blob: d7bddeb695f6e9730a4adbe056eb57e5feb4b6ab [file] [log] [blame]
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <limits>
#include <utility>
#include "webrtc/api/video/i420_buffer.h"
#include "webrtc/base/fakeclock.h"
#include "webrtc/base/logging.h"
#include "webrtc/media/base/videoadapter.h"
#include "webrtc/modules/video_coding/utility/default_video_bitrate_allocator.h"
#include "webrtc/system_wrappers/include/metrics_default.h"
#include "webrtc/system_wrappers/include/sleep.h"
#include "webrtc/test/encoder_settings.h"
#include "webrtc/test/fake_encoder.h"
#include "webrtc/test/frame_generator.h"
#include "webrtc/test/gmock.h"
#include "webrtc/test/gtest.h"
#include "webrtc/video/send_statistics_proxy.h"
#include "webrtc/video/vie_encoder.h"
namespace {
#if defined(WEBRTC_ANDROID)
// TODO(kthelgason): Lower this limit when better testing
// on MediaCodec and fallback implementations are in place.
const int kMinPixelsPerFrame = 320 * 180;
#else
const int kMinPixelsPerFrame = 120 * 90;
#endif
const int kMinFramerateFps = 2;
const int64_t kFrameTimeoutMs = 100;
} // namespace
namespace webrtc {
using DegredationPreference = VideoSendStream::DegradationPreference;
using ScaleReason = AdaptationObserverInterface::AdaptReason;
using ::testing::_;
using ::testing::Return;
namespace {
const size_t kMaxPayloadLength = 1440;
const int kTargetBitrateBps = 1000000;
const int kLowTargetBitrateBps = kTargetBitrateBps / 10;
const int kMaxInitialFramedrop = 4;
class TestBuffer : public webrtc::I420Buffer {
public:
TestBuffer(rtc::Event* event, int width, int height)
: I420Buffer(width, height), event_(event) {}
private:
friend class rtc::RefCountedObject<TestBuffer>;
~TestBuffer() override {
if (event_)
event_->Set();
}
rtc::Event* const event_;
};
class ViEEncoderUnderTest : public ViEEncoder {
public:
ViEEncoderUnderTest(SendStatisticsProxy* stats_proxy,
const VideoSendStream::Config::EncoderSettings& settings)
: ViEEncoder(1 /* number_of_cores */,
stats_proxy,
settings,
nullptr /* pre_encode_callback */,
nullptr /* encoder_timing */) {}
void PostTaskAndWait(bool down, AdaptReason reason) {
rtc::Event event(false, false);
encoder_queue()->PostTask([this, &event, reason, down] {
down ? AdaptDown(reason) : AdaptUp(reason);
event.Set();
});
ASSERT_TRUE(event.Wait(5000));
}
// This is used as a synchronisation mechanism, to make sure that the
// encoder queue is not blocked before we start sending it frames.
void WaitUntilTaskQueueIsIdle() {
rtc::Event event(false, false);
encoder_queue()->PostTask([&event] {
event.Set();
});
ASSERT_TRUE(event.Wait(5000));
}
void TriggerCpuOveruse() { PostTaskAndWait(true, AdaptReason::kCpu); }
void TriggerCpuNormalUsage() { PostTaskAndWait(false, AdaptReason::kCpu); }
void TriggerQualityLow() { PostTaskAndWait(true, AdaptReason::kQuality); }
void TriggerQualityHigh() { PostTaskAndWait(false, AdaptReason::kQuality); }
};
class VideoStreamFactory
: public VideoEncoderConfig::VideoStreamFactoryInterface {
public:
explicit VideoStreamFactory(size_t num_temporal_layers)
: num_temporal_layers_(num_temporal_layers) {
EXPECT_GT(num_temporal_layers, 0u);
}
private:
std::vector<VideoStream> CreateEncoderStreams(
int width,
int height,
const VideoEncoderConfig& encoder_config) override {
std::vector<VideoStream> streams =
test::CreateVideoStreams(width, height, encoder_config);
for (VideoStream& stream : streams) {
stream.temporal_layer_thresholds_bps.resize(num_temporal_layers_ - 1);
}
return streams;
}
const size_t num_temporal_layers_;
};
class AdaptingFrameForwarder : public test::FrameForwarder {
public:
AdaptingFrameForwarder() : adaptation_enabled_(false) {}
virtual ~AdaptingFrameForwarder() {}
void set_adaptation_enabled(bool enabled) {
rtc::CritScope cs(&crit_);
adaptation_enabled_ = enabled;
}
bool adaption_enabled() {
rtc::CritScope cs(&crit_);
return adaptation_enabled_;
}
void IncomingCapturedFrame(const VideoFrame& video_frame) override {
int cropped_width = 0;
int cropped_height = 0;
int out_width = 0;
int out_height = 0;
if (adaption_enabled()) {
if (adapter_.AdaptFrameResolution(
video_frame.width(), video_frame.height(),
video_frame.timestamp_us() * 1000, &cropped_width,
&cropped_height, &out_width, &out_height)) {
VideoFrame adapted_frame(new rtc::RefCountedObject<TestBuffer>(
nullptr, out_width, out_height),
99, 99, kVideoRotation_0);
adapted_frame.set_ntp_time_ms(video_frame.ntp_time_ms());
test::FrameForwarder::IncomingCapturedFrame(adapted_frame);
}
} else {
test::FrameForwarder::IncomingCapturedFrame(video_frame);
}
}
void AddOrUpdateSink(rtc::VideoSinkInterface<VideoFrame>* sink,
const rtc::VideoSinkWants& wants) override {
rtc::CritScope cs(&crit_);
adapter_.OnResolutionFramerateRequest(wants.target_pixel_count,
wants.max_pixel_count,
wants.max_framerate_fps);
test::FrameForwarder::AddOrUpdateSink(sink, wants);
}
cricket::VideoAdapter adapter_;
bool adaptation_enabled_ GUARDED_BY(crit_);
};
class MockableSendStatisticsProxy : public SendStatisticsProxy {
public:
MockableSendStatisticsProxy(Clock* clock,
const VideoSendStream::Config& config,
VideoEncoderConfig::ContentType content_type)
: SendStatisticsProxy(clock, config, content_type) {}
VideoSendStream::Stats GetStats() override {
rtc::CritScope cs(&lock_);
if (mock_stats_)
return *mock_stats_;
return SendStatisticsProxy::GetStats();
}
void SetMockStats(const VideoSendStream::Stats& stats) {
rtc::CritScope cs(&lock_);
mock_stats_.emplace(stats);
}
void ResetMockStats() {
rtc::CritScope cs(&lock_);
mock_stats_.reset();
}
private:
rtc::CriticalSection lock_;
rtc::Optional<VideoSendStream::Stats> mock_stats_ GUARDED_BY(lock_);
};
} // namespace
class ViEEncoderTest : public ::testing::Test {
public:
static const int kDefaultTimeoutMs = 30 * 1000;
ViEEncoderTest()
: video_send_config_(VideoSendStream::Config(nullptr)),
codec_width_(320),
codec_height_(240),
fake_encoder_(),
stats_proxy_(new MockableSendStatisticsProxy(
Clock::GetRealTimeClock(),
video_send_config_,
webrtc::VideoEncoderConfig::ContentType::kRealtimeVideo)),
sink_(&fake_encoder_) {}
void SetUp() override {
metrics::Reset();
video_send_config_ = VideoSendStream::Config(nullptr);
video_send_config_.encoder_settings.encoder = &fake_encoder_;
video_send_config_.encoder_settings.payload_name = "FAKE";
video_send_config_.encoder_settings.payload_type = 125;
VideoEncoderConfig video_encoder_config;
test::FillEncoderConfiguration(1, &video_encoder_config);
video_encoder_config_ = video_encoder_config.Copy();
ConfigureEncoder(std::move(video_encoder_config), true /* nack_enabled */);
}
void ConfigureEncoder(VideoEncoderConfig video_encoder_config,
