factory* f, Handle<String> string) {
switch (string->map()->instance_type()) {
case STRING_TYPE:
return f->internalized_string_map();
case ONE_BYTE_STRING_TYPE:
return f->one_byte_internalized_string_map();
case EXTERNAL_STRING_TYPE:
return f->external_internalized_string_map();
case EXTERNAL_ONE_BYTE_STRING_TYPE:
return f->external_one_byte_internalized_string_map();
case EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
return f->external_internalized_string_with_one_byte_data_map();
case UNCACHED_EXTERNAL_STRING_TYPE:
return f->uncached_external_internalized_string_map();
case UNCACHED_EXTERNAL_ONE_BYTE_STRING_TYPE:
return f->uncached_external_one_byte_internalized_string_map();
case UNCACHED_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
return f->uncached_external_internalized_string_with_one_byte_data_map();
default:
return MaybeHandle<Map>(); // No match found.
}
}
} // namespace
MaybeHandle<Map> Factory::InternalizedStringMapForString(
Handle<String> string) {
// If the string is in the young generation, it cannot be used as
// internalized.
if (Heap::InYoungGeneration(*string)) return MaybeHandle<Map>();
return GetInternalizedStringMap(this, string);
}
template <class StringClass>
Handle<StringClass> Factory::InternalizeExternalString(Handle<String> string) {
Handle<StringClass> cast_string = Handle<StringClass>::cast(string);
Handle<Map> map = GetInternalizedStringMap(this, string).ToHandleChecked();
Handle<StringClass> external_string(StringClass::cast(New(map, TENURED)),
isolate());
external_string->set_length(cast_string->length());
external_string->set_hash_field(cast_string->hash_field());
external_string->SetResource(isolate(), nullptr);
isolate()->heap()->RegisterExternalString(*external_string);
return external_string;
}
template Handle<ExternalOneByteString>
Factory::InternalizeExternalString<ExternalOneByteString>(Handle<String>);
template Handle<ExternalTwoByteString>
Factory::InternalizeExternalString<ExternalTwoByteString>(Handle<String>);
MaybeHandle<SeqOneByteString> Factory::NewRawOneByteString(
int length, PretenureFlag pretenure) {
if (length > String::kMaxLength || length < 0) {
THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), SeqOneByteString);
}
DCHECK_GT(length, 0); // Use Factory::empty_string() instead.
int size = SeqOneByteString::SizeFor(length);
DCHECK_GE(SeqOneByteString::kMaxSize, size);
HeapObject result =
AllocateRawWithImmortalMap(size, pretenure, *one_byte_string_map());
Handle<SeqOneByteString> string(SeqOneByteString::cast(result), isolate());
string->set_length(length);
string->set_hash_field(String::kEmptyHashField);
DCHECK_EQ(size, string->Size());
return string;
}
MaybeHandle<SeqTwoByteString> Factory::NewRawTwoByteString(
int length, PretenureFlag pretenure) {
if (length > String::kMaxLength || length < 0) {
THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), SeqTwoByteString);
}
DCHECK_GT(length, 0); // Use Factory::empty_string() instead.
int size = SeqTwoByteString::SizeFor(length);
DCHECK_GE(SeqTwoByteString::kMaxSize, size);
HeapObject result =
AllocateRawWithImmortalMap(size, pretenure, *string_map());
Handle<SeqTwoByteString> string(SeqTwoByteString::cast(result), isolate());
string->set_length(length);
string->set_hash_field(String::kEmptyHashField);
DCHECK_EQ(size, string->Size());
return string;
}
Handle<String> Factory::LookupSingleCharacterStringFromCode(uint32_t code) {
if (code <= String::kMaxOneByteCharCodeU) {
{
DisallowHeapAllocation no_allocation;
Object value = single_character_string_cache()->get(code);
if (value != *undefined_value()) {
return handle(String::cast(value), isolate());
}
}
uint8_t buffer[1];
buffer[0] = static_cast<uint8_t>(code);
Handle<String> result =
InternalizeOneByteString(Vector<const uint8_t>(buffer, 1));
single_character_string_cache()->set(code, *result);
return result;
}
DCHECK_LE(code, String::kMaxUtf16CodeUnitU);
Handle<SeqTwoByteString> result = NewRawTwoByteString(1).ToHandleChecked();
result->SeqTwoByteStringSet(0, static_cast<uint16_t>(code));
return result;
}
// Returns true for a character in a range. Both limits are inclusive.
static inline bool Between(uint32_t character, uint32_t from, uint32_t to) {
// This makes uses of the the unsigned wraparound.
return character - from <= to - from;
}
static inline Handle<String> MakeOrFindTwoCharacterString(Isolate* isolate,
uint16_t c1,
uint16_t c2) {
// Numeric strings have a different hash algorithm not known by
// LookupTwoCharsStringIfExists, so we skip this step for such strings.
if (!Between(c1, '0', '9') || !Between(c2, '0', '9')) {
Handle<String> result;
if (StringTable::LookupTwoCharsStringIfExists(isolate, c1, c2)
.ToHandle(&result)) {
return result;
}
}
// Now we know the length is 2, we might as well make use of that fact
// when building the new string.
if (static_cast<unsigned>(c1 | c2) <= String::kMaxOneByteCharCodeU) {
// We can do this.
DCHECK(base::bits::IsPowerOfTwo(String::kMaxOneByteCharCodeU +
1)); // because of this.
Handle<SeqOneByteString> str =
isolate->factory()->NewRawOneByteString(2).ToHandleChecked();
DisallowHeapAllocation no_allocation;
uint8_t* dest = str->GetChars(no_allocation);
dest[0] = static_cast<uint8_t>(c1);
dest[1] = static_cast<uint8_t>(c2);
return str;
} else {
Handle<SeqTwoByteString> str =
isolate->factory()->NewRawTwoByteString(2).ToHandleChecked();
DisallowHeapAllocation no_allocation;
uc16* dest = str->GetChars(no_allocation);
dest[0] = c1;
dest[1] = c2;
return str;
}
}
template <typename SinkChar, typename StringType>
Handle<String> ConcatStringContent(Handle<StringType> result,
Handle<String> first,
Handle<String> second) {
DisallowHeapAllocation pointer_stays_valid;
SinkChar* sink = result->GetChars(pointer_stays_valid);
String::WriteToFlat(*first, sink, 0, first->length());
String::WriteToFlat(*second, sink + first->length(), 0, second->length());
return result;
}
MaybeHandle<String> Factory::NewConsString(Handle<String> left,
Handle<String> right) {
if (left->IsThinString()) {
left = handle(Handle<ThinString>::cast(left)->actual(), isolate());
}
if (right->IsThinString()) {
right = handle(Handle<ThinString>::cast(right)->actual(), isolate());
}
int left_length = left->length();
if (left_length == 0) return right;
int right_length = right->length();
if (right_length == 0) return left;
int length = left_length + right_length;
if (length == 2) {
uint16_t c1 = left->Get(0);
uint16_t c2 = right->Get(0);
return MakeOrFindTwoCharacterString(isolate(), c1, c2);
}
// Make sure that an out of memory exception is thrown if the length
// of the new cons string is too large.
if (length > String::kMaxLength || length < 0) {
THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
}
bool left_is_one_byte = left->IsOneByteRepresentation();
bool right_is_one_byte = right->IsOneByteRepresentation();
bool is_one_byte = left_is_one_byte && right_is_one_byte;
bool is_one_byte_data_in_two_byte_string = false;
if (!is_one_byte) {
// At least one of the strings uses two-byte representation so we
// can't use the fast case code for uncached one-byte strings below, but
// we can try to save memory if all chars actually fit in one-byte.
is_one_byte_data_in_two_byte_string =
left->HasOnlyOneByteChars() && right->HasOnlyOneByteChars();
if (is_one_byte_data_in_two_byte_string) {
isolate()->counters()->string_add_runtime_ext_to_one_byte()->Increment();
}
}
// If the resulting string is small make a flat string.
if (length < ConsString::kMinLength) {
// Note that neither of the two inputs can be a slice because:
STATIC_ASSERT(ConsString::kMinLength <= SlicedString::kMinLength);
DCHECK(left->IsFlat());
DCHECK(right->IsFlat());
STATIC_ASSERT(ConsString::kMinLength <= String::kMaxLength);
if (is_one_byte) {
Handle<SeqOneByteString> result =
NewRawOneByteString(length).ToHandleChecked();
DisallowHeapAllocation no_gc;
uint8_t* dest = result->GetChars(no_gc);
// Copy left part.
const uint8_t* src =
left->IsExternalString()
? Handle<ExternalOneByteString>::cast(left)->GetChars()
: Handle<SeqOneByteString>::cast(left)->GetChars(no_gc);
for (int i = 0; i < left_length; i++) *dest++ = src[i];
// Copy right part.
src = right->IsExternalString()
? Handle<ExternalOneByteString>::cast(right)->GetChars()
: Handle<SeqOneByteString>::cast(right)->GetChars(no_gc);
for (int i = 0; i < right_length; i++) *dest++ = src[i];
return result;
}
return (is_one_byte_data_in_two_byte_string)
? ConcatStringContent<uint8_t>(
NewRawOneByteString(length).ToHandleChecked(), left, right)
: ConcatStringContent<uc16>(
NewRawTwoByteString(length).ToHandleChecked(), left,
right);
}
bool one_byte = (is_one_byte || is_one_byte_data_in_two_byte_string);
return NewConsString(left, right, length, one_byte);
}
Handle<String> Factory::NewConsString(Handle<String> left, Handle<String> right,
int length, bool one_byte) {
DCHECK(!left->IsThinString());
DCHECK(!right->IsThinString());
DCHECK_GE(length, ConsString::kMinLength);
DCHECK_LE(length, String::kMaxLength);
Handle<ConsString> result(
ConsString::cast(one_byte ? New(cons_one_byte_string_map(), NOT_TENURED)
: New(cons_string_map(), NOT_TENURED)),
isolate());
DisallowHeapAllocation no_gc;
WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
result->set_hash_field(String::kEmptyHashField);
result->set_length(length);
result->set_first(isolate(), *left, mode);
result->set_second(isolate(), *right, mode);
return result;
}
Handle<String> Factory::NewSurrogatePairString(uint16_t lead, uint16_t trail) {
DCHECK_GE(lead, 0xD800);
DCHECK_LE(lead, 0xDBFF);
DCHECK_GE(trail, 0xDC00);
DCHECK_LE(trail, 0xDFFF);
Handle<SeqTwoByteString> str =
isolate()->factory()->NewRawTwoByteString(2).ToHandleChecked();
DisallowHeapAllocation no_allocation;
uc16* dest = str->GetChars(no_allocation);
dest[0] = lead;
dest[1] = trail;
return str;
}
Handle<String> Factory::NewProperSubString(Handle<String> str, int begin,
int end) {
#if VERIFY_HEAP
if (FLAG_verify_heap) str->StringVerify(isolate());
#endif
DCHECK(begin > 0 || end < str->length());
str = String::Flatten(isolate(), str);
int length = end - begin;
if (length <= 0) return empty_string();
if (length == 1) {
return LookupSingleCharacterStringFromCode(str->Get(begin));
}
if (length == 2) {
// Optimization for 2-byte strings often used as keys in a decompression
// dictionary. Check whether we already have the string in the string
// table to prevent creation of many unnecessary strings.
uint16_t c1 = str->Get(begin);
uint16_t c2 = str->Get(begin + 1);
return MakeOrFindTwoCharacterString(isolate(), c1, c2);
}
if (!FLAG_string_slices || length < SlicedString::kMinLength) {
if (str->IsOneByteRepresentation()) {
Handle<SeqOneByteString> result =
NewRawOneByteString(length).ToHandleChecked();
DisallowHeapAllocation no_gc;
uint8_t* dest = result->GetChars(no_gc);
String::WriteToFlat(*str, dest, begin, end);
return result;
} else {
Handle<SeqTwoByteString> result =
NewRawTwoByteString(length).ToHandleChecked();
DisallowHeapAllocation no_gc;
uc16* dest = result->GetChars(no_gc);
String::WriteToFlat(*str, dest, begin, end);
return result;
}
}
int offset = begin;
if (str->IsSlicedString()) {
Handle<SlicedString> slice = Handle<SlicedString>::cast(str);
str = Handle<String>(slice->parent(), isolate());
offset += slice->offset();
}
if (str->IsThinString()) {
Handle<ThinString> thin = Handle<ThinString>::cast(str);
str = handle(thin->actual(), isolate());
}
DCHECK(str->IsSeqString() || str->IsExternalString());
Handle<Map> map = str->IsOneByteRepresentation()
? sliced_one_byte_string_map()
: sliced_string_map();
Handle<SlicedString> slice(SlicedString::cast(New(map, NOT_TENURED)),
isolate());
slice->set_hash_field(String::kEmptyHashField);
slice->set_length(length);
slice->set_parent(isolate(), *str);
slice->set_offset(offset);
return slice;
}
MaybeHandle<String> Factory::NewExternalStringFromOneByte(
const ExternalOneByteString::Resource* resource) {
size_t length = resource->length();
if (length > static_cast<size_t>(String::kMaxLength)) {
THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
}
if (length == 0) return empty_string();
Handle<Map> map;
if (!resource->IsCacheable()) {
map = uncached_external_one_byte_string_map();
} else {
map = external_one_byte_string_map();
}
Handle<ExternalOneByteString> external_string(
ExternalOneByteString::cast(New(map, TENURED)), isolate());
external_string->set_length(static_cast<int>(length));
external_string->set_hash_field(String::kEmptyHashField);
external_string->SetResource(isolate(), resource);
isolate()->heap()->RegisterExternalString(*external_string);
return external_string;
}
MaybeHandle<String> Factory::NewExternalStringFromTwoByte(
const ExternalTwoByteString::Resource* resource) {
size_t length = resource->length();
if (length > static_cast<size_t>(String::kMaxLength)) {
THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
}
if (length == 0) return empty_string();
// For small strings we check whether the resource contains only
// one byte characters. If yes, we use a different string map.
static const size_t kOneByteCheckLengthLimit = 32;
bool is_one_byte =
length <= kOneByteCheckLengthLimit &&
String::IsOneByte(resource->data(), static_cast<int>(length));
Handle<Map> map;
if (!resource->IsCacheable()) {
map = is_one_byte ? uncached_external_string_with_one_byte_data_map()
: uncached_external_string_map();
} else {
map = is_one_byte ? external_string_with_one_byte_data_map()
: external_string_map();
}
Handle<ExternalTwoByteString> external_string(
ExternalTwoByteString::cast(New(map, TENURED)), isolate());
external_string->set_length(static_cast<int>(length));
external_string->set_hash_field(String::kEmptyHashField);
external_string->SetResource(isolate(), resource);
isolate()->heap()->RegisterExternalString(*external_string);
return external_string;
}
Handle<ExternalOneByteString> Factory::NewNativeSourceString(
const ExternalOneByteString::Resource* resource) {
size_t length = resource->length();
DCHECK_LE(length, static_cast<size_t>(String::kMaxLength));
Handle<Map> map = native_source_string_map();
Handle<ExternalOneByteString> external_string(
ExternalOneByteString::cast(New(map, TENURED)), isolate());
external_string->set_length(static_cast<int>(length));
external_string->set_hash_field(String::kEmptyHashField);
external_string->SetResource(isolate(), resource);
isolate()->heap()->RegisterExternalString(*external_string);
return external_string;
}
Handle<JSStringIterator> Factory::NewJSStringIterator(Handle<String> string) {
Handle<Map> map(isolate()->native_context()->initial_string_iterator_map(),
isolate());
Handle<String> flat_string = String::Flatten(isolate(), string);
Handle<JSStringIterator> iterator =
Handle<JSStringIterator>::cast(NewJSObjectFromMap(map));
iterator->set_string(*flat_string);
iterator->set_index(0);
return iterator;
}
Handle<Symbol> Factory::NewSymbol(PretenureFlag flag) {
DCHECK(flag != NOT_TENURED);
// Statically ensure that it is safe to allocate symbols in paged spaces.
