blob: ecc21f51984a60fcd3361e7cc7841be7aff1c323 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_MIPS64
// Note on Mips implementation:
//
// The result_register() for mips is the 'v0' register, which is defined
// by the ABI to contain function return values. However, the first
// parameter to a function is defined to be 'a0'. So there are many
// places where we have to move a previous result in v0 to a0 for the
// next call: mov(a0, v0). This is not needed on the other architectures.
#include "src/ast/scopes.h"
#include "src/code-factory.h"
#include "src/code-stubs.h"
#include "src/codegen.h"
#include "src/debug/debug.h"
#include "src/full-codegen/full-codegen.h"
#include "src/ic/ic.h"
#include "src/parsing/parser.h"
#include "src/mips64/code-stubs-mips64.h"
#include "src/mips64/macro-assembler-mips64.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm())
// A patch site is a location in the code which it is possible to patch. This
// class has a number of methods to emit the code which is patchable and the
// method EmitPatchInfo to record a marker back to the patchable code. This
// marker is a andi zero_reg, rx, #yyyy instruction, and rx * 0x0000ffff + yyyy
// (raw 16 bit immediate value is used) is the delta from the pc to the first
// instruction of the patchable code.
// The marker instruction is effectively a NOP (dest is zero_reg) and will
// never be emitted by normal code.
class JumpPatchSite BASE_EMBEDDED {
public:
explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm) {
#ifdef DEBUG
info_emitted_ = false;
#endif
}
~JumpPatchSite() {
DCHECK(patch_site_.is_bound() == info_emitted_);
}
// When initially emitting this ensure that a jump is always generated to skip
// the inlined smi code.
void EmitJumpIfNotSmi(Register reg, Label* target) {
DCHECK(!patch_site_.is_bound() && !info_emitted_);
Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
__ bind(&patch_site_);
__ andi(at, reg, 0);
// Always taken before patched.
__ BranchShort(target, eq, at, Operand(zero_reg));
}
// When initially emitting this ensure that a jump is never generated to skip
// the inlined smi code.
void EmitJumpIfSmi(Register reg, Label* target) {
Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
DCHECK(!patch_site_.is_bound() && !info_emitted_);
__ bind(&patch_site_);
__ andi(at, reg, 0);
// Never taken before patched.
__ BranchShort(target, ne, at, Operand(zero_reg));
}
void EmitPatchInfo() {
if (patch_site_.is_bound()) {
int delta_to_patch_site = masm_->InstructionsGeneratedSince(&patch_site_);
Register reg = Register::from_code(delta_to_patch_site / kImm16Mask);
__ andi(zero_reg, reg, delta_to_patch_site % kImm16Mask);
#ifdef DEBUG
info_emitted_ = true;
#endif
} else {
__ nop(); // Signals no inlined code.
}
}
private:
MacroAssembler* masm() { return masm_; }
MacroAssembler* masm_;
Label patch_site_;
#ifdef DEBUG
bool info_emitted_;
#endif
};
// Generate code for a JS function. On entry to the function the receiver
// and arguments have been pushed on the stack left to right. The actual
// argument count matches the formal parameter count expected by the
// function.
//
// The live registers are:
// o a1: the JS function object being called (i.e. ourselves)
// o a3: the new target value
// o cp: our context
// o fp: our caller's frame pointer
// o sp: stack pointer
// o ra: return address
//
// The function builds a JS frame. Please see JavaScriptFrameConstants in
// frames-mips.h for its layout.
void FullCodeGenerator::Generate() {
CompilationInfo* info = info_;
profiling_counter_ = isolate()->factory()->NewCell(
Handle<Smi>(Smi::FromInt(FLAG_interrupt_budget), isolate()));
SetFunctionPosition(literal());
Comment cmnt(masm_, "[ function compiled by full code generator");
ProfileEntryHookStub::MaybeCallEntryHook(masm_);
if (FLAG_debug_code && info->ExpectsJSReceiverAsReceiver()) {
int receiver_offset = info->scope()->num_parameters() * kPointerSize;
__ ld(a2, MemOperand(sp, receiver_offset));
__ AssertNotSmi(a2);
__ GetObjectType(a2, a2, a2);
__ Check(ge, kSloppyFunctionExpectsJSReceiverReceiver, a2,
Operand(FIRST_JS_RECEIVER_TYPE));
}
// Open a frame scope to indicate that there is a frame on the stack. The
// MANUAL indicates that the scope shouldn't actually generate code to set up
// the frame (that is done below).
FrameScope frame_scope(masm_, StackFrame::MANUAL);
info->set_prologue_offset(masm_->pc_offset());
__ Prologue(info->GeneratePreagedPrologue());
{ Comment cmnt(masm_, "[ Allocate locals");
int locals_count = info->scope()->num_stack_slots();
// Generators allocate locals, if any, in context slots.
DCHECK(!IsGeneratorFunction(info->literal()->kind()) || locals_count == 0);
if (locals_count > 0) {
if (locals_count >= 128) {
Label ok;
__ Dsubu(t1, sp, Operand(locals_count * kPointerSize));
__ LoadRoot(a2, Heap::kRealStackLimitRootIndex);
__ Branch(&ok, hs, t1, Operand(a2));
__ CallRuntime(Runtime::kThrowStackOverflow);
__ bind(&ok);
}
__ LoadRoot(t1, Heap::kUndefinedValueRootIndex);
int kMaxPushes = FLAG_optimize_for_size ? 4 : 32;
if (locals_count >= kMaxPushes) {
int loop_iterations = locals_count / kMaxPushes;
__ li(a2, Operand(loop_iterations));
Label loop_header;
__ bind(&loop_header);
// Do pushes.
__ Dsubu(sp, sp, Operand(kMaxPushes * kPointerSize));
for (int i = 0; i < kMaxPushes; i++) {
__ sd(t1, MemOperand(sp, i * kPointerSize));
}
// Continue loop if not done.
__ Dsubu(a2, a2, Operand(1));
__ Branch(&loop_header, ne, a2, Operand(zero_reg));
}
int remaining = locals_count % kMaxPushes;
// Emit the remaining pushes.
__ Dsubu(sp, sp, Operand(remaining * kPointerSize));
for (int i = 0; i < remaining; i++) {
__ sd(t1, MemOperand(sp, i * kPointerSize));
}
}
}
bool function_in_register_a1 = true;
// Possibly allocate a local context.
if (info->scope()->num_heap_slots() > 0) {
Comment cmnt(masm_, "[ Allocate context");
// Argument to NewContext is the function, which is still in a1.
bool need_write_barrier = true;
int slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
if (info->scope()->is_script_scope()) {
__ push(a1);
__ Push(info->scope()->GetScopeInfo(info->isolate()));
__ CallRuntime(Runtime::kNewScriptContext);
PrepareForBailoutForId(BailoutId::ScriptContext(), TOS_REG);
// The new target value is not used, clobbering is safe.
DCHECK_NULL(info->scope()->new_target_var());
} else {
if (info->scope()->new_target_var() != nullptr) {
__ push(a3); // Preserve new target.
}
if (slots <= FastNewContextStub::kMaximumSlots) {
FastNewContextStub stub(isolate(), slots);
__ CallStub(&stub);
// Result of FastNewContextStub is always in new space.
need_write_barrier = false;
} else {
__ push(a1);
__ CallRuntime(Runtime::kNewFunctionContext);
}
if (info->scope()->new_target_var() != nullptr) {
__ pop(a3); // Restore new target.
}
}
function_in_register_a1 = false;
// Context is returned in v0. It replaces the context passed to us.
// It's saved in the stack and kept live in cp.
__ mov(cp, v0);
__ sd(v0, MemOperand(fp, StandardFrameConstants::kContextOffset));
// Copy any necessary parameters into the context.
int num_parameters = info->scope()->num_parameters();
int first_parameter = info->scope()->has_this_declaration() ? -1 : 0;
for (int i = first_parameter; i < num_parameters; i++) {
Variable* var = (i == -1) ? scope()->receiver() : scope()->parameter(i);
if (var->IsContextSlot()) {
int parameter_offset = StandardFrameConstants::kCallerSPOffset +
(num_parameters - 1 - i) * kPointerSize;
// Load parameter from stack.
__ ld(a0, MemOperand(fp, parameter_offset));
// Store it in the context.
MemOperand target = ContextMemOperand(cp, var->index());
__ sd(a0, target);
// Update the write barrier.
if (need_write_barrier) {
__ RecordWriteContextSlot(cp, target.offset(), a0, a2,
kRAHasBeenSaved, kDontSaveFPRegs);
} else if (FLAG_debug_code) {
Label done;
__ JumpIfInNewSpace(cp, a0, &done);
__ Abort(kExpectedNewSpaceObject);
__ bind(&done);
}
}
}
}
// Register holding this function and new target are both trashed in case we
// bailout here. But since that can happen only when new target is not used
// and we allocate a context, the value of |function_in_register| is correct.
PrepareForBailoutForId(BailoutId::FunctionContext(), NO_REGISTERS);
// Possibly set up a local binding to the this function which is used in
// derived constructors with super calls.
Variable* this_function_var = scope()->this_function_var();
if (this_function_var != nullptr) {
Comment cmnt(masm_, "[ This function");
if (!function_in_register_a1) {
__ ld(a1, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
// The write barrier clobbers register again, keep it marked as such.
}
SetVar(this_function_var, a1, a0, a2);
}
Variable* new_target_var = scope()->new_target_var();
if (new_target_var != nullptr) {
Comment cmnt(masm_, "[ new.target");
SetVar(new_target_var, a3, a0, a2);
}
// Possibly allocate RestParameters
int rest_index;
Variable* rest_param = scope()->rest_parameter(&rest_index);
if (rest_param) {
Comment cmnt(masm_, "[ Allocate rest parameter array");
if (!function_in_register_a1) {
__ lw(a1, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
}
FastNewRestParameterStub stub(isolate());
__ CallStub(&stub);
function_in_register_a1 = false;
SetVar(rest_param, v0, a1, a2);
}
Variable* arguments = scope()->arguments();
if (arguments != NULL) {
// Function uses arguments object.
Comment cmnt(masm_, "[ Allocate arguments object");
if (!function_in_register_a1) {
// Load this again, if it's used by the local context below.
__ ld(a1, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
}
if (is_strict(language_mode()) || !has_simple_parameters()) {
FastNewStrictArgumentsStub stub(isolate());
__ CallStub(&stub);
} else if (literal()->has_duplicate_parameters()) {
__ Push(a1);
__ CallRuntime(Runtime::kNewSloppyArguments_Generic);
} else {
FastNewSloppyArgumentsStub stub(isolate());
__ CallStub(&stub);
}
SetVar(arguments, v0, a1, a2);
}
if (FLAG_trace) {
__ CallRuntime(Runtime::kTraceEnter);
}
// Visit the declarations and body unless there is an illegal
// redeclaration.
if (scope()->HasIllegalRedeclaration()) {
Comment cmnt(masm_, "[ Declarations");
VisitForEffect(scope()->GetIllegalRedeclaration());
} else {
PrepareForBailoutForId(BailoutId::FunctionEntry(), NO_REGISTERS);
{ Comment cmnt(masm_, "[ Declarations");
VisitDeclarations(scope()->declarations());
}
// Assert that the declarations do not use ICs. Otherwise the debugger
// won't be able to redirect a PC at an IC to the correct IC in newly
// recompiled code.
