blob: 5bc0bb362e5b6e9ab21bf521f4c1d5f9adb3786e [file] [log] [blame]
// Copyright 2018 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/task/sequence_manager/sequence_manager_impl.h"
#include <queue>
#include <vector>
#include "base/bind.h"
#include "base/bit_cast.h"
#include "base/compiler_specific.h"
#include "base/debug/crash_logging.h"
#include "base/json/json_writer.h"
#include "base/memory/ptr_util.h"
#include "base/message_loop/message_loop_current.h"
#include "base/optional.h"
#include "base/rand_util.h"
#include "base/task/sequence_manager/real_time_domain.h"
#include "base/task/sequence_manager/task_time_observer.h"
#include "base/task/sequence_manager/thread_controller_impl.h"
#include "base/task/sequence_manager/thread_controller_with_message_pump_impl.h"
#include "base/task/sequence_manager/work_queue.h"
#include "base/task/sequence_manager/work_queue_sets.h"
#include "base/threading/thread_id_name_manager.h"
#include "base/time/default_tick_clock.h"
#include "base/time/tick_clock.h"
#include "base/trace_event/trace_event.h"
#include "build/build_config.h"
namespace base {
namespace sequence_manager {
// This controls how big the the initial for
// |MainThreadOnly::task_execution_stack| should be. We don't expect to see
// depths of more than 2 unless cooperative scheduling is used on Blink, where
// we might get up to 6. Anyway 10 was chosen because it's a round number
// greater than current anticipated usage.
static constexpr const size_t kInitialTaskExecutionStackReserveCount = 10;
std::unique_ptr<SequenceManager> CreateSequenceManagerOnCurrentThread(
SequenceManager::Settings settings) {
return internal::SequenceManagerImpl::CreateOnCurrentThread(
std::move(settings));
}
std::unique_ptr<SequenceManager> CreateSequenceManagerOnCurrentThreadWithPump(
std::unique_ptr<MessagePump> message_pump,
SequenceManager::Settings settings) {
std::unique_ptr<SequenceManager> sequence_manager =
internal::SequenceManagerImpl::CreateUnboundWithPump(std::move(settings));
sequence_manager->BindToMessagePump(std::move(message_pump));
return sequence_manager;
}
std::unique_ptr<SequenceManager> CreateUnboundSequenceManager(
MessageLoopBase* message_loop_base,
SequenceManager::Settings settings) {
return internal::SequenceManagerImpl::CreateUnbound(message_loop_base,
std::move(settings));
}
namespace internal {
namespace {
constexpr base::TimeDelta kLongTaskTraceEventThreshold =
base::TimeDelta::FromMilliseconds(50);
// Proportion of tasks which will record thread time for metrics.
const double kTaskSamplingRateForRecordingCPUTime = 0.01;
// Proprortion of SequenceManagers which will record thread time for each task,
// enabling advanced metrics.
const double kThreadSamplingRateForRecordingCPUTime = 0.0001;
// Magic value to protect against memory corruption and bail out
// early when detected.
constexpr int kMemoryCorruptionSentinelValue = 0xdeadbeef;
void ReclaimMemoryFromQueue(internal::TaskQueueImpl* queue,
std::map<TimeDomain*, TimeTicks>* time_domain_now) {
TimeDomain* time_domain = queue->GetTimeDomain();
if (time_domain_now->find(time_domain) == time_domain_now->end())
time_domain_now->insert(std::make_pair(time_domain, time_domain->Now()));
queue->ReclaimMemory(time_domain_now->at(time_domain));
}
SequenceManager::MetricRecordingSettings InitializeMetricRecordingSettings(
bool randomised_sampling_enabled) {
if (!randomised_sampling_enabled)
return SequenceManager::MetricRecordingSettings(0);
bool records_cpu_time_for_each_task =
base::RandDouble() < kThreadSamplingRateForRecordingCPUTime;
return SequenceManager::MetricRecordingSettings(
records_cpu_time_for_each_task ? 1
: kTaskSamplingRateForRecordingCPUTime);
}
} // namespace
SequenceManagerImpl::SequenceManagerImpl(
std::unique_ptr<internal::ThreadController> controller,
SequenceManager::Settings settings)
: associated_thread_(controller->GetAssociatedThread()),
controller_(std::move(controller)),
type_(settings.message_loop_type),
metric_recording_settings_(InitializeMetricRecordingSettings(
settings.randomised_sampling_enabled)),
work_id_(0),
memory_corruption_sentinel_(kMemoryCorruptionSentinelValue),
main_thread_only_(associated_thread_,
settings.randomised_sampling_enabled),
weak_factory_(this) {
TRACE_EVENT_OBJECT_CREATED_WITH_ID(
TRACE_DISABLED_BY_DEFAULT("sequence_manager"), "SequenceManager", this);
main_thread_only().selector.SetTaskQueueSelectorObserver(this);
RegisterTimeDomain(main_thread_only().real_time_domain.get());
controller_->SetSequencedTaskSource(this);
}
SequenceManagerImpl::~SequenceManagerImpl() {
DCHECK_CALLED_ON_VALID_THREAD(associated_thread_->thread_checker);
TRACE_EVENT_OBJECT_DELETED_WITH_ID(
TRACE_DISABLED_BY_DEFAULT("sequence_manager"), "SequenceManager", this);
// TODO(altimin): restore default task runner automatically when
// ThreadController is destroyed.
