blob: 06cc682473f8dc73d416e021e8b4c39a520ba97e [file] [log] [blame]
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "device/usb/usb_descriptors.h"
#include <stdint.h>
#include <memory>
#include "base/bind.h"
#include "base/strings/utf_string_conversions.h"
#include "device/usb/mock_usb_device_handle.h"
#include "testing/gtest/include/gtest/gtest.h"
using testing::_;
namespace device {
namespace {
ACTION_P2(InvokeCallback, data, length) {
size_t transferred_length = std::min(length, arg7);
memcpy(arg6->data(), data, transferred_length);
arg9.Run(UsbTransferStatus::COMPLETED, arg6, transferred_length);
}
void ExpectStringDescriptors(
std::unique_ptr<std::map<uint8_t, base::string16>> string_map) {
EXPECT_EQ(3u, string_map->size());
EXPECT_EQ(base::ASCIIToUTF16("String 1"), (*string_map)[1]);
EXPECT_EQ(base::ASCIIToUTF16("String 2"), (*string_map)[2]);
EXPECT_EQ(base::ASCIIToUTF16("String 3"), (*string_map)[3]);
}
const uint8_t kDeviceDescriptor[] = {0x12, 0x01, 0x10, 0x03, 0xFF, 0xFF,
0xFF, 0x09, 0x34, 0x12, 0x78, 0x56,
0x00, 0x01, 0x01, 0x02, 0x03, 0x02};
const uint8_t kConfig1Descriptor[] = {
// Config 1
0x09, 0x02, 0x38, 0x00, 0x02, 0x01, 0x01, 0x01, 0x10,
// Interface Association (0 + 1)
0x08, 0x0B, 0x00, 0x02, 0xFF, 0xFF, 0xFF, 0x00,
// Interface 0
0x09, 0x04, 0x00, 0x00, 0x03, 0x12, 0x34, 0x56, 0x02,
// Endpoint 1 IN
0x07, 0x05, 0x81, 0x02, 0x00, 0x02, 0x00,
// Endpoint 2 IN
0x07, 0x05, 0x82, 0x03, 0x00, 0x02, 0x04,
// Endpoint 3 OUT
0x07, 0x05, 0x03, 0x13, 0x00, 0x02, 0x04,
// Interface 1
0x09, 0x04, 0x01, 0x00, 0x00, 0x78, 0x9A, 0xAB, 0x03,
};
const uint8_t kConfig2Descriptor[] = {
// Config 2
0x09, 0x02, 0x29, 0x00, 0x01, 0x02, 0x04, 0x03, 0x20,
// Interface 0
0x09, 0x04, 0x00, 0x00, 0x00, 0xCD, 0xEF, 0x01, 0x04,
// Interface 0 (alternate 1)
0x09, 0x04, 0x00, 0x01, 0x02, 0xCD, 0xEF, 0x01, 0x05,
// Endpoint 1 IN
0x07, 0x05, 0x81, 0x01, 0x00, 0x04, 0x08,
// Endpoint 2 OUT
0x07, 0x05, 0x02, 0x11, 0x00, 0x04, 0x08,
};
void ExpectConfig1Descriptor(const UsbConfigDescriptor& config) {
// Config 1
EXPECT_EQ(1, config.configuration_value);
EXPECT_FALSE(config.self_powered);
EXPECT_FALSE(config.remote_wakeup);
EXPECT_EQ(16, config.maximum_power);
ASSERT_EQ(2u, config.interfaces.size());
EXPECT_EQ(8u, config.extra_data.size());
// Interface 0
EXPECT_EQ(0, config.interfaces[0].interface_number);
EXPECT_EQ(0, config.interfaces[0].alternate_setting);
EXPECT_EQ(0x12, config.interfaces[0].interface_class);
EXPECT_EQ(0x34, config.interfaces[0].interface_subclass);
EXPECT_EQ(0x56, config.interfaces[0].interface_protocol);
ASSERT_EQ(3u, config.interfaces[0].endpoints.size());
EXPECT_EQ(0u, config.interfaces[0].extra_data.size());
EXPECT_EQ(0, config.interfaces[0].first_interface);
// Endpoint 1 IN
EXPECT_EQ(0x81, config.interfaces[0].endpoints[0].address);
EXPECT_EQ(UsbTransferDirection::INBOUND,
config.interfaces[0].endpoints[0].direction);