DCHECK_EQ(0, ic_total_count_);
{ Comment cmnt(masm_, "[ Stack check");
PrepareForBailoutForId(BailoutId::Declarations(), NO_REGISTERS);
Label ok;
__ LoadRoot(at, Heap::kStackLimitRootIndex);
__ Branch(&ok, hs, sp, Operand(at));
Handle<Code> stack_check = isolate()->builtins()->StackCheck();
PredictableCodeSizeScope predictable(masm_,
masm_->CallSize(stack_check, RelocInfo::CODE_TARGET));
__ Call(stack_check, RelocInfo::CODE_TARGET);
__ bind(&ok);
}
{ Comment cmnt(masm_, "[ Body");
DCHECK(loop_depth() == 0);
VisitStatements(literal()->body());
DCHECK(loop_depth() == 0);
}
}
// Always emit a 'return undefined' in case control fell off the end of
// the body.
{ Comment cmnt(masm_, "[ return <undefined>;");
__ LoadRoot(v0, Heap::kUndefinedValueRootIndex);
}
EmitReturnSequence();
}
void FullCodeGenerator::ClearAccumulator() {
DCHECK(Smi::FromInt(0) == 0);
__ mov(v0, zero_reg);
}
void FullCodeGenerator::EmitProfilingCounterDecrement(int delta) {
__ li(a2, Operand(profiling_counter_));
__ ld(a3, FieldMemOperand(a2, Cell::kValueOffset));
__ Dsubu(a3, a3, Operand(Smi::FromInt(delta)));
__ sd(a3, FieldMemOperand(a2, Cell::kValueOffset));
}
void FullCodeGenerator::EmitProfilingCounterReset() {
int reset_value = FLAG_interrupt_budget;
if (info_->is_debug()) {
// Detect debug break requests as soon as possible.
reset_value = FLAG_interrupt_budget >> 4;
}
__ li(a2, Operand(profiling_counter_));
__ li(a3, Operand(Smi::FromInt(reset_value)));
__ sd(a3, FieldMemOperand(a2, Cell::kValueOffset));
}
void FullCodeGenerator::EmitBackEdgeBookkeeping(IterationStatement* stmt,
Label* back_edge_target) {
// The generated code is used in Deoptimizer::PatchStackCheckCodeAt so we need
// to make sure it is constant. Branch may emit a skip-or-jump sequence
// instead of the normal Branch. It seems that the "skip" part of that
// sequence is about as long as this Branch would be so it is safe to ignore
// that.
Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
Comment cmnt(masm_, "[ Back edge bookkeeping");
Label ok;
DCHECK(back_edge_target->is_bound());
int distance = masm_->SizeOfCodeGeneratedSince(back_edge_target);
int weight = Min(kMaxBackEdgeWeight,
Max(1, distance / kCodeSizeMultiplier));
EmitProfilingCounterDecrement(weight);
__ slt(at, a3, zero_reg);
__ beq(at, zero_reg, &ok);
// Call will emit a li t9 first, so it is safe to use the delay slot.
__ Call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET);
// Record a mapping of this PC offset to the OSR id. This is used to find
// the AST id from the unoptimized code in order to use it as a key into
// the deoptimization input data found in the optimized code.
RecordBackEdge(stmt->OsrEntryId());
EmitProfilingCounterReset();
__ bind(&ok);
PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
// Record a mapping of the OSR id to this PC. This is used if the OSR
// entry becomes the target of a bailout. We don't expect it to be, but
// we want it to work if it is.
PrepareForBailoutForId(stmt->OsrEntryId(), NO_REGISTERS);
}
void FullCodeGenerator::EmitProfilingCounterHandlingForReturnSequence(
bool is_tail_call) {
// Pretend that the exit is a backwards jump to the entry.
int weight = 1;
if (info_->ShouldSelfOptimize()) {
weight = FLAG_interrupt_budget / FLAG_self_opt_count;
} else {
int distance = masm_->pc_offset();
weight = Min(kMaxBackEdgeWeight, Max(1, distance / kCodeSizeMultiplier));
}
EmitProfilingCounterDecrement(weight);
Label ok;
__ Branch(&ok, ge, a3, Operand(zero_reg));
// Don't need to save result register if we are going to do a tail call.
if (!is_tail_call) {
__ push(v0);
}
__ Call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET);
if (!is_tail_call) {
__ pop(v0);
}
EmitProfilingCounterReset();
__ bind(&ok);
}
void FullCodeGenerator::EmitReturnSequence() {
Comment cmnt(masm_, "[ Return sequence");
if (return_label_.is_bound()) {
__ Branch(&return_label_);
} else {
__ bind(&return_label_);
if (FLAG_trace) {
// Push the return value on the stack as the parameter.
// Runtime::TraceExit returns its parameter in v0.
__ push(v0);
__ CallRuntime(Runtime::kTraceExit);
}
EmitProfilingCounterHandlingForReturnSequence(false);
// Make sure that the constant pool is not emitted inside of the return
// sequence.
{ Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
// Here we use masm_-> instead of the __ macro to avoid the code coverage
// tool from instrumenting as we rely on the code size here.
int32_t arg_count = info_->scope()->num_parameters() + 1;
int32_t sp_delta = arg_count * kPointerSize;
SetReturnPosition(literal());
masm_->mov(sp, fp);
masm_->MultiPop(static_cast<RegList>(fp.bit() | ra.bit()));
masm_->Daddu(sp, sp, Operand(sp_delta));
masm_->Jump(ra);
}
}
}
void FullCodeGenerator::StackValueContext::Plug(Variable* var) const {
DCHECK(var->IsStackAllocated() || var->IsContextSlot());
codegen()->GetVar(result_register(), var);
__ push(result_register());
}
void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const {
}
void FullCodeGenerator::AccumulatorValueContext::Plug(
Heap::RootListIndex index) const {
__ LoadRoot(result_register(), index);
}
void FullCodeGenerator::StackValueContext::Plug(
Heap::RootListIndex index) const {
__ LoadRoot(result_register(), index);
__ push(result_register());
}
void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const {
codegen()->PrepareForBailoutBeforeSplit(condition(),
true,
true_label_,
false_label_);
if (index == Heap::kUndefinedValueRootIndex ||
index == Heap::kNullValueRootIndex ||
index == Heap::kFalseValueRootIndex) {
if (false_label_ != fall_through_) __ Branch(false_label_);
} else if (index == Heap::kTrueValueRootIndex) {
if (true_label_ != fall_through_) __ Branch(true_label_);
} else {
__ LoadRoot(result_register(), index);
codegen()->DoTest(this);
}
}
void FullCodeGenerator::EffectContext::Plug(Handle<Object> lit) const {
}
void FullCodeGenerator::AccumulatorValueContext::Plug(
Handle<Object> lit) const {
__ li(result_register(), Operand(lit));
}
void FullCodeGenerator::StackValueContext::Plug(Handle<Object> lit) const {
// Immediates cannot be pushed directly.
__ li(result_register(), Operand(lit));
__ push(result_register());
}
void FullCodeGenerator::TestContext::Plug(Handle<Object> lit) const {
codegen()->PrepareForBailoutBeforeSplit(condition(),
true,
true_label_,
false_label_);
DCHECK(lit->IsNull() || lit->IsUndefined() || !lit->IsUndetectableObject());
if (lit->IsUndefined() || lit->IsNull() || lit->IsFalse()) {
if (false_label_ != fall_through_) __ Branch(false_label_);
} else if (lit->IsTrue() || lit->IsJSObject()) {
if (true_label_ != fall_through_) __ Branch(true_label_);
} else if (lit->IsString()) {
if (String::cast(*lit)->length() == 0) {
if (false_label_ != fall_through_) __ Branch(false_label_);
} else {
if (true_label_ != fall_through_) __ Branch(true_label_);
}
} else if (lit->IsSmi()) {
if (Smi::cast(*lit)->value() == 0) {
if (false_label_ != fall_through_) __ Branch(false_label_);
} else {
if (true_label_ != fall_through_) __ Branch(true_label_);
}
} else {
// For simplicity we always test the accumulator register.
__ li(result_register(), Operand(lit));
codegen()->DoTest(this);
}
}
void FullCodeGenerator::EffectContext::DropAndPlug(int count,
Register reg) const {
DCHECK(count > 0);
__ Drop(count);
}
void FullCodeGenerator::AccumulatorValueContext::DropAndPlug(
int count,
Register reg) const {
DCHECK(count > 0);
__ Drop(count);
__ Move(result_register(), reg);
}
void FullCodeGenerator::StackValueContext::DropAndPlug(int count,
Register reg) const {
DCHECK(count > 0);
if (count > 1) __ Drop(count - 1);
__ sd(reg, MemOperand(sp, 0));
}
void FullCodeGenerator::TestContext::DropAndPlug(int count,
Register reg) const {
DCHECK(count > 0);
// For simplicity we always test the accumulator register.
__ Drop(count);
__ Move(result_register(), reg);
codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
codegen()->DoTest(this);
}
void FullCodeGenerator::EffectContext::Plug(Label* materialize_true,
Label* materialize_false) const {
DCHECK(materialize_true == materialize_false);
__ bind(materialize_true);
}
void FullCodeGenerator::AccumulatorValueContext::Plug(
Label* materialize_true,
Label* materialize_false) const {
Label done;
__ bind(materialize_true);
__ LoadRoot(result_register(), Heap::kTrueValueRootIndex);
__ Branch(&done);
__ bind(materialize_false);
__ LoadRoot(result_register(), Heap::kFalseValueRootIndex);
__ bind(&done);
}
void FullCodeGenerator::StackValueContext::Plug(
Label* materialize_true,
Label* materialize_false) const {
Label done;
__ bind(materialize_true);
__ LoadRoot(at, Heap::kTrueValueRootIndex);
// Push the value as the following branch can clobber at in long branch mode.