controller_->RestoreDefaultTaskRunner();
for (internal::TaskQueueImpl* queue : main_thread_only().active_queues) {
main_thread_only().selector.RemoveQueue(queue);
queue->UnregisterTaskQueue();
}
main_thread_only().active_queues.clear();
main_thread_only().queues_to_gracefully_shutdown.clear();
main_thread_only().selector.SetTaskQueueSelectorObserver(nullptr);
// In some tests a NestingObserver may not have been registered.
if (main_thread_only().nesting_observer_registered_)
controller_->RemoveNestingObserver(this);
// Let interested parties have one last shot at accessing this.
for (auto& observer : main_thread_only().destruction_observers)
observer.WillDestroyCurrentMessageLoop();
// OK, now make it so that no one can find us.
if (GetMessagePump())
MessageLoopCurrent::UnbindFromCurrentThreadInternal(this);
}
SequenceManagerImpl::AnyThread::AnyThread() = default;
SequenceManagerImpl::AnyThread::~AnyThread() = default;
SequenceManagerImpl::MainThreadOnly::MainThreadOnly(
const scoped_refptr<AssociatedThreadId>& associated_thread,
bool randomised_sampling_enabled)
: selector(associated_thread),
real_time_domain(new internal::RealTimeDomain()) {
if (randomised_sampling_enabled) {
random_generator = std::mt19937_64(RandUint64());
uniform_distribution = std::uniform_real_distribution<double>(0.0, 1.0);
}
task_execution_stack.reserve(kInitialTaskExecutionStackReserveCount);
}
SequenceManagerImpl::MainThreadOnly::~MainThreadOnly() = default;
// static
std::unique_ptr<SequenceManagerImpl> SequenceManagerImpl::CreateOnCurrentThread(
SequenceManager::Settings settings) {
std::unique_ptr<SequenceManagerImpl> manager =
CreateUnbound(MessageLoopCurrent::Get()->ToMessageLoopBaseDeprecated(),
std::move(settings));
manager->BindToCurrentThread();
manager->CompleteInitializationOnBoundThread();
return manager;
}
// static
std::unique_ptr<SequenceManagerImpl> SequenceManagerImpl::CreateUnbound(
MessageLoopBase* message_loop_base,
SequenceManager::Settings settings) {
return WrapUnique(new SequenceManagerImpl(
ThreadControllerImpl::Create(message_loop_base, settings.clock),
std::move(settings)));
}
// static
std::unique_ptr<SequenceManagerImpl> SequenceManagerImpl::CreateUnboundWithPump(
SequenceManager::Settings settings) {
return WrapUnique(new SequenceManagerImpl(
ThreadControllerWithMessagePumpImpl::CreateUnbound(settings.clock),
std::move(settings)));
}
void SequenceManagerImpl::BindToMessageLoop(
MessageLoopBase* message_loop_base) {
controller_->BindToCurrentThread(message_loop_base);
CompleteInitializationOnBoundThread();
}
void SequenceManagerImpl::BindToMessagePump(std::unique_ptr<MessagePump> pump) {
controller_->BindToCurrentThread(std::move(pump));
CompleteInitializationOnBoundThread();
}
void SequenceManagerImpl::BindToCurrentThread() {
associated_thread_->BindToCurrentThread();
}
void SequenceManagerImpl::BindToCurrentThread(
std::unique_ptr<MessagePump> pump) {
BindToCurrentThread();
BindToMessagePump(std::move(pump));
}
void SequenceManagerImpl::CompleteInitializationOnBoundThread() {
controller_->AddNestingObserver(this);
main_thread_only().nesting_observer_registered_ = true;
if (GetMessagePump())
MessageLoopCurrent::BindToCurrentThreadInternal(this);
}
void SequenceManagerImpl::RegisterTimeDomain(TimeDomain* time_domain) {
main_thread_only().time_domains.insert(time_domain);
time_domain->OnRegisterWithSequenceManager(this);
}
void SequenceManagerImpl::UnregisterTimeDomain(TimeDomain* time_domain) {
main_thread_only().time_domains.erase(time_domain);
}
TimeDomain* SequenceManagerImpl::GetRealTimeDomain() const {
return main_thread_only().real_time_domain.get();
}
std::unique_ptr<internal::TaskQueueImpl>
SequenceManagerImpl::CreateTaskQueueImpl(const TaskQueue::Spec& spec) {
DCHECK_CALLED_ON_VALID_THREAD(associated_thread_->thread_checker);
TimeDomain* time_domain = spec.time_domain
? spec.time_domain
: main_thread_only().real_time_domain.get();
DCHECK(main_thread_only().time_domains.find(time_domain) !=
main_thread_only().time_domains.end());
std::unique_ptr<internal::TaskQueueImpl> task_queue =
std::make_unique<internal::TaskQueueImpl>(this, time_domain, spec);
main_thread_only().active_queues.insert(task_queue.get());
main_thread_only().selector.AddQueue(task_queue.get());
main_thread_only().queues_to_reload.resize(
main_thread_only().active_queues.size());
return task_queue;
}
void SequenceManagerImpl::SetAddQueueTimeToTasks(bool enable) {
base::subtle::NoBarrier_Store(&add_queue_time_to_tasks_, enable ? 1 : 0);
}
bool SequenceManagerImpl::GetAddQueueTimeToTasks() {
return base::subtle::NoBarrier_Load(&add_queue_time_to_tasks_);
}
void SequenceManagerImpl::SetObserver(Observer* observer) {
main_thread_only().observer = observer;
}
bool SequenceManagerImpl::AddToIncomingImmediateWorkList(
internal::TaskQueueImpl* task_queue,
internal::EnqueueOrder enqueue_order) {
AutoLock lock(any_thread_lock_);
// Check if |task_queue| is already in the linked list.