bool nack_enabled) {
if (vie_encoder_)
vie_encoder_->Stop();
vie_encoder_.reset(new ViEEncoderUnderTest(
stats_proxy_.get(), video_send_config_.encoder_settings));
vie_encoder_->SetSink(&sink_, false /* rotation_applied */);
vie_encoder_->SetSource(
&video_source_,
VideoSendStream::DegradationPreference::kMaintainFramerate);
vie_encoder_->SetStartBitrate(kTargetBitrateBps);
vie_encoder_->ConfigureEncoder(std::move(video_encoder_config),
kMaxPayloadLength, nack_enabled);
vie_encoder_->WaitUntilTaskQueueIsIdle();
}
void ResetEncoder(const std::string& payload_name,
size_t num_streams,
size_t num_temporal_layers,
bool nack_enabled) {
video_send_config_.encoder_settings.payload_name = payload_name;
VideoEncoderConfig video_encoder_config;
video_encoder_config.number_of_streams = num_streams;
video_encoder_config.max_bitrate_bps = kTargetBitrateBps;
video_encoder_config.video_stream_factory =
new rtc::RefCountedObject<VideoStreamFactory>(num_temporal_layers);
ConfigureEncoder(std::move(video_encoder_config), nack_enabled);
}
VideoFrame CreateFrame(int64_t ntp_time_ms,
rtc::Event* destruction_event) const {
VideoFrame frame(new rtc::RefCountedObject<TestBuffer>(
destruction_event, codec_width_, codec_height_),
99, 99, kVideoRotation_0);
frame.set_ntp_time_ms(ntp_time_ms);
return frame;
}
VideoFrame CreateFrame(int64_t ntp_time_ms, int width, int height) const {
VideoFrame frame(
new rtc::RefCountedObject<TestBuffer>(nullptr, width, height), 99, 99,
kVideoRotation_0);
frame.set_ntp_time_ms(ntp_time_ms);
frame.set_timestamp_us(ntp_time_ms * 1000);
return frame;
}
class TestEncoder : public test::FakeEncoder {
public:
TestEncoder()
: FakeEncoder(Clock::GetRealTimeClock()),
continue_encode_event_(false, false) {}
VideoCodec codec_config() {
rtc::CritScope lock(&crit_sect_);
return config_;
}
void BlockNextEncode() {
rtc::CritScope lock(&local_crit_sect_);
block_next_encode_ = true;
}
VideoEncoder::ScalingSettings GetScalingSettings() const override {
rtc::CritScope lock(&local_crit_sect_);
if (quality_scaling_)
return VideoEncoder::ScalingSettings(true, 1, 2);
return VideoEncoder::ScalingSettings(false);
}
void ContinueEncode() { continue_encode_event_.Set(); }
void CheckLastTimeStampsMatch(int64_t ntp_time_ms,
uint32_t timestamp) const {
rtc::CritScope lock(&local_crit_sect_);
EXPECT_EQ(timestamp_, timestamp);
EXPECT_EQ(ntp_time_ms_, ntp_time_ms);
}
void SetQualityScaling(bool b) {
rtc::CritScope lock(&local_crit_sect_);
quality_scaling_ = b;
}
private:
int32_t Encode(const VideoFrame& input_image,
const CodecSpecificInfo* codec_specific_info,
const std::vector<FrameType>* frame_types) override {
bool block_encode;
{
rtc::CritScope lock(&local_crit_sect_);
EXPECT_GT(input_image.timestamp(), timestamp_);
EXPECT_GT(input_image.ntp_time_ms(), ntp_time_ms_);
EXPECT_EQ(input_image.timestamp(), input_image.ntp_time_ms() * 90);
timestamp_ = input_image.timestamp();
ntp_time_ms_ = input_image.ntp_time_ms();
last_input_width_ = input_image.width();
last_input_height_ = input_image.height();
block_encode = block_next_encode_;
block_next_encode_ = false;
}
int32_t result =
FakeEncoder::Encode(input_image, codec_specific_info, frame_types);
if (block_encode)
EXPECT_TRUE(continue_encode_event_.Wait(kDefaultTimeoutMs));
return result;
}
rtc::CriticalSection local_crit_sect_;
bool block_next_encode_ = false;
rtc::Event continue_encode_event_;
uint32_t timestamp_ = 0;
int64_t ntp_time_ms_ = 0;
int last_input_width_ = 0;
int last_input_height_ = 0;
bool quality_scaling_ = true;
};
class TestSink : public ViEEncoder::EncoderSink {
public:
explicit TestSink(TestEncoder* test_encoder)
: test_encoder_(test_encoder), encoded_frame_event_(false, false) {}
void WaitForEncodedFrame(int64_t expected_ntp_time) {
uint32_t timestamp = 0;
EXPECT_TRUE(encoded_frame_event_.Wait(kDefaultTimeoutMs));
{
rtc::CritScope lock(&crit_);
timestamp = last_timestamp_;
}
test_encoder_->CheckLastTimeStampsMatch(expected_ntp_time, timestamp);
}
void WaitForEncodedFrame(uint32_t expected_width,
uint32_t expected_height) {
EXPECT_TRUE(encoded_frame_event_.Wait(kDefaultTimeoutMs));
CheckLastFrameSizeMathces(expected_width, expected_height);
}
void CheckLastFrameSizeMathces(uint32_t expected_width,
uint32_t expected_height) {
uint32_t width = 0;
uint32_t height = 0;
{
rtc::CritScope lock(&crit_);
width = last_width_;
height = last_height_;
}
EXPECT_EQ(expected_height, height);
EXPECT_EQ(expected_width, width);
}
void ExpectDroppedFrame() { EXPECT_FALSE(encoded_frame_event_.Wait(100)); }
bool WaitForFrame(int64_t timeout_ms) {
return encoded_frame_event_.Wait(timeout_ms);
}
void SetExpectNoFrames() {
rtc::CritScope lock(&crit_);
expect_frames_ = false;
}
int number_of_reconfigurations() {
rtc::CritScope lock(&crit_);
return number_of_reconfigurations_;
}
int last_min_transmit_bitrate() {
rtc::CritScope lock(&crit_);
return min_transmit_bitrate_bps_;
}
private:
Result OnEncodedImage(
const EncodedImage& encoded_image,
const CodecSpecificInfo* codec_specific_info,
const RTPFragmentationHeader* fragmentation) override {
rtc::CritScope lock(&crit_);
EXPECT_TRUE(expect_frames_);
last_timestamp_ = encoded_image._timeStamp;
last_width_ = encoded_image._encodedWidth;
last_height_ = encoded_image._encodedHeight;
encoded_frame_event_.Set();
return Result(Result::OK, last_timestamp_);
}
void OnEncoderConfigurationChanged(std::vector<VideoStream> streams,
int min_transmit_bitrate_bps) override {
rtc::CriticalSection crit_;
++number_of_reconfigurations_;
min_transmit_bitrate_bps_ = min_transmit_bitrate_bps;
}
rtc::CriticalSection crit_;
TestEncoder* test_encoder_;
rtc::Event encoded_frame_event_;
uint32_t last_timestamp_ = 0;
uint32_t last_height_ = 0;
uint32_t last_width_ = 0;
bool expect_frames_ = true;
int number_of_reconfigurations_ = 0;
int min_transmit_bitrate_bps_ = 0;
};
VideoSendStream::Config video_send_config_;
VideoEncoderConfig video_encoder_config_;
int codec_width_;
int codec_height_;
TestEncoder fake_encoder_;
std::unique_ptr<MockableSendStatisticsProxy> stats_proxy_;
TestSink sink_;
AdaptingFrameForwarder video_source_;
std::unique_ptr<ViEEncoderUnderTest> vie_encoder_;
};
TEST_F(ViEEncoderTest, EncodeOneFrame) {
vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0);
rtc::Event frame_destroyed_event(false, false);
video_source_.IncomingCapturedFrame(CreateFrame(1, &frame_destroyed_event));
sink_.WaitForEncodedFrame(1);
EXPECT_TRUE(frame_destroyed_event.Wait(kDefaultTimeoutMs));
vie_encoder_->Stop();
}
TEST_F(ViEEncoderTest, DropsFramesBeforeFirstOnBitrateUpdated) {
// Dropped since no target bitrate has been set.