__ push(at);
__ Branch(&done);
__ bind(materialize_false);
__ LoadRoot(at, Heap::kFalseValueRootIndex);
__ push(at);
__ bind(&done);
}
void FullCodeGenerator::TestContext::Plug(Label* materialize_true,
Label* materialize_false) const {
DCHECK(materialize_true == true_label_);
DCHECK(materialize_false == false_label_);
}
void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const {
Heap::RootListIndex value_root_index =
flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
__ LoadRoot(result_register(), value_root_index);
}
void FullCodeGenerator::StackValueContext::Plug(bool flag) const {
Heap::RootListIndex value_root_index =
flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
__ LoadRoot(at, value_root_index);
__ push(at);
}
void FullCodeGenerator::TestContext::Plug(bool flag) const {
codegen()->PrepareForBailoutBeforeSplit(condition(),
true,
true_label_,
false_label_);
if (flag) {
if (true_label_ != fall_through_) __ Branch(true_label_);
} else {
if (false_label_ != fall_through_) __ Branch(false_label_);
}
}
void FullCodeGenerator::DoTest(Expression* condition,
Label* if_true,
Label* if_false,
Label* fall_through) {
__ mov(a0, result_register());
Handle<Code> ic = ToBooleanStub::GetUninitialized(isolate());
CallIC(ic, condition->test_id());
__ LoadRoot(at, Heap::kTrueValueRootIndex);
Split(eq, result_register(), Operand(at), if_true, if_false, fall_through);
}
void FullCodeGenerator::Split(Condition cc,
Register lhs,
const Operand& rhs,
Label* if_true,
Label* if_false,
Label* fall_through) {
if (if_false == fall_through) {
__ Branch(if_true, cc, lhs, rhs);
} else if (if_true == fall_through) {
__ Branch(if_false, NegateCondition(cc), lhs, rhs);
} else {
__ Branch(if_true, cc, lhs, rhs);
__ Branch(if_false);
}
}
MemOperand FullCodeGenerator::StackOperand(Variable* var) {
DCHECK(var->IsStackAllocated());
// Offset is negative because higher indexes are at lower addresses.
int offset = -var->index() * kPointerSize;
// Adjust by a (parameter or local) base offset.
if (var->IsParameter()) {
offset += (info_->scope()->num_parameters() + 1) * kPointerSize;
} else {
offset += JavaScriptFrameConstants::kLocal0Offset;
}
return MemOperand(fp, offset);
}
MemOperand FullCodeGenerator::VarOperand(Variable* var, Register scratch) {
DCHECK(var->IsContextSlot() || var->IsStackAllocated());
if (var->IsContextSlot()) {
int context_chain_length = scope()->ContextChainLength(var->scope());
__ LoadContext(scratch, context_chain_length);
return ContextMemOperand(scratch, var->index());
} else {
return StackOperand(var);
}
}
void FullCodeGenerator::GetVar(Register dest, Variable* var) {
// Use destination as scratch.
MemOperand location = VarOperand(var, dest);
__ ld(dest, location);
}
void FullCodeGenerator::SetVar(Variable* var,
Register src,
Register scratch0,
Register scratch1) {
DCHECK(var->IsContextSlot() || var->IsStackAllocated());
DCHECK(!scratch0.is(src));
DCHECK(!scratch0.is(scratch1));
DCHECK(!scratch1.is(src));
MemOperand location = VarOperand(var, scratch0);
__ sd(src, location);
// Emit the write barrier code if the location is in the heap.
if (var->IsContextSlot()) {
__ RecordWriteContextSlot(scratch0,
location.offset(),
src,
scratch1,
kRAHasBeenSaved,
kDontSaveFPRegs);
}
}
void FullCodeGenerator::PrepareForBailoutBeforeSplit(Expression* expr,
bool should_normalize,
Label* if_true,
Label* if_false) {
// Only prepare for bailouts before splits if we're in a test
// context. Otherwise, we let the Visit function deal with the
// preparation to avoid preparing with the same AST id twice.
if (!context()->IsTest()) return;
Label skip;
if (should_normalize) __ Branch(&skip);
PrepareForBailout(expr, TOS_REG);
if (should_normalize) {
__ LoadRoot(a4, Heap::kTrueValueRootIndex);
Split(eq, a0, Operand(a4), if_true, if_false, NULL);
__ bind(&skip);
}
}
void FullCodeGenerator::EmitDebugCheckDeclarationContext(Variable* variable) {
// The variable in the declaration always resides in the current function
// context.
DCHECK_EQ(0, scope()->ContextChainLength(variable->scope()));
if (generate_debug_code_) {
// Check that we're not inside a with or catch context.
__ ld(a1, FieldMemOperand(cp, HeapObject::kMapOffset));
__ LoadRoot(a4, Heap::kWithContextMapRootIndex);
__ Check(ne, kDeclarationInWithContext,
a1, Operand(a4));
__ LoadRoot(a4, Heap::kCatchContextMapRootIndex);
__ Check(ne, kDeclarationInCatchContext,
a1, Operand(a4));
}
}
void FullCodeGenerator::VisitVariableDeclaration(
VariableDeclaration* declaration) {
// If it was not possible to allocate the variable at compile time, we
// need to "declare" it at runtime to make sure it actually exists in the
// local context.
VariableProxy* proxy = declaration->proxy();
VariableMode mode = declaration->mode();
Variable* variable = proxy->var();
bool hole_init = mode == LET || mode == CONST || mode == CONST_LEGACY;
switch (variable->location()) {
case VariableLocation::GLOBAL:
case VariableLocation::UNALLOCATED:
globals_->Add(variable->name(), zone());
globals_->Add(variable->binding_needs_init()
? isolate()->factory()->the_hole_value()
: isolate()->factory()->undefined_value(),
zone());
break;
case VariableLocation::PARAMETER:
case VariableLocation::LOCAL:
if (hole_init) {
Comment cmnt(masm_, "[ VariableDeclaration");
__ LoadRoot(a4, Heap::kTheHoleValueRootIndex);
__ sd(a4, StackOperand(variable));
}
break;
case VariableLocation::CONTEXT:
if (hole_init) {
Comment cmnt(masm_, "[ VariableDeclaration");
EmitDebugCheckDeclarationContext(variable);
__ LoadRoot(at, Heap::kTheHoleValueRootIndex);
__ sd(at, ContextMemOperand(cp, variable->index()));
// No write barrier since the_hole_value is in old space.
PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
}
break;
case VariableLocation::LOOKUP: {
Comment cmnt(masm_, "[ VariableDeclaration");
__ li(a2, Operand(variable->name()));
// Declaration nodes are always introduced in one of four modes.
DCHECK(IsDeclaredVariableMode(mode));
// Push initial value, if any.
// Note: For variables we must not push an initial value (such as
// 'undefined') because we may have a (legal) redeclaration and we
// must not destroy the current value.
if (hole_init) {
__ LoadRoot(a0, Heap::kTheHoleValueRootIndex);
} else {
DCHECK(Smi::FromInt(0) == 0);
__ mov(a0, zero_reg); // Smi::FromInt(0) indicates no initial value.
}
__ Push(a2, a0);
__ Push(Smi::FromInt(variable->DeclarationPropertyAttributes()));
__ CallRuntime(Runtime::kDeclareLookupSlot);
break;
}
}
}
void FullCodeGenerator::VisitFunctionDeclaration(
FunctionDeclaration* declaration) {
VariableProxy* proxy = declaration->proxy();
Variable* variable = proxy->var();
switch (variable->location()) {
case VariableLocation::GLOBAL:
case VariableLocation::UNALLOCATED: {
globals_->Add(variable->name(), zone());
Handle<SharedFunctionInfo> function =
Compiler::GetSharedFunctionInfo(declaration->fun(), script(), info_);
// Check for stack-overflow exception.
if (function.is_null()) return SetStackOverflow();
globals_->Add(function, zone());
break;
}
case VariableLocation::PARAMETER:
case VariableLocation::LOCAL: {
Comment cmnt(masm_, "[ FunctionDeclaration");
VisitForAccumulatorValue(declaration->fun());
__ sd(result_register(), StackOperand(variable));
break;
}
case VariableLocation::CONTEXT: {
Comment cmnt(masm_, "[ FunctionDeclaration");
EmitDebugCheckDeclarationContext(variable);
VisitForAccumulatorValue(declaration->fun());
__ sd(result_register(), ContextMemOperand(cp, variable->index()));
int offset = Context::SlotOffset(variable->index());
// We know that we have written a function, which is not a smi.
__ RecordWriteContextSlot(cp,
offset,
result_register(),
a2,
kRAHasBeenSaved,
kDontSaveFPRegs,
EMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
break;
}
case VariableLocation::LOOKUP: {
Comment cmnt(masm_, "[ FunctionDeclaration");
__ li(a2, Operand(variable->name()));
__ Push(a2);
// Push initial value for function declaration.
VisitForStackValue(declaration->fun());
__ Push(Smi::FromInt(variable->DeclarationPropertyAttributes()));
__ CallRuntime(Runtime::kDeclareLookupSlot);
break;
}
}
}
void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
// Call the runtime to declare the globals.
__ li(a1, Operand(pairs));
__ li(a0, Operand(Smi::FromInt(DeclareGlobalsFlags())));
__ Push(a1, a0);
__ CallRuntime(Runtime::kDeclareGlobals);
// Return value is ignored.
}
void FullCodeGenerator::DeclareModules(Handle<FixedArray> descriptions) {
// Call the runtime to declare the modules.
__ Push(descriptions);
__ CallRuntime(Runtime::kDeclareModules);
// Return value is ignored.
}
void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) {
Comment cmnt(masm_, "[ SwitchStatement");
Breakable nested_statement(this, stmt);
SetStatementPosition(stmt);
// Keep the switch value on the stack until a case matches.
VisitForStackValue(stmt->tag());
PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
ZoneList<CaseClause*>* clauses = stmt->cases();
CaseClause* default_clause = NULL; // Can occur anywhere in the list.
Label next_test; // Recycled for each test.
// Compile all the tests with branches to their bodies.
for (int i = 0; i < clauses->length(); i++) {
CaseClause* clause = clauses->at(i);
clause->body_target()->Unuse();
// The default is not a test, but remember it as final fall through.
if (clause->is_default()) {
default_clause = clause;
continue;
}
Comment cmnt(masm_, "[ Case comparison");
__ bind(&next_test);
next_test.Unuse();
// Compile the label expression.
VisitForAccumulatorValue(clause->label());
__ mov(a0, result_register()); // CompareStub requires args in a0, a1.
// Perform the comparison as if via '==='.
__ ld(a1, MemOperand(sp, 0)); // Switch value.
bool inline_smi_code = ShouldInlineSmiCase(Token::EQ_STRICT);
JumpPatchSite patch_site(masm_);
if (inline_smi_code) {
Label slow_case;
__ or_(a2, a1, a0);
patch_site.EmitJumpIfNotSmi(a2, &slow_case);
__ Branch(&next_test, ne, a1, Operand(a0));
__ Drop(1); // Switch value is no longer needed.
__ Branch(clause->body_target());
__ bind(&slow_case);
}
// Record position before stub call for type feedback.
SetExpressionPosition(clause);
Handle<Code> ic =
CodeFactory::CompareIC(isolate(), Token::EQ_STRICT).code();
CallIC(ic, clause->CompareId());
patch_site.EmitPatchInfo();
Label skip;
__ Branch(&skip);
PrepareForBailout(clause, TOS_REG);
__ LoadRoot(at, Heap::kTrueValueRootIndex);
__ Branch(&next_test, ne, v0, Operand(at));
__ Drop(1);
__ Branch(clause->body_target());
__ bind(&skip);
__ Branch(&next_test, ne, v0, Operand(zero_reg));
__ Drop(1); // Switch value is no longer needed.
__ Branch(clause->body_target());
}
// Discard the test value and jump to the default if present, otherwise to
// the end of the statement.