if (task_queue->immediate_work_list_storage()->queue)
return false;
// Insert into the linked list.
task_queue->immediate_work_list_storage()->queue = task_queue;
task_queue->immediate_work_list_storage()->order = enqueue_order;
task_queue->immediate_work_list_storage()->next =
any_thread().incoming_immediate_work_list;
any_thread().incoming_immediate_work_list =
task_queue->immediate_work_list_storage();
return true;
}
void SequenceManagerImpl::RemoveFromIncomingImmediateWorkList(
internal::TaskQueueImpl* task_queue) {
AutoLock lock(any_thread_lock_);
internal::IncomingImmediateWorkList** prev =
&any_thread().incoming_immediate_work_list;
while (*prev) {
if ((*prev)->queue == task_queue) {
*prev = (*prev)->next;
break;
}
prev = &(*prev)->next;
}
task_queue->immediate_work_list_storage()->next = nullptr;
task_queue->immediate_work_list_storage()->queue = nullptr;
}
void SequenceManagerImpl::ShutdownTaskQueueGracefully(
std::unique_ptr<internal::TaskQueueImpl> task_queue) {
main_thread_only().queues_to_gracefully_shutdown[task_queue.get()] =
std::move(task_queue);
}
void SequenceManagerImpl::UnregisterTaskQueueImpl(
std::unique_ptr<internal::TaskQueueImpl> task_queue) {
TRACE_EVENT1("sequence_manager", "SequenceManagerImpl::UnregisterTaskQueue",
"queue_name", task_queue->GetName());
DCHECK_CALLED_ON_VALID_THREAD(associated_thread_->thread_checker);
main_thread_only().selector.RemoveQueue(task_queue.get());
// After UnregisterTaskQueue returns no new tasks can be posted.
// It's important to call it first to avoid race condition between removing
// the task queue from various lists here and adding it to the same lists
// when posting a task.
task_queue->UnregisterTaskQueue();
// Remove |task_queue| from the linked list if present.
// This is O(n). We assume this will be a relatively infrequent operation.
RemoveFromIncomingImmediateWorkList(task_queue.get());
// Add |task_queue| to |main_thread_only().queues_to_delete| so we can prevent
// it from being freed while any of our structures hold hold a raw pointer to
// it.
main_thread_only().active_queues.erase(task_queue.get());
main_thread_only().queues_to_delete[task_queue.get()] = std::move(task_queue);
main_thread_only().queues_to_reload.resize(
main_thread_only().active_queues.size());
}
void SequenceManagerImpl::ReloadEmptyWorkQueues() {
size_t num_queues_to_reload = 0;
DCHECK_EQ(main_thread_only().active_queues.size(),
main_thread_only().queues_to_reload.size());
{
AutoLock lock(any_thread_lock_);
for (internal::IncomingImmediateWorkList* iter =
any_thread().incoming_immediate_work_list;
iter; iter = iter->next) {
DCHECK_LT(num_queues_to_reload,
main_thread_only().queues_to_reload.size());
main_thread_only().queues_to_reload[num_queues_to_reload++] = iter->queue;
iter->queue = nullptr;
}
any_thread().incoming_immediate_work_list = nullptr;
}
// There are two cases where a queue needs reloading. First, it might be
// completely empty and we've just posted a task (this method handles that
// case). Secondly if the work queue becomes empty in when calling
// WorkQueue::TakeTaskFromWorkQueue (handled there).
for (size_t i = 0; i < num_queues_to_reload; i++) {
// It's important we call ReloadImmediateWorkQueueIfEmpty out side of
// |any_thread_lock_| avoid lock order inversion.
main_thread_only().queues_to_reload[i]->ReloadImmediateWorkQueueIfEmpty();
main_thread_only().queues_to_reload[i] =
nullptr; // Not strictly necessary.