STATIC_ASSERT(Symbol::kSize <= kMaxRegularHeapObjectSize);
HeapObject result =
AllocateRawWithImmortalMap(Symbol::kSize, flag, *symbol_map());
// Generate a random hash value.
int hash = isolate()->GenerateIdentityHash(Name::kHashBitMask);
Handle<Symbol> symbol(Symbol::cast(result), isolate());
symbol->set_hash_field(Name::kIsNotArrayIndexMask |
(hash << Name::kHashShift));
symbol->set_name(*undefined_value());
symbol->set_flags(0);
DCHECK(!symbol->is_private());
return symbol;
}
Handle<Symbol> Factory::NewPrivateSymbol(PretenureFlag flag) {
DCHECK(flag != NOT_TENURED);
Handle<Symbol> symbol = NewSymbol(flag);
symbol->set_is_private(true);
return symbol;
}
Handle<Symbol> Factory::NewPrivateNameSymbol(Handle<String> name) {
Handle<Symbol> symbol = NewSymbol();
symbol->set_is_private_name();
symbol->set_name(*name);
return symbol;
}
Handle<Context> Factory::NewContext(RootIndex map_root_index, int size,
int variadic_part_length,
PretenureFlag pretenure) {
DCHECK(RootsTable::IsImmortalImmovable(map_root_index));
DCHECK_LE(Context::kTodoHeaderSize, size);
DCHECK(IsAligned(size, kTaggedSize));
DCHECK_LE(Context::MIN_CONTEXT_SLOTS, variadic_part_length);
DCHECK_LE(Context::SizeFor(variadic_part_length), size);
Map map = Map::cast(isolate()->root(map_root_index));
HeapObject result = AllocateRawWithImmortalMap(size, pretenure, map);
Handle<Context> context(Context::cast(result), isolate());
context->set_length(variadic_part_length);
DCHECK_EQ(context->SizeFromMap(map), size);
if (size > Context::kTodoHeaderSize) {
ObjectSlot start = context->RawField(Context::kTodoHeaderSize);
ObjectSlot end = context->RawField(size);
size_t slot_count = end - start;
MemsetTagged(start, *undefined_value(), slot_count);
}
return context;
}
Handle<NativeContext> Factory::NewNativeContext() {
Handle<NativeContext> context = Handle<NativeContext>::cast(
NewContext(RootIndex::kNativeContextMap, NativeContext::kSize,
NativeContext::NATIVE_CONTEXT_SLOTS, TENURED));
context->set_scope_info(ReadOnlyRoots(isolate()).empty_scope_info());
context->set_previous(Context::unchecked_cast(Smi::zero()));
context->set_extension(*the_hole_value());
context->set_native_context(*context);
context->set_errors_thrown(Smi::zero());
context->set_math_random_index(Smi::zero());
context->set_serialized_objects(*empty_fixed_array());
context->set_microtask_queue(nullptr);
return context;
}
Handle<Context> Factory::NewScriptContext(Handle<NativeContext> outer,
Handle<ScopeInfo> scope_info) {
DCHECK_EQ(scope_info->scope_type(), SCRIPT_SCOPE);
int variadic_part_length = scope_info->ContextLength();
Handle<Context> context = NewContext(RootIndex::kScriptContextMap,
Context::SizeFor(variadic_part_length),
variadic_part_length, TENURED);
context->set_scope_info(*scope_info);
context->set_previous(*outer);
context->set_extension(*the_hole_value());
context->set_native_context(*outer);
DCHECK(context->IsScriptContext());
return context;
}
Handle<ScriptContextTable> Factory::NewScriptContextTable() {
Handle<ScriptContextTable> context_table =
NewFixedArrayWithMap<ScriptContextTable>(
RootIndex::kScriptContextTableMap, ScriptContextTable::kMinLength);
context_table->set_used(0);
return context_table;
}
Handle<Context> Factory::NewModuleContext(Handle<Module> module,
Handle<NativeContext> outer,
Handle<ScopeInfo> scope_info) {
DCHECK_EQ(scope_info->scope_type(), MODULE_SCOPE);
int variadic_part_length = scope_info->ContextLength();
Handle<Context> context = NewContext(RootIndex::kModuleContextMap,
Context::SizeFor(variadic_part_length),
variadic_part_length, TENURED);
context->set_scope_info(*scope_info);
context->set_previous(*outer);
context->set_extension(*module);
context->set_native_context(*outer);
DCHECK(context->IsModuleContext());
return context;
}
Handle<Context> Factory::NewFunctionContext(Handle<Context> outer,
Handle<ScopeInfo> scope_info) {
RootIndex mapRootIndex;
switch (scope_info->scope_type()) {
case EVAL_SCOPE:
mapRootIndex = RootIndex::kEvalContextMap;
break;
case FUNCTION_SCOPE:
mapRootIndex = RootIndex::kFunctionContextMap;
break;
default:
UNREACHABLE();
}
int variadic_part_length = scope_info->ContextLength();
Handle<Context> context =
NewContext(mapRootIndex, Context::SizeFor(variadic_part_length),
variadic_part_length, NOT_TENURED);
context->set_scope_info(*scope_info);
context->set_previous(*outer);
context->set_extension(*the_hole_value());
context->set_native_context(outer->native_context());
return context;
}
Handle<Context> Factory::NewCatchContext(Handle<Context> previous,
Handle<ScopeInfo> scope_info,
Handle<Object> thrown_object) {
DCHECK_EQ(scope_info->scope_type(), CATCH_SCOPE);
STATIC_ASSERT(Context::MIN_CONTEXT_SLOTS == Context::THROWN_OBJECT_INDEX);
// TODO(ishell): Take the details from CatchContext class.
int variadic_part_length = Context::MIN_CONTEXT_SLOTS + 1;
Handle<Context> context = NewContext(RootIndex::kCatchContextMap,
Context::SizeFor(variadic_part_length),
variadic_part_length, NOT_TENURED);
context->set_scope_info(*scope_info);
context->set_previous(*previous);
context->set_extension(*the_hole_value());
context->set_native_context(previous->native_context());
context->set(Context::THROWN_OBJECT_INDEX, *thrown_object);
return context;
}
Handle<Context> Factory::NewDebugEvaluateContext(Handle<Context> previous,
Handle<ScopeInfo> scope_info,
Handle<JSReceiver> extension,
Handle<Context> wrapped,
Handle<StringSet> whitelist) {
STATIC_ASSERT(Context::WHITE_LIST_INDEX == Context::MIN_CONTEXT_SLOTS + 1);
DCHECK(scope_info->IsDebugEvaluateScope());
Handle<HeapObject> ext = extension.is_null()
? Handle<HeapObject>::cast(the_hole_value())
: Handle<HeapObject>::cast(extension);
// TODO(ishell): Take the details from DebugEvaluateContextContext class.
int variadic_part_length = Context::MIN_CONTEXT_SLOTS + 2;
Handle<Context> c = NewContext(RootIndex::kDebugEvaluateContextMap,
Context::SizeFor(variadic_part_length),
variadic_part_length, NOT_TENURED);
c->set_scope_info(*scope_info);
c->set_previous(*previous);
c->set_native_context(previous->native_context());
c->set_extension(*ext);
if (!wrapped.is_null()) c->set(Context::WRAPPED_CONTEXT_INDEX, *wrapped);
if (!whitelist.is_null()) c->set(Context::WHITE_LIST_INDEX, *whitelist);
return c;
}
Handle<Context> Factory::NewWithContext(Handle<Context> previous,
Handle<ScopeInfo> scope_info,
Handle<JSReceiver> extension) {
DCHECK_EQ(scope_info->scope_type(), WITH_SCOPE);
// TODO(ishell): Take the details from WithContext class.
int variadic_part_length = Context::MIN_CONTEXT_SLOTS;
Handle<Context> context = NewContext(RootIndex::kWithContextMap,
Context::SizeFor(variadic_part_length),
variadic_part_length, NOT_TENURED);
context->set_scope_info(*scope_info);
context->set_previous(*previous);
context->set_extension(*extension);
context->set_native_context(previous->native_context());
return context;
}
Handle<Context> Factory::NewBlockContext(Handle<Context> previous,
Handle<ScopeInfo> scope_info) {
DCHECK_EQ(scope_info->scope_type(), BLOCK_SCOPE);
int variadic_part_length = scope_info->ContextLength();
Handle<Context> context = NewContext(RootIndex::kBlockContextMap,
Context::SizeFor(variadic_part_length),
variadic_part_length, NOT_TENURED);
context->set_scope_info(*scope_info);
context->set_previous(*previous);
context->set_extension(*the_hole_value());
context->set_native_context(previous->native_context());
return context;
}
Handle<Context> Factory::NewBuiltinContext(Handle<NativeContext> native_context,
int variadic_part_length) {
DCHECK_LE(Context::MIN_CONTEXT_SLOTS, variadic_part_length);
Handle<Context> context = NewContext(RootIndex::kFunctionContextMap,
Context::SizeFor(variadic_part_length),
variadic_part_length, NOT_TENURED);
context->set_scope_info(ReadOnlyRoots(isolate()).empty_scope_info());
context->set_previous(*native_context);
context->set_extension(*the_hole_value());
context->set_native_context(*native_context);
return context;
}
Handle<Struct> Factory::NewStruct(InstanceType type, PretenureFlag pretenure) {
Map map;
switch (type) {
#define MAKE_CASE(TYPE, Name, name) \
case TYPE: \
map = *name##_map(); \
break;
STRUCT_LIST(MAKE_CASE)
#undef MAKE_CASE
default:
UNREACHABLE();
}
int size = map->instance_size();
HeapObject result = AllocateRawWithImmortalMap(size, pretenure, map);
Handle<Struct> str(Struct::cast(result), isolate());
str->InitializeBody(size);
return str;
}
Handle<AliasedArgumentsEntry> Factory::NewAliasedArgumentsEntry(
int aliased_context_slot) {
Handle<AliasedArgumentsEntry> entry = Handle<AliasedArgumentsEntry>::cast(
NewStruct(ALIASED_ARGUMENTS_ENTRY_TYPE, NOT_TENURED));
entry->set_aliased_context_slot(aliased_context_slot);
return entry;
}
Handle<AccessorInfo> Factory::NewAccessorInfo() {
Handle<AccessorInfo> info =
Handle<AccessorInfo>::cast(NewStruct(ACCESSOR_INFO_TYPE, TENURED));
info->set_name(*empty_string());
info->set_flags(0); // Must clear the flags, it was initialized as undefined.
info->set_is_sloppy(true);
info->set_initial_property_attributes(NONE);
return info;
}
Handle<Script> Factory::NewScript(Handle<String> source, PretenureFlag tenure) {
return NewScriptWithId(source, isolate()->heap()->NextScriptId(), tenure);
}
Handle<Script> Factory::NewScriptWithId(Handle<String> source, int script_id,
PretenureFlag tenure) {
DCHECK(tenure == TENURED || tenure == TENURED_READ_ONLY);
// Create and initialize script object.
Heap* heap = isolate()->heap();
ReadOnlyRoots roots(heap);
Handle<Script> script = Handle<Script>::cast(NewStruct(SCRIPT_TYPE, tenure));
script->set_source(*source);
script->set_name(roots.undefined_value());
script->set_id(script_id);
script->set_line_offset(0);
script->set_column_offset(0);
script->set_context_data(roots.undefined_value());
script->set_type(Script::TYPE_NORMAL);
script->set_line_ends(roots.undefined_value());
script->set_eval_from_shared_or_wrapped_arguments(roots.undefined_value());
script->set_eval_from_position(0);
script->set_shared_function_infos(*empty_weak_fixed_array(),
SKIP_WRITE_BARRIER);
script->set_flags(0);
script->set_host_defined_options(*empty_fixed_array());
Handle<WeakArrayList> scripts = script_list();
scripts = WeakArrayList::AddToEnd(isolate(), scripts,
MaybeObjectHandle::Weak(script));
heap->set_script_list(*scripts);
LOG(isolate(), ScriptEvent(Logger::ScriptEventType::kCreate, script_id));
return script;
}
Handle<Script> Factory::CloneScript(Handle<Script> script) {
Heap* heap = isolate()->heap();
int script_id = isolate()->heap()->NextScriptId();
Handle<Script> new_script =
Handle<Script>::cast(NewStruct(SCRIPT_TYPE, TENURED));
new_script->set_source(script->source());
new_script->set_name(script->name());
new_script->set_id(script_id);
new_script->set_line_offset(script->line_offset());
new_script->set_column_offset(script->column_offset());
new_script->set_context_data(script->context_data());
new_script->set_type(script->type());
new_script->set_line_ends(ReadOnlyRoots(heap).undefined_value());
new_script->set_eval_from_shared_or_wrapped_arguments(
script->eval_from_shared_or_wrapped_arguments());
new_script->set_shared_function_infos(*empty_weak_fixed_array(),
SKIP_WRITE_BARRIER);
new_script->set_eval_from_position(script->eval_from_position());
new_script->set_flags(script->flags());
new_script->set_host_defined_options(script->host_defined_options());
Handle<WeakArrayList> scripts = script_list();
scripts = WeakArrayList::AddToEnd(isolate(), scripts,
MaybeObjectHandle::Weak(new_script));
heap->set_script_list(*scripts);
LOG(isolate(), ScriptEvent(Logger::ScriptEventType::kCreate, script_id));
return new_script;
}
Handle<CallableTask> Factory::NewCallableTask(Handle<JSReceiver> callable,
Handle<Context> context) {
DCHECK(callable->IsCallable());
Handle<CallableTask> microtask =
Handle<CallableTask>::cast(NewStruct(CALLABLE_TASK_TYPE));
microtask->set_callable(*callable);
microtask->set_context(*context);
return microtask;
}
Handle<CallbackTask> Factory::NewCallbackTask(Handle<Foreign> callback,
Handle<Foreign> data) {
Handle<CallbackTask> microtask =
Handle<CallbackTask>::cast(NewStruct(CALLBACK_TASK_TYPE));
microtask->set_callback(*callback);
microtask->set_data(*data);
return microtask;
}
Handle<PromiseResolveThenableJobTask> Factory::NewPromiseResolveThenableJobTask(
Handle<JSPromise> promise_to_resolve, Handle<JSReceiver> then,
Handle<JSReceiver> thenable, Handle<Context> context) {
DCHECK(then->IsCallable());
Handle<PromiseResolveThenableJobTask> microtask =
Handle<PromiseResolveThenableJobTask>::cast(
NewStruct(PROMISE_RESOLVE_THENABLE_JOB_TASK_TYPE));
microtask->set_promise_to_resolve(*promise_to_resolve);
microtask->set_then(*then);
microtask->set_thenable(*thenable);
microtask->set_context(*context);
return microtask;
}
Handle<FinalizationGroupCleanupJobTask>
Factory::NewFinalizationGroupCleanupJobTask(
Handle<JSFinalizationGroup> finalization_group) {
Handle<FinalizationGroupCleanupJobTask> microtask =
Handle<FinalizationGroupCleanupJobTask>::cast(
NewStruct(FINALIZATION_GROUP_CLEANUP_JOB_TASK_TYPE));
microtask->set_finalization_group(*finalization_group);
return microtask;
}
Handle<Foreign> Factory::NewForeign(Address addr, PretenureFlag pretenure) {
// Statically ensure that it is safe to allocate foreigns in paged spaces.
STATIC_ASSERT(Foreign::kSize <= kMaxRegularHeapObjectSize);
Map map = *foreign_map();
HeapObject result =
AllocateRawWithImmortalMap(map->instance_size(), pretenure, map);
Handle<Foreign> foreign(Foreign::cast(result), isolate());
foreign->set_foreign_address(addr);
return foreign;
}
Handle<ByteArray> Factory::NewByteArray(int length, PretenureFlag pretenure) {
DCHECK_LE(0, length);
if (length > ByteArray::kMaxLength) {
isolate()->heap()->FatalProcessOutOfMemory("invalid array length");
}
int size = ByteArray::SizeFor(length);
HeapObject result =
AllocateRawWithImmortalMap(size, pretenure, *byte_array_map());
Handle<ByteArray> array(ByteArray::cast(result), isolate());
array->set_length(length);
array->clear_padding();
return array;
}
Handle<BytecodeArray> Factory::NewBytecodeArray(
int length, const byte* raw_bytecodes, int frame_size, int parameter_count,
Handle<FixedArray> constant_pool) {
DCHECK_LE(0, length);
if (length > BytecodeArray::kMaxLength) {
isolate()->heap()->FatalProcessOutOfMemory("invalid array length");
}
// Bytecode array is pretenured, so constant pool array should be too.