__ bind(&next_test);
__ Drop(1); // Switch value is no longer needed.
if (default_clause == NULL) {
__ Branch(nested_statement.break_label());
} else {
__ Branch(default_clause->body_target());
}
// Compile all the case bodies.
for (int i = 0; i < clauses->length(); i++) {
Comment cmnt(masm_, "[ Case body");
CaseClause* clause = clauses->at(i);
__ bind(clause->body_target());
PrepareForBailoutForId(clause->EntryId(), NO_REGISTERS);
VisitStatements(clause->statements());
}
__ bind(nested_statement.break_label());
PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
}
void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) {
Comment cmnt(masm_, "[ ForInStatement");
SetStatementPosition(stmt, SKIP_BREAK);
FeedbackVectorSlot slot = stmt->ForInFeedbackSlot();
Label loop, exit;
ForIn loop_statement(this, stmt);
increment_loop_depth();
// Get the object to enumerate over. If the object is null or undefined, skip
// over the loop. See ECMA-262 version 5, section 12.6.4.
SetExpressionAsStatementPosition(stmt->enumerable());
VisitForAccumulatorValue(stmt->enumerable());
__ mov(a0, result_register());
// If the object is null or undefined, skip over the loop, otherwise convert
// it to a JS receiver. See ECMA-262 version 5, section 12.6.4.
Label convert, done_convert;
__ JumpIfSmi(a0, &convert);
__ GetObjectType(a0, a1, a1);
__ Branch(USE_DELAY_SLOT, &done_convert, ge, a1,
Operand(FIRST_JS_RECEIVER_TYPE));
__ LoadRoot(at, Heap::kNullValueRootIndex); // In delay slot.
__ Branch(USE_DELAY_SLOT, &exit, eq, a0, Operand(at));
__ LoadRoot(at, Heap::kUndefinedValueRootIndex); // In delay slot.
__ Branch(&exit, eq, a0, Operand(at));
__ bind(&convert);
ToObjectStub stub(isolate());
__ CallStub(&stub);
__ mov(a0, v0);
__ bind(&done_convert);
PrepareForBailoutForId(stmt->ToObjectId(), TOS_REG);
__ push(a0);
// Check cache validity in generated code. This is a fast case for
// the JSObject::IsSimpleEnum cache validity checks. If we cannot
// guarantee cache validity, call the runtime system to check cache
// validity or get the property names in a fixed array.
// Note: Proxies never have an enum cache, so will always take the
// slow path.
Label call_runtime;
__ CheckEnumCache(&call_runtime);
// The enum cache is valid. Load the map of the object being
// iterated over and use the cache for the iteration.
Label use_cache;
__ ld(v0, FieldMemOperand(a0, HeapObject::kMapOffset));
__ Branch(&use_cache);
// Get the set of properties to enumerate.
__ bind(&call_runtime);
__ push(a0); // Duplicate the enumerable object on the stack.
__ CallRuntime(Runtime::kForInEnumerate);
PrepareForBailoutForId(stmt->EnumId(), TOS_REG);
// If we got a map from the runtime call, we can do a fast
// modification check. Otherwise, we got a fixed array, and we have
// to do a slow check.
Label fixed_array;
__ ld(a2, FieldMemOperand(v0, HeapObject::kMapOffset));
__ LoadRoot(at, Heap::kMetaMapRootIndex);
__ Branch(&fixed_array, ne, a2, Operand(at));
// We got a map in register v0. Get the enumeration cache from it.
Label no_descriptors;
__ bind(&use_cache);
__ EnumLength(a1, v0);
__ Branch(&no_descriptors, eq, a1, Operand(Smi::FromInt(0)));
__ LoadInstanceDescriptors(v0, a2);
__ ld(a2, FieldMemOperand(a2, DescriptorArray::kEnumCacheOffset));
__ ld(a2, FieldMemOperand(a2, DescriptorArray::kEnumCacheBridgeCacheOffset));
// Set up the four remaining stack slots.
__ li(a0, Operand(Smi::FromInt(0)));
// Push map, enumeration cache, enumeration cache length (as smi) and zero.
__ Push(v0, a2, a1, a0);
__ jmp(&loop);
__ bind(&no_descriptors);
__ Drop(1);
__ jmp(&exit);
// We got a fixed array in register v0. Iterate through that.
__ bind(&fixed_array);
int const vector_index = SmiFromSlot(slot)->value();
__ EmitLoadTypeFeedbackVector(a1);
__ li(a2, Operand(TypeFeedbackVector::MegamorphicSentinel(isolate())));
__ sd(a2, FieldMemOperand(a1, FixedArray::OffsetOfElementAt(vector_index)));
__ li(a1, Operand(Smi::FromInt(1))); // Smi(1) indicates slow check
__ Push(a1, v0); // Smi and array
__ ld(a1, FieldMemOperand(v0, FixedArray::kLengthOffset));
__ Push(a1); // Fixed array length (as smi).
PrepareForBailoutForId(stmt->PrepareId(), NO_REGISTERS);
__ li(a0, Operand(Smi::FromInt(0)));
__ Push(a0); // Initial index.
// Generate code for doing the condition check.
__ bind(&loop);
SetExpressionAsStatementPosition(stmt->each());
// Load the current count to a0, load the length to a1.
__ ld(a0, MemOperand(sp, 0 * kPointerSize));
__ ld(a1, MemOperand(sp, 1 * kPointerSize));
__ Branch(loop_statement.break_label(), hs, a0, Operand(a1));
// Get the current entry of the array into register a3.
__ ld(a2, MemOperand(sp, 2 * kPointerSize));
__ Daddu(a2, a2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ SmiScale(a4, a0, kPointerSizeLog2);
__ daddu(a4, a2, a4); // Array base + scaled (smi) index.
__ ld(a3, MemOperand(a4)); // Current entry.
// Get the expected map from the stack or a smi in the
// permanent slow case into register a2.
__ ld(a2, MemOperand(sp, 3 * kPointerSize));
// Check if the expected map still matches that of the enumerable.
// If not, we may have to filter the key.
Label update_each;
__ ld(a1, MemOperand(sp, 4 * kPointerSize));
__ ld(a4, FieldMemOperand(a1, HeapObject::kMapOffset));
__ Branch(&update_each, eq, a4, Operand(a2));
// We might get here from TurboFan or Crankshaft when something in the
// for-in loop body deopts and only now notice in fullcodegen, that we
// can now longer use the enum cache, i.e. left fast mode. So better record
// this information here, in case we later OSR back into this loop or
// reoptimize the whole function w/o rerunning the loop with the slow
// mode object in fullcodegen (which would result in a deopt loop).
__ EmitLoadTypeFeedbackVector(a0);
__ li(a2, Operand(TypeFeedbackVector::MegamorphicSentinel(isolate())));
__ sd(a2, FieldMemOperand(a0, FixedArray::OffsetOfElementAt(vector_index)));
// Convert the entry to a string or (smi) 0 if it isn't a property
// any more. If the property has been removed while iterating, we
// just skip it.
__ Push(a1, a3); // Enumerable and current entry.
__ CallRuntime(Runtime::kForInFilter);
PrepareForBailoutForId(stmt->FilterId(), TOS_REG);
__ mov(a3, result_register());
__ LoadRoot(at, Heap::kUndefinedValueRootIndex);
__ Branch(loop_statement.continue_label(), eq, a3, Operand(at));
// Update the 'each' property or variable from the possibly filtered
// entry in register a3.
__ bind(&update_each);
__ mov(result_register(), a3);
// Perform the assignment as if via '='.
{ EffectContext context(this);
EmitAssignment(stmt->each(), stmt->EachFeedbackSlot());
PrepareForBailoutForId(stmt->AssignmentId(), NO_REGISTERS);
}
// Both Crankshaft and Turbofan expect BodyId to be right before stmt->body().
PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS);
// Generate code for the body of the loop.
Visit(stmt->body());
// Generate code for the going to the next element by incrementing
// the index (smi) stored on top of the stack.
__ bind(loop_statement.continue_label());
__ pop(a0);
__ Daddu(a0, a0, Operand(Smi::FromInt(1)));
__ push(a0);
EmitBackEdgeBookkeeping(stmt, &loop);
__ Branch(&loop);
// Remove the pointers stored on the stack.
__ bind(loop_statement.break_label());
__ Drop(5);
// Exit and decrement the loop depth.
PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
__ bind(&exit);
decrement_loop_depth();
}
void FullCodeGenerator::EmitNewClosure(Handle<SharedFunctionInfo> info,
bool pretenure) {
// Use the fast case closure allocation code that allocates in new
// space for nested functions that don't need literals cloning. If
// we're running with the --always-opt or the --prepare-always-opt
// flag, we need to use the runtime function so that the new function
// we are creating here gets a chance to have its code optimized and
// doesn't just get a copy of the existing unoptimized code.
if (!FLAG_always_opt &&
!FLAG_prepare_always_opt &&
!pretenure &&
scope()->is_function_scope() &&
info->num_literals() == 0) {
FastNewClosureStub stub(isolate(), info->language_mode(), info->kind());
__ li(a2, Operand(info));
__ CallStub(&stub);
} else {
__ Push(info);
__ CallRuntime(pretenure ? Runtime::kNewClosure_Tenured
: Runtime::kNewClosure);
}
context()->Plug(v0);
}
void FullCodeGenerator::EmitSetHomeObject(Expression* initializer, int offset,
FeedbackVectorSlot slot) {
DCHECK(NeedsHomeObject(initializer));
__ ld(StoreDescriptor::ReceiverRegister(), MemOperand(sp));
__ li(StoreDescriptor::NameRegister(),
Operand(isolate()->factory()->home_object_symbol()));
__ ld(StoreDescriptor::ValueRegister(),
MemOperand(sp, offset * kPointerSize));
EmitLoadStoreICSlot(slot);
CallStoreIC();
}
void FullCodeGenerator::EmitSetHomeObjectAccumulator(Expression* initializer,
int offset,
FeedbackVectorSlot slot) {
DCHECK(NeedsHomeObject(initializer));
__ Move(StoreDescriptor::ReceiverRegister(), v0);
__ li(StoreDescriptor::NameRegister(),
Operand(isolate()->factory()->home_object_symbol()));
__ ld(StoreDescriptor::ValueRegister(),
MemOperand(sp, offset * kPointerSize));
EmitLoadStoreICSlot(slot);
CallStoreIC();
}
void FullCodeGenerator::EmitLoadGlobalCheckExtensions(VariableProxy* proxy,
TypeofMode typeof_mode,
Label* slow) {
Register current = cp;
Register next = a1;
Register temp = a2;
Scope* s = scope();
while (s != NULL) {
if (s->num_heap_slots() > 0) {
if (s->calls_sloppy_eval()) {
// Check that extension is "the hole".
__ ld(temp, ContextMemOperand(current, Context::EXTENSION_INDEX));
__ JumpIfNotRoot(temp, Heap::kTheHoleValueRootIndex, slow);
}
// Load next context in chain.