}
}
void SequenceManagerImpl::WakeUpReadyDelayedQueues(LazyNow* lazy_now) {
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("sequence_manager"),
"SequenceManagerImpl::WakeUpReadyDelayedQueues");
for (TimeDomain* time_domain : main_thread_only().time_domains) {
if (time_domain == main_thread_only().real_time_domain.get()) {
time_domain->WakeUpReadyDelayedQueues(lazy_now);
} else {
LazyNow time_domain_lazy_now = time_domain->CreateLazyNow();
time_domain->WakeUpReadyDelayedQueues(&time_domain_lazy_now);
}
}
}
void SequenceManagerImpl::OnBeginNestedRunLoop() {
main_thread_only().nesting_depth++;
if (main_thread_only().observer)
main_thread_only().observer->OnBeginNestedRunLoop();
}
void SequenceManagerImpl::OnExitNestedRunLoop() {
main_thread_only().nesting_depth--;
DCHECK_GE(main_thread_only().nesting_depth, 0);
if (main_thread_only().nesting_depth == 0) {
// While we were nested some non-nestable tasks may have been deferred.
// We push them back onto the *front* of their original work queues,
// that's why we iterate |non_nestable_task_queue| in FIFO order.
while (!main_thread_only().non_nestable_task_queue.empty()) {
internal::TaskQueueImpl::DeferredNonNestableTask& non_nestable_task =
main_thread_only().non_nestable_task_queue.back();
non_nestable_task.task_queue->RequeueDeferredNonNestableTask(
std::move(non_nestable_task));
main_thread_only().non_nestable_task_queue.pop_back();
}
}
if (main_thread_only().observer)
main_thread_only().observer->OnExitNestedRunLoop();
}
void SequenceManagerImpl::OnQueueHasIncomingImmediateWork(
internal::TaskQueueImpl* queue,
internal::EnqueueOrder enqueue_order,
bool schedule_work) {
if (AddToIncomingImmediateWorkList(queue, enqueue_order) && schedule_work)
controller_->ScheduleWork();
}
void SequenceManagerImpl::MaybeScheduleImmediateWork(
const Location& from_here) {
controller_->ScheduleWork();
}
void SequenceManagerImpl::SetNextDelayedDoWork(LazyNow* lazy_now,
TimeTicks run_time) {
controller_->SetNextDelayedDoWork(lazy_now, run_time);
}
Optional<PendingTask> SequenceManagerImpl::TakeTask() {
Optional<PendingTask> task = TakeTaskImpl();
if (!task)
return base::nullopt;
ExecutingTask& executing_task =
*main_thread_only().task_execution_stack.rbegin();
// It's important that there are no active trace events here which will
// terminate before we finish executing the task.
TRACE_EVENT_BEGIN2(TRACE_DISABLED_BY_DEFAULT("sequence_manager"),
"SequenceManager::RunTask", "queue_type",
executing_task.task_queue->GetName(), "task_type",
executing_task.task_type);
unsigned int next_id = work_id_.load(std::memory_order_relaxed) + 1;
// Reserve 0 to mean no work items have been executed.
if (next_id == 0)
++next_id;
// Release order ensures this state is visible to other threads prior to the
// following task/event execution.
work_id_.store(std::memory_order_release);
return task;
}
Optional<PendingTask> SequenceManagerImpl::TakeTaskImpl() {
CHECK(Validate());
DCHECK_CALLED_ON_VALID_THREAD(associated_thread_->thread_checker);
TRACE_EVENT0("sequence_manager", "SequenceManagerImpl::TakeTask");
ReloadEmptyWorkQueues();
LazyNow lazy_now(controller_->GetClock());
WakeUpReadyDelayedQueues(&lazy_now);
while (true) {
internal::WorkQueue* work_queue =
main_thread_only().selector.SelectWorkQueueToService();
TRACE_EVENT_OBJECT_SNAPSHOT_WITH_ID(
TRACE_DISABLED_BY_DEFAULT("sequence_manager.debug"), "SequenceManager",
this, AsValueWithSelectorResult(work_queue, /* force_verbose */ false));
if (!work_queue)
return nullopt;
// If the head task was canceled, remove it and run the selector again.
if (work_queue->RemoveAllCanceledTasksFromFront())
continue;
if (work_queue->GetFrontTask()->nestable == Nestable::kNonNestable &&
main_thread_only().nesting_depth > 0) {
// Defer non-nestable work. NOTE these tasks can be arbitrarily delayed so
// the additional delay should not be a problem.