rtc::Event frame_destroyed_event(false, false);
video_source_.IncomingCapturedFrame(CreateFrame(1, &frame_destroyed_event));
EXPECT_TRUE(frame_destroyed_event.Wait(kDefaultTimeoutMs));
vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0);
video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr));
sink_.WaitForEncodedFrame(2);
vie_encoder_->Stop();
}
TEST_F(ViEEncoderTest, DropsFramesWhenRateSetToZero) {
vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0);
video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr));
sink_.WaitForEncodedFrame(1);
vie_encoder_->OnBitrateUpdated(0, 0, 0);
// Dropped since bitrate is zero.
video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr));
vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0);
video_source_.IncomingCapturedFrame(CreateFrame(3, nullptr));
sink_.WaitForEncodedFrame(3);
vie_encoder_->Stop();
}
TEST_F(ViEEncoderTest, DropsFramesWithSameOrOldNtpTimestamp) {
vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0);
video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr));
sink_.WaitForEncodedFrame(1);
// This frame will be dropped since it has the same ntp timestamp.
video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr));
video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr));
sink_.WaitForEncodedFrame(2);
vie_encoder_->Stop();
}
TEST_F(ViEEncoderTest, DropsFrameAfterStop) {
vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0);
video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr));
sink_.WaitForEncodedFrame(1);
vie_encoder_->Stop();
sink_.SetExpectNoFrames();
rtc::Event frame_destroyed_event(false, false);
video_source_.IncomingCapturedFrame(CreateFrame(2, &frame_destroyed_event));
EXPECT_TRUE(frame_destroyed_event.Wait(kDefaultTimeoutMs));
}
TEST_F(ViEEncoderTest, DropsPendingFramesOnSlowEncode) {
vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0);
fake_encoder_.BlockNextEncode();
video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr));
sink_.WaitForEncodedFrame(1);
// Here, the encoder thread will be blocked in the TestEncoder waiting for a
// call to ContinueEncode.
video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr));
video_source_.IncomingCapturedFrame(CreateFrame(3, nullptr));
fake_encoder_.ContinueEncode();
sink_.WaitForEncodedFrame(3);
vie_encoder_->Stop();
}
TEST_F(ViEEncoderTest, ConfigureEncoderTriggersOnEncoderConfigurationChanged) {
vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0);
EXPECT_EQ(0, sink_.number_of_reconfigurations());
// Capture a frame and wait for it to synchronize with the encoder thread.
video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr));
sink_.WaitForEncodedFrame(1);
// The encoder will have been configured once when the first frame is
// received.
EXPECT_EQ(1, sink_.number_of_reconfigurations());
VideoEncoderConfig video_encoder_config;
test::FillEncoderConfiguration(1, &video_encoder_config);
video_encoder_config.min_transmit_bitrate_bps = 9999;
vie_encoder_->ConfigureEncoder(std::move(video_encoder_config),
kMaxPayloadLength, true /* nack_enabled */);
// Capture a frame and wait for it to synchronize with the encoder thread.
video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr));
sink_.WaitForEncodedFrame(2);
EXPECT_EQ(2, sink_.number_of_reconfigurations());
EXPECT_EQ(9999, sink_.last_min_transmit_bitrate());
vie_encoder_->Stop();
}
TEST_F(ViEEncoderTest, FrameResolutionChangeReconfigureEncoder) {
vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0);
// Capture a frame and wait for it to synchronize with the encoder thread.
video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr));
sink_.WaitForEncodedFrame(1);
// The encoder will have been configured once.
EXPECT_EQ(1, sink_.number_of_reconfigurations());
EXPECT_EQ(codec_width_, fake_encoder_.codec_config().width);
EXPECT_EQ(codec_height_, fake_encoder_.codec_config().height);
codec_width_ *= 2;
codec_height_ *= 2;
// Capture a frame with a higher resolution and wait for it to synchronize
// with the encoder thread.
video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr));
sink_.WaitForEncodedFrame(2);
EXPECT_EQ(codec_width_, fake_encoder_.codec_config().width);
EXPECT_EQ(codec_height_, fake_encoder_.codec_config().height);
EXPECT_EQ(2, sink_.number_of_reconfigurations());
vie_encoder_->Stop();
}
TEST_F(ViEEncoderTest, Vp8ResilienceIsOffFor1S1TLWithNackEnabled) {
const bool kNackEnabled = true;
const size_t kNumStreams = 1;
const size_t kNumTl = 1;
ResetEncoder("VP8", kNumStreams, kNumTl, kNackEnabled);
vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0);
// Capture a frame and wait for it to synchronize with the encoder thread.
video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr));
sink_.WaitForEncodedFrame(1);
// The encoder have been configured once when the first frame is received.
EXPECT_EQ(1, sink_.number_of_reconfigurations());
EXPECT_EQ(kVideoCodecVP8, fake_encoder_.codec_config().codecType);
EXPECT_EQ(kNumStreams, fake_encoder_.codec_config().numberOfSimulcastStreams);
EXPECT_EQ(kNumTl, fake_encoder_.codec_config().VP8()->numberOfTemporalLayers);
// Resilience is off for no temporal layers with nack on.
EXPECT_EQ(kResilienceOff, fake_encoder_.codec_config().VP8()->resilience);
vie_encoder_->Stop();
}
TEST_F(ViEEncoderTest, Vp8ResilienceIsOffFor2S1TlWithNackEnabled) {
const bool kNackEnabled = true;
const size_t kNumStreams = 2;
const size_t kNumTl = 1;
ResetEncoder("VP8", kNumStreams, kNumTl, kNackEnabled);
vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0);
// Capture a frame and wait for it to synchronize with the encoder thread.
video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr));
sink_.WaitForEncodedFrame(1);
// The encoder have been configured once when the first frame is received.
EXPECT_EQ(1, sink_.number_of_reconfigurations());
EXPECT_EQ(kVideoCodecVP8, fake_encoder_.codec_config().codecType);
EXPECT_EQ(kNumStreams, fake_encoder_.codec_config().numberOfSimulcastStreams);
EXPECT_EQ(kNumTl, fake_encoder_.codec_config().VP8()->numberOfTemporalLayers);
// Resilience is off for no temporal layers and >1 streams with nack on.