DCHECK(!Heap::InYoungGeneration(*constant_pool));
int size = BytecodeArray::SizeFor(length);
HeapObject result =
AllocateRawWithImmortalMap(size, TENURED, *bytecode_array_map());
Handle<BytecodeArray> instance(BytecodeArray::cast(result), isolate());
instance->set_length(length);
instance->set_frame_size(frame_size);
instance->set_parameter_count(parameter_count);
instance->set_incoming_new_target_or_generator_register(
interpreter::Register::invalid_value());
instance->set_interrupt_budget(interpreter::Interpreter::InterruptBudget());
instance->set_osr_loop_nesting_level(0);
instance->set_bytecode_age(BytecodeArray::kNoAgeBytecodeAge);
instance->set_constant_pool(*constant_pool);
instance->set_handler_table(*empty_byte_array());
instance->set_source_position_table(*undefined_value());
CopyBytes(reinterpret_cast<byte*>(instance->GetFirstBytecodeAddress()),
raw_bytecodes, length);
instance->clear_padding();
return instance;
}
Handle<FixedTypedArrayBase> Factory::NewFixedTypedArrayWithExternalPointer(
int length, ExternalArrayType array_type, void* external_pointer,
PretenureFlag pretenure) {
// TODO(7881): Smi length check
DCHECK(0 <= length && length <= Smi::kMaxValue);
int size = FixedTypedArrayBase::kHeaderSize;
HeapObject result = AllocateRawWithImmortalMap(
size, pretenure,
ReadOnlyRoots(isolate()).MapForFixedTypedArray(array_type));
Handle<FixedTypedArrayBase> elements(FixedTypedArrayBase::cast(result),
isolate());
elements->set_base_pointer(Smi::kZero, SKIP_WRITE_BARRIER);
elements->set_external_pointer(external_pointer, SKIP_WRITE_BARRIER);
elements->set_length(length);
return elements;
}
Handle<FixedTypedArrayBase> Factory::NewFixedTypedArray(
size_t length, size_t byte_length, ExternalArrayType array_type,
bool initialize, PretenureFlag pretenure) {
// TODO(7881): Smi length check
DCHECK(0 <= length && length <= Smi::kMaxValue);
CHECK(byte_length <= kMaxInt - FixedTypedArrayBase::kDataOffset);
size_t size =
OBJECT_POINTER_ALIGN(byte_length + FixedTypedArrayBase::kDataOffset);
Map map = ReadOnlyRoots(isolate()).MapForFixedTypedArray(array_type);
AllocationAlignment alignment =
array_type == kExternalFloat64Array ? kDoubleAligned : kWordAligned;
HeapObject object = AllocateRawWithImmortalMap(static_cast<int>(size),
pretenure, map, alignment);
Handle<FixedTypedArrayBase> elements(FixedTypedArrayBase::cast(object),
isolate());
elements->set_base_pointer(*elements, SKIP_WRITE_BARRIER);
elements->set_external_pointer(
reinterpret_cast<void*>(
ExternalReference::fixed_typed_array_base_data_offset().address()),
SKIP_WRITE_BARRIER);
elements->set_length(static_cast<int>(length));
if (initialize) memset(elements->DataPtr(), 0, elements->DataSize());
return elements;
}
Handle<Cell> Factory::NewCell(Handle<Object> value) {
AllowDeferredHandleDereference convert_to_cell;
STATIC_ASSERT(Cell::kSize <= kMaxRegularHeapObjectSize);
HeapObject result =
AllocateRawWithImmortalMap(Cell::kSize, TENURED, *cell_map());
Handle<Cell> cell(Cell::cast(result), isolate());
cell->set_value(*value);
return cell;
}
Handle<FeedbackCell> Factory::NewNoClosuresCell(Handle<HeapObject> value) {
AllowDeferredHandleDereference convert_to_cell;
HeapObject result = AllocateRawWithImmortalMap(FeedbackCell::kSize, TENURED,
*no_closures_cell_map());
Handle<FeedbackCell> cell(FeedbackCell::cast(result), isolate());
cell->set_value(*value);
return cell;
}
Handle<FeedbackCell> Factory::NewOneClosureCell(Handle<HeapObject> value) {
AllowDeferredHandleDereference convert_to_cell;
HeapObject result = AllocateRawWithImmortalMap(FeedbackCell::kSize, TENURED,
*one_closure_cell_map());
Handle<FeedbackCell> cell(FeedbackCell::cast(result), isolate());
cell->set_value(*value);
return cell;
}
Handle<FeedbackCell> Factory::NewManyClosuresCell(Handle<HeapObject> value) {
AllowDeferredHandleDereference convert_to_cell;
HeapObject result = AllocateRawWithImmortalMap(FeedbackCell::kSize, TENURED,
*many_closures_cell_map());
Handle<FeedbackCell> cell(FeedbackCell::cast(result), isolate());
cell->set_value(*value);
return cell;
}
Handle<FeedbackCell> Factory::NewNoFeedbackCell() {
AllowDeferredHandleDereference convert_to_cell;
HeapObject result = AllocateRawWithImmortalMap(FeedbackCell::kSize, TENURED,
*no_feedback_cell_map());
Handle<FeedbackCell> cell(FeedbackCell::cast(result), isolate());
// Set the value to undefined. We wouldn't allocate feedback vectors with
// NoFeedbackCell map type.
cell->set_value(*undefined_value());
return cell;
}
Handle<PropertyCell> Factory::NewPropertyCell(Handle<Name> name,
PretenureFlag pretenure) {
DCHECK(name->IsUniqueName());
STATIC_ASSERT(PropertyCell::kSize <= kMaxRegularHeapObjectSize);
HeapObject result = AllocateRawWithImmortalMap(PropertyCell::kSize, pretenure,
*global_property_cell_map());
Handle<PropertyCell> cell(PropertyCell::cast(result), isolate());
cell->set_dependent_code(DependentCode::cast(*empty_weak_fixed_array()),
SKIP_WRITE_BARRIER);
cell->set_property_details(PropertyDetails(Smi::zero()));
cell->set_name(*name);
cell->set_value(*the_hole_value());
return cell;
}
Handle<DescriptorArray> Factory::NewDescriptorArray(int number_of_descriptors,
int slack,
PretenureFlag pretenure) {
int number_of_all_descriptors = number_of_descriptors + slack;
// Zero-length case must be handled outside.
DCHECK_LT(0, number_of_all_descriptors);
int size = DescriptorArray::SizeFor(number_of_all_descriptors);
AllocationSpace space = Heap::SelectSpace(pretenure);
HeapObject obj = isolate()->heap()->AllocateRawWithRetryOrFail(size, space);
obj->set_map_after_allocation(*descriptor_array_map(), SKIP_WRITE_BARRIER);
DescriptorArray array = DescriptorArray::cast(obj);
array->Initialize(*empty_enum_cache(), *undefined_value(),
number_of_descriptors, slack);
return Handle<DescriptorArray>(array, isolate());
}
Handle<TransitionArray> Factory::NewTransitionArray(int number_of_transitions,
int slack) {
int capacity = TransitionArray::LengthFor(number_of_transitions + slack);
Handle<TransitionArray> array = NewWeakFixedArrayWithMap<TransitionArray>(
RootIndex::kTransitionArrayMap, capacity, TENURED);
// Transition arrays are tenured. When black allocation is on we have to
// add the transition array to the list of encountered_transition_arrays.
Heap* heap = isolate()->heap();
if (heap->incremental_marking()->black_allocation()) {
heap->mark_compact_collector()->AddTransitionArray(*array);
}
array->WeakFixedArray::Set(TransitionArray::kPrototypeTransitionsIndex,
MaybeObject::FromObject(Smi::kZero));
array->WeakFixedArray::Set(
TransitionArray::kTransitionLengthIndex,
MaybeObject::FromObject(Smi::FromInt(number_of_transitions)));
return array;
}
Handle<AllocationSite> Factory::NewAllocationSite(bool with_weak_next) {
Handle<Map> map = with_weak_next ? allocation_site_map()
: allocation_site_without_weaknext_map();
Handle<AllocationSite> site(AllocationSite::cast(New(map, TENURED)),
isolate());
site->Initialize();
if (with_weak_next) {
// Link the site
site->set_weak_next(isolate()->heap()->allocation_sites_list());
isolate()->heap()->set_allocation_sites_list(*site);
}
return site;
}
Handle<Map> Factory::NewMap(InstanceType type, int instance_size,
ElementsKind elements_kind,
int inobject_properties) {
STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE);
DCHECK_IMPLIES(InstanceTypeChecker::IsJSObject(type) &&
!Map::CanHaveFastTransitionableElementsKind(type),
IsDictionaryElementsKind(elements_kind) ||
IsTerminalElementsKind(elements_kind));
HeapObject result =
isolate()->heap()->AllocateRawWithRetryOrFail(Map::kSize, MAP_SPACE);
result->set_map_after_allocation(*meta_map(), SKIP_WRITE_BARRIER);
return handle(InitializeMap(Map::cast(result), type, instance_size,
elements_kind, inobject_properties),
isolate());
}
Map Factory::InitializeMap(Map map, InstanceType type, int instance_size,
ElementsKind elements_kind,
int inobject_properties) {
map->set_instance_type(type);
map->set_prototype(*null_value(), SKIP_WRITE_BARRIER);
map->set_constructor_or_backpointer(*null_value(), SKIP_WRITE_BARRIER);
map->set_instance_size(instance_size);
if (map->IsJSObjectMap()) {
DCHECK(!isolate()->heap()->InReadOnlySpace(map));
map->SetInObjectPropertiesStartInWords(instance_size / kTaggedSize -
inobject_properties);
DCHECK_EQ(map->GetInObjectProperties(), inobject_properties);
map->set_prototype_validity_cell(*invalid_prototype_validity_cell());
} else {
DCHECK_EQ(inobject_properties, 0);
map->set_inobject_properties_start_or_constructor_function_index(0);
map->set_prototype_validity_cell(Smi::FromInt(Map::kPrototypeChainValid));
}
map->set_dependent_code(DependentCode::cast(*empty_weak_fixed_array()),
SKIP_WRITE_BARRIER);
map->set_raw_transitions(MaybeObject::FromSmi(Smi::zero()));
map->SetInObjectUnusedPropertyFields(inobject_properties);
map->SetInstanceDescriptors(isolate(), *empty_descriptor_array(), 0);
if (FLAG_unbox_double_fields) {
map->set_layout_descriptor(LayoutDescriptor::FastPointerLayout());
}
// Must be called only after |instance_type|, |instance_size| and
// |layout_descriptor| are set.
map->set_visitor_id(Map::GetVisitorId(map));
map->set_bit_field(0);
map->set_bit_field2(Map::IsExtensibleBit::kMask);
DCHECK(!map->is_in_retained_map_list());
int bit_field3 = Map::EnumLengthBits::encode(kInvalidEnumCacheSentinel) |
Map::OwnsDescriptorsBit::encode(true) |
Map::ConstructionCounterBits::encode(Map::kNoSlackTracking);
map->set_bit_field3(bit_field3);
map->set_elements_kind(elements_kind);
map->set_new_target_is_base(true);
isolate()->counters()->maps_created()->Increment();
if (FLAG_trace_maps) LOG(isolate(), MapCreate(map));
return map;
}
Handle<JSObject> Factory::CopyJSObject(Handle<JSObject> source) {
return CopyJSObjectWithAllocationSite(source, Handle<AllocationSite>());
}
Handle<JSObject> Factory::CopyJSObjectWithAllocationSite(
Handle<JSObject> source, Handle<AllocationSite> site) {
Handle<Map> map(source->map(), isolate());
// We can only clone regexps, normal objects, api objects, errors or arrays.
// Copying anything else will break invariants.
CHECK(map->instance_type() == JS_REGEXP_TYPE ||
map->instance_type() == JS_OBJECT_TYPE ||
map->instance_type() == JS_ERROR_TYPE ||
map->instance_type() == JS_ARRAY_TYPE ||
map->instance_type() == JS_API_OBJECT_TYPE ||
map->instance_type() == WASM_GLOBAL_TYPE ||
map->instance_type() == WASM_INSTANCE_TYPE ||
map->instance_type() == WASM_MEMORY_TYPE ||
map->instance_type() == WASM_MODULE_TYPE ||
map->instance_type() == WASM_TABLE_TYPE ||
map->instance_type() == JS_SPECIAL_API_OBJECT_TYPE);
DCHECK(site.is_null() || AllocationSite::CanTrack(map->instance_type()));
int object_size = map->instance_size();
int adjusted_object_size =
site.is_null() ? object_size : object_size + AllocationMemento::kSize;
HeapObject raw_clone = isolate()->heap()->AllocateRawWithRetryOrFail(
adjusted_object_size, NEW_SPACE);
DCHECK(Heap::InYoungGeneration(raw_clone));
// Since we know the clone is allocated in new space, we can copy
// the contents without worrying about updating the write barrier.
Heap::CopyBlock(raw_clone->address(), source->address(), object_size);
Handle<JSObject> clone(JSObject::cast(raw_clone), isolate());
if (!site.is_null()) {
AllocationMemento alloc_memento = AllocationMemento::unchecked_cast(
Object(raw_clone->ptr() + object_size));
InitializeAllocationMemento(alloc_memento, *site);
}
SLOW_DCHECK(clone->GetElementsKind() == source->GetElementsKind());
FixedArrayBase elements = source->elements();
// Update elements if necessary.
if (elements->length() > 0) {
FixedArrayBase elem;
if (elements->map() == *fixed_cow_array_map()) {
elem = elements;
} else if (source->HasDoubleElements()) {
elem = *CopyFixedDoubleArray(
handle(FixedDoubleArray::cast(elements), isolate()));
} else {
elem = *CopyFixedArray(handle(FixedArray::cast(elements), isolate()));
}
clone->set_elements(elem);
}
// Update properties if necessary.
if (source->HasFastProperties()) {
PropertyArray properties = source->property_array();
if (properties->length() > 0) {
// TODO(gsathya): Do not copy hash code.
Handle<PropertyArray> prop = CopyArrayWithMap(
handle(properties, isolate()), handle(properties->map(), isolate()));
clone->set_raw_properties_or_hash(*prop);
}
} else {
Handle<FixedArray> properties(
FixedArray::cast(source->property_dictionary()), isolate());
Handle<FixedArray> prop = CopyFixedArray(properties);
clone->set_raw_properties_or_hash(*prop);
}
return clone;
}
namespace {
template <typename T>
void initialize_length(Handle<T> array, int length) {
array->set_length(length);
}
template <>
void initialize_length<PropertyArray>(Handle<PropertyArray> array, int length) {
array->initialize_length(length);
}
} // namespace
template <typename T>
Handle<T> Factory::CopyArrayWithMap(Handle<T> src, Handle<Map> map) {
int len = src->length();
HeapObject obj = AllocateRawFixedArray(len, NOT_TENURED);
obj->set_map_after_allocation(*map, SKIP_WRITE_BARRIER);
Handle<T> result(T::cast(obj), isolate());
DisallowHeapAllocation no_gc;
WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
if (mode == SKIP_WRITE_BARRIER) {
// Eliminate the write barrier if possible.
Heap::CopyBlock(obj->address() + kTaggedSize, src->address() + kTaggedSize,
T::SizeFor(len) - kTaggedSize);
} else {
// Slow case: Just copy the content one-by-one.
initialize_length(result, len);
for (int i = 0; i < len; i++) result->set(i, src->get(i), mode);
}
return result;
}
template <typename T>
Handle<T> Factory::CopyArrayAndGrow(Handle<T> src, int grow_by,
PretenureFlag pretenure) {
DCHECK_LT(0, grow_by);
DCHECK_LE(grow_by, kMaxInt - src->length());
int old_len = src->length();
int new_len = old_len + grow_by;
HeapObject obj = AllocateRawFixedArray(new_len, pretenure);
obj->set_map_after_allocation(src->map(), SKIP_WRITE_BARRIER);
Handle<T> result(T::cast(obj), isolate());
initialize_length(result, new_len);
// Copy the content.
DisallowHeapAllocation no_gc;
WriteBarrierMode mode = obj->GetWriteBarrierMode(no_gc);
for (int i = 0; i < old_len; i++) result->set(i, src->get(i), mode);
MemsetTagged(result->data_start() + old_len, *undefined_value(), grow_by);
return result;
}
Handle<FixedArray> Factory::CopyFixedArrayWithMap(Handle<FixedArray> array,
Handle<Map> map) {
return CopyArrayWithMap(array, map);
}
Handle<FixedArray> Factory::CopyFixedArrayAndGrow(Handle<FixedArray> array,
int grow_by,
PretenureFlag pretenure) {
return CopyArrayAndGrow(array, grow_by, pretenure);
}
Handle<WeakFixedArray> Factory::CopyWeakFixedArrayAndGrow(
Handle<WeakFixedArray> src, int grow_by, PretenureFlag pretenure) {
DCHECK(
!src->IsTransitionArray()); // Compacted by GC, this code doesn't work.
int old_len = src->length();
int new_len = old_len + grow_by;
DCHECK_GE(new_len, old_len);
HeapObject obj = AllocateRawFixedArray(new_len, pretenure);
DCHECK_EQ(old_len, src->length());
obj->set_map_after_allocation(src->map(), SKIP_WRITE_BARRIER);
WeakFixedArray result = WeakFixedArray::cast(obj);
result->set_length(new_len);
// Copy the content.
DisallowHeapAllocation no_gc;
WriteBarrierMode mode = obj->GetWriteBarrierMode(no_gc);
for (int i = 0; i < old_len; i++) result->Set(i, src->Get(i), mode);
MemsetTagged(ObjectSlot(result->RawFieldOfElementAt(old_len)),
ReadOnlyRoots(isolate()).undefined_value(), grow_by);
return Handle<WeakFixedArray>(result, isolate());
}
Handle<WeakArrayList> Factory::CopyWeakArrayListAndGrow(
Handle<WeakArrayList> src, int grow_by, PretenureFlag pretenure) {
int old_capacity = src->capacity();
int new_capacity = old_capacity + grow_by;
DCHECK_GE(new_capacity, old_capacity);
HeapObject obj = AllocateRawWeakArrayList(new_capacity, pretenure);
obj->set_map_after_allocation(src->map(), SKIP_WRITE_BARRIER);
WeakArrayList result = WeakArrayList::cast(obj);
result->set_length(src->length());
result->set_capacity(new_capacity);
// Copy the content.
DisallowHeapAllocation no_gc;
WriteBarrierMode mode = obj->GetWriteBarrierMode(no_gc);
for (int i = 0; i < old_capacity; i++) result->Set(i, src->Get(i), mode);
MemsetTagged(ObjectSlot(result->data_start() + old_capacity),
ReadOnlyRoots(isolate()).undefined_value(), grow_by);
return Handle<WeakArrayList>(result, isolate());
}
Handle<PropertyArray> Factory::CopyPropertyArrayAndGrow(
Handle<PropertyArray> array, int grow_by, PretenureFlag pretenure) {
return CopyArrayAndGrow(array, grow_by, pretenure);
}
Handle<FixedArray> Factory::CopyFixedArrayUpTo(Handle<FixedArray> array,
int new_len,
PretenureFlag pretenure) {
DCHECK_LE(0, new_len);
DCHECK_LE(new_len, array->length());
if (new_len == 0) return empty_fixed_array();
HeapObject obj = AllocateRawFixedArray(new_len, pretenure);
obj->set_map_after_allocation(*fixed_array_map(), SKIP_WRITE_BARRIER);
Handle<FixedArray> result(FixedArray::cast(obj), isolate());
result->set_length(new_len);
// Copy the content.