// Note because we don't delete queues while nested, it's perfectly OK to
// store the raw pointer for |queue| here.
internal::TaskQueueImpl::DeferredNonNestableTask deferred_task{
work_queue->TakeTaskFromWorkQueue(), work_queue->task_queue(),
work_queue->queue_type()};
main_thread_only().non_nestable_task_queue.push_back(
std::move(deferred_task));
continue;
}
main_thread_only().task_execution_stack.emplace_back(
work_queue->TakeTaskFromWorkQueue(), work_queue->task_queue(),
InitializeTaskTiming(work_queue->task_queue()));
ExecutingTask& executing_task =
*main_thread_only().task_execution_stack.rbegin();
NotifyWillProcessTask(&executing_task, &lazy_now);
return std::move(executing_task.pending_task);
}
}
void SequenceManagerImpl::DidRunTask() {
LazyNow lazy_now(controller_->GetClock());
ExecutingTask& executing_task =
*main_thread_only().task_execution_stack.rbegin();
TRACE_EVENT_END0(TRACE_DISABLED_BY_DEFAULT("sequence_manager"),
"SequenceManagerImpl::RunTask");
NotifyDidProcessTask(&executing_task, &lazy_now);
main_thread_only().task_execution_stack.pop_back();
if (main_thread_only().nesting_depth == 0)
CleanUpQueues();
}
TimeDelta SequenceManagerImpl::DelayTillNextTask(LazyNow* lazy_now) const {
DCHECK_CALLED_ON_VALID_THREAD(associated_thread_->thread_checker);
// If the selector has non-empty queues we trivially know there is immediate
// work to be done.
if (!main_thread_only().selector.AllEnabledWorkQueuesAreEmpty())
return TimeDelta();
// Its possible the selectors state is dirty because ReloadEmptyWorkQueues
// hasn't been called yet. This check catches the case of fresh incoming work.
{
AutoLock lock(any_thread_lock_);
for (const internal::IncomingImmediateWorkList* iter =
any_thread().incoming_immediate_work_list;
iter; iter = iter->next) {
if (iter->queue->CouldTaskRun(iter->order))
return TimeDelta();
}
}
// Otherwise we need to find the shortest delay, if any. NB we don't need to
// call WakeUpReadyDelayedQueues because it's assumed DelayTillNextTask will
// return TimeDelta>() if the delayed task is due to run now.
TimeDelta delay_till_next_task = TimeDelta::Max();
for (TimeDomain* time_domain : main_thread_only().time_domains) {
Optional<TimeDelta> delay = time_domain->DelayTillNextTask(lazy_now);
if (!delay)
continue;
if (*delay < delay_till_next_task)
delay_till_next_task = *delay;
}
return delay_till_next_task;
}
bool SequenceManagerImpl::HasPendingHighResolutionTasks() {
for (TimeDomain* time_domain : main_thread_only().time_domains) {
if (time_domain->HasPendingHighResolutionTasks())
return true;
}
return false;
}
bool SequenceManagerImpl::OnSystemIdle() {
bool have_work_to_do = false;
for (TimeDomain* time_domain : main_thread_only().time_domains) {
if (time_domain->MaybeFastForwardToNextTask(
controller_->ShouldQuitRunLoopWhenIdle())) {
have_work_to_do = true;
}
}
return have_work_to_do;
}
void SequenceManagerImpl::WillQueueTask(Task* pending_task) {
controller_->WillQueueTask(pending_task);
}
TaskQueue::TaskTiming SequenceManagerImpl::InitializeTaskTiming(
internal::TaskQueueImpl* task_queue) {
bool records_wall_time = ShouldRecordTaskTiming(task_queue);
bool records_thread_time = records_wall_time && ShouldRecordCPUTimeForTask();
return TaskQueue::TaskTiming(records_wall_time, records_thread_time);
}
bool SequenceManagerImpl::ShouldRecordTaskTiming(
const internal::TaskQueueImpl* task_queue) {
if (task_queue->RequiresTaskTiming())
return true;
return main_thread_only().nesting_depth == 0 &&
main_thread_only().task_time_observers.might_have_observers();
}
void SequenceManagerImpl::NotifyWillProcessTask(ExecutingTask* executing_task,
LazyNow* time_before_task) {
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("sequence_manager"),
"SequenceManagerImpl::NotifyWillProcessTaskObservers");
if (executing_task->task_queue->GetQuiescenceMonitored())
main_thread_only().task_was_run_on_quiescence_monitored_queue = true;
#if !defined(OS_NACL)
debug::SetCrashKeyString(
main_thread_only().file_name_crash_key,
executing_task->pending_task.posted_from.file_name());
debug::SetCrashKeyString(
main_thread_only().function_name_crash_key,
executing_task->pending_task.posted_from.function_name());
#endif // OS_NACL
bool record_task_timing = ShouldRecordTaskTiming(executing_task->task_queue);
if (record_task_timing)
executing_task->task_timing.RecordTaskStart(time_before_task);
if (!executing_task->task_queue->GetShouldNotifyObservers())
return;
{
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("sequence_manager"),
"SequenceManager.WillProcessTaskObservers");
for (auto& observer : main_thread_only().task_observers)
observer.WillProcessTask(executing_task->pending_task);
}
{
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("sequence_manager"),
"SequenceManager.QueueNotifyWillProcessTask");
executing_task->task_queue->NotifyWillProcessTask(
executing_task->pending_task);
}
if (!record_task_timing)
return;
if (main_thread_only().nesting_depth == 0) {
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("sequence_manager"),
"SequenceManager.WillProcessTaskTimeObservers");
for (auto& observer : main_thread_only().task_time_observers)
observer.WillProcessTask(executing_task->task_timing.start_time());
}
{
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("sequence_manager"),
"SequenceManager.QueueOnTaskStarted");
executing_task->task_queue->OnTaskStarted(executing_task->pending_task,
executing_task->task_timing);
}
}
void SequenceManagerImpl::NotifyDidProcessTask(ExecutingTask* executing_task,
LazyNow* time_after_task) {
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("sequence_manager"),
"SequenceManagerImpl::NotifyDidProcessTaskObservers");
if (!executing_task->task_queue->GetShouldNotifyObservers())
return;
bool record_task_timing = ShouldRecordTaskTiming(executing_task->task_queue);
// Record end time ASAP to avoid bias due to the overhead of observers.