EXPECT_EQ(512, config.interfaces[0].endpoints[0].maximum_packet_size);
EXPECT_EQ(USB_SYNCHRONIZATION_NONE,
config.interfaces[0].endpoints[0].synchronization_type);
EXPECT_EQ(UsbTransferType::BULK,
config.interfaces[0].endpoints[0].transfer_type);
EXPECT_EQ(USB_USAGE_RESERVED, config.interfaces[0].endpoints[0].usage_type);
EXPECT_EQ(0, config.interfaces[0].endpoints[0].polling_interval);
EXPECT_EQ(0u, config.interfaces[0].endpoints[0].extra_data.size());
// Endpoint 2 IN
EXPECT_EQ(0x82, config.interfaces[0].endpoints[1].address);
EXPECT_EQ(UsbTransferDirection::INBOUND,
config.interfaces[0].endpoints[1].direction);
EXPECT_EQ(512, config.interfaces[0].endpoints[1].maximum_packet_size);
EXPECT_EQ(USB_SYNCHRONIZATION_NONE,
config.interfaces[0].endpoints[1].synchronization_type);
EXPECT_EQ(UsbTransferType::INTERRUPT,
config.interfaces[0].endpoints[1].transfer_type);
EXPECT_EQ(USB_USAGE_PERIODIC, config.interfaces[0].endpoints[1].usage_type);
EXPECT_EQ(4, config.interfaces[0].endpoints[1].polling_interval);
EXPECT_EQ(0u, config.interfaces[0].endpoints[1].extra_data.size());
// Endpoint 3 OUT
EXPECT_EQ(0x03, config.interfaces[0].endpoints[2].address);
EXPECT_EQ(UsbTransferDirection::OUTBOUND,
config.interfaces[0].endpoints[2].direction);
EXPECT_EQ(512, config.interfaces[0].endpoints[2].maximum_packet_size);
EXPECT_EQ(USB_SYNCHRONIZATION_NONE,
config.interfaces[0].endpoints[2].synchronization_type);
EXPECT_EQ(UsbTransferType::INTERRUPT,
config.interfaces[0].endpoints[2].transfer_type);
EXPECT_EQ(USB_USAGE_NOTIFICATION,
config.interfaces[0].endpoints[2].usage_type);
EXPECT_EQ(4, config.interfaces[0].endpoints[2].polling_interval);
EXPECT_EQ(0u, config.interfaces[0].endpoints[2].extra_data.size());
// Interface 1
EXPECT_EQ(1, config.interfaces[1].interface_number);
EXPECT_EQ(0, config.interfaces[1].alternate_setting);
EXPECT_EQ(0x78, config.interfaces[1].interface_class);
EXPECT_EQ(0x9A, config.interfaces[1].interface_subclass);
EXPECT_EQ(0xAB, config.interfaces[1].interface_protocol);
ASSERT_EQ(0u, config.interfaces[1].endpoints.size());
EXPECT_EQ(0u, config.interfaces[1].extra_data.size());
EXPECT_EQ(0, config.interfaces[1].first_interface);
}
void ExpectConfig2Descriptor(const UsbConfigDescriptor& config) {
// Config 2
EXPECT_EQ(2, config.configuration_value);
EXPECT_TRUE(config.self_powered);
EXPECT_FALSE(config.remote_wakeup);
EXPECT_EQ(32, config.maximum_power);
ASSERT_EQ(2u, config.interfaces.size());
EXPECT_EQ(0u, config.extra_data.size());
// Interface 0
EXPECT_EQ(0, config.interfaces[0].interface_number);
EXPECT_EQ(0, config.interfaces[0].alternate_setting);
EXPECT_EQ(0xCD, config.interfaces[0].interface_class);
EXPECT_EQ(0xEF, config.interfaces[0].interface_subclass);
EXPECT_EQ(0x01, config.interfaces[0].interface_protocol);
ASSERT_EQ(0u, config.interfaces[0].endpoints.size());
EXPECT_EQ(0u, config.interfaces[0].extra_data.size());
EXPECT_EQ(0, config.interfaces[0].first_interface);