DisallowHeapAllocation no_gc;
WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
for (int i = 0; i < new_len; i++) result->set(i, array->get(i), mode);
return result;
}
Handle<FixedArray> Factory::CopyFixedArray(Handle<FixedArray> array) {
if (array->length() == 0) return array;
return CopyArrayWithMap(array, handle(array->map(), isolate()));
}
Handle<FixedArray> Factory::CopyAndTenureFixedCOWArray(
Handle<FixedArray> array) {
DCHECK(Heap::InYoungGeneration(*array));
Handle<FixedArray> result =
CopyFixedArrayUpTo(array, array->length(), TENURED);
// TODO(mvstanton): The map is set twice because of protection against calling
// set() on a COW FixedArray. Issue v8:3221 created to track this, and
// we might then be able to remove this whole method.
result->set_map_after_allocation(*fixed_cow_array_map(), SKIP_WRITE_BARRIER);
return result;
}
Handle<FixedDoubleArray> Factory::CopyFixedDoubleArray(
Handle<FixedDoubleArray> array) {
int len = array->length();
if (len == 0) return array;
Handle<FixedDoubleArray> result =
Handle<FixedDoubleArray>::cast(NewFixedDoubleArray(len, NOT_TENURED));
Heap::CopyBlock(
result->address() + FixedDoubleArray::kLengthOffset,
array->address() + FixedDoubleArray::kLengthOffset,
FixedDoubleArray::SizeFor(len) - FixedDoubleArray::kLengthOffset);
return result;
}
Handle<FeedbackVector> Factory::CopyFeedbackVector(
Handle<FeedbackVector> array) {
int len = array->length();
HeapObject obj = AllocateRawWithImmortalMap(
FeedbackVector::SizeFor(len), NOT_TENURED, *feedback_vector_map());
Handle<FeedbackVector> result(FeedbackVector::cast(obj), isolate());
DisallowHeapAllocation no_gc;
WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
// Eliminate the write barrier if possible.
if (mode == SKIP_WRITE_BARRIER) {
Heap::CopyBlock(result->address() + kTaggedSize,
result->address() + kTaggedSize,
FeedbackVector::SizeFor(len) - kTaggedSize);
} else {
// Slow case: Just copy the content one-by-one.
result->set_shared_function_info(array->shared_function_info());
result->set_optimized_code_weak_or_smi(array->optimized_code_weak_or_smi());
result->set_invocation_count(array->invocation_count());
result->set_profiler_ticks(array->profiler_ticks());
result->set_deopt_count(array->deopt_count());
for (int i = 0; i < len; i++) result->set(i, array->get(i), mode);
}
return result;
}
Handle<Object> Factory::NewNumber(double value, PretenureFlag pretenure) {
// Materialize as a SMI if possible.
int32_t int_value;
if (DoubleToSmiInteger(value, &int_value)) {
return handle(Smi::FromInt(int_value), isolate());
}
return NewHeapNumber(value, pretenure);
}
Handle<Object> Factory::NewNumberFromInt(int32_t value,
PretenureFlag pretenure) {
if (Smi::IsValid(value)) return handle(Smi::FromInt(value), isolate());
// Bypass NewNumber to avoid various redundant checks.
return NewHeapNumber(FastI2D(value), pretenure);
}
Handle<Object> Factory::NewNumberFromUint(uint32_t value,
PretenureFlag pretenure) {
int32_t int32v = static_cast<int32_t>(value);
if (int32v >= 0 && Smi::IsValid(int32v)) {
return handle(Smi::FromInt(int32v), isolate());
}
return NewHeapNumber(FastUI2D(value), pretenure);
}
Handle<HeapNumber> Factory::NewHeapNumber(PretenureFlag pretenure) {
STATIC_ASSERT(HeapNumber::kSize <= kMaxRegularHeapObjectSize);
Map map = *heap_number_map();
HeapObject result = AllocateRawWithImmortalMap(HeapNumber::kSize, pretenure,
map, kDoubleUnaligned);
return handle(HeapNumber::cast(result), isolate());
}
Handle<MutableHeapNumber> Factory::NewMutableHeapNumber(
PretenureFlag pretenure) {
STATIC_ASSERT(HeapNumber::kSize <= kMaxRegularHeapObjectSize);
Map map = *mutable_heap_number_map();
HeapObject result = AllocateRawWithImmortalMap(
MutableHeapNumber::kSize, pretenure, map, kDoubleUnaligned);
return handle(MutableHeapNumber::cast(result), isolate());
}
Handle<FreshlyAllocatedBigInt> Factory::NewBigInt(int length,
PretenureFlag pretenure) {
if (length < 0 || length > BigInt::kMaxLength) {
isolate()->heap()->FatalProcessOutOfMemory("invalid BigInt length");
}
HeapObject result = AllocateRawWithImmortalMap(BigInt::SizeFor(length),
pretenure, *bigint_map());
FreshlyAllocatedBigInt bigint = FreshlyAllocatedBigInt::cast(result);
bigint->clear_padding();
return handle(bigint, isolate());
}
Handle<Object> Factory::NewError(Handle<JSFunction> constructor,
MessageTemplate template_index,
Handle<Object> arg0, Handle<Object> arg1,
Handle<Object> arg2) {
HandleScope scope(isolate());
if (isolate()->bootstrapper()->IsActive()) {
// During bootstrapping we cannot construct error objects.
return scope.CloseAndEscape(NewStringFromAsciiChecked(
MessageFormatter::TemplateString(template_index)));
}
if (arg0.is_null()) arg0 = undefined_value();
if (arg1.is_null()) arg1 = undefined_value();
if (arg2.is_null()) arg2 = undefined_value();
Handle<Object> result;
if (!ErrorUtils::MakeGenericError(isolate(), constructor, template_index,
arg0, arg1, arg2, SKIP_NONE)
.ToHandle(&result)) {
// If an exception is thrown while
// running the factory method, use the exception as the result.
DCHECK(isolate()->has_pending_exception());
result = handle(isolate()->pending_exception(), isolate());
isolate()->clear_pending_exception();
}
return scope.CloseAndEscape(result);
}
Handle<Object> Factory::NewError(Handle<JSFunction> constructor,
Handle<String> message) {
// Construct a new error object. If an exception is thrown, use the exception
// as the result.
Handle<Object> no_caller;
MaybeHandle<Object> maybe_error =
ErrorUtils::Construct(isolate(), constructor, constructor, message,
SKIP_NONE, no_caller, false);
if (maybe_error.is_null()) {
DCHECK(isolate()->has_pending_exception());
maybe_error = handle(isolate()->pending_exception(), isolate());
isolate()->clear_pending_exception();
}
return maybe_error.ToHandleChecked();
}
Handle<Object> Factory::NewInvalidStringLengthError() {
if (FLAG_abort_on_stack_or_string_length_overflow) {
FATAL("Aborting on invalid string length");
}
// Invalidate the "string length" protector.
if (isolate()->IsStringLengthOverflowIntact()) {
isolate()->InvalidateStringLengthOverflowProtector();
}
return NewRangeError(MessageTemplate::kInvalidStringLength);
}
#define DEFINE_ERROR(NAME, name) \
Handle<Object> Factory::New##NAME(MessageTemplate template_index, \
Handle<Object> arg0, Handle<Object> arg1, \
Handle<Object> arg2) { \
return NewError(isolate()->name##_function(), template_index, arg0, arg1, \
arg2); \
}
DEFINE_ERROR(Error, error)
DEFINE_ERROR(EvalError, eval_error)
DEFINE_ERROR(RangeError, range_error)
DEFINE_ERROR(ReferenceError, reference_error)
DEFINE_ERROR(SyntaxError, syntax_error)
DEFINE_ERROR(TypeError, type_error)
DEFINE_ERROR(WasmCompileError, wasm_compile_error)
DEFINE_ERROR(WasmLinkError, wasm_link_error)
DEFINE_ERROR(WasmRuntimeError, wasm_runtime_error)
#undef DEFINE_ERROR
Handle<JSFunction> Factory::NewFunction(Handle<Map> map,
Handle<SharedFunctionInfo> info,
Handle<Context> context,
PretenureFlag pretenure) {
Handle<JSFunction> function(JSFunction::cast(New(map, pretenure)), isolate());
function->initialize_properties();
function->initialize_elements();
function->set_shared(*info);
function->set_code(info->GetCode());
function->set_context(*context);
function->set_raw_feedback_cell(*many_closures_cell());
int header_size;
if (map->has_prototype_slot()) {
header_size = JSFunction::kSizeWithPrototype;
function->set_prototype_or_initial_map(*the_hole_value());
} else {
header_size = JSFunction::kSizeWithoutPrototype;
}
InitializeJSObjectBody(function, map, header_size);
return function;
}
Handle<JSFunction> Factory::NewFunctionForTest(Handle<String> name) {
NewFunctionArgs args = NewFunctionArgs::ForFunctionWithoutCode(
name, isolate()->sloppy_function_map(), LanguageMode::kSloppy);
Handle<JSFunction> result = NewFunction(args);
DCHECK(is_sloppy(result->shared()->language_mode()));
return result;
}
Handle<JSFunction> Factory::NewFunction(const NewFunctionArgs& args) {
DCHECK(!args.name_.is_null());
// Create the SharedFunctionInfo.
Handle<NativeContext> context(isolate()->native_context());
Handle<Map> map = args.GetMap(isolate());
Handle<SharedFunctionInfo> info =
NewSharedFunctionInfo(args.name_, args.maybe_exported_function_data_,
args.maybe_builtin_id_, kNormalFunction);
// Proper language mode in shared function info will be set later.
DCHECK(is_sloppy(info->language_mode()));
DCHECK(!map->IsUndefined(isolate()));
#ifdef DEBUG
if (isolate()->bootstrapper()->IsActive()) {
Handle<Code> code;
DCHECK(
// During bootstrapping some of these maps could be not created yet.
(*map == context->get(Context::STRICT_FUNCTION_MAP_INDEX)) ||
(*map ==
context->get(Context::STRICT_FUNCTION_WITHOUT_PROTOTYPE_MAP_INDEX)) ||
(*map ==
context->get(
Context::STRICT_FUNCTION_WITH_READONLY_PROTOTYPE_MAP_INDEX)) ||
// Check if it's a creation of an empty or Proxy function during
// bootstrapping.
(args.maybe_builtin_id_ == Builtins::kEmptyFunction ||
args.maybe_builtin_id_ == Builtins::kProxyConstructor));
} else {
DCHECK(
(*map == *isolate()->sloppy_function_map()) ||
(*map == *isolate()->sloppy_function_without_prototype_map()) ||
(*map == *isolate()->sloppy_function_with_readonly_prototype_map()) ||
(*map == *isolate()->strict_function_map()) ||
(*map == *isolate()->strict_function_without_prototype_map()) ||
(*map == *isolate()->native_function_map()));
}
#endif
Handle<JSFunction> result = NewFunction(map, info, context);
if (args.should_set_prototype_) {
result->set_prototype_or_initial_map(
*args.maybe_prototype_.ToHandleChecked());
}
if (args.should_set_language_mode_) {
result->shared()->set_language_mode(args.language_mode_);
}
if (args.should_create_and_set_initial_map_) {
ElementsKind elements_kind;
switch (args.type_) {
case JS_ARRAY_TYPE:
elements_kind = PACKED_SMI_ELEMENTS;
break;
case JS_ARGUMENTS_TYPE:
elements_kind = PACKED_ELEMENTS;
break;
default:
elements_kind = TERMINAL_FAST_ELEMENTS_KIND;
break;
}
Handle<Map> initial_map = NewMap(args.type_, args.instance_size_,
elements_kind, args.inobject_properties_);
result->shared()->set_expected_nof_properties(args.inobject_properties_);
// TODO(littledan): Why do we have this is_generator test when
// NewFunctionPrototype already handles finding an appropriately
// shared prototype?
Handle<Object> prototype = args.maybe_prototype_.ToHandleChecked();
if (!IsResumableFunction(result->shared()->kind())) {
if (prototype->IsTheHole(isolate())) {
prototype = NewFunctionPrototype(result);
}
}
JSFunction::SetInitialMap(result, initial_map, prototype);
}
return result;
}
Handle<JSObject> Factory::NewFunctionPrototype(Handle<JSFunction> function) {
// Make sure to use globals from the function's context, since the function
// can be from a different context.
Handle<NativeContext> native_context(function->context()->native_context(),
isolate());
Handle<Map> new_map;
if (V8_UNLIKELY(IsAsyncGeneratorFunction(function->shared()->kind()))) {
new_map = handle(native_context->async_generator_object_prototype_map(),
isolate());
} else if (IsResumableFunction(function->shared()->kind())) {
// Generator and async function prototypes can share maps since they
// don't have "constructor" properties.
new_map =
handle(native_context->generator_object_prototype_map(), isolate());
} else {
// Each function prototype gets a fresh map to avoid unwanted sharing of
// maps between prototypes of different constructors.
Handle<JSFunction> object_function(native_context->object_function(),
isolate());
DCHECK(object_function->has_initial_map());
new_map = handle(object_function->initial_map(), isolate());
}
DCHECK(!new_map->is_prototype_map());
Handle<JSObject> prototype = NewJSObjectFromMap(new_map);
if (!IsResumableFunction(function->shared()->kind())) {
JSObject::AddProperty(isolate(), prototype, constructor_string(), function,
DONT_ENUM);
}
return prototype;
}
Handle<WeakCell> Factory::NewWeakCell() {
// Allocate the WeakCell object in the old space, because 1) WeakCell weakness
// handling is only implemented in the old space 2) they're supposedly
// long-living. TODO(marja, gsathya): Support WeakCells in Scavenger.
Handle<WeakCell> result(WeakCell::cast(AllocateRawWithImmortalMap(
WeakCell::kSize, TENURED, *weak_cell_map())),
isolate());
return result;
}
Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo(
Handle<SharedFunctionInfo> info, Handle<Context> context,
PretenureFlag pretenure) {
Handle<Map> initial_map(
Map::cast(context->native_context()->get(info->function_map_index())),
isolate());
return NewFunctionFromSharedFunctionInfo(initial_map, info, context,
pretenure);
}
Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo(
Handle<SharedFunctionInfo> info, Handle<Context> context,
Handle<FeedbackCell> feedback_cell, PretenureFlag pretenure) {
Handle<Map> initial_map(
Map::cast(context->native_context()->get(info->function_map_index())),
isolate());
return NewFunctionFromSharedFunctionInfo(initial_map, info, context,
feedback_cell, pretenure);
}
Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo(
Handle<Map> initial_map, Handle<SharedFunctionInfo> info,
Handle<Context> context, PretenureFlag pretenure) {
DCHECK_EQ(JS_FUNCTION_TYPE, initial_map->instance_type());
Handle<JSFunction> result =
NewFunction(initial_map, info, context, pretenure);
// Give compiler a chance to pre-initialize.
Compiler::PostInstantiation(result, pretenure);
return result;
}
Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo(
Handle<Map> initial_map, Handle<SharedFunctionInfo> info,
Handle<Context> context, Handle<FeedbackCell> feedback_cell,
PretenureFlag pretenure) {
DCHECK_EQ(JS_FUNCTION_TYPE, initial_map->instance_type());
Handle<JSFunction> result =
NewFunction(initial_map, info, context, pretenure);
// Bump the closure count that is encoded in the feedback cell's map.
if (feedback_cell->map() == *no_closures_cell_map()) {
feedback_cell->set_map(*one_closure_cell_map());
} else if (feedback_cell->map() == *one_closure_cell_map()) {
feedback_cell->set_map(*many_closures_cell_map());
} else {
DCHECK(feedback_cell->map() == *no_feedback_cell_map() ||
feedback_cell->map() == *many_closures_cell_map());
}
// Check that the optimized code in the feedback cell wasn't marked for
// deoptimization while not pointed to by any live JSFunction.
if (feedback_cell->value()->IsFeedbackVector()) {
FeedbackVector::cast(feedback_cell->value())
->EvictOptimizedCodeMarkedForDeoptimization(
*info, "new function from shared function info");
}
result->set_raw_feedback_cell(*feedback_cell);
// Give compiler a chance to pre-initialize.