if (record_task_timing)
executing_task->task_timing.RecordTaskEnd(time_after_task);
const TaskQueue::TaskTiming& task_timing = executing_task->task_timing;
if (task_timing.has_wall_time() && main_thread_only().nesting_depth == 0) {
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("sequence_manager"),
"SequenceManager.DidProcessTaskTimeObservers");
for (auto& observer : main_thread_only().task_time_observers) {
observer.DidProcessTask(task_timing.start_time(), task_timing.end_time());
}
}
{
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("sequence_manager"),
"SequenceManager.DidProcessTaskObservers");
for (auto& observer : main_thread_only().task_observers)
observer.DidProcessTask(executing_task->pending_task);
}
{
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("sequence_manager"),
"SequenceManager.QueueNotifyDidProcessTask");
executing_task->task_queue->NotifyDidProcessTask(
executing_task->pending_task);
}
{
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("sequence_manager"),
"SequenceManager.QueueOnTaskCompleted");
if (task_timing.has_wall_time())
executing_task->task_queue->OnTaskCompleted(executing_task->pending_task,
task_timing);
}
// TODO(altimin): Move this back to blink.
if (task_timing.has_wall_time() &&
task_timing.wall_duration() > kLongTaskTraceEventThreshold &&
main_thread_only().nesting_depth == 0) {
TRACE_EVENT_INSTANT1("blink", "LongTask", TRACE_EVENT_SCOPE_THREAD,
"duration", task_timing.wall_duration().InSecondsF());
}
}
void SequenceManagerImpl::SetWorkBatchSize(int work_batch_size) {
DCHECK_CALLED_ON_VALID_THREAD(associated_thread_->thread_checker);
DCHECK_GE(work_batch_size, 1);
controller_->SetWorkBatchSize(work_batch_size);
}
void SequenceManagerImpl::SetTimerSlack(TimerSlack timer_slack) {
DCHECK_CALLED_ON_VALID_THREAD(associated_thread_->thread_checker);
controller_->SetTimerSlack(timer_slack);
}
void SequenceManagerImpl::AddTaskObserver(
MessageLoop::TaskObserver* task_observer) {
DCHECK_CALLED_ON_VALID_THREAD(associated_thread_->thread_checker);
main_thread_only().task_observers.AddObserver(task_observer);
}
void SequenceManagerImpl::RemoveTaskObserver(
MessageLoop::TaskObserver* task_observer) {
DCHECK_CALLED_ON_VALID_THREAD(associated_thread_->thread_checker);
main_thread_only().task_observers.RemoveObserver(task_observer);
}
void SequenceManagerImpl::AddTaskTimeObserver(
TaskTimeObserver* task_time_observer) {
DCHECK_CALLED_ON_VALID_THREAD(associated_thread_->thread_checker);
main_thread_only().task_time_observers.AddObserver(task_time_observer);
}
void SequenceManagerImpl::RemoveTaskTimeObserver(
TaskTimeObserver* task_time_observer) {
DCHECK_CALLED_ON_VALID_THREAD(associated_thread_->thread_checker);
main_thread_only().task_time_observers.RemoveObserver(task_time_observer);
}
bool SequenceManagerImpl::GetAndClearSystemIsQuiescentBit() {
bool task_was_run =
main_thread_only().task_was_run_on_quiescence_monitored_queue;
main_thread_only().task_was_run_on_quiescence_monitored_queue = false;
return !task_was_run;
}
internal::EnqueueOrder SequenceManagerImpl::GetNextSequenceNumber() {
return enqueue_order_generator_.GenerateNext();
}
std::unique_ptr<trace_event::ConvertableToTraceFormat>
SequenceManagerImpl::AsValueWithSelectorResult(
internal::WorkQueue* selected_work_queue,
bool force_verbose) const {
DCHECK_CALLED_ON_VALID_THREAD(associated_thread_->thread_checker);
std::unique_ptr<trace_event::TracedValue> state(
new trace_event::TracedValue());
TimeTicks now = NowTicks();