// Interface 0 (alternate 1)
EXPECT_EQ(0, config.interfaces[1].interface_number);
EXPECT_EQ(1, config.interfaces[1].alternate_setting);
EXPECT_EQ(0xCD, config.interfaces[1].interface_class);
EXPECT_EQ(0xEF, config.interfaces[1].interface_subclass);
EXPECT_EQ(0x01, config.interfaces[1].interface_protocol);
ASSERT_EQ(2u, config.interfaces[1].endpoints.size());
EXPECT_EQ(0u, config.interfaces[1].extra_data.size());
EXPECT_EQ(0, config.interfaces[1].first_interface);
// Endpoint 1 IN
EXPECT_EQ(0x81, config.interfaces[1].endpoints[0].address);
EXPECT_EQ(UsbTransferDirection::INBOUND,
config.interfaces[1].endpoints[0].direction);
EXPECT_EQ(1024, config.interfaces[1].endpoints[0].maximum_packet_size);
EXPECT_EQ(USB_SYNCHRONIZATION_NONE,
config.interfaces[1].endpoints[0].synchronization_type);
EXPECT_EQ(UsbTransferType::ISOCHRONOUS,
config.interfaces[1].endpoints[0].transfer_type);
EXPECT_EQ(USB_USAGE_DATA, config.interfaces[1].endpoints[0].usage_type);
EXPECT_EQ(8, config.interfaces[1].endpoints[0].polling_interval);
EXPECT_EQ(0u, config.interfaces[1].endpoints[0].extra_data.size());
// Endpoint 2 OUT
EXPECT_EQ(0x02, config.interfaces[1].endpoints[1].address);
EXPECT_EQ(UsbTransferDirection::OUTBOUND,
config.interfaces[1].endpoints[1].direction);
EXPECT_EQ(1024, config.interfaces[1].endpoints[1].maximum_packet_size);
EXPECT_EQ(USB_SYNCHRONIZATION_NONE,
config.interfaces[1].endpoints[1].synchronization_type);
EXPECT_EQ(UsbTransferType::ISOCHRONOUS,
config.interfaces[1].endpoints[1].transfer_type);
EXPECT_EQ(USB_USAGE_FEEDBACK, config.interfaces[1].endpoints[1].usage_type);
EXPECT_EQ(8, config.interfaces[1].endpoints[1].polling_interval);
EXPECT_EQ(0u, config.interfaces[1].endpoints[1].extra_data.size());
}
void ExpectDeviceDescriptor(const UsbDeviceDescriptor& descriptor) {
// Device
EXPECT_EQ(0x0310, descriptor.usb_version);
EXPECT_EQ(0xFF, descriptor.device_class);
EXPECT_EQ(0xFF, descriptor.device_subclass);
EXPECT_EQ(0xFF, descriptor.device_protocol);
EXPECT_EQ(0x1234, descriptor.vendor_id);
EXPECT_EQ(0x5678, descriptor.product_id);
EXPECT_EQ(0x0100, descriptor.device_version);
ASSERT_EQ(2u, descriptor.configurations.size());
ExpectConfig1Descriptor(descriptor.configurations[0]);
ExpectConfig2Descriptor(descriptor.configurations[1]);
}
void OnReadDescriptors(std::unique_ptr<UsbDeviceDescriptor> descriptor) {
ASSERT_TRUE(descriptor);
ExpectDeviceDescriptor(*descriptor);
}
class UsbDescriptorsTest : public ::testing::Test {};
TEST_F(UsbDescriptorsTest, ParseDescriptor) {
std::vector<uint8_t> buffer;
buffer.insert(buffer.end(), kDeviceDescriptor,
kDeviceDescriptor + sizeof(kDeviceDescriptor));
buffer.insert(buffer.end(), kConfig1Descriptor,
kConfig1Descriptor + sizeof(kConfig1Descriptor));
buffer.insert(buffer.end(), kConfig2Descriptor,
kConfig2Descriptor + sizeof(kConfig2Descriptor));
UsbDeviceDescriptor descriptor;
ASSERT_TRUE(descriptor.Parse(buffer));
ExpectDeviceDescriptor(descriptor);