EXPECT_EQ(kResilienceOff, fake_encoder_.codec_config().VP8()->resilience);
vie_encoder_->Stop();
}
TEST_F(ViEEncoderTest, Vp8ResilienceIsOnFor1S1TLWithNackDisabled) {
const bool kNackEnabled = false;
const size_t kNumStreams = 1;
const size_t kNumTl = 1;
ResetEncoder("VP8", kNumStreams, kNumTl, kNackEnabled);
vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0);
// Capture a frame and wait for it to synchronize with the encoder thread.
video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr));
sink_.WaitForEncodedFrame(1);
// The encoder have been configured once when the first frame is received.
EXPECT_EQ(1, sink_.number_of_reconfigurations());
EXPECT_EQ(kVideoCodecVP8, fake_encoder_.codec_config().codecType);
EXPECT_EQ(kNumStreams, fake_encoder_.codec_config().numberOfSimulcastStreams);
EXPECT_EQ(kNumTl, fake_encoder_.codec_config().VP8()->numberOfTemporalLayers);
// Resilience is on for no temporal layers with nack off.
EXPECT_EQ(kResilientStream, fake_encoder_.codec_config().VP8()->resilience);
vie_encoder_->Stop();
}
TEST_F(ViEEncoderTest, Vp8ResilienceIsOnFor1S2TlWithNackEnabled) {
const bool kNackEnabled = true;
const size_t kNumStreams = 1;
const size_t kNumTl = 2;
ResetEncoder("VP8", kNumStreams, kNumTl, kNackEnabled);
vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0);
// Capture a frame and wait for it to synchronize with the encoder thread.
video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr));
sink_.WaitForEncodedFrame(1);
// The encoder have been configured once when the first frame is received.
EXPECT_EQ(1, sink_.number_of_reconfigurations());
EXPECT_EQ(kVideoCodecVP8, fake_encoder_.codec_config().codecType);
EXPECT_EQ(kNumStreams, fake_encoder_.codec_config().numberOfSimulcastStreams);
EXPECT_EQ(kNumTl, fake_encoder_.codec_config().VP8()->numberOfTemporalLayers);
// Resilience is on for temporal layers.
EXPECT_EQ(kResilientStream, fake_encoder_.codec_config().VP8()->resilience);
vie_encoder_->Stop();
}
TEST_F(ViEEncoderTest, SwitchSourceDeregisterEncoderAsSink) {
EXPECT_TRUE(video_source_.has_sinks());
test::FrameForwarder new_video_source;
vie_encoder_->SetSource(
&new_video_source,
VideoSendStream::DegradationPreference::kMaintainFramerate);
EXPECT_FALSE(video_source_.has_sinks());
EXPECT_TRUE(new_video_source.has_sinks());
vie_encoder_->Stop();
}
TEST_F(ViEEncoderTest, SinkWantsRotationApplied) {
EXPECT_FALSE(video_source_.sink_wants().rotation_applied);
vie_encoder_->SetSink(&sink_, true /*rotation_applied*/);
EXPECT_TRUE(video_source_.sink_wants().rotation_applied);
vie_encoder_->Stop();
}
TEST_F(ViEEncoderTest, SinkWantsFromOveruseDetector) {
vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0);
EXPECT_FALSE(video_source_.sink_wants().target_pixel_count);
EXPECT_EQ(std::numeric_limits<int>::max(),
video_source_.sink_wants().max_pixel_count);
int frame_width = 1280;
int frame_height = 720;
// Trigger CPU overuse kMaxCpuDowngrades times. Every time, ViEEncoder should
// request lower resolution.
for (int i = 1; i <= ViEEncoder::kMaxCpuResolutionDowngrades; ++i) {
video_source_.IncomingCapturedFrame(
CreateFrame(i, frame_width, frame_height));
sink_.WaitForEncodedFrame(i);
vie_encoder_->TriggerCpuOveruse();
EXPECT_FALSE(video_source_.sink_wants().target_pixel_count);
EXPECT_LT(video_source_.sink_wants().max_pixel_count,
frame_width * frame_height);
frame_width /= 2;
frame_height /= 2;
}
// Trigger CPU overuse one more time. This should not trigger a request for
// lower resolution.
rtc::VideoSinkWants current_wants = video_source_.sink_wants();
video_source_.IncomingCapturedFrame(CreateFrame(
ViEEncoder::kMaxCpuResolutionDowngrades + 1, frame_width, frame_height));
sink_.WaitForEncodedFrame(ViEEncoder::kMaxCpuResolutionDowngrades + 1);
vie_encoder_->TriggerCpuOveruse();
EXPECT_EQ(video_source_.sink_wants().target_pixel_count,
current_wants.target_pixel_count);
EXPECT_EQ(video_source_.sink_wants().max_pixel_count,
current_wants.max_pixel_count);
// Trigger CPU normal use.
vie_encoder_->TriggerCpuNormalUsage();
EXPECT_EQ(frame_width * frame_height * 5 / 3,
video_source_.sink_wants().target_pixel_count.value_or(0));
EXPECT_EQ(frame_width * frame_height * 4,
video_source_.sink_wants().max_pixel_count);
vie_encoder_->Stop();
}
TEST_F(ViEEncoderTest, SinkWantsStoredByDegradationPreference) {
vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0);
EXPECT_FALSE(video_source_.sink_wants().target_pixel_count);
EXPECT_EQ(std::numeric_limits<int>::max(),
video_source_.sink_wants().max_pixel_count);
EXPECT_EQ(std::numeric_limits<int>::max(),
video_source_.sink_wants().max_framerate_fps);
const int kFrameWidth = 1280;
const int kFrameHeight = 720;
const int kFrameIntervalMs = 1000 / 30;
int frame_timestamp = 1;
video_source_.IncomingCapturedFrame(
CreateFrame(frame_timestamp, kFrameWidth, kFrameHeight));
sink_.WaitForEncodedFrame(frame_timestamp);
frame_timestamp += kFrameIntervalMs;
// Trigger CPU overuse.
vie_encoder_->TriggerCpuOveruse();
video_source_.IncomingCapturedFrame(
CreateFrame(frame_timestamp, kFrameWidth, kFrameHeight));
sink_.WaitForEncodedFrame(frame_timestamp);
frame_timestamp += kFrameIntervalMs;
// Default degradation preference in maintain-framerate, so will lower max
// wanted resolution.
EXPECT_FALSE(video_source_.sink_wants().target_pixel_count);
EXPECT_LT(video_source_.sink_wants().max_pixel_count,
kFrameWidth * kFrameHeight);
EXPECT_EQ(std::numeric_limits<int>::max(),
video_source_.sink_wants().max_framerate_fps);
// Set new source, switch to maintain-resolution.
test::FrameForwarder new_video_source;
vie_encoder_->SetSource(
&new_video_source,
VideoSendStream::DegradationPreference::kMaintainResolution);
// Initially no degradation registered.
EXPECT_FALSE(new_video_source.sink_wants().target_pixel_count);
EXPECT_EQ(std::numeric_limits<int>::max(),
new_video_source.sink_wants().max_pixel_count);
EXPECT_EQ(std::numeric_limits<int>::max(),
new_video_source.sink_wants().max_framerate_fps);
// Force an input frame rate to be available, or the adaptation call won't
// know what framerate to adapt form.