__ ld(next, ContextMemOperand(current, Context::PREVIOUS_INDEX));
// Walk the rest of the chain without clobbering cp.
current = next;
}
// If no outer scope calls eval, we do not need to check more
// context extensions.
if (!s->outer_scope_calls_sloppy_eval() || s->is_eval_scope()) break;
s = s->outer_scope();
}
if (s->is_eval_scope()) {
Label loop, fast;
if (!current.is(next)) {
__ Move(next, current);
}
__ bind(&loop);
// Terminate at native context.
__ ld(temp, FieldMemOperand(next, HeapObject::kMapOffset));
__ LoadRoot(a4, Heap::kNativeContextMapRootIndex);
__ Branch(&fast, eq, temp, Operand(a4));
// Check that extension is "the hole".
__ ld(temp, ContextMemOperand(next, Context::EXTENSION_INDEX));
__ JumpIfNotRoot(temp, Heap::kTheHoleValueRootIndex, slow);
// Load next context in chain.
__ ld(next, ContextMemOperand(next, Context::PREVIOUS_INDEX));
__ Branch(&loop);
__ bind(&fast);
}
// All extension objects were empty and it is safe to use a normal global
// load machinery.
EmitGlobalVariableLoad(proxy, typeof_mode);
}
MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(Variable* var,
Label* slow) {
DCHECK(var->IsContextSlot());
Register context = cp;
Register next = a3;
Register temp = a4;
for (Scope* s = scope(); s != var->scope(); s = s->outer_scope()) {
if (s->num_heap_slots() > 0) {
if (s->calls_sloppy_eval()) {
// Check that extension is "the hole".
__ ld(temp, ContextMemOperand(context, Context::EXTENSION_INDEX));
__ JumpIfNotRoot(temp, Heap::kTheHoleValueRootIndex, slow);
}
__ ld(next, ContextMemOperand(context, Context::PREVIOUS_INDEX));
// Walk the rest of the chain without clobbering cp.
context = next;
}
}
// Check that last extension is "the hole".
__ ld(temp, ContextMemOperand(context, Context::EXTENSION_INDEX));
__ JumpIfNotRoot(temp, Heap::kTheHoleValueRootIndex, slow);
// This function is used only for loads, not stores, so it's safe to
// return an cp-based operand (the write barrier cannot be allowed to
// destroy the cp register).
return ContextMemOperand(context, var->index());
}
void FullCodeGenerator::EmitDynamicLookupFastCase(VariableProxy* proxy,
TypeofMode typeof_mode,
Label* slow, Label* done) {
// Generate fast-case code for variables that might be shadowed by
// eval-introduced variables. Eval is used a lot without
// introducing variables. In those cases, we do not want to
// perform a runtime call for all variables in the scope
// containing the eval.
Variable* var = proxy->var();
if (var->mode() == DYNAMIC_GLOBAL) {
EmitLoadGlobalCheckExtensions(proxy, typeof_mode, slow);
__ Branch(done);
} else if (var->mode() == DYNAMIC_LOCAL) {
Variable* local = var->local_if_not_shadowed();
__ ld(v0, ContextSlotOperandCheckExtensions(local, slow));
if (local->mode() == LET || local->mode() == CONST ||
local->mode() == CONST_LEGACY) {
__ LoadRoot(at, Heap::kTheHoleValueRootIndex);
__ dsubu(at, v0, at); // Sub as compare: at == 0 on eq.
if (local->mode() == CONST_LEGACY) {
__ LoadRoot(a0, Heap::kUndefinedValueRootIndex);
__ Movz(v0, a0, at); // Conditional move: return Undefined if TheHole.
} else { // LET || CONST
__ Branch(done, ne, at, Operand(zero_reg));
__ li(a0, Operand(var->name()));
__ push(a0);
__ CallRuntime(Runtime::kThrowReferenceError);
}
}
__ Branch(done);
}
}
void FullCodeGenerator::EmitGlobalVariableLoad(VariableProxy* proxy,
TypeofMode typeof_mode) {
Variable* var = proxy->var();
DCHECK(var->IsUnallocatedOrGlobalSlot() ||
(var->IsLookupSlot() && var->mode() == DYNAMIC_GLOBAL));
__ LoadGlobalObject(LoadDescriptor::ReceiverRegister());
__ li(LoadDescriptor::NameRegister(), Operand(var->name()));
__ li(LoadDescriptor::SlotRegister(),
Operand(SmiFromSlot(proxy->VariableFeedbackSlot())));
CallLoadIC(typeof_mode);
}
void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy,
TypeofMode typeof_mode) {
// Record position before possible IC call.
SetExpressionPosition(proxy);
PrepareForBailoutForId(proxy->BeforeId(), NO_REGISTERS);
Variable* var = proxy->var();
// Three cases: global variables, lookup variables, and all other types of
// variables.
switch (var->location()) {
case VariableLocation::GLOBAL:
case VariableLocation::UNALLOCATED: {
Comment cmnt(masm_, "[ Global variable");
EmitGlobalVariableLoad(proxy, typeof_mode);
context()->Plug(v0);
break;
}
case VariableLocation::PARAMETER:
case VariableLocation::LOCAL:
case VariableLocation::CONTEXT: {
DCHECK_EQ(NOT_INSIDE_TYPEOF, typeof_mode);
Comment cmnt(masm_, var->IsContextSlot() ? "[ Context variable"
: "[ Stack variable");
if (NeedsHoleCheckForLoad(proxy)) {
// Let and const need a read barrier.
GetVar(v0, var);
__ LoadRoot(at, Heap::kTheHoleValueRootIndex);
__ dsubu(at, v0, at); // Sub as compare: at == 0 on eq.
if (var->mode() == LET || var->mode() == CONST) {
// Throw a reference error when using an uninitialized let/const
// binding in harmony mode.
Label done;
__ Branch(&done, ne, at, Operand(zero_reg));
__ li(a0, Operand(var->name()));
__ push(a0);
__ CallRuntime(Runtime::kThrowReferenceError);
__ bind(&done);
} else {
// Uninitialized legacy const bindings are unholed.
DCHECK(var->mode() == CONST_LEGACY);
__ LoadRoot(a0, Heap::kUndefinedValueRootIndex);
__ Movz(v0, a0, at); // Conditional move: Undefined if TheHole.
}
context()->Plug(v0);
break;
}
context()->Plug(var);
break;
}
case VariableLocation::LOOKUP: {
Comment cmnt(masm_, "[ Lookup variable");
Label done, slow;
// Generate code for loading from variables potentially shadowed
// by eval-introduced variables.
EmitDynamicLookupFastCase(proxy, typeof_mode, &slow, &done);
__ bind(&slow);
__ Push(var->name());
Runtime::FunctionId function_id =
typeof_mode == NOT_INSIDE_TYPEOF
? Runtime::kLoadLookupSlot
: Runtime::kLoadLookupSlotInsideTypeof;
__ CallRuntime(function_id);
__ bind(&done);
context()->Plug(v0);
}
}
}
void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) {
Comment cmnt(masm_, "[ RegExpLiteral");
__ ld(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
__ li(a2, Operand(Smi::FromInt(expr->literal_index())));
__ li(a1, Operand(expr->pattern()));
__ li(a0, Operand(Smi::FromInt(expr->flags())));
FastCloneRegExpStub stub(isolate());
__ CallStub(&stub);
context()->Plug(v0);
}
void FullCodeGenerator::EmitAccessor(ObjectLiteralProperty* property) {
Expression* expression = (property == NULL) ? NULL : property->value();
if (expression == NULL) {
__ LoadRoot(a1, Heap::kNullValueRootIndex);
__ push(a1);
} else {
VisitForStackValue(expression);
if (NeedsHomeObject(expression)) {
DCHECK(property->kind() == ObjectLiteral::Property::GETTER ||
property->kind() == ObjectLiteral::Property::SETTER);
int offset = property->kind() == ObjectLiteral::Property::GETTER ? 2 : 3;
EmitSetHomeObject(expression, offset, property->GetSlot());
}
}
}
void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) {
Comment cmnt(masm_, "[ ObjectLiteral");
Handle<FixedArray> constant_properties = expr->constant_properties();
__ ld(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
__ li(a2, Operand(Smi::FromInt(expr->literal_index())));
__ li(a1, Operand(constant_properties));
__ li(a0, Operand(Smi::FromInt(expr->ComputeFlags())));
if (MustCreateObjectLiteralWithRuntime(expr)) {
__ Push(a3, a2, a1, a0);
__ CallRuntime(Runtime::kCreateObjectLiteral);
} else {
FastCloneShallowObjectStub stub(isolate(), expr->properties_count());
__ CallStub(&stub);
}
PrepareForBailoutForId(expr->CreateLiteralId(), TOS_REG);
// If result_saved is true the result is on top of the stack. If
// result_saved is false the result is in v0.
bool result_saved = false;
AccessorTable accessor_table(zone());
int property_index = 0;
for (; property_index < expr->properties()->length(); property_index++) {
ObjectLiteral::Property* property = expr->properties()->at(property_index);
if (property->is_computed_name()) break;
if (property->IsCompileTimeValue()) continue;
Literal* key = property->key()->AsLiteral();
Expression* value = property->value();
if (!result_saved) {
__ push(v0); // Save result on stack.
result_saved = true;
}
switch (property->kind()) {
case ObjectLiteral::Property::CONSTANT:
UNREACHABLE();
case ObjectLiteral::Property::MATERIALIZED_LITERAL:
DCHECK(!CompileTimeValue::IsCompileTimeValue(property->value()));
// Fall through.
case ObjectLiteral::Property::COMPUTED:
// It is safe to use [[Put]] here because the boilerplate already
// contains computed properties with an uninitialized value.
if (key->value()->IsInternalizedString()) {
if (property->emit_store()) {
VisitForAccumulatorValue(value);
__ mov(StoreDescriptor::ValueRegister(), result_register());
DCHECK(StoreDescriptor::ValueRegister().is(a0));
__ li(StoreDescriptor::NameRegister(), Operand(key->value()));
__ ld(StoreDescriptor::ReceiverRegister(), MemOperand(sp));
EmitLoadStoreICSlot(property->GetSlot(0));
CallStoreIC();
PrepareForBailoutForId(key->id(), NO_REGISTERS);
if (NeedsHomeObject(value)) {
EmitSetHomeObjectAccumulator(value, 0, property->GetSlot(1));
}
} else {
VisitForEffect(value);
}
break;
}
// Duplicate receiver on stack.
__ ld(a0, MemOperand(sp));
__ push(a0);
VisitForStackValue(key);
VisitForStackValue(value);
if (property->emit_store()) {
if (NeedsHomeObject(value)) {
EmitSetHomeObject(value, 2, property->GetSlot());
}
__ li(a0, Operand(Smi::FromInt(SLOPPY))); // PropertyAttributes.
__ push(a0);
__ CallRuntime(Runtime::kSetProperty);
} else {
__ Drop(3);
}
break;
case ObjectLiteral::Property::PROTOTYPE:
// Duplicate receiver on stack.