}
TEST_F(UsbDescriptorsTest, ReadDescriptors) {
scoped_refptr<MockUsbDeviceHandle> device_handle(
new MockUsbDeviceHandle(nullptr));
EXPECT_CALL(*device_handle,
ControlTransfer(UsbTransferDirection::INBOUND,
UsbControlTransferType::STANDARD,
UsbControlTransferRecipient::DEVICE, 0x06, 0x0100,
0x0000, _, _, _, _))
.WillOnce(InvokeCallback(kDeviceDescriptor, sizeof(kDeviceDescriptor)));
EXPECT_CALL(*device_handle,
ControlTransfer(UsbTransferDirection::INBOUND,
UsbControlTransferType::STANDARD,
UsbControlTransferRecipient::DEVICE, 0x06, 0x0200,
0x0000, _, _, _, _))
.Times(2)
.WillRepeatedly(
InvokeCallback(kConfig1Descriptor, sizeof(kConfig1Descriptor)));
EXPECT_CALL(*device_handle,
ControlTransfer(UsbTransferDirection::INBOUND,
UsbControlTransferType::STANDARD,
UsbControlTransferRecipient::DEVICE, 0x06, 0x0201,
0x0000, _, _, _, _))
.Times(2)
.WillRepeatedly(
InvokeCallback(kConfig2Descriptor, sizeof(kConfig2Descriptor)));
ReadUsbDescriptors(device_handle, base::Bind(&OnReadDescriptors));
}
TEST_F(UsbDescriptorsTest, NoInterfaceAssociations) {
UsbConfigDescriptor config(1, false, false, 0);
config.interfaces.emplace_back(0, 0, 255, 255, 255);
config.interfaces.emplace_back(0, 1, 255, 255, 255);
config.interfaces.emplace_back(1, 0, 255, 255, 255);
config.AssignFirstInterfaceNumbers();
EXPECT_EQ(0, config.interfaces[0].first_interface);
EXPECT_EQ(0, config.interfaces[1].first_interface);
EXPECT_EQ(1, config.interfaces[2].first_interface);
}
TEST_F(UsbDescriptorsTest, InterfaceAssociations) {
// Links interfaces 0 and 1 into a single function.
static const uint8_t kIAD1[] = {0x08, 0x0b, 0x00, 0x02,
0xff, 0xff, 0xff, 0x00};
// Only references a single interface, 2.
static const uint8_t kIAD2[] = {0x08, 0x0b, 0x02, 0x01,
0xff, 0xff, 0xff, 0x00};
// Malformed. References interface 3 but bInterfaceCount is 0.
static const uint8_t kIAD3[] = {0x08, 0x0b, 0x03, 0x00,
0xff, 0xff, 0xff, 0x00};
// Links interfaces 4 and 5 into a single function.
static const uint8_t kIAD4[] = {0x08, 0x0b, 0x04, 0x02,
0xff, 0xff, 0xff, 0x00};
UsbConfigDescriptor config(1, false, false, 0);
config.extra_data.assign(kIAD1, kIAD1 + sizeof(kIAD1));
config.extra_data.insert(config.extra_data.end(), kIAD2,
kIAD2 + sizeof(kIAD2));
config.interfaces.emplace_back(0, 0, 255, 255, 255);
config.interfaces.emplace_back(1, 0, 255, 255, 255);
UsbInterfaceDescriptor iface1a(1, 1, 255, 255, 255);
iface1a.extra_data.assign(kIAD3, kIAD3 + sizeof(kIAD3));
config.interfaces.push_back(std::move(iface1a));
config.interfaces.emplace_back(2, 0, 255, 255, 255);
config.interfaces.emplace_back(3, 0, 255, 255, 255);
UsbInterfaceDescriptor iface4(4, 0, 255, 255, 255);
iface4.extra_data.assign(kIAD4, kIAD4 + sizeof(kIAD4));
config.interfaces.push_back(std::move(iface4));
config.interfaces.emplace_back(5, 0, 255, 255, 255);
config.AssignFirstInterfaceNumbers();
// Interfaces 0 and 1 (plus 1's alternate) are a single function.