state->BeginArray("active_queues");
for (auto* const queue : main_thread_only().active_queues)
queue->AsValueInto(now, state.get(), force_verbose);
state->EndArray();
state->BeginArray("queues_to_gracefully_shutdown");
for (const auto& pair : main_thread_only().queues_to_gracefully_shutdown)
pair.first->AsValueInto(now, state.get(), force_verbose);
state->EndArray();
state->BeginArray("queues_to_delete");
for (const auto& pair : main_thread_only().queues_to_delete)
pair.first->AsValueInto(now, state.get(), force_verbose);
state->EndArray();
state->BeginDictionary("selector");
main_thread_only().selector.AsValueInto(state.get());
state->EndDictionary();
if (selected_work_queue) {
state->SetString("selected_queue",
selected_work_queue->task_queue()->GetName());
state->SetString("work_queue_name", selected_work_queue->name());
}
state->BeginArray("time_domains");
for (auto* time_domain : main_thread_only().time_domains)
time_domain->AsValueInto(state.get());
state->EndArray();
{
AutoLock lock(any_thread_lock_);
state->BeginArray("has_incoming_immediate_work");
for (const internal::IncomingImmediateWorkList* iter =
any_thread().incoming_immediate_work_list;
iter; iter = iter->next) {
state->AppendString(iter->queue->GetName());
}
state->EndArray();
}
return std::move(state);
}
void SequenceManagerImpl::OnTaskQueueEnabled(internal::TaskQueueImpl* queue) {
DCHECK_CALLED_ON_VALID_THREAD(associated_thread_->thread_checker);
DCHECK(queue->IsQueueEnabled());
// Only schedule DoWork if there's something to do.
if (queue->HasTaskToRunImmediately() && !queue->BlockedByFence())
MaybeScheduleImmediateWork(FROM_HERE);
}
void SequenceManagerImpl::ReclaimMemory() {
std::map<TimeDomain*, TimeTicks> time_domain_now;
for (auto* const queue : main_thread_only().active_queues)
ReclaimMemoryFromQueue(queue, &time_domain_now);
for (const auto& pair : main_thread_only().queues_to_gracefully_shutdown)
ReclaimMemoryFromQueue(pair.first, &time_domain_now);
}
void SequenceManagerImpl::CleanUpQueues() {
for (auto it = main_thread_only().queues_to_gracefully_shutdown.begin();
it != main_thread_only().queues_to_gracefully_shutdown.end();) {
if (it->first->IsEmpty()) {
// Will resize |main_thread_only().queues_to_reload|.
UnregisterTaskQueueImpl(std::move(it->second));
main_thread_only().active_queues.erase(it->first);
main_thread_only().queues_to_gracefully_shutdown.erase(it++);
} else {
++it;
}
}
main_thread_only().queues_to_delete.clear();
}
WeakPtr<SequenceManagerImpl> SequenceManagerImpl::GetWeakPtr() {
return weak_factory_.GetWeakPtr();
}
void SequenceManagerImpl::SetDefaultTaskRunner(
scoped_refptr<SingleThreadTaskRunner> task_runner) {
controller_->SetDefaultTaskRunner(task_runner);
}
const TickClock* SequenceManagerImpl::GetTickClock() const {
return controller_->GetClock();
}
TimeTicks SequenceManagerImpl::NowTicks() const {
return controller_->GetClock()->NowTicks();
}
bool SequenceManagerImpl::ShouldRecordCPUTimeForTask() {
DCHECK(ThreadTicks::IsSupported() ||
!metric_recording_settings_.records_cpu_time_for_some_tasks());
return metric_recording_settings_.records_cpu_time_for_some_tasks() &&
main_thread_only().uniform_distribution(
main_thread_only().random_generator) <
metric_recording_settings_
.task_sampling_rate_for_recording_cpu_time;
}
const SequenceManager::MetricRecordingSettings&
SequenceManagerImpl::GetMetricRecordingSettings() const {
return metric_recording_settings_;
}
// TODO(altimin): Ensure that this removes all pending tasks.