Compiler::PostInstantiation(result, pretenure);
return result;
}
Handle<ScopeInfo> Factory::NewScopeInfo(int length) {
return NewFixedArrayWithMap<ScopeInfo>(RootIndex::kScopeInfoMap, length,
TENURED);
}
Handle<ModuleInfo> Factory::NewModuleInfo() {
return NewFixedArrayWithMap<ModuleInfo>(RootIndex::kModuleInfoMap,
ModuleInfo::kLength, TENURED);
}
Handle<PreparseData> Factory::NewPreparseData(int data_length,
int children_length) {
int size = PreparseData::SizeFor(data_length, children_length);
Handle<PreparseData> result(PreparseData::cast(AllocateRawWithImmortalMap(
size, TENURED, *preparse_data_map())),
isolate());
result->set_data_length(data_length);
result->set_children_length(children_length);
MemsetTagged(result->inner_data_start(), *null_value(), children_length);
result->clear_padding();
return result;
}
Handle<UncompiledDataWithoutPreparseData>
Factory::NewUncompiledDataWithoutPreparseData(Handle<String> inferred_name,
int32_t start_position,
int32_t end_position,
int32_t function_literal_id) {
Handle<UncompiledDataWithoutPreparseData> result(
UncompiledDataWithoutPreparseData::cast(
New(uncompiled_data_without_preparse_data_map(), TENURED)),
isolate());
UncompiledData::Initialize(*result, *inferred_name, start_position,
end_position, function_literal_id);
return result;
}
Handle<UncompiledDataWithPreparseData>
Factory::NewUncompiledDataWithPreparseData(Handle<String> inferred_name,
int32_t start_position,
int32_t end_position,
int32_t function_literal_id,
Handle<PreparseData> preparse_data) {
Handle<UncompiledDataWithPreparseData> result(
UncompiledDataWithPreparseData::cast(
New(uncompiled_data_with_preparse_data_map(), TENURED)),
isolate());
UncompiledDataWithPreparseData::Initialize(
*result, *inferred_name, start_position, end_position,
function_literal_id, *preparse_data);
return result;
}
Handle<JSObject> Factory::NewExternal(void* value) {
Handle<Foreign> foreign = NewForeign(reinterpret_cast<Address>(value));
Handle<JSObject> external = NewJSObjectFromMap(external_map());
external->SetEmbedderField(0, *foreign);
return external;
}
Handle<CodeDataContainer> Factory::NewCodeDataContainer(int flags) {
Handle<CodeDataContainer> data_container(
CodeDataContainer::cast(New(code_data_container_map(), TENURED)),
isolate());
data_container->set_next_code_link(*undefined_value(), SKIP_WRITE_BARRIER);
data_container->set_kind_specific_flags(flags);
data_container->clear_padding();
return data_container;
}
MaybeHandle<Code> Factory::TryNewCode(
const CodeDesc& desc, Code::Kind kind, Handle<Object> self_ref,
int32_t builtin_index, MaybeHandle<ByteArray> maybe_source_position_table,
MaybeHandle<DeoptimizationData> maybe_deopt_data, Movability movability,
bool is_turbofanned, int stack_slots) {
// Allocate objects needed for code initialization.
Handle<ByteArray> reloc_info = NewByteArray(
desc.reloc_size,
Builtins::IsBuiltinId(builtin_index) ? TENURED_READ_ONLY : TENURED);
Handle<CodeDataContainer> data_container = NewCodeDataContainer(0);
Handle<ByteArray> source_position_table =
maybe_source_position_table.is_null()
? empty_byte_array()
: maybe_source_position_table.ToHandleChecked();
Handle<DeoptimizationData> deopt_data =
maybe_deopt_data.is_null() ? DeoptimizationData::Empty(isolate())
: maybe_deopt_data.ToHandleChecked();
Handle<Code> code;
{
int object_size = ComputeCodeObjectSize(desc);
Heap* heap = isolate()->heap();
CodePageCollectionMemoryModificationScope code_allocation(heap);
HeapObject result =
heap->AllocateRawWithLightRetry(object_size, CODE_SPACE);
// Return an empty handle if we cannot allocate the code object.
if (result.is_null()) return MaybeHandle<Code>();
if (movability == kImmovable) {
result = heap->EnsureImmovableCode(result, object_size);
}
// The code object has not been fully initialized yet. We rely on the
// fact that no allocation will happen from this point on.
DisallowHeapAllocation no_gc;
result->set_map_after_allocation(*code_map(), SKIP_WRITE_BARRIER);
code = handle(Code::cast(result), isolate());
InitializeCode(heap, code, object_size, desc, kind, self_ref, builtin_index,
source_position_table, deopt_data, reloc_info,
data_container, is_turbofanned, stack_slots);
// Flush the instruction cache before changing the permissions.
// Note: we do this before setting permissions to ReadExecute because on
// some older ARM kernels there is a bug which causes an access error on
// cache flush instructions to trigger access error on non-writable memory.
// See https://bugs.chromium.org/p/v8/issues/detail?id=8157
code->FlushICache();
}
return code;
}
Handle<Code> Factory::NewCode(
const CodeDesc& desc, Code::Kind kind, Handle<Object> self_ref,
int32_t builtin_index, MaybeHandle<ByteArray> maybe_source_position_table,
MaybeHandle<DeoptimizationData> maybe_deopt_data, Movability movability,
bool is_turbofanned, int stack_slots) {
// Allocate objects needed for code initialization.
Handle<ByteArray> reloc_info = NewByteArray(
desc.reloc_size,
Builtins::IsBuiltinId(builtin_index) ? TENURED_READ_ONLY : TENURED);
Handle<CodeDataContainer> data_container = NewCodeDataContainer(0);
Handle<ByteArray> source_position_table =
maybe_source_position_table.is_null()
? empty_byte_array()
: maybe_source_position_table.ToHandleChecked();
Handle<DeoptimizationData> deopt_data =
maybe_deopt_data.is_null() ? DeoptimizationData::Empty(isolate())
: maybe_deopt_data.ToHandleChecked();
Handle<Code> code;
{
int object_size = ComputeCodeObjectSize(desc);
Heap* heap = isolate()->heap();
CodePageCollectionMemoryModificationScope code_allocation(heap);
HeapObject result =
heap->AllocateRawWithRetryOrFail(object_size, CODE_SPACE);
if (movability == kImmovable) {
result = heap->EnsureImmovableCode(result, object_size);
}
// The code object has not been fully initialized yet. We rely on the
// fact that no allocation will happen from this point on.
DisallowHeapAllocation no_gc;
result->set_map_after_allocation(*code_map(), SKIP_WRITE_BARRIER);
code = handle(Code::cast(result), isolate());
InitializeCode(heap, code, object_size, desc, kind, self_ref, builtin_index,
source_position_table, deopt_data, reloc_info,
data_container, is_turbofanned, stack_slots);
// Flush the instruction cache before changing the permissions.
// Note: we do this before setting permissions to ReadExecute because on
// some older ARM kernels there is a bug which causes an access error on
// cache flush instructions to trigger access error on non-writable memory.
// See https://bugs.chromium.org/p/v8/issues/detail?id=8157
code->FlushICache();
}
return code;
}
Handle<Code> Factory::NewOffHeapTrampolineFor(Handle<Code> code,
Address off_heap_entry) {
CHECK_NOT_NULL(isolate()->embedded_blob());
CHECK_NE(0, isolate()->embedded_blob_size());
CHECK(Builtins::IsIsolateIndependentBuiltin(*code));
Handle<Code> result =
Builtins::GenerateOffHeapTrampolineFor(isolate(), off_heap_entry);
// The trampoline code object must inherit specific flags from the original
// builtin (e.g. the safepoint-table offset). We set them manually here.
{
MemoryChunk* chunk = MemoryChunk::FromHeapObject(*result);
CodePageMemoryModificationScope code_allocation(chunk);
const bool set_is_off_heap_trampoline = true;
const int stack_slots =
code->has_safepoint_info() ? code->stack_slots() : 0;
result->code_data_container()->set_kind_specific_flags(
code->code_data_container()->kind_specific_flags());
result->initialize_flags(code->kind(), code->has_unwinding_info(),
code->is_turbofanned(), stack_slots,
set_is_off_heap_trampoline);
result->set_builtin_index(code->builtin_index());
result->set_safepoint_table_offset(code->safepoint_table_offset());
result->set_handler_table_offset(code->handler_table_offset());
result->set_constant_pool_offset(code->constant_pool_offset());
result->set_code_comments_offset(code->code_comments_offset());
// Replace the newly generated trampoline's RelocInfo ByteArray with the
// canonical one stored in the roots to avoid duplicating it for every
// single builtin.
ByteArray canonical_reloc_info =
ReadOnlyRoots(isolate()).off_heap_trampoline_relocation_info();
#ifdef DEBUG
// Verify that the contents are the same.
ByteArray reloc_info = result->relocation_info();
DCHECK_EQ(reloc_info->length(), canonical_reloc_info->length());
for (int i = 0; i < reloc_info->length(); ++i) {
DCHECK_EQ(reloc_info->get(i), canonical_reloc_info->get(i));
}
#endif
result->set_relocation_info(canonical_reloc_info);
}
return result;
}
Handle<Code> Factory::CopyCode(Handle<Code> code) {
Handle<CodeDataContainer> data_container =
NewCodeDataContainer(code->code_data_container()->kind_specific_flags());
Heap* heap = isolate()->heap();
Handle<Code> new_code;
{
int obj_size = code->Size();
CodePageCollectionMemoryModificationScope code_allocation(heap);
HeapObject result = heap->AllocateRawWithRetryOrFail(obj_size, CODE_SPACE);
// Copy code object.
Address old_addr = code->address();
Address new_addr = result->address();
Heap::CopyBlock(new_addr, old_addr, obj_size);
new_code = handle(Code::cast(result), isolate());
// Set the {CodeDataContainer}, it cannot be shared.
new_code->set_code_data_container(*data_container);
new_code->Relocate(new_addr - old_addr);
// We have to iterate over the object and process its pointers when black
// allocation is on.
heap->incremental_marking()->ProcessBlackAllocatedObject(*new_code);
// Record all references to embedded objects in the new code object.
WriteBarrierForCode(*new_code);
}
#ifdef VERIFY_HEAP
if (FLAG_verify_heap) new_code->ObjectVerify(isolate());
#endif
DCHECK(IsAligned(new_code->address(), kCodeAlignment));
DCHECK_IMPLIES(
!heap->memory_allocator()->code_range().is_empty(),
heap->memory_allocator()->code_range().contains(new_code->address()));
return new_code;
}
Handle<BytecodeArray> Factory::CopyBytecodeArray(
Handle<BytecodeArray> bytecode_array) {
int size = BytecodeArray::SizeFor(bytecode_array->length());
HeapObject result =
AllocateRawWithImmortalMap(size, TENURED, *bytecode_array_map());
Handle<BytecodeArray> copy(BytecodeArray::cast(result), isolate());
copy->set_length(bytecode_array->length());
copy->set_frame_size(bytecode_array->frame_size());
copy->set_parameter_count(bytecode_array->parameter_count());
copy->set_incoming_new_target_or_generator_register(
bytecode_array->incoming_new_target_or_generator_register());
copy->set_constant_pool(bytecode_array->constant_pool());
copy->set_handler_table(bytecode_array->handler_table());
copy->set_source_position_table(bytecode_array->source_position_table());
copy->set_interrupt_budget(bytecode_array->interrupt_budget());
copy->set_osr_loop_nesting_level(bytecode_array->osr_loop_nesting_level());
copy->set_bytecode_age(bytecode_array->bytecode_age());
bytecode_array->CopyBytecodesTo(*copy);
return copy;
}
Handle<JSObject> Factory::NewJSObject(Handle<JSFunction> constructor,
PretenureFlag pretenure) {
JSFunction::EnsureHasInitialMap(constructor);
Handle<Map> map(constructor->initial_map(), isolate());
return NewJSObjectFromMap(map, pretenure);
}
Handle<JSObject> Factory::NewJSObjectWithNullProto(PretenureFlag pretenure) {
Handle<JSObject> result =
NewJSObject(isolate()->object_function(), pretenure);
Handle<Map> new_map = Map::Copy(
isolate(), Handle<Map>(result->map(), isolate()), "ObjectWithNullProto");
Map::SetPrototype(isolate(), new_map, null_value());
JSObject::MigrateToMap(result, new_map);
return result;
}
Handle<JSGlobalObject> Factory::NewJSGlobalObject(
Handle<JSFunction> constructor) {
DCHECK(constructor->has_initial_map());
Handle<Map> map(constructor->initial_map(), isolate());
DCHECK(map->is_dictionary_map());
// Make sure no field properties are described in the initial map.
// This guarantees us that normalizing the properties does not
// require us to change property values to PropertyCells.
DCHECK_EQ(map->NextFreePropertyIndex(), 0);
// Make sure we don't have a ton of pre-allocated slots in the
// global objects. They will be unused once we normalize the object.
DCHECK_EQ(map->UnusedPropertyFields(), 0);
DCHECK_EQ(map->GetInObjectProperties(), 0);
// Initial size of the backing store to avoid resize of the storage during
// bootstrapping. The size differs between the JS global object ad the
// builtins object.
int initial_size = 64;
// Allocate a dictionary object for backing storage.
int at_least_space_for = map->NumberOfOwnDescriptors() * 2 + initial_size;
Handle<GlobalDictionary> dictionary =
GlobalDictionary::New(isolate(), at_least_space_for);
// The global object might be created from an object template with accessors.
// Fill these accessors into the dictionary.
Handle<DescriptorArray> descs(map->instance_descriptors(), isolate());
for (int i = 0; i < map->NumberOfOwnDescriptors(); i++) {
PropertyDetails details = descs->GetDetails(i);
// Only accessors are expected.
DCHECK_EQ(kAccessor, details.kind());
PropertyDetails d(kAccessor, details.attributes(),
PropertyCellType::kMutable);
Handle<Name> name(descs->GetKey(i), isolate());
Handle<PropertyCell> cell = NewPropertyCell(name);
cell->set_value(descs->GetStrongValue(i));
// |dictionary| already contains enough space for all properties.
USE(GlobalDictionary::Add(isolate(), dictionary, name, cell, d));
}
// Allocate the global object and initialize it with the backing store.
Handle<JSGlobalObject> global(JSGlobalObject::cast(New(map, TENURED)),
isolate());
InitializeJSObjectFromMap(global, dictionary, map);
// Create a new map for the global object.
Handle<Map> new_map = Map::CopyDropDescriptors(isolate(), map);
new_map->set_may_have_interesting_symbols(true);
new_map->set_is_dictionary_map(true);
LOG(isolate(), MapDetails(*new_map));
// Set up the global object as a normalized object.
global->set_global_dictionary(*dictionary);
global->synchronized_set_map(*new_map);
// Make sure result is a global object with properties in dictionary.
DCHECK(global->IsJSGlobalObject() && !global->HasFastProperties());
return global;
}
void Factory::InitializeJSObjectFromMap(Handle<JSObject> obj,
Handle<Object> properties,
Handle<Map> map) {
obj->set_raw_properties_or_hash(*properties);
obj->initialize_elements();
// TODO(1240798): Initialize the object's body using valid initial values
// according to the object's initial map. For example, if the map's
// instance type is JS_ARRAY_TYPE, the length field should be initialized
// to a number (e.g. Smi::kZero) and the elements initialized to a
// fixed array (e.g. Heap::empty_fixed_array()). Currently, the object
// verification code has to cope with (temporarily) invalid objects. See
// for example, JSArray::JSArrayVerify).
InitializeJSObjectBody(obj, map, JSObject::kHeaderSize);
}
void Factory::InitializeJSObjectBody(Handle<JSObject> obj, Handle<Map> map,
int start_offset) {
if (start_offset == map->instance_size()) return;
DCHECK_LT(start_offset, map->instance_size());
// We cannot always fill with one_pointer_filler_map because objects
// created from API functions expect their embedder fields to be initialized
// with undefined_value.
// Pre-allocated fields need to be initialized with undefined_value as well
// so that object accesses before the constructor completes (e.g. in the
// debugger) will not cause a crash.
// In case of Array subclassing the |map| could already be transitioned
// to different elements kind from the initial map on which we track slack.
bool in_progress = map->IsInobjectSlackTrackingInProgress();
Object filler;
if (in_progress) {
filler = *one_pointer_filler_map();
} else {
filler = *undefined_value();
}
obj->InitializeBody(*map, start_offset, *undefined_value(), filler);
if (in_progress) {
map->FindRootMap(isolate())->InobjectSlackTrackingStep(isolate());
}
}
Handle<JSObject> Factory::NewJSObjectFromMap(
Handle<Map> map, PretenureFlag pretenure,
Handle<AllocationSite> allocation_site) {
// JSFunctions should be allocated using AllocateFunction to be
// properly initialized.
DCHECK(map->instance_type() != JS_FUNCTION_TYPE);
// Both types of global objects should be allocated using
// AllocateGlobalObject to be properly initialized.