EXPECT_EQ(0, config.interfaces[0].interface_number);
EXPECT_EQ(0, config.interfaces[0].first_interface);
EXPECT_EQ(1, config.interfaces[1].interface_number);
EXPECT_EQ(0, config.interfaces[1].first_interface);
EXPECT_EQ(1, config.interfaces[2].interface_number);
EXPECT_EQ(0, config.interfaces[2].first_interface);
// Interfaces 2 and 3 are their own functions.
EXPECT_EQ(2, config.interfaces[3].interface_number);
EXPECT_EQ(2, config.interfaces[3].first_interface);
EXPECT_EQ(3, config.interfaces[4].interface_number);
EXPECT_EQ(3, config.interfaces[4].first_interface);
// Interfaces 4 and 5 are a single function.
EXPECT_EQ(4, config.interfaces[5].interface_number);
EXPECT_EQ(4, config.interfaces[5].first_interface);
EXPECT_EQ(5, config.interfaces[6].interface_number);
EXPECT_EQ(4, config.interfaces[6].first_interface);
}
TEST_F(UsbDescriptorsTest, CorruptInterfaceAssociations) {
{
// Descriptor is too short.
static const uint8_t kIAD[] = {0x01};
UsbConfigDescriptor config(1, false, false, 0);
config.extra_data.assign(kIAD, kIAD + sizeof(kIAD));
config.AssignFirstInterfaceNumbers();
}
{
// Descriptor is too long.
static const uint8_t kIAD[] = {0x09, 0x0b, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00};
UsbConfigDescriptor config(1, false, false, 0);
config.extra_data.assign(kIAD, kIAD + sizeof(kIAD));
config.AssignFirstInterfaceNumbers();
}
{
// References an undefined interface.
static const uint8_t kIAD[] = {0x08, 0x0b, 0x07, 0x00,
0xff, 0xff, 0xff, 0x00};
UsbConfigDescriptor config(1, false, false, 0);
config.interfaces.emplace_back(0, 0, 255, 255, 255);
config.extra_data.assign(kIAD, kIAD + sizeof(kIAD));
config.AssignFirstInterfaceNumbers();
EXPECT_EQ(0, config.interfaces[0].interface_number);
EXPECT_EQ(0, config.interfaces[0].first_interface);
}
}
TEST_F(UsbDescriptorsTest, StringDescriptor) {
static const uint8_t kBuffer[] = {0x1a, 0x03, 'H', 0, 'e', 0, 'l', 0, 'l', 0,
'o', 0, ' ', 0, 'w', 0, 'o', 0, 'r', 0,
'l', 0, 'd', 0, '!', 0};
base::string16 string;
ASSERT_TRUE(ParseUsbStringDescriptor(
std::vector<uint8_t>(kBuffer, kBuffer + sizeof(kBuffer)), &string));
EXPECT_EQ(base::ASCIIToUTF16("Hello world!"), string);
}
TEST_F(UsbDescriptorsTest, ShortStringDescriptorHeader) {
// The buffer is just too darn short.
static const uint8_t kBuffer[] = {0x01};
base::string16 string;
ASSERT_FALSE(ParseUsbStringDescriptor(
std::vector<uint8_t>(kBuffer, kBuffer + sizeof(kBuffer)), &string));
}
TEST_F(UsbDescriptorsTest, ShortStringDescriptor) {
// The buffer is just too darn short.
static const uint8_t kBuffer[] = {0x01, 0x03};
base::string16 string;
ASSERT_FALSE(ParseUsbStringDescriptor(
std::vector<uint8_t>(kBuffer, kBuffer + sizeof(kBuffer)), &string));
}
TEST_F(UsbDescriptorsTest, OddLengthStringDescriptor) {
// There's an extra byte at the end of the string.