VideoSendStream::Stats stats = stats_proxy_->GetStats();
stats.input_frame_rate = 30;
stats_proxy_->SetMockStats(stats);
vie_encoder_->TriggerCpuOveruse();
new_video_source.IncomingCapturedFrame(
CreateFrame(frame_timestamp, kFrameWidth, kFrameHeight));
sink_.WaitForEncodedFrame(frame_timestamp);
frame_timestamp += kFrameIntervalMs;
// Some framerate constraint should be set.
EXPECT_FALSE(new_video_source.sink_wants().target_pixel_count);
EXPECT_EQ(std::numeric_limits<int>::max(),
new_video_source.sink_wants().max_pixel_count);
EXPECT_TRUE(new_video_source.sink_wants().max_framerate_fps);
// Turn of degradation completely.
vie_encoder_->SetSource(
&new_video_source,
VideoSendStream::DegradationPreference::kDegradationDisabled);
// Initially no degradation registered.
EXPECT_FALSE(new_video_source.sink_wants().target_pixel_count);
EXPECT_EQ(std::numeric_limits<int>::max(),
new_video_source.sink_wants().max_pixel_count);
EXPECT_EQ(std::numeric_limits<int>::max(),
new_video_source.sink_wants().max_framerate_fps);
vie_encoder_->TriggerCpuOveruse();
new_video_source.IncomingCapturedFrame(
CreateFrame(frame_timestamp, kFrameWidth, kFrameHeight));
sink_.WaitForEncodedFrame(frame_timestamp);
frame_timestamp += kFrameIntervalMs;
// Still no degradation.
EXPECT_FALSE(new_video_source.sink_wants().target_pixel_count);
EXPECT_EQ(std::numeric_limits<int>::max(),
new_video_source.sink_wants().max_pixel_count);
EXPECT_EQ(std::numeric_limits<int>::max(),
new_video_source.sink_wants().max_framerate_fps);
// Calling SetSource with resolution scaling enabled apply the old SinkWants.
vie_encoder_->SetSource(
&new_video_source,
VideoSendStream::DegradationPreference::kMaintainFramerate);
EXPECT_LT(new_video_source.sink_wants().max_pixel_count,
kFrameWidth * kFrameHeight);
EXPECT_FALSE(new_video_source.sink_wants().target_pixel_count);
EXPECT_EQ(std::numeric_limits<int>::max(),
new_video_source.sink_wants().max_framerate_fps);
// Calling SetSource with framerate scaling enabled apply the old SinkWants.
vie_encoder_->SetSource(
&new_video_source,
VideoSendStream::DegradationPreference::kMaintainResolution);
EXPECT_FALSE(new_video_source.sink_wants().target_pixel_count);
EXPECT_EQ(std::numeric_limits<int>::max(),
new_video_source.sink_wants().max_pixel_count);
EXPECT_TRUE(new_video_source.sink_wants().max_framerate_fps);
vie_encoder_->Stop();
}
TEST_F(ViEEncoderTest, StatsTracksAdaptationStats) {
vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0);
int frame_width = 1280;
int frame_height = 720;
video_source_.IncomingCapturedFrame(
CreateFrame(1, frame_width, frame_height));
sink_.WaitForEncodedFrame(1);
VideoSendStream::Stats stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_EQ(0, stats.number_of_cpu_adapt_changes);
// Trigger CPU overuse.
vie_encoder_->TriggerCpuOveruse();
video_source_.IncomingCapturedFrame(
CreateFrame(2, frame_width, frame_height));
sink_.WaitForEncodedFrame(2);
stats = stats_proxy_->GetStats();
EXPECT_TRUE(stats.cpu_limited_resolution);
EXPECT_EQ(1, stats.number_of_cpu_adapt_changes);
// Trigger CPU normal use.
vie_encoder_->TriggerCpuNormalUsage();
video_source_.IncomingCapturedFrame(
CreateFrame(3, frame_width, frame_height));
sink_.WaitForEncodedFrame(3);
stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_EQ(2, stats.number_of_cpu_adapt_changes);
vie_encoder_->Stop();
}
TEST_F(ViEEncoderTest, SwitchingSourceKeepsCpuAdaptation) {
vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0);
int frame_width = 1280;
int frame_height = 720;
video_source_.IncomingCapturedFrame(
CreateFrame(1, frame_width, frame_height));
sink_.WaitForEncodedFrame(1);
VideoSendStream::Stats stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_EQ(0, stats.number_of_cpu_adapt_changes);
vie_encoder_->TriggerCpuOveruse();
video_source_.IncomingCapturedFrame(
CreateFrame(2, frame_width, frame_height));
sink_.WaitForEncodedFrame(2);
stats = stats_proxy_->GetStats();
EXPECT_TRUE(stats.cpu_limited_resolution);
EXPECT_EQ(1, stats.number_of_cpu_adapt_changes);
// Set new source with adaptation still enabled.
test::FrameForwarder new_video_source;
vie_encoder_->SetSource(
&new_video_source,
VideoSendStream::DegradationPreference::kMaintainFramerate);
new_video_source.IncomingCapturedFrame(
CreateFrame(3, frame_width, frame_height));
sink_.WaitForEncodedFrame(3);
stats = stats_proxy_->GetStats();
EXPECT_TRUE(stats.cpu_limited_resolution);
EXPECT_EQ(1, stats.number_of_cpu_adapt_changes);
// Set adaptation disabled.
vie_encoder_->SetSource(
&new_video_source,
VideoSendStream::DegradationPreference::kDegradationDisabled);
new_video_source.IncomingCapturedFrame(
CreateFrame(4, frame_width, frame_height));
sink_.WaitForEncodedFrame(4);
stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_EQ(1, stats.number_of_cpu_adapt_changes);
// Set adaptation back to enabled.
vie_encoder_->SetSource(
&new_video_source,
VideoSendStream::DegradationPreference::kMaintainFramerate);
new_video_source.IncomingCapturedFrame(
CreateFrame(5, frame_width, frame_height));
sink_.WaitForEncodedFrame(5);
stats = stats_proxy_->GetStats();
EXPECT_TRUE(stats.cpu_limited_resolution);
EXPECT_EQ(1, stats.number_of_cpu_adapt_changes);
vie_encoder_->TriggerCpuNormalUsage();
new_video_source.IncomingCapturedFrame(
CreateFrame(6, frame_width, frame_height));
sink_.WaitForEncodedFrame(6);
stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_EQ(2, stats.number_of_cpu_adapt_changes);
vie_encoder_->Stop();
}
TEST_F(ViEEncoderTest, SwitchingSourceKeepsQualityAdaptation) {
vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0);
int frame_width = 1280;
int frame_height = 720;
video_source_.IncomingCapturedFrame(
CreateFrame(1, frame_width, frame_height));
sink_.WaitForEncodedFrame(1);
VideoSendStream::Stats stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_FALSE(stats.bw_limited_resolution);
EXPECT_EQ(0, stats.number_of_cpu_adapt_changes);
// Set new source with adaptation still enabled.
test::FrameForwarder new_video_source;
vie_encoder_->SetSource(&new_video_source,
VideoSendStream::DegradationPreference::kBalanced);
new_video_source.IncomingCapturedFrame(
CreateFrame(2, frame_width, frame_height));
sink_.WaitForEncodedFrame(2);
stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_FALSE(stats.bw_limited_resolution);
EXPECT_EQ(0, stats.number_of_cpu_adapt_changes);
vie_encoder_->TriggerQualityLow();
new_video_source.IncomingCapturedFrame(
CreateFrame(3, frame_width, frame_height));
sink_.WaitForEncodedFrame(3);
stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_TRUE(stats.bw_limited_resolution);
vie_encoder_->SetSource(&new_video_source,
VideoSendStream::DegradationPreference::kBalanced);
new_video_source.IncomingCapturedFrame(
CreateFrame(4, frame_width, frame_height));
sink_.WaitForEncodedFrame(4);
stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_TRUE(stats.bw_limited_resolution);
// Set adaptation disabled.