__ ld(a0, MemOperand(sp));
__ push(a0);
VisitForStackValue(value);
DCHECK(property->emit_store());
__ CallRuntime(Runtime::kInternalSetPrototype);
PrepareForBailoutForId(expr->GetIdForPropertySet(property_index),
NO_REGISTERS);
break;
case ObjectLiteral::Property::GETTER:
if (property->emit_store()) {
accessor_table.lookup(key)->second->getter = property;
}
break;
case ObjectLiteral::Property::SETTER:
if (property->emit_store()) {
accessor_table.lookup(key)->second->setter = property;
}
break;
}
}
// Emit code to define accessors, using only a single call to the runtime for
// each pair of corresponding getters and setters.
for (AccessorTable::Iterator it = accessor_table.begin();
it != accessor_table.end();
++it) {
__ ld(a0, MemOperand(sp)); // Duplicate receiver.
__ push(a0);
VisitForStackValue(it->first);
EmitAccessor(it->second->getter);
EmitAccessor(it->second->setter);
__ li(a0, Operand(Smi::FromInt(NONE)));
__ push(a0);
__ CallRuntime(Runtime::kDefineAccessorPropertyUnchecked);
}
// Object literals have two parts. The "static" part on the left contains no
// computed property names, and so we can compute its map ahead of time; see
// runtime.cc::CreateObjectLiteralBoilerplate. The second "dynamic" part
// starts with the first computed property name, and continues with all
// properties to its right. All the code from above initializes the static
// component of the object literal, and arranges for the map of the result to
// reflect the static order in which the keys appear. For the dynamic
// properties, we compile them into a series of "SetOwnProperty" runtime
// calls. This will preserve insertion order.
for (; property_index < expr->properties()->length(); property_index++) {
ObjectLiteral::Property* property = expr->properties()->at(property_index);
Expression* value = property->value();
if (!result_saved) {
__ push(v0); // Save result on the stack
result_saved = true;
}
__ ld(a0, MemOperand(sp)); // Duplicate receiver.
__ push(a0);
if (property->kind() == ObjectLiteral::Property::PROTOTYPE) {
DCHECK(!property->is_computed_name());
VisitForStackValue(value);
DCHECK(property->emit_store());
__ CallRuntime(Runtime::kInternalSetPrototype);
PrepareForBailoutForId(expr->GetIdForPropertySet(property_index),
NO_REGISTERS);
} else {
EmitPropertyKey(property, expr->GetIdForPropertyName(property_index));
VisitForStackValue(value);
if (NeedsHomeObject(value)) {
EmitSetHomeObject(value, 2, property->GetSlot());
}
switch (property->kind()) {
case ObjectLiteral::Property::CONSTANT:
case ObjectLiteral::Property::MATERIALIZED_LITERAL:
case ObjectLiteral::Property::COMPUTED:
if (property->emit_store()) {
__ Push(Smi::FromInt(NONE));
__ Push(Smi::FromInt(property->NeedsSetFunctionName()));
__ CallRuntime(Runtime::kDefineDataPropertyInLiteral);
} else {
__ Drop(3);
}
break;
case ObjectLiteral::Property::PROTOTYPE:
UNREACHABLE();
break;
case ObjectLiteral::Property::GETTER:
__ Push(Smi::FromInt(NONE));
__ CallRuntime(Runtime::kDefineGetterPropertyUnchecked);
break;
case ObjectLiteral::Property::SETTER:
__ Push(Smi::FromInt(NONE));
__ CallRuntime(Runtime::kDefineSetterPropertyUnchecked);
break;
}
}
}
if (expr->has_function()) {
DCHECK(result_saved);
__ ld(a0, MemOperand(sp));
__ push(a0);
__ CallRuntime(Runtime::kToFastProperties);
}
if (result_saved) {
context()->PlugTOS();
} else {
context()->Plug(v0);
}
}
void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) {
Comment cmnt(masm_, "[ ArrayLiteral");
Handle<FixedArray> constant_elements = expr->constant_elements();
bool has_fast_elements =
IsFastObjectElementsKind(expr->constant_elements_kind());
AllocationSiteMode allocation_site_mode = TRACK_ALLOCATION_SITE;
if (has_fast_elements && !FLAG_allocation_site_pretenuring) {
// If the only customer of allocation sites is transitioning, then
// we can turn it off if we don't have anywhere else to transition to.
allocation_site_mode = DONT_TRACK_ALLOCATION_SITE;
}
__ mov(a0, result_register());
__ ld(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
__ li(a2, Operand(Smi::FromInt(expr->literal_index())));
__ li(a1, Operand(constant_elements));
if (MustCreateArrayLiteralWithRuntime(expr)) {
__ li(a0, Operand(Smi::FromInt(expr->ComputeFlags())));
__ Push(a3, a2, a1, a0);
__ CallRuntime(Runtime::kCreateArrayLiteral);
} else {
FastCloneShallowArrayStub stub(isolate(), allocation_site_mode);
__ CallStub(&stub);
}
PrepareForBailoutForId(expr->CreateLiteralId(), TOS_REG);
bool result_saved = false; // Is the result saved to the stack?
ZoneList<Expression*>* subexprs = expr->values();
int length = subexprs->length();
// Emit code to evaluate all the non-constant subexpressions and to store
// them into the newly cloned array.
int array_index = 0;
for (; array_index < length; array_index++) {
Expression* subexpr = subexprs->at(array_index);
DCHECK(!subexpr->IsSpread());
// If the subexpression is a literal or a simple materialized literal it
// is already set in the cloned array.
if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
if (!result_saved) {
__ push(v0); // array literal
result_saved = true;
}
VisitForAccumulatorValue(subexpr);
__ li(StoreDescriptor::NameRegister(), Operand(Smi::FromInt(array_index)));
__ ld(StoreDescriptor::ReceiverRegister(), MemOperand(sp, 0));
__ mov(StoreDescriptor::ValueRegister(), result_register());
EmitLoadStoreICSlot(expr->LiteralFeedbackSlot());
Handle<Code> ic =
CodeFactory::KeyedStoreIC(isolate(), language_mode()).code();
CallIC(ic);
PrepareForBailoutForId(expr->GetIdForElement(array_index), NO_REGISTERS);
}
// In case the array literal contains spread expressions it has two parts. The
// first part is the "static" array which has a literal index is handled
// above. The second part is the part after the first spread expression
// (inclusive) and these elements gets appended to the array. Note that the
// number elements an iterable produces is unknown ahead of time.
if (array_index < length && result_saved) {
__ Pop(v0);
result_saved = false;
}
for (; array_index < length; array_index++) {
Expression* subexpr = subexprs->at(array_index);
__ Push(v0);
DCHECK(!subexpr->IsSpread());
VisitForStackValue(subexpr);
__ CallRuntime(Runtime::kAppendElement);
PrepareForBailoutForId(expr->GetIdForElement(array_index), NO_REGISTERS);
}
if (result_saved) {
context()->PlugTOS();
} else {
context()->Plug(v0);
}
}
void FullCodeGenerator::VisitAssignment(Assignment* expr) {
DCHECK(expr->target()->IsValidReferenceExpressionOrThis());
Comment cmnt(masm_, "[ Assignment");
SetExpressionPosition(expr, INSERT_BREAK);
Property* property = expr->target()->AsProperty();
LhsKind assign_type = Property::GetAssignType(property);
// Evaluate LHS expression.
switch (assign_type) {
case VARIABLE:
// Nothing to do here.
break;
case NAMED_PROPERTY:
if (expr->is_compound()) {
// We need the receiver both on the stack and in the register.
VisitForStackValue(property->obj());
__ ld(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0));
} else {
VisitForStackValue(property->obj());
}
break;
case NAMED_SUPER_PROPERTY:
VisitForStackValue(
property->obj()->AsSuperPropertyReference()->this_var());
VisitForAccumulatorValue(
property->obj()->AsSuperPropertyReference()->home_object());
__ Push(result_register());
if (expr->is_compound()) {
const Register scratch = a1;
__ ld(scratch, MemOperand(sp, kPointerSize));
__ Push(scratch, result_register());
}
break;
case KEYED_SUPER_PROPERTY: {
const Register scratch = a1;
VisitForStackValue(
property->obj()->AsSuperPropertyReference()->this_var());
VisitForAccumulatorValue(
property->obj()->AsSuperPropertyReference()->home_object());
__ Move(scratch, result_register());
VisitForAccumulatorValue(property->key());
__ Push(scratch, result_register());
if (expr->is_compound()) {
const Register scratch1 = a4;
__ ld(scratch1, MemOperand(sp, 2 * kPointerSize));
__ Push(scratch1, scratch, result_register());
}
break;
}
case KEYED_PROPERTY:
// We need the key and receiver on both the stack and in v0 and a1.
if (expr->is_compound()) {
VisitForStackValue(property->obj());
VisitForStackValue(property->key());
__ ld(LoadDescriptor::ReceiverRegister(),
MemOperand(sp, 1 * kPointerSize));
__ ld(LoadDescriptor::NameRegister(), MemOperand(sp, 0));
} else {
VisitForStackValue(property->obj());
VisitForStackValue(property->key());
}
break;
}
// For compound assignments we need another deoptimization point after the
// variable/property load.
if (expr->is_compound()) {
{ AccumulatorValueContext context(this);
switch (assign_type) {
case VARIABLE:
EmitVariableLoad(expr->target()->AsVariableProxy());
PrepareForBailout(expr->target(), TOS_REG);
break;
case NAMED_PROPERTY:
EmitNamedPropertyLoad(property);
PrepareForBailoutForId(property->LoadId(), TOS_REG);
break;
case NAMED_SUPER_PROPERTY:
EmitNamedSuperPropertyLoad(property);
PrepareForBailoutForId(property->LoadId(), TOS_REG);
break;
case KEYED_SUPER_PROPERTY:
EmitKeyedSuperPropertyLoad(property);
PrepareForBailoutForId(property->LoadId(), TOS_REG);
break;
case KEYED_PROPERTY:
EmitKeyedPropertyLoad(property);
PrepareForBailoutForId(property->LoadId(), TOS_REG);
break;
}
}
Token::Value op = expr->binary_op();
__ push(v0); // Left operand goes on the stack.
VisitForAccumulatorValue(expr->value());
AccumulatorValueContext context(this);
if (ShouldInlineSmiCase(op)) {
EmitInlineSmiBinaryOp(expr->binary_operation(),
op,
expr->target(),
expr->value());
} else {
EmitBinaryOp(expr->binary_operation(), op);
}
// Deoptimization point in case the binary operation may have side effects.
PrepareForBailout(expr->binary_operation(), TOS_REG);
} else {
VisitForAccumulatorValue(expr->value());
}
SetExpressionPosition(expr);
// Store the value.
switch (assign_type) {
case VARIABLE:
EmitVariableAssignment(expr->target()->AsVariableProxy()->var(),
expr->op(), expr->AssignmentSlot());
PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
context()->Plug(v0);
break;
case NAMED_PROPERTY:
EmitNamedPropertyAssignment(expr);
break;
case NAMED_SUPER_PROPERTY:
EmitNamedSuperPropertyStore(property);
context()->Plug(v0);
break;
case KEYED_SUPER_PROPERTY:
EmitKeyedSuperPropertyStore(property);
context()->Plug(v0);
break;
case KEYED_PROPERTY:
EmitKeyedPropertyAssignment(expr);
break;
}
}
void FullCodeGenerator::VisitYield(Yield* expr) {
Comment cmnt(masm_, "[ Yield");
SetExpressionPosition(expr);
// Evaluate yielded value first; the initial iterator definition depends on
// this. It stays on the stack while we update the iterator.