static const uint8_t kBuffer[] = {0x0d, 0x03, 'H', 0, 'e', 0, 'l',
0, 'l', 0, 'o', 0, '!'};
base::string16 string;
ASSERT_TRUE(ParseUsbStringDescriptor(
std::vector<uint8_t>(kBuffer, kBuffer + sizeof(kBuffer)), &string));
EXPECT_EQ(base::ASCIIToUTF16("Hello"), string);
}
TEST_F(UsbDescriptorsTest, EmptyStringDescriptor) {
// The string is empty.
static const uint8_t kBuffer[] = {0x02, 0x03};
base::string16 string;
ASSERT_TRUE(ParseUsbStringDescriptor(
std::vector<uint8_t>(kBuffer, kBuffer + sizeof(kBuffer)), &string));
EXPECT_EQ(base::string16(), string);
}
TEST_F(UsbDescriptorsTest, OneByteStringDescriptor) {
// The string is only one byte.
static const uint8_t kBuffer[] = {0x03, 0x03, '?'};
base::string16 string;
ASSERT_TRUE(ParseUsbStringDescriptor(
std::vector<uint8_t>(kBuffer, kBuffer + sizeof(kBuffer)), &string));
EXPECT_EQ(base::string16(), string);
}
TEST_F(UsbDescriptorsTest, ReadStringDescriptors) {
std::unique_ptr<std::map<uint8_t, base::string16>> string_map(
new std::map<uint8_t, base::string16>());
(*string_map)[1] = base::string16();
(*string_map)[2] = base::string16();
(*string_map)[3] = base::string16();
scoped_refptr<MockUsbDeviceHandle> device_handle(
new MockUsbDeviceHandle(nullptr));
static const uint8_t kStringDescriptor0[] = {0x04, 0x03, 0x21, 0x43};
EXPECT_CALL(*device_handle,
ControlTransfer(UsbTransferDirection::INBOUND,
UsbControlTransferType::STANDARD,
UsbControlTransferRecipient::DEVICE, 0x06, 0x0300,
0x0000, _, _, _, _))
.WillOnce(InvokeCallback(kStringDescriptor0, sizeof(kStringDescriptor0)));
static const uint8_t kStringDescriptor1[] = {0x12, 0x03, 'S', 0, 't', 0,
'r', 0, 'i', 0, 'n', 0,
'g', 0, ' ', 0, '1', 0};
EXPECT_CALL(*device_handle,
ControlTransfer(UsbTransferDirection::INBOUND,
UsbControlTransferType::STANDARD,
UsbControlTransferRecipient::DEVICE, 0x06, 0x0301,
0x4321, _, _, _, _))
.WillOnce(InvokeCallback(kStringDescriptor1, sizeof(kStringDescriptor1)));
static const uint8_t kStringDescriptor2[] = {0x12, 0x03, 'S', 0, 't', 0,
'r', 0, 'i', 0, 'n', 0,
'g', 0, ' ', 0, '2', 0};
EXPECT_CALL(*device_handle,
ControlTransfer(UsbTransferDirection::INBOUND,
UsbControlTransferType::STANDARD,
UsbControlTransferRecipient::DEVICE, 0x06, 0x0302,
0x4321, _, _, _, _))
.WillOnce(InvokeCallback(kStringDescriptor2, sizeof(kStringDescriptor2)));
static const uint8_t kStringDescriptor3[] = {0x12, 0x03, 'S', 0, 't', 0,
'r', 0, 'i', 0, 'n', 0,
'g', 0, ' ', 0, '3', 0};
EXPECT_CALL(*device_handle,
ControlTransfer(UsbTransferDirection::INBOUND,
UsbControlTransferType::STANDARD,
UsbControlTransferRecipient::DEVICE, 0x06, 0x0303,
0x4321, _, _, _, _))
.WillOnce(InvokeCallback(kStringDescriptor3, sizeof(kStringDescriptor3)));
ReadUsbStringDescriptors(device_handle, std::move(string_map),
base::Bind(&ExpectStringDescriptors));
}
} // namespace
} // namespace device