vie_encoder_->SetSource(
&new_video_source,
VideoSendStream::DegradationPreference::kMaintainResolution);
new_video_source.IncomingCapturedFrame(
CreateFrame(5, frame_width, frame_height));
sink_.WaitForEncodedFrame(5);
stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_FALSE(stats.bw_limited_resolution);
vie_encoder_->Stop();
}
TEST_F(ViEEncoderTest, StatsTracksAdaptationStatsWhenSwitchingSource) {
vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0);
int frame_width = 1280;
int frame_height = 720;
int sequence = 1;
video_source_.IncomingCapturedFrame(
CreateFrame(sequence, frame_width, frame_height));
sink_.WaitForEncodedFrame(sequence++);
VideoSendStream::Stats stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_EQ(0, stats.number_of_cpu_adapt_changes);
// Trigger CPU overuse again, should now adapt down.
vie_encoder_->TriggerCpuOveruse();
video_source_.IncomingCapturedFrame(
CreateFrame(sequence, frame_width, frame_height));
sink_.WaitForEncodedFrame(sequence++);
stats = stats_proxy_->GetStats();
EXPECT_TRUE(stats.cpu_limited_resolution);
EXPECT_EQ(1, stats.number_of_cpu_adapt_changes);
// Set new source with adaptation still enabled.
test::FrameForwarder new_video_source;
vie_encoder_->SetSource(
&new_video_source,
VideoSendStream::DegradationPreference::kMaintainFramerate);
new_video_source.IncomingCapturedFrame(
CreateFrame(sequence, frame_width, frame_height));
sink_.WaitForEncodedFrame(sequence++);
stats = stats_proxy_->GetStats();
EXPECT_TRUE(stats.cpu_limited_resolution);
EXPECT_EQ(1, stats.number_of_cpu_adapt_changes);
// Set cpu adaptation by frame dropping.
vie_encoder_->SetSource(
&new_video_source,
VideoSendStream::DegradationPreference::kMaintainResolution);
new_video_source.IncomingCapturedFrame(
CreateFrame(sequence, frame_width, frame_height));
sink_.WaitForEncodedFrame(sequence++);
stats = stats_proxy_->GetStats();
// Not adapted at first.
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_EQ(1, stats.number_of_cpu_adapt_changes);
// Force an input frame rate to be available, or the adaptation call won't
// know what framerate to adapt form.
VideoSendStream::Stats mock_stats = stats_proxy_->GetStats();
mock_stats.input_frame_rate = 30;
stats_proxy_->SetMockStats(mock_stats);
vie_encoder_->TriggerCpuOveruse();
stats_proxy_->ResetMockStats();
new_video_source.IncomingCapturedFrame(
CreateFrame(sequence, frame_width, frame_height));
sink_.WaitForEncodedFrame(sequence++);
// Framerate now adapted.
stats = stats_proxy_->GetStats();
EXPECT_TRUE(stats.cpu_limited_resolution);
EXPECT_EQ(2, stats.number_of_cpu_adapt_changes);
// Disable CPU adaptation.
vie_encoder_->SetSource(
&new_video_source,
VideoSendStream::DegradationPreference::kDegradationDisabled);
new_video_source.IncomingCapturedFrame(
CreateFrame(sequence, frame_width, frame_height));
sink_.WaitForEncodedFrame(sequence++);
stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_EQ(2, stats.number_of_cpu_adapt_changes);
// Try to trigger overuse. Should not succeed.
stats_proxy_->SetMockStats(mock_stats);
vie_encoder_->TriggerCpuOveruse();
stats_proxy_->ResetMockStats();
stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_EQ(2, stats.number_of_cpu_adapt_changes);
// Switch back the source with resolution adaptation enabled.
vie_encoder_->SetSource(
&video_source_,
VideoSendStream::DegradationPreference::kMaintainFramerate);
video_source_.IncomingCapturedFrame(
CreateFrame(sequence, frame_width, frame_height));
sink_.WaitForEncodedFrame(sequence++);
stats = stats_proxy_->GetStats();
EXPECT_TRUE(stats.cpu_limited_resolution);
EXPECT_EQ(2, stats.number_of_cpu_adapt_changes);
// Trigger CPU normal usage.
vie_encoder_->TriggerCpuNormalUsage();
video_source_.IncomingCapturedFrame(
CreateFrame(sequence, frame_width, frame_height));
sink_.WaitForEncodedFrame(sequence++);
stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_EQ(3, stats.number_of_cpu_adapt_changes);
// Back to the source with adaptation off, set it back to maintain-resolution.
vie_encoder_->SetSource(
&new_video_source,
VideoSendStream::DegradationPreference::kMaintainResolution);
new_video_source.IncomingCapturedFrame(
CreateFrame(sequence, frame_width, frame_height));
sink_.WaitForEncodedFrame(sequence++);
stats = stats_proxy_->GetStats();
// Disabled, since we previously switched the source too disabled.
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_EQ(3, stats.number_of_cpu_adapt_changes);
// Trigger CPU normal usage.
vie_encoder_->TriggerCpuNormalUsage();
new_video_source.IncomingCapturedFrame(
CreateFrame(sequence, frame_width, frame_height));
sink_.WaitForEncodedFrame(sequence++);
stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_EQ(4, stats.number_of_cpu_adapt_changes);
vie_encoder_->Stop();
}
TEST_F(ViEEncoderTest, StatsTracksPreferredBitrate) {
vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0);
video_source_.IncomingCapturedFrame(CreateFrame(1, 1280, 720));
sink_.WaitForEncodedFrame(1);
VideoSendStream::Stats stats = stats_proxy_->GetStats();
EXPECT_EQ(video_encoder_config_.max_bitrate_bps,
stats.preferred_media_bitrate_bps);
vie_encoder_->Stop();
}
TEST_F(ViEEncoderTest, ScalingUpAndDownDoesNothingWithMaintainResolution) {
int frame_width = 1280;
int frame_height = 720;
vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0);
// Expect no scaling to begin with
EXPECT_FALSE(video_source_.sink_wants().target_pixel_count);
EXPECT_EQ(std::numeric_limits<int>::max(),
video_source_.sink_wants().max_pixel_count);
video_source_.IncomingCapturedFrame(
CreateFrame(1, frame_width, frame_height));
sink_.WaitForEncodedFrame(1);
// Trigger scale down
vie_encoder_->TriggerQualityLow();
video_source_.IncomingCapturedFrame(
CreateFrame(2, frame_width, frame_height));
sink_.WaitForEncodedFrame(2);
// Expect a scale down.