VisitForStackValue(expr->expression());
switch (expr->yield_kind()) {
case Yield::kSuspend:
// Pop value from top-of-stack slot; box result into result register.
EmitCreateIteratorResult(false);
__ push(result_register());
// Fall through.
case Yield::kInitial: {
Label suspend, continuation, post_runtime, resume;
__ jmp(&suspend);
__ bind(&continuation);
// When we arrive here, the stack top is the resume mode and
// result_register() holds the input value (the argument given to the
// respective resume operation).
__ RecordGeneratorContinuation();
__ pop(a1);
__ Branch(&resume, ne, a1,
Operand(Smi::FromInt(JSGeneratorObject::RETURN)));
__ push(result_register());
EmitCreateIteratorResult(true);
EmitUnwindAndReturn();
__ bind(&suspend);
VisitForAccumulatorValue(expr->generator_object());
DCHECK(continuation.pos() > 0 && Smi::IsValid(continuation.pos()));
__ li(a1, Operand(Smi::FromInt(continuation.pos())));
__ sd(a1, FieldMemOperand(v0, JSGeneratorObject::kContinuationOffset));
__ sd(cp, FieldMemOperand(v0, JSGeneratorObject::kContextOffset));
__ mov(a1, cp);
__ RecordWriteField(v0, JSGeneratorObject::kContextOffset, a1, a2,
kRAHasBeenSaved, kDontSaveFPRegs);
__ Daddu(a1, fp, Operand(StandardFrameConstants::kExpressionsOffset));
__ Branch(&post_runtime, eq, sp, Operand(a1));
__ push(v0); // generator object
__ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1);
__ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
__ bind(&post_runtime);
__ pop(result_register());
EmitReturnSequence();
__ bind(&resume);
context()->Plug(result_register());
break;
}
case Yield::kFinal: {
// Pop value from top-of-stack slot, box result into result register.
EmitCreateIteratorResult(true);
EmitUnwindAndReturn();
break;
}
case Yield::kDelegating:
UNREACHABLE();
}
}
void FullCodeGenerator::EmitGeneratorResume(Expression *generator,
Expression *value,
JSGeneratorObject::ResumeMode resume_mode) {
// The value stays in a0, and is ultimately read by the resumed generator, as
// if CallRuntime(Runtime::kSuspendJSGeneratorObject) returned it. Or it
// is read to throw the value when the resumed generator is already closed.
// a1 will hold the generator object until the activation has been resumed.
VisitForStackValue(generator);
VisitForAccumulatorValue(value);
__ pop(a1);
// Store input value into generator object.
__ sd(result_register(),
FieldMemOperand(a1, JSGeneratorObject::kInputOffset));
__ mov(a2, result_register());
__ RecordWriteField(a1, JSGeneratorObject::kInputOffset, a2, a3,
kRAHasBeenSaved, kDontSaveFPRegs);
// Load suspended function and context.
__ ld(cp, FieldMemOperand(a1, JSGeneratorObject::kContextOffset));
__ ld(a4, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset));
// Load receiver and store as the first argument.
__ ld(a2, FieldMemOperand(a1, JSGeneratorObject::kReceiverOffset));
__ push(a2);
// Push holes for the rest of the arguments to the generator function.
__ ld(a3, FieldMemOperand(a4, JSFunction::kSharedFunctionInfoOffset));
// The argument count is stored as int32_t on 64-bit platforms.
// TODO(plind): Smi on 32-bit platforms.
__ lw(a3,
FieldMemOperand(a3, SharedFunctionInfo::kFormalParameterCountOffset));
__ LoadRoot(a2, Heap::kTheHoleValueRootIndex);
Label push_argument_holes, push_frame;
__ bind(&push_argument_holes);
__ Dsubu(a3, a3, Operand(1));
__ Branch(&push_frame, lt, a3, Operand(zero_reg));
__ push(a2);
__ jmp(&push_argument_holes);
// Enter a new JavaScript frame, and initialize its slots as they were when
// the generator was suspended.
Label resume_frame, done;
__ bind(&push_frame);
__ Call(&resume_frame);
__ jmp(&done);
__ bind(&resume_frame);
// ra = return address.
// fp = caller's frame pointer.
// cp = callee's context,
// a4 = callee's JS function.
__ Push(ra, fp, cp, a4);
// Adjust FP to point to saved FP.
__ Daddu(fp, sp, 2 * kPointerSize);
// Load the operand stack size.
__ ld(a3, FieldMemOperand(a1, JSGeneratorObject::kOperandStackOffset));
__ ld(a3, FieldMemOperand(a3, FixedArray::kLengthOffset));
__ SmiUntag(a3);
// If we are sending a value and there is no operand stack, we can jump back
// in directly.
if (resume_mode == JSGeneratorObject::NEXT) {
Label slow_resume;
__ Branch(&slow_resume, ne, a3, Operand(zero_reg));
__ ld(a3, FieldMemOperand(a4, JSFunction::kCodeEntryOffset));
__ ld(a2, FieldMemOperand(a1, JSGeneratorObject::kContinuationOffset));
__ SmiUntag(a2);
__ Daddu(a3, a3, Operand(a2));
__ li(a2, Operand(Smi::FromInt(JSGeneratorObject::kGeneratorExecuting)));
__ sd(a2, FieldMemOperand(a1, JSGeneratorObject::kContinuationOffset));
__ Push(Smi::FromInt(resume_mode)); // Consumed in continuation.
__ Jump(a3);
__ bind(&slow_resume);
}
// Otherwise, we push holes for the operand stack and call the runtime to fix
// up the stack and the handlers.
Label push_operand_holes, call_resume;
__ bind(&push_operand_holes);
__ Dsubu(a3, a3, Operand(1));
__ Branch(&call_resume, lt, a3, Operand(zero_reg));
__ push(a2);
__ Branch(&push_operand_holes);
__ bind(&call_resume);
__ Push(Smi::FromInt(resume_mode)); // Consumed in continuation.
DCHECK(!result_register().is(a1));
__ Push(a1, result_register());
__ Push(Smi::FromInt(resume_mode));
__ CallRuntime(Runtime::kResumeJSGeneratorObject);
// Not reached: the runtime call returns elsewhere.
__ stop("not-reached");
__ bind(&done);
context()->Plug(result_register());
}
void FullCodeGenerator::EmitCreateIteratorResult(bool done) {
Label allocate, done_allocate;
__ Allocate(JSIteratorResult::kSize, v0, a2, a3, &allocate, TAG_OBJECT);
__ jmp(&done_allocate);
__ bind(&allocate);
__ Push(Smi::FromInt(JSIteratorResult::kSize));
__ CallRuntime(Runtime::kAllocateInNewSpace);
__ bind(&done_allocate);
__ LoadNativeContextSlot(Context::ITERATOR_RESULT_MAP_INDEX, a1);
__ pop(a2);
__ LoadRoot(a3,
done ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex);
__ LoadRoot(a4, Heap::kEmptyFixedArrayRootIndex);
__ sd(a1, FieldMemOperand(v0, HeapObject::kMapOffset));
__ sd(a4, FieldMemOperand(v0, JSObject::kPropertiesOffset));
__ sd(a4, FieldMemOperand(v0, JSObject::kElementsOffset));
__ sd(a2, FieldMemOperand(v0, JSIteratorResult::kValueOffset));
__ sd(a3, FieldMemOperand(v0, JSIteratorResult::kDoneOffset));
STATIC_ASSERT(JSIteratorResult::kSize == 5 * kPointerSize);
}
void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) {
SetExpressionPosition(prop);
Literal* key = prop->key()->AsLiteral();
DCHECK(!prop->IsSuperAccess());
__ li(LoadDescriptor::NameRegister(), Operand(key->value()));
__ li(LoadDescriptor::SlotRegister(),
Operand(SmiFromSlot(prop->PropertyFeedbackSlot())));
CallLoadIC(NOT_INSIDE_TYPEOF);
}
void FullCodeGenerator::EmitNamedSuperPropertyLoad(Property* prop) {
// Stack: receiver, home_object.
SetExpressionPosition(prop);
Literal* key = prop->key()->AsLiteral();
DCHECK(!key->value()->IsSmi());
DCHECK(prop->IsSuperAccess());
__ Push(key->value());
__ CallRuntime(Runtime::kLoadFromSuper);
}
void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) {
// Call keyed load IC. It has register arguments receiver and key.
SetExpressionPosition(prop);
Handle<Code> ic = CodeFactory::KeyedLoadIC(isolate()).code();
__ li(LoadDescriptor::SlotRegister(),
Operand(SmiFromSlot(prop->PropertyFeedbackSlot())));
CallIC(ic);
}
void FullCodeGenerator::EmitKeyedSuperPropertyLoad(Property* prop) {
// Stack: receiver, home_object, key.
SetExpressionPosition(prop);
__ CallRuntime(Runtime::kLoadKeyedFromSuper);
}
void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr,
Token::Value op,
Expression* left_expr,
Expression* right_expr) {
Label done, smi_case, stub_call;
Register scratch1 = a2;
Register scratch2 = a3;
// Get the arguments.
Register left = a1;
Register right = a0;
__ pop(left);
__ mov(a0, result_register());
// Perform combined smi check on both operands.