DCHECK(map->instance_type() != JS_GLOBAL_OBJECT_TYPE);
HeapObject obj =
AllocateRawWithAllocationSite(map, pretenure, allocation_site);
Handle<JSObject> js_obj(JSObject::cast(obj), isolate());
InitializeJSObjectFromMap(js_obj, empty_fixed_array(), map);
DCHECK(js_obj->HasFastElements() || js_obj->HasFixedTypedArrayElements() ||
js_obj->HasFastStringWrapperElements() ||
js_obj->HasFastArgumentsElements());
return js_obj;
}
Handle<JSObject> Factory::NewSlowJSObjectFromMap(Handle<Map> map, int capacity,
PretenureFlag pretenure) {
DCHECK(map->is_dictionary_map());
Handle<NameDictionary> object_properties =
NameDictionary::New(isolate(), capacity);
Handle<JSObject> js_object = NewJSObjectFromMap(map, pretenure);
js_object->set_raw_properties_or_hash(*object_properties);
return js_object;
}
Handle<JSObject> Factory::NewSlowJSObjectWithPropertiesAndElements(
Handle<Object> prototype, Handle<NameDictionary> properties,
Handle<FixedArrayBase> elements, PretenureFlag pretenure) {
Handle<Map> object_map = isolate()->slow_object_with_object_prototype_map();
if (object_map->prototype() != *prototype) {
object_map = Map::TransitionToPrototype(isolate(), object_map, prototype);
}
DCHECK(object_map->is_dictionary_map());
Handle<JSObject> object = NewJSObjectFromMap(object_map, pretenure);
object->set_raw_properties_or_hash(*properties);
if (*elements != ReadOnlyRoots(isolate()).empty_fixed_array()) {
DCHECK(elements->IsNumberDictionary());
object_map =
JSObject::GetElementsTransitionMap(object, DICTIONARY_ELEMENTS);
JSObject::MigrateToMap(object, object_map);
object->set_elements(*elements);
}
return object;
}
Handle<JSArray> Factory::NewJSArray(ElementsKind elements_kind,
PretenureFlag pretenure) {
NativeContext native_context = isolate()->raw_native_context();
Map map = native_context->GetInitialJSArrayMap(elements_kind);
if (map.is_null()) {
JSFunction array_function = native_context->array_function();
map = array_function->initial_map();
}
return Handle<JSArray>::cast(
NewJSObjectFromMap(handle(map, isolate()), pretenure));
}
Handle<JSArray> Factory::NewJSArray(ElementsKind elements_kind, int length,
int capacity,
ArrayStorageAllocationMode mode,
PretenureFlag pretenure) {
Handle<JSArray> array = NewJSArray(elements_kind, pretenure);
NewJSArrayStorage(array, length, capacity, mode);
return array;
}
Handle<JSArray> Factory::NewJSArrayWithElements(Handle<FixedArrayBase> elements,
ElementsKind elements_kind,
int length,
PretenureFlag pretenure) {
DCHECK(length <= elements->length());
Handle<JSArray> array = NewJSArray(elements_kind, pretenure);
array->set_elements(*elements);
array->set_length(Smi::FromInt(length));
JSObject::ValidateElements(*array);
return array;
}
void Factory::NewJSArrayStorage(Handle<JSArray> array, int length, int capacity,
ArrayStorageAllocationMode mode) {
DCHECK(capacity >= length);
if (capacity == 0) {
array->set_length(Smi::kZero);
array->set_elements(*empty_fixed_array());
return;
}
HandleScope inner_scope(isolate());
Handle<FixedArrayBase> elms;
ElementsKind elements_kind = array->GetElementsKind();
if (IsDoubleElementsKind(elements_kind)) {
if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
elms = NewFixedDoubleArray(capacity);
} else {
DCHECK(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
elms = NewFixedDoubleArrayWithHoles(capacity);
}
} else {
DCHECK(IsSmiOrObjectElementsKind(elements_kind));
if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
elms = NewUninitializedFixedArray(capacity);
} else {
DCHECK(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
elms = NewFixedArrayWithHoles(capacity);
}
}
array->set_elements(*elms);
array->set_length(Smi::FromInt(length));
}
Handle<JSWeakMap> Factory::NewJSWeakMap() {
NativeContext native_context = isolate()->raw_native_context();
Handle<Map> map(native_context->js_weak_map_fun()->initial_map(), isolate());
Handle<JSWeakMap> weakmap(JSWeakMap::cast(*NewJSObjectFromMap(map)),
isolate());
{
// Do not leak handles for the hash table, it would make entries strong.
HandleScope scope(isolate());
JSWeakCollection::Initialize(weakmap, isolate());
}
return weakmap;
}
Handle<JSModuleNamespace> Factory::NewJSModuleNamespace() {
Handle<Map> map = isolate()->js_module_namespace_map();
Handle<JSModuleNamespace> module_namespace(
Handle<JSModuleNamespace>::cast(NewJSObjectFromMap(map)));
FieldIndex index = FieldIndex::ForDescriptor(
*map, JSModuleNamespace::kToStringTagFieldIndex);
module_namespace->FastPropertyAtPut(index,
ReadOnlyRoots(isolate()).Module_string());
return module_namespace;
}
Handle<JSGeneratorObject> Factory::NewJSGeneratorObject(
Handle<JSFunction> function) {
DCHECK(IsResumableFunction(function->shared()->kind()));
JSFunction::EnsureHasInitialMap(function);
Handle<Map> map(function->initial_map(), isolate());
DCHECK(map->instance_type() == JS_GENERATOR_OBJECT_TYPE ||
map->instance_type() == JS_ASYNC_GENERATOR_OBJECT_TYPE);
return Handle<JSGeneratorObject>::cast(NewJSObjectFromMap(map));
}
Handle<Module> Factory::NewModule(Handle<SharedFunctionInfo> code) {
Handle<ModuleInfo> module_info(code->scope_info()->ModuleDescriptorInfo(),
isolate());
Handle<ObjectHashTable> exports =
ObjectHashTable::New(isolate(), module_info->RegularExportCount());
Handle<FixedArray> regular_exports =
NewFixedArray(module_info->RegularExportCount());
Handle<FixedArray> regular_imports =
NewFixedArray(module_info->regular_imports()->length());
int requested_modules_length = module_info->module_requests()->length();
Handle<FixedArray> requested_modules =
requested_modules_length > 0 ? NewFixedArray(requested_modules_length)
: empty_fixed_array();
ReadOnlyRoots roots(isolate());
Handle<Module> module = Handle<Module>::cast(NewStruct(MODULE_TYPE, TENURED));
module->set_code(*code);
module->set_exports(*exports);
module->set_regular_exports(*regular_exports);
module->set_regular_imports(*regular_imports);
module->set_hash(isolate()->GenerateIdentityHash(Smi::kMaxValue));
module->set_module_namespace(roots.undefined_value());
module->set_requested_modules(*requested_modules);
module->set_script(Script::cast(code->script()));
module->set_status(Module::kUninstantiated);
module->set_exception(roots.the_hole_value());
module->set_import_meta(roots.the_hole_value());
module->set_dfs_index(-1);
module->set_dfs_ancestor_index(-1);
return module;
}
Handle<JSArrayBuffer> Factory::NewJSArrayBuffer(SharedFlag shared,
PretenureFlag pretenure) {
Handle<JSFunction> array_buffer_fun(
shared == SharedFlag::kShared
? isolate()->native_context()->shared_array_buffer_fun()
: isolate()->native_context()->array_buffer_fun(),
isolate());
Handle<Map> map(array_buffer_fun->initial_map(), isolate());
return Handle<JSArrayBuffer>::cast(NewJSObjectFromMap(map, pretenure));
}
Handle<JSIteratorResult> Factory::NewJSIteratorResult(Handle<Object> value,
bool done) {
Handle<Map> map(isolate()->native_context()->iterator_result_map(),
isolate());
Handle<JSIteratorResult> js_iter_result =
Handle<JSIteratorResult>::cast(NewJSObjectFromMap(map));
js_iter_result->set_value(*value);
js_iter_result->set_done(*ToBoolean(done));
return js_iter_result;
}
Handle<JSAsyncFromSyncIterator> Factory::NewJSAsyncFromSyncIterator(
Handle<JSReceiver> sync_iterator, Handle<Object> next) {
Handle<Map> map(isolate()->native_context()->async_from_sync_iterator_map(),
isolate());
Handle<JSAsyncFromSyncIterator> iterator =
Handle<JSAsyncFromSyncIterator>::cast(NewJSObjectFromMap(map));
iterator->set_sync_iterator(*sync_iterator);
iterator->set_next(*next);
return iterator;
}
Handle<JSMap> Factory::NewJSMap() {
Handle<Map> map(isolate()->native_context()->js_map_map(), isolate());
Handle<JSMap> js_map = Handle<JSMap>::cast(NewJSObjectFromMap(map));
JSMap::Initialize(js_map, isolate());
return js_map;
}
Handle<JSSet> Factory::NewJSSet() {
Handle<Map> map(isolate()->native_context()->js_set_map(), isolate());
Handle<JSSet> js_set = Handle<JSSet>::cast(NewJSObjectFromMap(map));
JSSet::Initialize(js_set, isolate());
return js_set;
}
void Factory::TypeAndSizeForElementsKind(ElementsKind kind,
ExternalArrayType* array_type,
size_t* element_size) {
switch (kind) {
#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype) \
case TYPE##_ELEMENTS: \
*array_type = kExternal##Type##Array; \
*element_size = sizeof(ctype); \
break;
TYPED_ARRAYS(TYPED_ARRAY_CASE)
#undef TYPED_ARRAY_CASE
default:
UNREACHABLE();
}
}
namespace {
static void ForFixedTypedArray(ExternalArrayType array_type,
size_t* element_size,
ElementsKind* element_kind) {
switch (array_type) {
#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype) \
case kExternal##Type##Array: \
*element_size = sizeof(ctype); \
*element_kind = TYPE##_ELEMENTS; \
return;
TYPED_ARRAYS(TYPED_ARRAY_CASE)
#undef TYPED_ARRAY_CASE
}
UNREACHABLE();
}
JSFunction GetTypedArrayFun(ExternalArrayType type, Isolate* isolate) {
NativeContext native_context = isolate->context()->native_context();
switch (type) {
#define TYPED_ARRAY_FUN(Type, type, TYPE, ctype) \
case kExternal##Type##Array: \
return native_context->type##_array_fun();
TYPED_ARRAYS(TYPED_ARRAY_FUN)
#undef TYPED_ARRAY_FUN
}
UNREACHABLE();
}
JSFunction GetTypedArrayFun(ElementsKind elements_kind, Isolate* isolate) {
NativeContext native_context = isolate->context()->native_context();
switch (elements_kind) {
#define TYPED_ARRAY_FUN(Type, type, TYPE, ctype) \
case TYPE##_ELEMENTS: \
return native_context->type##_array_fun();
TYPED_ARRAYS(TYPED_ARRAY_FUN)
#undef TYPED_ARRAY_FUN
default:
UNREACHABLE();
}
}
void SetupArrayBufferView(i::Isolate* isolate,
i::Handle<i::JSArrayBufferView> obj,
i::Handle<i::JSArrayBuffer> buffer,
size_t byte_offset, size_t byte_length) {
DCHECK_LE(byte_offset + byte_length, buffer->byte_length());
DCHECK_EQ(obj->GetEmbedderFieldCount(),
v8::ArrayBufferView::kEmbedderFieldCount);
for (int i = 0; i < v8::ArrayBufferView::kEmbedderFieldCount; i++) {
obj->SetEmbedderField(i, Smi::kZero);
}
obj->set_buffer(*buffer);
obj->set_byte_offset(byte_offset);
obj->set_byte_length(byte_length);
}
} // namespace
Handle<JSTypedArray> Factory::NewJSTypedArray(ExternalArrayType type,
PretenureFlag pretenure) {
Handle<JSFunction> typed_array_fun(GetTypedArrayFun(type, isolate()),
isolate());
Handle<Map> map(typed_array_fun->initial_map(), isolate());
return Handle<JSTypedArray>::cast(NewJSObjectFromMap(map, pretenure));
}
Handle<JSTypedArray> Factory::NewJSTypedArray(ElementsKind elements_kind,
PretenureFlag pretenure) {
Handle<JSFunction> typed_array_fun(GetTypedArrayFun(elements_kind, isolate()),
isolate());
Handle<Map> map(typed_array_fun->initial_map(), isolate());
return Handle<JSTypedArray>::cast(NewJSObjectFromMap(map, pretenure));
}
Handle<JSTypedArray> Factory::NewJSTypedArray(ExternalArrayType type,
Handle<JSArrayBuffer> buffer,
size_t byte_offset, size_t length,
PretenureFlag pretenure) {
Handle<JSTypedArray> obj = NewJSTypedArray(type, pretenure);
size_t element_size;
ElementsKind elements_kind;
ForFixedTypedArray(type, &element_size, &elements_kind);
CHECK_EQ(byte_offset % element_size, 0);
CHECK(length <= (std::numeric_limits<size_t>::max() / element_size));
// TODO(7881): Smi length check
CHECK(length <= static_cast<size_t>(Smi::kMaxValue));
size_t byte_length = length * element_size;
SetupArrayBufferView(isolate(), obj, buffer, byte_offset, byte_length);
Handle<Object> length_object = NewNumberFromSize(length, pretenure);
obj->set_length(*length_object);
Handle<FixedTypedArrayBase> elements = NewFixedTypedArrayWithExternalPointer(
static_cast<int>(length), type,
static_cast<uint8_t*>(buffer->backing_store()) + byte_offset, pretenure);
Handle<Map> map = JSObject::GetElementsTransitionMap(obj, elements_kind);
JSObject::SetMapAndElements(obj, map, elements);
return obj;
}
Handle<JSTypedArray> Factory::NewJSTypedArray(ElementsKind elements_kind,
size_t number_of_elements,
PretenureFlag pretenure) {
Handle<JSTypedArray> obj = NewJSTypedArray(elements_kind, pretenure);
DCHECK_EQ(obj->GetEmbedderFieldCount(),
v8::ArrayBufferView::kEmbedderFieldCount);
for (int i = 0; i < v8::ArrayBufferView::kEmbedderFieldCount; i++) {
obj->SetEmbedderField(i, Smi::kZero);
}
size_t element_size;
ExternalArrayType array_type;
TypeAndSizeForElementsKind(elements_kind, &array_type, &element_size);
CHECK(number_of_elements <=
(std::numeric_limits<size_t>::max() / element_size));
// TODO(7881): Smi length check
CHECK(number_of_elements <= static_cast<size_t>(Smi::kMaxValue));
size_t byte_length = number_of_elements * element_size;
obj->set_byte_offset(0);
obj->set_byte_length(byte_length);
obj->set_length(Smi::FromIntptr(static_cast<intptr_t>(number_of_elements)));
Handle<JSArrayBuffer> buffer =
NewJSArrayBuffer(SharedFlag::kNotShared, pretenure);
JSArrayBuffer::Setup(buffer, isolate(), true, nullptr, byte_length,
SharedFlag::kNotShared);
obj->set_buffer(*buffer);
Handle<FixedTypedArrayBase> elements = NewFixedTypedArray(
number_of_elements, byte_length, array_type, true, pretenure);
obj->set_elements(*elements);
return obj;
}
Handle<JSDataView> Factory::NewJSDataView(Handle<JSArrayBuffer> buffer,
size_t byte_offset,
size_t byte_length) {
Handle<Map> map(isolate()->native_context()->data_view_fun()->initial_map(),
isolate());
Handle<JSDataView> obj = Handle<JSDataView>::cast(NewJSObjectFromMap(map));
SetupArrayBufferView(isolate(), obj, buffer, byte_offset, byte_length);
return obj;
}
MaybeHandle<JSBoundFunction> Factory::NewJSBoundFunction(
Handle<JSReceiver> target_function, Handle<Object> bound_this,
Vector<Handle<Object>> bound_args) {
DCHECK(target_function->IsCallable());
STATIC_ASSERT(Code::kMaxArguments <= FixedArray::kMaxLength);
if (bound_args.length() >= Code::kMaxArguments) {
THROW_NEW_ERROR(isolate(),
NewRangeError(MessageTemplate::kTooManyArguments),
JSBoundFunction);
}
// Determine the prototype of the {target_function}.
Handle<Object> prototype;
ASSIGN_RETURN_ON_EXCEPTION(
isolate(), prototype,
JSReceiver::GetPrototype(isolate(), target_function), JSBoundFunction);
SaveAndSwitchContext save(isolate(), *target_function->GetCreationContext());
// Create the [[BoundArguments]] for the result.
Handle<FixedArray> bound_arguments;
if (bound_args.length() == 0) {
bound_arguments = empty_fixed_array();
} else {
bound_arguments = NewFixedArray(bound_args.length());
for (int i = 0; i < bound_args.length(); ++i) {
bound_arguments->set(i, *bound_args[i]);
}
}
// Setup the map for the JSBoundFunction instance.
Handle<Map> map = target_function->IsConstructor()
? isolate()->bound_function_with_constructor_map()
: isolate()->bound_function_without_constructor_map();
if (map->prototype() != *prototype) {
map = Map::TransitionToPrototype(isolate(), map, prototype);
}
DCHECK_EQ(target_function->IsConstructor(), map->is_constructor());
// Setup the JSBoundFunction instance.
Handle<JSBoundFunction> result =
Handle<JSBoundFunction>::cast(NewJSObjectFromMap(map));
result->set_bound_target_function(*target_function);
result->set_bound_this(*bound_this);
result->set_bound_arguments(*bound_arguments);
return result;
}
// ES6 section 9.5.15 ProxyCreate (target, handler)
Handle<JSProxy> Factory::NewJSProxy(Handle<JSReceiver> target,
Handle<JSReceiver> handler) {
// Allocate the proxy object.
Handle<Map> map;
if (target->IsCallable()) {
if (target->IsConstructor()) {
map = Handle<Map>(isolate()->proxy_constructor_map());
} else {
map = Handle<Map>(isolate()->proxy_callable_map());
}
} else {
map = Handle<Map>(isolate()->proxy_map());
}
DCHECK(map->prototype()->IsNull(isolate()));
Handle<JSProxy> result(JSProxy::cast(New(map, NOT_TENURED)), isolate());
result->initialize_properties();
result->set_target(*target);
result->set_handler(*handler);
return result;
}
Handle<JSGlobalProxy> Factory::NewUninitializedJSGlobalProxy(int size) {
// Create an empty shell of a JSGlobalProxy that needs to be reinitialized
// via ReinitializeJSGlobalProxy later.
Handle<Map> map = NewMap(JS_GLOBAL_PROXY_TYPE, size);
// Maintain invariant expected from any JSGlobalProxy.
map->set_is_access_check_needed(true);
map->set_may_have_interesting_symbols(true);
LOG(isolate(), MapDetails(*map));
return Handle<JSGlobalProxy>::cast(NewJSObjectFromMap(map, NOT_TENURED));
}
void Factory::ReinitializeJSGlobalProxy(Handle<JSGlobalProxy> object,
Handle<JSFunction> constructor) {
DCHECK(constructor->has_initial_map());
Handle<Map> map(constructor->initial_map(), isolate());
Handle<Map> old_map(object->map(), isolate());
// The proxy's hash should be retained across reinitialization.