EXPECT_TRUE(video_source_.sink_wants().max_pixel_count);
EXPECT_LT(video_source_.sink_wants().max_pixel_count,
frame_width * frame_height);
// Set adaptation disabled.
test::FrameForwarder new_video_source;
vie_encoder_->SetSource(
&new_video_source,
VideoSendStream::DegradationPreference::kMaintainResolution);
// Trigger scale down
vie_encoder_->TriggerQualityLow();
new_video_source.IncomingCapturedFrame(
CreateFrame(3, frame_width, frame_height));
sink_.WaitForEncodedFrame(3);
// Expect no scaling
EXPECT_EQ(std::numeric_limits<int>::max(),
new_video_source.sink_wants().max_pixel_count);
// Trigger scale up
vie_encoder_->TriggerQualityHigh();
new_video_source.IncomingCapturedFrame(
CreateFrame(4, frame_width, frame_height));
sink_.WaitForEncodedFrame(4);
// Expect nothing to change, still no scaling
EXPECT_EQ(std::numeric_limits<int>::max(),
new_video_source.sink_wants().max_pixel_count);
vie_encoder_->Stop();
}
TEST_F(ViEEncoderTest, DoesNotScaleBelowSetLimit) {
int frame_width = 1280;
int frame_height = 720;
vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0);
for (size_t i = 1; i <= 10; i++) {
video_source_.IncomingCapturedFrame(
CreateFrame(i, frame_width, frame_height));
sink_.WaitForEncodedFrame(i);
// Trigger scale down
vie_encoder_->TriggerQualityLow();
EXPECT_GE(video_source_.sink_wants().max_pixel_count, kMinPixelsPerFrame);
}
vie_encoder_->Stop();
}
TEST_F(ViEEncoderTest, UMACpuLimitedResolutionInPercent) {
vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0);
int frame_width = 640;
int frame_height = 360;
for (int i = 1; i <= SendStatisticsProxy::kMinRequiredMetricsSamples; ++i) {
video_source_.IncomingCapturedFrame(
CreateFrame(i, frame_width, frame_height));
sink_.WaitForEncodedFrame(i);
}
vie_encoder_->TriggerCpuOveruse();
for (int i = 1; i <= SendStatisticsProxy::kMinRequiredMetricsSamples; ++i) {
video_source_.IncomingCapturedFrame(
CreateFrame(SendStatisticsProxy::kMinRequiredMetricsSamples + i,
frame_width, frame_height));
sink_.WaitForEncodedFrame(SendStatisticsProxy::kMinRequiredMetricsSamples +
i);
}
vie_encoder_->Stop();
vie_encoder_.reset();
stats_proxy_.reset();
EXPECT_EQ(1,
metrics::NumSamples("WebRTC.Video.CpuLimitedResolutionInPercent"));
EXPECT_EQ(
1, metrics::NumEvents("WebRTC.Video.CpuLimitedResolutionInPercent", 50));
}
TEST_F(ViEEncoderTest, CallsBitrateObserver) {
class MockBitrateObserver : public VideoBitrateAllocationObserver {
public:
MOCK_METHOD1(OnBitrateAllocationUpdated, void(const BitrateAllocation&));
} bitrate_observer;
vie_encoder_->SetBitrateObserver(&bitrate_observer);
const int kDefaultFps = 30;
const BitrateAllocation expected_bitrate =
DefaultVideoBitrateAllocator(fake_encoder_.codec_config())
.GetAllocation(kLowTargetBitrateBps, kDefaultFps);
// First called on bitrate updated, then again on first frame.
EXPECT_CALL(bitrate_observer, OnBitrateAllocationUpdated(expected_bitrate))
.Times(2);
vie_encoder_->OnBitrateUpdated(kLowTargetBitrateBps, 0, 0);
const int64_t kStartTimeMs = 1;
video_source_.IncomingCapturedFrame(
CreateFrame(kStartTimeMs, codec_width_, codec_height_));
sink_.WaitForEncodedFrame(kStartTimeMs);
// Not called on second frame.
EXPECT_CALL(bitrate_observer, OnBitrateAllocationUpdated(expected_bitrate))
.Times(0);
video_source_.IncomingCapturedFrame(
CreateFrame(kStartTimeMs + 1, codec_width_, codec_height_));
sink_.WaitForEncodedFrame(kStartTimeMs + 1);
// Called after a process interval.
const int64_t kProcessIntervalMs =
vcm::VCMProcessTimer::kDefaultProcessIntervalMs;
// TODO(sprang): ViEEncoder should die and/or get injectable clock.
// Sleep for one processing interval plus one frame to avoid flakiness.
SleepMs(kProcessIntervalMs + 1000 / kDefaultFps);
EXPECT_CALL(bitrate_observer, OnBitrateAllocationUpdated(expected_bitrate))
.Times(1);
video_source_.IncomingCapturedFrame(CreateFrame(
kStartTimeMs + kProcessIntervalMs, codec_width_, codec_height_));
sink_.WaitForEncodedFrame(kStartTimeMs + kProcessIntervalMs);
vie_encoder_->Stop();
}
TEST_F(ViEEncoderTest, DropsFramesAndScalesWhenBitrateIsTooLow) {
vie_encoder_->OnBitrateUpdated(kLowTargetBitrateBps, 0, 0);
int frame_width = 640;
int frame_height = 360;
video_source_.IncomingCapturedFrame(
CreateFrame(1, frame_width, frame_height));
// Expect to drop this frame, the wait should time out.
sink_.ExpectDroppedFrame();
// Expect the sink_wants to specify a scaled frame.
EXPECT_LT(video_source_.sink_wants().max_pixel_count, 1000 * 1000);
int last_pixel_count = video_source_.sink_wants().max_pixel_count;
// Next frame is scaled
video_source_.IncomingCapturedFrame(
CreateFrame(2, frame_width * 3 / 4, frame_height * 3 / 4));
// Expect to drop this frame, the wait should time out.
sink_.ExpectDroppedFrame();
EXPECT_LT(video_source_.sink_wants().max_pixel_count, last_pixel_count);
vie_encoder_->Stop();
}
TEST_F(ViEEncoderTest, NrOfDroppedFramesLimited) {
// 1kbps. This can never be achieved.
vie_encoder_->OnBitrateUpdated(1000, 0, 0);
int frame_width = 640;
int frame_height = 360;
// We expect the n initial frames to get dropped.
int i;
for (i = 1; i <= kMaxInitialFramedrop; ++i) {
video_source_.IncomingCapturedFrame(
CreateFrame(i, frame_width, frame_height));
sink_.ExpectDroppedFrame();
}
// The n+1th frame should not be dropped, even though it's size is too large.
video_source_.IncomingCapturedFrame(
CreateFrame(i, frame_width, frame_height));
sink_.WaitForEncodedFrame(i);
// Expect the sink_wants to specify a scaled frame.
EXPECT_LT(video_source_.sink_wants().max_pixel_count, 1000 * 1000);
vie_encoder_->Stop();
}
TEST_F(ViEEncoderTest, InitialFrameDropOffWithMaintainResolutionPreference) {
int frame_width = 640;
int frame_height = 360;
vie_encoder_->OnBitrateUpdated(kLowTargetBitrateBps, 0, 0);
// Set degradation preference.
vie_encoder_->SetSource(
&video_source_,
VideoSendStream::DegradationPreference::kMaintainResolution);
video_source_.IncomingCapturedFrame(
CreateFrame(1, frame_width, frame_height));
// Frame should not be dropped, even if it's too large.
sink_.WaitForEncodedFrame(1);
vie_encoder_->Stop();
}
TEST_F(ViEEncoderTest, InitialFrameDropOffWhenEncoderDisabledScaling) {
int frame_width = 640;
int frame_height = 360;
fake_encoder_.SetQualityScaling(false);
vie_encoder_->OnBitrateUpdated(kLowTargetBitrateBps, 0, 0);
// Force quality scaler reconfiguration by resetting the source.
vie_encoder_->SetSource(&video_source_,
VideoSendStream::DegradationPreference::kBalanced);
video_source_.IncomingCapturedFrame(
CreateFrame(1, frame_width, frame_height));
// Frame should not be dropped, even if it's too large.
sink_.WaitForEncodedFrame(1);
vie_encoder_->Stop();
fake_encoder_.SetQualityScaling(true);
}
// TODO(sprang): Extend this with fps throttling and any "balanced" extensions.