void SequenceManagerImpl::DeletePendingTasks() {
DCHECK(main_thread_only().task_execution_stack.empty())
<< "Tasks should be deleted outside RunLoop";
for (TaskQueueImpl* task_queue : main_thread_only().active_queues)
task_queue->DeletePendingTasks();
for (const auto& it : main_thread_only().queues_to_gracefully_shutdown)
it.first->DeletePendingTasks();
for (const auto& it : main_thread_only().queues_to_delete)
it.first->DeletePendingTasks();
}
bool SequenceManagerImpl::HasTasks() {
DCHECK_CALLED_ON_VALID_THREAD(associated_thread_->thread_checker);
for (TaskQueueImpl* task_queue : main_thread_only().active_queues) {
if (task_queue->HasTasks())
return true;
}
for (const auto& it : main_thread_only().queues_to_gracefully_shutdown) {
if (it.first->HasTasks())
return true;
}
for (const auto& it : main_thread_only().queues_to_delete) {
if (it.first->HasTasks())
return true;
}
return false;
}
unsigned int SequenceManagerImpl::GetWorkId() const {
return work_id_.load(std::memory_order_acquire);
}
void SequenceManagerImpl::SetTaskExecutionAllowed(bool allowed) {
controller_->SetTaskExecutionAllowed(allowed);
}
bool SequenceManagerImpl::IsTaskExecutionAllowed() const {
return controller_->IsTaskExecutionAllowed();
}
#if defined(OS_IOS) || defined(OS_ANDROID)
void SequenceManagerImpl::AttachToMessagePump() {
return controller_->AttachToMessagePump();
}
#endif
bool SequenceManagerImpl::IsIdleForTesting() {
// We don't use DelayTillNextTask here because the MessageLoop version which
// we're emulating does not take Now() into account. If it did tests would
// become flaky wrt delayed tasks that are just about to run.
ReloadEmptyWorkQueues();
return main_thread_only().selector.AllEnabledWorkQueuesAreEmpty();
}
size_t SequenceManagerImpl::GetPendingTaskCountForTesting() const {
size_t total = 0;
for (internal::TaskQueueImpl* task_queue : main_thread_only().active_queues) {
total += task_queue->GetNumberOfPendingTasks();
}
return total;
}
scoped_refptr<TaskQueue> SequenceManagerImpl::CreateTaskQueue(
const TaskQueue::Spec& spec) {
return WrapRefCounted(new TaskQueue(CreateTaskQueueImpl(spec), spec));
}
std::string SequenceManagerImpl::DescribeAllPendingTasks() const {
return AsValueWithSelectorResult(nullptr, /* force_verbose */ true)
->ToString();
}
void SequenceManagerImpl::AddDestructionObserver(
MessageLoopCurrent::DestructionObserver* destruction_observer) {
main_thread_only().destruction_observers.AddObserver(destruction_observer);
}
void SequenceManagerImpl::RemoveDestructionObserver(
MessageLoopCurrent::DestructionObserver* destruction_observer) {
main_thread_only().destruction_observers.RemoveObserver(destruction_observer);
}
void SequenceManagerImpl::SetTaskRunner(
scoped_refptr<SingleThreadTaskRunner> task_runner) {
controller_->SetDefaultTaskRunner(task_runner);
}
scoped_refptr<SingleThreadTaskRunner> SequenceManagerImpl::GetTaskRunner() {
return controller_->GetDefaultTaskRunner();
}
std::string SequenceManagerImpl::GetThreadName() const {
Optional<PlatformThreadId> thread_id = associated_thread_->GetBoundThreadId();
DCHECK(thread_id)
<< "GetThreadName() must only be called after BindToCurrentThread()'s "
<< "side-effects have been synchronized with this thread.";
return ThreadIdNameManager::GetInstance()->GetName(*thread_id);
}
bool SequenceManagerImpl::IsBoundToCurrentThread() const {
return associated_thread_->IsBoundToCurrentThread();
}
MessagePump* SequenceManagerImpl::GetMessagePump() const {
return controller_->GetBoundMessagePump();
}
bool SequenceManagerImpl::IsType(MessageLoop::Type type) const {
return type_ == type;
}
NOINLINE bool SequenceManagerImpl::Validate() {
return memory_corruption_sentinel_ == kMemoryCorruptionSentinelValue;
}
void SequenceManagerImpl::EnableCrashKeys(
const char* file_name_crash_key_name,
const char* function_name_crash_key_name) {
DCHECK(!main_thread_only().file_name_crash_key);
DCHECK(!main_thread_only().function_name_crash_key);
#if !defined(OS_NACL)
main_thread_only().file_name_crash_key = debug::AllocateCrashKeyString(
file_name_crash_key_name, debug::CrashKeySize::Size64);
main_thread_only().function_name_crash_key = debug::AllocateCrashKeyString(
function_name_crash_key_name, debug::CrashKeySize::Size64);
#endif // OS_NACL
}
internal::TaskQueueImpl* SequenceManagerImpl::currently_executing_task_queue()
const {
if (main_thread_only().task_execution_stack.empty())
return nullptr;
return main_thread_only().task_execution_stack.rbegin()->task_queue;
}
} // namespace internal
} // namespace sequence_manager
} // namespace base