Handle<Object> raw_properties_or_hash(object->raw_properties_or_hash(),
isolate());
if (old_map->is_prototype_map()) {
map = Map::Copy(isolate(), map, "CopyAsPrototypeForJSGlobalProxy");
map->set_is_prototype_map(true);
}
JSObject::NotifyMapChange(old_map, map, isolate());
old_map->NotifyLeafMapLayoutChange(isolate());
// Check that the already allocated object has the same size and type as
// objects allocated using the constructor.
DCHECK(map->instance_size() == old_map->instance_size());
DCHECK(map->instance_type() == old_map->instance_type());
// In order to keep heap in consistent state there must be no allocations
// before object re-initialization is finished.
DisallowHeapAllocation no_allocation;
// Reset the map for the object.
object->synchronized_set_map(*map);
// Reinitialize the object from the constructor map.
InitializeJSObjectFromMap(object, raw_properties_or_hash, map);
}
Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfoForLiteral(
FunctionLiteral* literal, Handle<Script> script, bool is_toplevel) {
FunctionKind kind = literal->kind();
Handle<SharedFunctionInfo> shared = NewSharedFunctionInfoForBuiltin(
literal->name(), Builtins::kCompileLazy, kind);
SharedFunctionInfo::InitFromFunctionLiteral(shared, literal, is_toplevel);
SharedFunctionInfo::SetScript(shared, script, literal->function_literal_id(),
false);
return shared;
}
Handle<JSMessageObject> Factory::NewJSMessageObject(
MessageTemplate message, Handle<Object> argument, int start_position,
int end_position, Handle<Script> script, Handle<Object> stack_frames) {
Handle<Map> map = message_object_map();
Handle<JSMessageObject> message_obj(
JSMessageObject::cast(New(map, NOT_TENURED)), isolate());
message_obj->set_raw_properties_or_hash(*empty_fixed_array(),
SKIP_WRITE_BARRIER);
message_obj->initialize_elements();
message_obj->set_elements(*empty_fixed_array(), SKIP_WRITE_BARRIER);
message_obj->set_type(message);
message_obj->set_argument(*argument);
message_obj->set_start_position(start_position);
message_obj->set_end_position(end_position);
message_obj->set_script(*script);
message_obj->set_stack_frames(*stack_frames);
message_obj->set_error_level(v8::Isolate::kMessageError);
return message_obj;
}
Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfoForApiFunction(
MaybeHandle<String> maybe_name,
Handle<FunctionTemplateInfo> function_template_info, FunctionKind kind) {
Handle<SharedFunctionInfo> shared = NewSharedFunctionInfo(
maybe_name, function_template_info, Builtins::kNoBuiltinId, kind);
return shared;
}
Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfoForBuiltin(
MaybeHandle<String> maybe_name, int builtin_index, FunctionKind kind) {
Handle<SharedFunctionInfo> shared = NewSharedFunctionInfo(
maybe_name, MaybeHandle<Code>(), builtin_index, kind);
return shared;
}
Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfo(
MaybeHandle<String> maybe_name, MaybeHandle<HeapObject> maybe_function_data,
int maybe_builtin_index, FunctionKind kind) {
// Function names are assumed to be flat elsewhere. Must flatten before
// allocating SharedFunctionInfo to avoid GC seeing the uninitialized SFI.
Handle<String> shared_name;
bool has_shared_name = maybe_name.ToHandle(&shared_name);
if (has_shared_name) {
shared_name = String::Flatten(isolate(), shared_name, TENURED);
}
Handle<Map> map = shared_function_info_map();
Handle<SharedFunctionInfo> share(SharedFunctionInfo::cast(New(map, TENURED)),
isolate());
{
DisallowHeapAllocation no_allocation;
// Set pointer fields.
share->set_name_or_scope_info(
has_shared_name ? Object::cast(*shared_name)
: SharedFunctionInfo::kNoSharedNameSentinel);
Handle<HeapObject> function_data;
if (maybe_function_data.ToHandle(&function_data)) {
// If we pass function_data then we shouldn't pass a builtin index, and
// the function_data should not be code with a builtin.
DCHECK(!Builtins::IsBuiltinId(maybe_builtin_index));
DCHECK_IMPLIES(function_data->IsCode(),
!Code::cast(*function_data)->is_builtin());
share->set_function_data(*function_data);
} else if (Builtins::IsBuiltinId(maybe_builtin_index)) {
share->set_builtin_id(maybe_builtin_index);
} else {
share->set_builtin_id(Builtins::kIllegal);
}
// Generally functions won't have feedback, unless they have been created
// from a FunctionLiteral. Those can just reset this field to keep the
// SharedFunctionInfo in a consistent state.
if (maybe_builtin_index == Builtins::kCompileLazy) {
share->set_raw_outer_scope_info_or_feedback_metadata(*the_hole_value(),
SKIP_WRITE_BARRIER);
} else {
share->set_raw_outer_scope_info_or_feedback_metadata(
*empty_feedback_metadata(), SKIP_WRITE_BARRIER);
}
share->set_script_or_debug_info(*undefined_value(), SKIP_WRITE_BARRIER);
#if V8_SFI_HAS_UNIQUE_ID
Handle<SharedFunctionInfoWithID>::cast(share)->set_unique_id(
isolate()->GetNextUniqueSharedFunctionInfoId());
#endif
// Set integer fields (smi or int, depending on the architecture).
share->set_length(0);
share->set_internal_formal_parameter_count(0);
share->set_expected_nof_properties(0);
share->set_builtin_function_id(
BuiltinFunctionId::kInvalidBuiltinFunctionId);
share->set_raw_function_token_offset(0);
// All flags default to false or 0.
share->set_flags(0);
// For lite mode disable optimization.
if (FLAG_lite_mode) {
share->set_flags(
SharedFunctionInfo::DisabledOptimizationReasonBits::encode(
BailoutReason::kNeverOptimize));
}
share->CalculateConstructAsBuiltin();
share->set_kind(kind);
share->clear_padding();
}
// Link into the list.
Handle<WeakArrayList> noscript_list = noscript_shared_function_infos();
noscript_list = WeakArrayList::AddToEnd(isolate(), noscript_list,
MaybeObjectHandle::Weak(share));
isolate()->heap()->set_noscript_shared_function_infos(*noscript_list);
#ifdef VERIFY_HEAP
share->SharedFunctionInfoVerify(isolate());
#endif
return share;
}
namespace {
inline int NumberToStringCacheHash(Handle<FixedArray> cache, Smi number) {
int mask = (cache->length() >> 1) - 1;
return number->value() & mask;
}
inline int NumberToStringCacheHash(Handle<FixedArray> cache, double number) {
int mask = (cache->length() >> 1) - 1;
int64_t bits = bit_cast<int64_t>(number);
return (static_cast<int>(bits) ^ static_cast<int>(bits >> 32)) & mask;
}
} // namespace
Handle<String> Factory::NumberToStringCacheSet(Handle<Object> number, int hash,
const char* string,
bool check_cache) {
// We tenure the allocated string since it is referenced from the
// number-string cache which lives in the old space.
Handle<String> js_string =
NewStringFromAsciiChecked(string, check_cache ? TENURED : NOT_TENURED);
if (!check_cache) return js_string;
if (!number_string_cache()->get(hash * 2)->IsUndefined(isolate())) {
int full_size = isolate()->heap()->MaxNumberToStringCacheSize();
if (number_string_cache()->length() != full_size) {
Handle<FixedArray> new_cache = NewFixedArray(full_size, TENURED);
isolate()->heap()->set_number_string_cache(*new_cache);
return js_string;
}
}
number_string_cache()->set(hash * 2, *number);
number_string_cache()->set(hash * 2 + 1, *js_string);
return js_string;
}
Handle<Object> Factory::NumberToStringCacheGet(Object number, int hash) {
DisallowHeapAllocation no_gc;
Object key = number_string_cache()->get(hash * 2);
if (key == number || (key->IsHeapNumber() && number->IsHeapNumber() &&
key->Number() == number->Number())) {
return Handle<String>(
String::cast(number_string_cache()->get(hash * 2 + 1)), isolate());
}
return undefined_value();
}
Handle<String> Factory::NumberToString(Handle<Object> number,
bool check_cache) {
if (number->IsSmi()) return NumberToString(Smi::cast(*number), check_cache);
double double_value = Handle<HeapNumber>::cast(number)->value();
// Try to canonicalize doubles.
int smi_value;
if (DoubleToSmiInteger(double_value, &smi_value)) {
return NumberToString(Smi::FromInt(smi_value), check_cache);
}
int hash = 0;
if (check_cache) {
hash = NumberToStringCacheHash(number_string_cache(), double_value);
Handle<Object> cached = NumberToStringCacheGet(*number, hash);
if (!cached->IsUndefined(isolate())) return Handle<String>::cast(cached);
}
char arr[100];
Vector<char> buffer(arr, arraysize(arr));
const char* string = DoubleToCString(double_value, buffer);
return NumberToStringCacheSet(number, hash, string, check_cache);
}
Handle<String> Factory::NumberToString(Smi number, bool check_cache) {
int hash = 0;
if (check_cache) {
hash = NumberToStringCacheHash(number_string_cache(), number);
Handle<Object> cached = NumberToStringCacheGet(number, hash);
if (!cached->IsUndefined(isolate())) return Handle<String>::cast(cached);
}
char arr[100];
Vector<char> buffer(arr, arraysize(arr));
const char* string = IntToCString(number->value(), buffer);
return NumberToStringCacheSet(handle(number, isolate()), hash, string,
check_cache);
}
Handle<ClassPositions> Factory::NewClassPositions(int start, int end) {
Handle<ClassPositions> class_positions =
Handle<ClassPositions>::cast(NewStruct(CLASS_POSITIONS_TYPE, TENURED));
class_positions->set_start(start);
class_positions->set_end(end);
return class_positions;
}
Handle<DebugInfo> Factory::NewDebugInfo(Handle<SharedFunctionInfo> shared) {
DCHECK(!shared->HasDebugInfo());
Heap* heap = isolate()->heap();
Handle<DebugInfo> debug_info =
Handle<DebugInfo>::cast(NewStruct(DEBUG_INFO_TYPE, TENURED));
debug_info->set_flags(DebugInfo::kNone);
debug_info->set_shared(*shared);
debug_info->set_debugger_hints(0);
DCHECK_EQ(DebugInfo::kNoDebuggingId, debug_info->debugging_id());
DCHECK(!shared->HasDebugInfo());
debug_info->set_script(shared->script_or_debug_info());
debug_info->set_original_bytecode_array(
ReadOnlyRoots(heap).undefined_value());
debug_info->set_debug_bytecode_array(ReadOnlyRoots(heap).undefined_value());
debug_info->set_break_points(ReadOnlyRoots(heap).empty_fixed_array());
// Link debug info to function.
shared->SetDebugInfo(*debug_info);
return debug_info;
}
Handle<CoverageInfo> Factory::NewCoverageInfo(
const ZoneVector<SourceRange>& slots) {
const int slot_count = static_cast<int>(slots.size());
const int length = CoverageInfo::FixedArrayLengthForSlotCount(slot_count);
Handle<CoverageInfo> info =
Handle<CoverageInfo>::cast(NewUninitializedFixedArray(length));
for (int i = 0; i < slot_count; i++) {
SourceRange range = slots[i];
info->InitializeSlot(i, range.start, range.end);
}
return info;
}
Handle<BreakPointInfo> Factory::NewBreakPointInfo(int source_position) {
Handle<BreakPointInfo> new_break_point_info =
Handle<BreakPointInfo>::cast(NewStruct(TUPLE2_TYPE, TENURED));
new_break_point_info->set_source_position(source_position);
new_break_point_info->set_break_points(*undefined_value());
return new_break_point_info;
}
Handle<BreakPoint> Factory::NewBreakPoint(int id, Handle<String> condition) {
Handle<BreakPoint> new_break_point =
Handle<BreakPoint>::cast(NewStruct(TUPLE2_TYPE, TENURED));
new_break_point->set_id(id);
new_break_point->set_condition(*condition);
return new_break_point;
}
Handle<StackTraceFrame> Factory::NewStackTraceFrame(
Handle<FrameArray> frame_array, int index) {
Handle<StackTraceFrame> frame = Handle<StackTraceFrame>::cast(
NewStruct(STACK_TRACE_FRAME_TYPE, NOT_TENURED));
frame->set_frame_array(*frame_array);
frame->set_frame_index(index);
frame->set_frame_info(*undefined_value());
int id = isolate()->last_stack_frame_info_id() + 1;
isolate()->set_last_stack_frame_info_id(id);
frame->set_id(id);
return frame;
}
Handle<StackFrameInfo> Factory::NewStackFrameInfo() {
Handle<StackFrameInfo> stack_frame_info = Handle<StackFrameInfo>::cast(
NewStruct(STACK_FRAME_INFO_TYPE, NOT_TENURED));
stack_frame_info->set_line_number(0);
stack_frame_info->set_column_number(0);
stack_frame_info->set_script_id(0);
stack_frame_info->set_script_name(Smi::kZero);
stack_frame_info->set_script_name_or_source_url(Smi::kZero);
stack_frame_info->set_function_name(Smi::kZero);
stack_frame_info->set_flag(0);
return stack_frame_info;
}
Handle<StackFrameInfo> Factory::NewStackFrameInfo(
Handle<FrameArray> frame_array, int index) {
FrameArrayIterator it(isolate(), frame_array, index);
DCHECK(it.HasFrame());
Handle<StackFrameInfo> info = Handle<StackFrameInfo>::cast(
NewStruct(STACK_FRAME_INFO_TYPE, NOT_TENURED));
info->set_flag(0);
const bool is_wasm = frame_array->IsAnyWasmFrame(index);
info->set_is_wasm(is_wasm);
// Line numbers are 1-based, for Wasm we need to adjust.
int line = it.Frame()->GetLineNumber();
if (is_wasm && line >= 0) line++;
info->set_line_number(line);
// Column numbers are 1-based. For Wasm we use the position
// as the iterator does not currently provide a column number.
const int column =
is_wasm ? it.Frame()->GetPosition() + 1 : it.Frame()->GetColumnNumber();
info->set_column_number(column);
info->set_script_id(it.Frame()->GetScriptId());
info->set_script_name(*it.Frame()->GetFileName());
info->set_script_name_or_source_url(*it.Frame()->GetScriptNameOrSourceUrl());
// TODO(szuend): Adjust this, once it is decided what name to use in both
// "simple" and "detailed" stack traces. This code is for
// backwards compatibility to fullfill test expectations.
auto function_name = it.Frame()->GetFunctionName();
if (!is_wasm) {
Handle<Object> function = it.Frame()->GetFunction();
if (function->IsJSFunction()) {
function_name =
JSFunction::GetDebugName(Handle<JSFunction>::cast(function));
}
}
info->set_function_name(*function_name);
info->set_is_eval(it.Frame()->IsEval());
info->set_is_constructor(it.Frame()->IsConstructor());
return info;
}
Handle<SourcePositionTableWithFrameCache>
Factory::NewSourcePositionTableWithFrameCache(
Handle<ByteArray> source_position_table,
Handle<SimpleNumberDictionary> stack_frame_cache) {
Handle<SourcePositionTableWithFrameCache>
source_position_table_with_frame_cache =
Handle<SourcePositionTableWithFrameCache>::cast(
NewStruct(TUPLE2_TYPE, TENURED));
source_position_table_with_frame_cache->set_source_position_table(
*source_position_table);
source_position_table_with_frame_cache->set_stack_frame_cache(
*stack_frame_cache);
return source_position_table_with_frame_cache;
}
Handle<JSObject> Factory::NewArgumentsObject(Handle<JSFunction> callee,
int length) {
bool strict_mode_callee = is_strict(callee->shared()->language_mode()) ||
!callee->shared()->has_simple_parameters();
Handle<Map> map = strict_mode_callee ? isolate()->strict_arguments_map()
: isolate()->sloppy_arguments_map();
AllocationSiteUsageContext context(isolate(), Handle<AllocationSite>(),
false);
DCHECK(!isolate()->has_pending_exception());
Handle<JSObject> result = NewJSObjectFromMap(map);
Handle<Smi> value(Smi::FromInt(length), isolate());
Object::SetProperty(isolate(), result, length_string(), value,
StoreOrigin::kMaybeKeyed,
Just(ShouldThrow::kThrowOnError))
.Assert();
if (!strict_mode_callee) {
Object::SetProperty(isolate(), result, callee_string(), callee,
StoreOrigin::kMaybeKeyed,
Just(ShouldThrow::kThrowOnError))
.Assert();
}
return result;
}
Handle<Map> Factory::ObjectLiteralMapFromCache(Handle<NativeContext> context,
int number_of_properties) {
if (number_of_properties == 0) {
// Reuse the initial map of the Object function if the literal has no
// predeclared properties.
return handle(context->object_function()->initial_map(), isolate());
}
// We do not cache maps for too many properties or when running builtin code.
if (isolate()->bootstrapper()->IsActive()) {
return Map::Create(isolate(), number_of_properties);
}
// Use initial slow object proto map for too many properties.
const int kMapCacheSize = 128;
if (number_of_properties > kMapCacheSize) {
return handle(context->slow_object_with_object_prototype_map(), isolate());
}
int cache_index = number_of_properties - 1;
Handle<Object> maybe_cache(context->map_cache(), isolate());
if (maybe_cache->IsUndefined(isolate())) {
// Allocate the new map cache for the native context.
maybe_cache = NewWeakFixedArray(kMapCacheSize, TENURED);
context->set_map_cache(*maybe_cache);
} else {
// Check to see whether there is a matching element in the cache.