TEST_F(ViEEncoderTest, AdaptsResolutionOnOveruse) {
vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0);
const int kFrameWidth = 1280;
const int kFrameHeight = 720;
// Enabled default VideoAdapter downscaling. First step is 3/4, not 3/5 as
// requested by ViEEncoder::VideoSourceProxy::RequestResolutionLowerThan().
video_source_.set_adaptation_enabled(true);
video_source_.IncomingCapturedFrame(
CreateFrame(1, kFrameWidth, kFrameHeight));
sink_.WaitForEncodedFrame(kFrameWidth, kFrameHeight);
// Trigger CPU overuse, downscale by 3/4.
vie_encoder_->TriggerCpuOveruse();
video_source_.IncomingCapturedFrame(
CreateFrame(2, kFrameWidth, kFrameHeight));
sink_.WaitForEncodedFrame((kFrameWidth * 3) / 4, (kFrameHeight * 3) / 4);
// Trigger CPU normal use, return to original resolution;
vie_encoder_->TriggerCpuNormalUsage();
video_source_.IncomingCapturedFrame(
CreateFrame(3, kFrameWidth, kFrameHeight));
sink_.WaitForEncodedFrame(kFrameWidth, kFrameHeight);
vie_encoder_->Stop();
}
TEST_F(ViEEncoderTest, AdaptsFrameOnOveruseWithMaintainResolution) {
const int kDefaultFramerateFps = 30;
const int kFrameIntervalMs = rtc::kNumMillisecsPerSec / kDefaultFramerateFps;
const int kFrameWidth = 1280;
const int kFrameHeight = 720;
rtc::ScopedFakeClock fake_clock;
vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0);
vie_encoder_->SetSource(
&video_source_,
VideoSendStream::DegradationPreference::kMaintainResolution);
video_source_.set_adaptation_enabled(true);
fake_clock.SetTimeMicros(kFrameIntervalMs * 1000);
int64_t timestamp_ms = kFrameIntervalMs;
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
sink_.WaitForEncodedFrame(timestamp_ms);
// Try to trigger overuse. No fps estimate available => no effect.
vie_encoder_->TriggerCpuOveruse();
// Insert frames for one second to get a stable estimate.
for (int i = 0; i < kDefaultFramerateFps; ++i) {
timestamp_ms += kFrameIntervalMs;
fake_clock.AdvanceTimeMicros(kFrameIntervalMs * 1000);
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
sink_.WaitForEncodedFrame(timestamp_ms);
}
// Trigger CPU overuse, reduce framerate by 2/3.
vie_encoder_->TriggerCpuOveruse();
int num_frames_dropped = 0;
for (int i = 0; i < kDefaultFramerateFps; ++i) {
timestamp_ms += kFrameIntervalMs;
fake_clock.AdvanceTimeMicros(kFrameIntervalMs * 1000);
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
if (!sink_.WaitForFrame(kFrameTimeoutMs)) {
++num_frames_dropped;
} else {
sink_.CheckLastFrameSizeMathces(kFrameWidth, kFrameHeight);
}
}
// TODO(sprang): Find where there's rounding errors or stuff causing the
// margin here to be a little larger than we'd like (input fps estimate is
// off) and the frame dropping is a little too aggressive.
const int kErrorMargin = 5;
EXPECT_NEAR(num_frames_dropped,
kDefaultFramerateFps - (kDefaultFramerateFps * 2 / 3),
kErrorMargin);
// Trigger CPU overuse, reduce framerate by 2/3 again.
vie_encoder_->TriggerCpuOveruse();
num_frames_dropped = 0;
for (int i = 0; i < kDefaultFramerateFps; ++i) {
timestamp_ms += kFrameIntervalMs;
fake_clock.AdvanceTimeMicros(kFrameIntervalMs * 1000);
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
if (!sink_.WaitForFrame(kFrameTimeoutMs)) {
++num_frames_dropped;
} else {
sink_.CheckLastFrameSizeMathces(kFrameWidth, kFrameHeight);
}
}
EXPECT_NEAR(num_frames_dropped,
kDefaultFramerateFps - (kDefaultFramerateFps * 4 / 9),
kErrorMargin);
// Go back up one step.
vie_encoder_->TriggerCpuNormalUsage();
num_frames_dropped = 0;
for (int i = 0; i < kDefaultFramerateFps; ++i) {
timestamp_ms += kFrameIntervalMs;
fake_clock.AdvanceTimeMicros(kFrameIntervalMs * 1000);
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
if (!sink_.WaitForFrame(kFrameTimeoutMs)) {
++num_frames_dropped;
} else {
sink_.CheckLastFrameSizeMathces(kFrameWidth, kFrameHeight);
}
}
EXPECT_NEAR(num_frames_dropped,
kDefaultFramerateFps - (kDefaultFramerateFps * 2 / 3),
kErrorMargin);
// Go back up to original mode.
vie_encoder_->TriggerCpuNormalUsage();
num_frames_dropped = 0;
for (int i = 0; i < kDefaultFramerateFps; ++i) {
timestamp_ms += kFrameIntervalMs;
fake_clock.AdvanceTimeMicros(kFrameIntervalMs * 1000);
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
if (!sink_.WaitForFrame(kFrameTimeoutMs)) {
++num_frames_dropped;
} else {
sink_.CheckLastFrameSizeMathces(kFrameWidth, kFrameHeight);
}
}
EXPECT_NEAR(num_frames_dropped, 0, kErrorMargin);
vie_encoder_->Stop();
}
TEST_F(ViEEncoderTest, DoesntAdaptDownPastMinFramerate) {
const int kFramerateFps = 5;
const int kFrameIntervalMs = rtc::kNumMillisecsPerSec / kFramerateFps;
const int kMinFpsFrameInterval = rtc::kNumMillisecsPerSec / kMinFramerateFps;
const int kFrameWidth = 1280;
const int kFrameHeight = 720;
rtc::ScopedFakeClock fake_clock;
vie_encoder_->OnBitrateUpdated(kTargetBitrateBps, 0, 0);
vie_encoder_->SetSource(
&video_source_,
VideoSendStream::DegradationPreference::kMaintainResolution);
video_source_.set_adaptation_enabled(true);
fake_clock.SetTimeMicros(kFrameIntervalMs * 1000);
int64_t timestamp_ms = kFrameIntervalMs;
// Trigger overuse as much as we can.
for (int i = 0; i < ViEEncoder::kMaxCpuResolutionDowngrades; ++i) {
// Insert frames to get a new fps estimate...
for (int j = 0; j < kFramerateFps; ++j) {
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
timestamp_ms += kFrameIntervalMs;
fake_clock.AdvanceTimeMicros(kFrameIntervalMs * 1000);
}
// ...and then try to adapt again.
vie_encoder_->TriggerCpuOveruse();
}
// Drain any frame in the pipeline.
sink_.WaitForFrame(kDefaultTimeoutMs);
// Insert frames at min fps, all should go through.
for (int i = 0; i < 10; ++i) {
timestamp_ms += kMinFpsFrameInterval;
fake_clock.AdvanceTimeMicros(kMinFpsFrameInterval * 1000);
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
sink_.WaitForEncodedFrame(timestamp_ms);
}
vie_encoder_->Stop();
}
} // namespace webrtc