Handle<WeakFixedArray> cache = Handle<WeakFixedArray>::cast(maybe_cache);
MaybeObject result = cache->Get(cache_index);
HeapObject heap_object;
if (result->GetHeapObjectIfWeak(&heap_object)) {
Map map = Map::cast(heap_object);
DCHECK(!map->is_dictionary_map());
return handle(map, isolate());
}
}
// Create a new map and add it to the cache.
Handle<WeakFixedArray> cache = Handle<WeakFixedArray>::cast(maybe_cache);
Handle<Map> map = Map::Create(isolate(), number_of_properties);
DCHECK(!map->is_dictionary_map());
cache->Set(cache_index, HeapObjectReference::Weak(*map));
return map;
}
Handle<LoadHandler> Factory::NewLoadHandler(int data_count) {
Handle<Map> map;
switch (data_count) {
case 1:
map = load_handler1_map();
break;
case 2:
map = load_handler2_map();
break;
case 3:
map = load_handler3_map();
break;
default:
UNREACHABLE();
break;
}
return handle(LoadHandler::cast(New(map, TENURED)), isolate());
}
Handle<StoreHandler> Factory::NewStoreHandler(int data_count) {
Handle<Map> map;
switch (data_count) {
case 0:
map = store_handler0_map();
break;
case 1:
map = store_handler1_map();
break;
case 2:
map = store_handler2_map();
break;
case 3:
map = store_handler3_map();
break;
default:
UNREACHABLE();
break;
}
return handle(StoreHandler::cast(New(map, TENURED)), isolate());
}
void Factory::SetRegExpAtomData(Handle<JSRegExp> regexp, JSRegExp::Type type,
Handle<String> source, JSRegExp::Flags flags,
Handle<Object> data) {
Handle<FixedArray> store = NewFixedArray(JSRegExp::kAtomDataSize);
store->set(JSRegExp::kTagIndex, Smi::FromInt(type));
store->set(JSRegExp::kSourceIndex, *source);
store->set(JSRegExp::kFlagsIndex, Smi::FromInt(flags));
store->set(JSRegExp::kAtomPatternIndex, *data);
regexp->set_data(*store);
}
void Factory::SetRegExpIrregexpData(Handle<JSRegExp> regexp,
JSRegExp::Type type, Handle<String> source,
JSRegExp::Flags flags, int capture_count) {
Handle<FixedArray> store = NewFixedArray(JSRegExp::kIrregexpDataSize);
Smi uninitialized = Smi::FromInt(JSRegExp::kUninitializedValue);
store->set(JSRegExp::kTagIndex, Smi::FromInt(type));
store->set(JSRegExp::kSourceIndex, *source);
store->set(JSRegExp::kFlagsIndex, Smi::FromInt(flags));
store->set(JSRegExp::kIrregexpLatin1CodeIndex, uninitialized);
store->set(JSRegExp::kIrregexpUC16CodeIndex, uninitialized);
store->set(JSRegExp::kIrregexpMaxRegisterCountIndex, Smi::kZero);
store->set(JSRegExp::kIrregexpCaptureCountIndex, Smi::FromInt(capture_count));
store->set(JSRegExp::kIrregexpCaptureNameMapIndex, uninitialized);
regexp->set_data(*store);
}
Handle<RegExpMatchInfo> Factory::NewRegExpMatchInfo() {
// Initially, the last match info consists of all fixed fields plus space for
// the match itself (i.e., 2 capture indices).
static const int kInitialSize = RegExpMatchInfo::kFirstCaptureIndex +
RegExpMatchInfo::kInitialCaptureIndices;
Handle<FixedArray> elems = NewFixedArray(kInitialSize);
Handle<RegExpMatchInfo> result = Handle<RegExpMatchInfo>::cast(elems);
result->SetNumberOfCaptureRegisters(RegExpMatchInfo::kInitialCaptureIndices);
result->SetLastSubject(*empty_string());
result->SetLastInput(*undefined_value());
result->SetCapture(0, 0);
result->SetCapture(1, 0);
return result;
}
Handle<Object> Factory::GlobalConstantFor(Handle<Name> name) {
if (Name::Equals(isolate(), name, undefined_string())) {
return undefined_value();
}
if (Name::Equals(isolate(), name, NaN_string())) return nan_value();
if (Name::Equals(isolate(), name, Infinity_string())) return infinity_value();
return Handle<Object>::null();
}
Handle<Object> Factory::ToBoolean(bool value) {
return value ? true_value() : false_value();
}
Handle<String> Factory::ToPrimitiveHintString(ToPrimitiveHint hint) {
switch (hint) {
case ToPrimitiveHint::kDefault:
return default_string();
case ToPrimitiveHint::kNumber:
return number_string();
case ToPrimitiveHint::kString:
return string_string();
}
UNREACHABLE();
}
Handle<Map> Factory::CreateSloppyFunctionMap(
FunctionMode function_mode, MaybeHandle<JSFunction> maybe_empty_function) {
bool has_prototype = IsFunctionModeWithPrototype(function_mode);
int header_size = has_prototype ? JSFunction::kSizeWithPrototype
: JSFunction::kSizeWithoutPrototype;
int descriptors_count = has_prototype ? 5 : 4;
int inobject_properties_count = 0;
if (IsFunctionModeWithName(function_mode)) ++inobject_properties_count;
Handle<Map> map = NewMap(
JS_FUNCTION_TYPE, header_size + inobject_properties_count * kTaggedSize,
TERMINAL_FAST_ELEMENTS_KIND, inobject_properties_count);
map->set_has_prototype_slot(has_prototype);
map->set_is_constructor(has_prototype);
map->set_is_callable(true);
Handle<JSFunction> empty_function;
if (maybe_empty_function.ToHandle(&empty_function)) {
Map::SetPrototype(isolate(), map, empty_function);
}
//
// Setup descriptors array.
//
Map::EnsureDescriptorSlack(isolate(), map, descriptors_count);
PropertyAttributes ro_attribs =
static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE | READ_ONLY);
PropertyAttributes rw_attribs =
static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE);
PropertyAttributes roc_attribs =
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY);
int field_index = 0;
STATIC_ASSERT(JSFunction::kLengthDescriptorIndex == 0);
{ // Add length accessor.
Descriptor d = Descriptor::AccessorConstant(
length_string(), function_length_accessor(), roc_attribs);
map->AppendDescriptor(isolate(), &d);
}
STATIC_ASSERT(JSFunction::kNameDescriptorIndex == 1);
if (IsFunctionModeWithName(function_mode)) {
// Add name field.
Handle<Name> name = isolate()->factory()->name_string();
Descriptor d = Descriptor::DataField(isolate(), name, field_index++,
roc_attribs, Representation::Tagged());
map->AppendDescriptor(isolate(), &d);
} else {
// Add name accessor.
Descriptor d = Descriptor::AccessorConstant(
name_string(), function_name_accessor(), roc_attribs);
map->AppendDescriptor(isolate(), &d);
}
{ // Add arguments accessor.
Descriptor d = Descriptor::AccessorConstant(
arguments_string(), function_arguments_accessor(), ro_attribs);
map->AppendDescriptor(isolate(), &d);
}
{ // Add caller accessor.
Descriptor d = Descriptor::AccessorConstant(
caller_string(), function_caller_accessor(), ro_attribs);
map->AppendDescriptor(isolate(), &d);
}
if (IsFunctionModeWithPrototype(function_mode)) {
// Add prototype accessor.
PropertyAttributes attribs =
IsFunctionModeWithWritablePrototype(function_mode) ? rw_attribs
: ro_attribs;
Descriptor d = Descriptor::AccessorConstant(
prototype_string(), function_prototype_accessor(), attribs);
map->AppendDescriptor(isolate(), &d);
}
DCHECK_EQ(inobject_properties_count, field_index);
LOG(isolate(), MapDetails(*map));
return map;
}
Handle<Map> Factory::CreateStrictFunctionMap(
FunctionMode function_mode, Handle<JSFunction> empty_function) {
bool has_prototype = IsFunctionModeWithPrototype(function_mode);
int header_size = has_prototype ? JSFunction::kSizeWithPrototype
: JSFunction::kSizeWithoutPrototype;
int inobject_properties_count = 0;
if (IsFunctionModeWithName(function_mode)) ++inobject_properties_count;
if (IsFunctionModeWithHomeObject(function_mode)) ++inobject_properties_count;
int descriptors_count = (IsFunctionModeWithPrototype(function_mode) ? 3 : 2) +
inobject_properties_count;
Handle<Map> map = NewMap(
JS_FUNCTION_TYPE, header_size + inobject_properties_count * kTaggedSize,
TERMINAL_FAST_ELEMENTS_KIND, inobject_properties_count);
map->set_has_prototype_slot(has_prototype);
map->set_is_constructor(has_prototype);
map->set_is_callable(true);
Map::SetPrototype(isolate(), map, empty_function);
//
// Setup descriptors array.
//
Map::EnsureDescriptorSlack(isolate(), map, descriptors_count);
PropertyAttributes rw_attribs =
static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE);
PropertyAttributes ro_attribs =
static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE | READ_ONLY);
PropertyAttributes roc_attribs =
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY);
int field_index = 0;
STATIC_ASSERT(JSFunction::kLengthDescriptorIndex == 0);
{ // Add length accessor.
Descriptor d = Descriptor::AccessorConstant(
length_string(), function_length_accessor(), roc_attribs);
map->AppendDescriptor(isolate(), &d);
}
STATIC_ASSERT(JSFunction::kNameDescriptorIndex == 1);
if (IsFunctionModeWithName(function_mode)) {
// Add name field.
Handle<Name> name = isolate()->factory()->name_string();
Descriptor d = Descriptor::DataField(isolate(), name, field_index++,
roc_attribs, Representation::Tagged());
map->AppendDescriptor(isolate(), &d);
} else {
// Add name accessor.
Descriptor d = Descriptor::AccessorConstant(
name_string(), function_name_accessor(), roc_attribs);
map->AppendDescriptor(isolate(), &d);
}
STATIC_ASSERT(JSFunction::kMaybeHomeObjectDescriptorIndex == 2);
if (IsFunctionModeWithHomeObject(function_mode)) {
// Add home object field.
Handle<Name> name = isolate()->factory()->home_object_symbol();
Descriptor d = Descriptor::DataField(isolate(), name, field_index++,
DONT_ENUM, Representation::Tagged());
map->AppendDescriptor(isolate(), &d);
}
if (IsFunctionModeWithPrototype(function_mode)) {
// Add prototype accessor.
PropertyAttributes attribs =
IsFunctionModeWithWritablePrototype(function_mode) ? rw_attribs
: ro_attribs;
Descriptor d = Descriptor::AccessorConstant(
prototype_string(), function_prototype_accessor(), attribs);
map->AppendDescriptor(isolate(), &d);
}
DCHECK_EQ(inobject_properties_count, field_index);
LOG(isolate(), MapDetails(*map));
return map;
}
Handle<Map> Factory::CreateClassFunctionMap(Handle<JSFunction> empty_function) {
Handle<Map> map = NewMap(JS_FUNCTION_TYPE, JSFunction::kSizeWithPrototype);
map->set_has_prototype_slot(true);
map->set_is_constructor(true);
map->set_is_prototype_map(true);
map->set_is_callable(true);
Map::SetPrototype(isolate(), map, empty_function);
//
// Setup descriptors array.
//
Map::EnsureDescriptorSlack(isolate(), map, 2);
PropertyAttributes ro_attribs =
static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE | READ_ONLY);
PropertyAttributes roc_attribs =
static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY);
STATIC_ASSERT(JSFunction::kLengthDescriptorIndex == 0);
{ // Add length accessor.
Descriptor d = Descriptor::AccessorConstant(
length_string(), function_length_accessor(), roc_attribs);
map->AppendDescriptor(isolate(), &d);
}
{
// Add prototype accessor.
Descriptor d = Descriptor::AccessorConstant(
prototype_string(), function_prototype_accessor(), ro_attribs);
map->AppendDescriptor(isolate(), &d);
}
LOG(isolate(), MapDetails(*map));
return map;
}
Handle<JSPromise> Factory::NewJSPromiseWithoutHook(PretenureFlag pretenure) {
Handle<JSPromise> promise = Handle<JSPromise>::cast(
NewJSObject(isolate()->promise_function(), pretenure));
promise->set_reactions_or_result(Smi::kZero);
promise->set_flags(0);
for (int i = 0; i < v8::Promise::kEmbedderFieldCount; i++) {
promise->SetEmbedderField(i, Smi::kZero);
}
return promise;
}
Handle<JSPromise> Factory::NewJSPromise(PretenureFlag pretenure) {
Handle<JSPromise> promise = NewJSPromiseWithoutHook(pretenure);
isolate()->RunPromiseHook(PromiseHookType::kInit, promise, undefined_value());
return promise;
}
Handle<CallHandlerInfo> Factory::NewCallHandlerInfo(bool has_no_side_effect) {
Handle<Map> map = has_no_side_effect
? side_effect_free_call_handler_info_map()
: side_effect_call_handler_info_map();
Handle<CallHandlerInfo> info(CallHandlerInfo::cast(New(map, TENURED)),
isolate());
Object undefined_value = ReadOnlyRoots(isolate()).undefined_value();
info->set_callback(undefined_value);
info->set_js_callback(undefined_value);
info->set_data(undefined_value);
return info;
}
// static
NewFunctionArgs NewFunctionArgs::ForWasm(
Handle<String> name,
Handle<WasmExportedFunctionData> exported_function_data, Handle<Map> map) {
NewFunctionArgs args;
args.name_ = name;
args.maybe_map_ = map;
args.maybe_exported_function_data_ = exported_function_data;
args.language_mode_ = LanguageMode::kSloppy;
args.prototype_mutability_ = MUTABLE;
return args;
}
// static
NewFunctionArgs NewFunctionArgs::ForBuiltin(Handle<String> name,
Handle<Map> map, int builtin_id) {
DCHECK(Builtins::IsBuiltinId(builtin_id));
NewFunctionArgs args;
args.name_ = name;
args.maybe_map_ = map;
args.maybe_builtin_id_ = builtin_id;
args.language_mode_ = LanguageMode::kStrict;
args.prototype_mutability_ = MUTABLE;
args.SetShouldSetLanguageMode();
return args;
}
// static
NewFunctionArgs NewFunctionArgs::ForFunctionWithoutCode(
Handle<String> name, Handle<Map> map, LanguageMode language_mode) {
NewFunctionArgs args;
args.name_ = name;
args.maybe_map_ = map;
args.maybe_builtin_id_ = Builtins::kIllegal;
args.language_mode_ = language_mode;
args.prototype_mutability_ = MUTABLE;
args.SetShouldSetLanguageMode();
return args;
}
// static
NewFunctionArgs NewFunctionArgs::ForBuiltinWithPrototype(
Handle<String> name, Handle<Object> prototype, InstanceType type,
int instance_size, int inobject_properties, int builtin_id,
MutableMode prototype_mutability) {
DCHECK(Builtins::IsBuiltinId(builtin_id));
NewFunctionArgs args;
args.name_ = name;
args.type_ = type;
args.instance_size_ = instance_size;
args.inobject_properties_ = inobject_properties;
args.maybe_prototype_ = prototype;
args.maybe_builtin_id_ = builtin_id;
args.language_mode_ = LanguageMode::kStrict;
args.prototype_mutability_ = prototype_mutability;
args.SetShouldCreateAndSetInitialMap();
args.SetShouldSetPrototype();
args.SetShouldSetLanguageMode();
return args;
}
// static
NewFunctionArgs NewFunctionArgs::ForBuiltinWithoutPrototype(
Handle<String> name, int builtin_id, LanguageMode language_mode) {
DCHECK(Builtins::IsBuiltinId(builtin_id));
NewFunctionArgs args;
args.name_ = name;
args.maybe_builtin_id_ = builtin_id;
args.language_mode_ = language_mode;
args.prototype_mutability_ = MUTABLE;
args.SetShouldSetLanguageMode();
return args;
}
void NewFunctionArgs::SetShouldCreateAndSetInitialMap() {
// Needed to create the initial map.
maybe_prototype_.Assert();
DCHECK_NE(kUninitialized, instance_size_);
DCHECK_NE(kUninitialized, inobject_properties_);
should_create_and_set_initial_map_ = true;
}
void NewFunctionArgs::SetShouldSetPrototype() {
maybe_prototype_.Assert();
should_set_prototype_ = true;
}
void NewFunctionArgs::SetShouldSetLanguageMode() {
DCHECK(language_mode_ == LanguageMode::kStrict ||
language_mode_ == LanguageMode::kSloppy);
should_set_language_mode_ = true;
}
Handle<Map> NewFunctionArgs::GetMap(Isolate* isolate) const {
if (!maybe_map_.is_null()) {
return maybe_map_.ToHandleChecked();
} else if (maybe_prototype_.is_null()) {
return is_strict(language_mode_)
? isolate->strict_function_without_prototype_map()
: isolate->sloppy_function_without_prototype_map();
} else {
DCHECK(!maybe_prototype_.is_null());
switch (prototype_mutability_) {
case MUTABLE:
return is_strict(language_mode_) ? isolate->strict_function_map()
: isolate->sloppy_function_map();
case IMMUTABLE:
return is_strict(language_mode_)
? isolate->strict_function_with_readonly_prototype_map()
: isolate->sloppy_function_with_readonly_prototype_map();
}
}
UNREACHABLE();
}
} // namespace internal
} // namespace v8