__ Or(scratch1, left, Operand(right));
STATIC_ASSERT(kSmiTag == 0);
JumpPatchSite patch_site(masm_);
patch_site.EmitJumpIfSmi(scratch1, &smi_case);
__ bind(&stub_call);
Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), op).code();
CallIC(code, expr->BinaryOperationFeedbackId());
patch_site.EmitPatchInfo();
__ jmp(&done);
__ bind(&smi_case);
// Smi case. This code works the same way as the smi-smi case in the type
// recording binary operation stub, see
switch (op) {
case Token::SAR:
__ GetLeastBitsFromSmi(scratch1, right, 5);
__ dsrav(right, left, scratch1);
__ And(v0, right, Operand(0xffffffff00000000L));
break;
case Token::SHL: {
__ SmiUntag(scratch1, left);
__ GetLeastBitsFromSmi(scratch2, right, 5);
__ dsllv(scratch1, scratch1, scratch2);
__ SmiTag(v0, scratch1);
break;
}
case Token::SHR: {
__ SmiUntag(scratch1, left);
__ GetLeastBitsFromSmi(scratch2, right, 5);
__ dsrlv(scratch1, scratch1, scratch2);
__ And(scratch2, scratch1, 0x80000000);
__ Branch(&stub_call, ne, scratch2, Operand(zero_reg));
__ SmiTag(v0, scratch1);
break;
}
case Token::ADD:
__ DadduAndCheckForOverflow(v0, left, right, scratch1);
__ BranchOnOverflow(&stub_call, scratch1);
break;
case Token::SUB:
__ DsubuAndCheckForOverflow(v0, left, right, scratch1);
__ BranchOnOverflow(&stub_call, scratch1);
break;
case Token::MUL: {
__ Dmulh(v0, left, right);
__ dsra32(scratch2, v0, 0);
__ sra(scratch1, v0, 31);
__ Branch(USE_DELAY_SLOT, &stub_call, ne, scratch2, Operand(scratch1));
__ SmiTag(v0);
__ Branch(USE_DELAY_SLOT, &done, ne, v0, Operand(zero_reg));
__ Daddu(scratch2, right, left);
__ Branch(&stub_call, lt, scratch2, Operand(zero_reg));
DCHECK(Smi::FromInt(0) == 0);
__ mov(v0, zero_reg);
break;
}
case Token::BIT_OR:
__ Or(v0, left, Operand(right));
break;
case Token::BIT_AND:
__ And(v0, left, Operand(right));
break;
case Token::BIT_XOR:
__ Xor(v0, left, Operand(right));
break;
default:
UNREACHABLE();
}
__ bind(&done);
context()->Plug(v0);
}
void FullCodeGenerator::EmitClassDefineProperties(ClassLiteral* lit) {
for (int i = 0; i < lit->properties()->length(); i++) {
ObjectLiteral::Property* property = lit->properties()->at(i);
Expression* value = property->value();
Register scratch = a1;
if (property->is_static()) {
__ ld(scratch, MemOperand(sp, kPointerSize)); // constructor
} else {
__ ld(scratch, MemOperand(sp, 0)); // prototype
}
__ push(scratch);
EmitPropertyKey(property, lit->GetIdForProperty(i));
// The static prototype property is read only. We handle the non computed
// property name case in the parser. Since this is the only case where we
// need to check for an own read only property we special case this so we do
// not need to do this for every property.
if (property->is_static() && property->is_computed_name()) {
__ CallRuntime(Runtime::kThrowIfStaticPrototype);
__ push(v0);
}
VisitForStackValue(value);
if (NeedsHomeObject(value)) {
EmitSetHomeObject(value, 2, property->GetSlot());
}
switch (property->kind()) {
case ObjectLiteral::Property::CONSTANT:
case ObjectLiteral::Property::MATERIALIZED_LITERAL:
case ObjectLiteral::Property::PROTOTYPE:
UNREACHABLE();
case ObjectLiteral::Property::COMPUTED:
__ Push(Smi::FromInt(DONT_ENUM));
__ Push(Smi::FromInt(property->NeedsSetFunctionName()));
__ CallRuntime(Runtime::kDefineDataPropertyInLiteral);
break;
case ObjectLiteral::Property::GETTER:
__ Push(Smi::FromInt(DONT_ENUM));
__ CallRuntime(Runtime::kDefineGetterPropertyUnchecked);
break;
case ObjectLiteral::Property::SETTER:
__ Push(Smi::FromInt(DONT_ENUM));
__ CallRuntime(Runtime::kDefineSetterPropertyUnchecked);
break;
default:
UNREACHABLE();
}
}
}
void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr, Token::Value op) {
__ mov(a0, result_register());
__ pop(a1);
Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), op).code();
JumpPatchSite patch_site(masm_); // unbound, signals no inlined smi code.
CallIC(code, expr->BinaryOperationFeedbackId());
patch_site.EmitPatchInfo();
context()->Plug(v0);
}
void FullCodeGenerator::EmitAssignment(Expression* expr,
FeedbackVectorSlot slot) {
DCHECK(expr->IsValidReferenceExpressionOrThis());
Property* prop = expr->AsProperty();
LhsKind assign_type = Property::GetAssignType(prop);
switch (assign_type) {
case VARIABLE: {
Variable* var = expr->AsVariableProxy()->var();
EffectContext context(this);
EmitVariableAssignment(var, Token::ASSIGN, slot);
break;
}
case NAMED_PROPERTY: {
__ push(result_register()); // Preserve value.
VisitForAccumulatorValue(prop->obj());
__ mov(StoreDescriptor::ReceiverRegister(), result_register());
__ pop(StoreDescriptor::ValueRegister()); // Restore value.
__ li(StoreDescriptor::NameRegister(),
Operand(prop->key()->AsLiteral()->value()));
EmitLoadStoreICSlot(slot);
CallStoreIC();
break;
}
case NAMED_SUPER_PROPERTY: {
__ Push(v0);
VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
VisitForAccumulatorValue(
prop->obj()->AsSuperPropertyReference()->home_object());
// stack: value, this; v0: home_object
Register scratch = a2;
Register scratch2 = a3;
__ mov(scratch, result_register()); // home_object
__ ld(v0, MemOperand(sp, kPointerSize)); // value
__ ld(scratch2, MemOperand(sp, 0)); // this
__ sd(scratch2, MemOperand(sp, kPointerSize)); // this
__ sd(scratch, MemOperand(sp, 0)); // home_object
// stack: this, home_object; v0: value
EmitNamedSuperPropertyStore(prop);
break;
}
case KEYED_SUPER_PROPERTY: {
__ Push(v0);
VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
VisitForStackValue(
prop->obj()->AsSuperPropertyReference()->home_object());
VisitForAccumulatorValue(prop->key());
Register scratch = a2;
Register scratch2 = a3;
__ ld(scratch2, MemOperand(sp, 2 * kPointerSize)); // value
// stack: value, this, home_object; v0: key, a3: value
__ ld(scratch, MemOperand(sp, kPointerSize)); // this
__ sd(scratch, MemOperand(sp, 2 * kPointerSize));
__ ld(scratch, MemOperand(sp, 0)); // home_object
__ sd(scratch, MemOperand(sp, kPointerSize));
__ sd(v0, MemOperand(sp, 0));
__ Move(v0, scratch2);
// stack: this, home_object, key; v0: value.
EmitKeyedSuperPropertyStore(prop);
break;
}
case KEYED_PROPERTY: {
__ push(result_register()); // Preserve value.
VisitForStackValue(prop->obj());
VisitForAccumulatorValue(prop->key());
__ Move(StoreDescriptor::NameRegister(), result_register());
__ Pop(StoreDescriptor::ValueRegister(),
StoreDescriptor::ReceiverRegister());
EmitLoadStoreICSlot(slot);
Handle<Code> ic =
CodeFactory::KeyedStoreIC(isolate(), language_mode()).code();
CallIC(ic);
break;
}
}
context()->Plug(v0);
}
void FullCodeGenerator::EmitStoreToStackLocalOrContextSlot(
Variable* var, MemOperand location) {
__ sd(result_register(), location);
if (var->IsContextSlot()) {
// RecordWrite may destroy all its register arguments.
__ Move(a3, result_register());
int offset = Context::SlotOffset(var->index());
__ RecordWriteContextSlot(
a1, offset, a3, a2, kRAHasBeenSaved, kDontSaveFPRegs);
}
}
void FullCodeGenerator::EmitVariableAssignment(Variable* var, Token::Value op,
FeedbackVectorSlot slot) {
if (var->IsUnallocated()) {
// Global var, const, or let.
__ mov(StoreDescriptor::ValueRegister(), result_register());
__ li(StoreDescriptor::NameRegister(), Operand(var->name()));
__ LoadGlobalObject(StoreDescriptor::ReceiverRegister());
EmitLoadStoreICSlot(slot);
CallStoreIC();
} else if (var->mode() == LET && op != Token::INIT) {
// Non-initializing assignment to let variable needs a write barrier.
DCHECK(!var->IsLookupSlot());
DCHECK(var->IsStackAllocated() || var->IsContextSlot());
Label assign;
MemOperand location = VarOperand(var, a1);
__ ld(a3, location);
__ LoadRoot(a4, Heap::kTheHoleValueRootIndex);
__ Branch(&assign, ne, a3, Operand(a4));
__ li(a3, Operand(var->name()));
__ push(a3);
__ CallRuntime(Runtime::kThrowReferenceError);
// Perform the assignment.
__ bind(&assign);
EmitStoreToStackLocalOrContextSlot(var, location);
} else if (var->mode() == CONST && op != Token::INIT) {
// Assignment to const variable needs a write barrier.
DCHECK(!var->IsLookupSlot());
DCHECK(var->IsStackAllocated() || var->IsContextSlot());
Label const_error;
MemOperand location = VarOperand(var, a1);
__ ld(a3, location);
__ LoadRoot(at, Heap::kTheHoleValueRootIndex);
__ Branch(&const_error, ne, a3, Operand(at));
__ li(a3, Operand(var->name()));
__ push(a3);
__ CallRuntime(Runtime::kThrowReferenceError);
__ bind(&const_error);
__ CallRuntime(Runtime::kThrowConstAssignError);
} else if (var->is_this() && var->mode() == CONST && op == Token::INIT) {
// Initializing assignment to const {this} needs a write barrier.
DCHECK(var->IsStackAllocated() || var->IsContextSlot());
Label uninitialized_this;
MemOperand location = VarOperand(var, a1);
__ ld(a3, location);
__ LoadRoot(at, Heap::kTheHoleValueRootIndex);
__ Branch(&uninitialized_this, eq, a3, Operand(at));
__ li(a0, Operand(var->name()));
__ Push(a0);
__ CallRuntime(Runtime::kThrowReferenceError);
__ bind(&uninitialized_this);
EmitStoreToStackLocalOrContextSlot(var, location);
} else if (!var->is_const_mode() ||
(var->mode() == CONST && op == Token::INIT)) {
if (var->IsLookupSlot()) {
__ Push(var->name());
__ Push(v0);
__ CallRuntime(is_strict(language_mode())
? Runtime::kStoreLookupSlot_Strict
: Runtime::kStoreLookupSlot_Sloppy);
} else {
// Assignment to var or initializing assignment to let/const in harmony
// mode.
DCHECK((var->IsStackAllocated() || var->IsContextSlot()));
MemOperand location = VarOperand(var, a1);
if (generate_debug_code_ && var->mode() == LET && op == Token::INIT) {
// Check for an uninitialized let binding.
__ ld(a2, location);
__ LoadRoot(a4, Heap::kTheHoleValueRootIndex);
__ Check(eq, kLetBindingReInitialization, a2, Operand(a4));
}
EmitStoreToStackLocalOrContextSlot(var, location);
}
} else if (var->mode() == CONST_LEGACY && op == Token::INIT) {
// Const initializers need a write barrier.
DCHECK(!var->IsParameter()); // No const parameters.
if (var->IsLookupSlot()) {
__ li(a0, Operand(var->name()));
__ Push(v0, cp, a0); // Context and name.
__ CallRuntime(Runtime::kInitializeLegacyConstLookupSlot);
} else {
DCHECK(var->IsStackAllocated() || var->IsContextSlot());
Label skip;
MemOperand location = VarOperand(var, a1);
__ ld(a2, location);
__ LoadRoot(at, Heap::kTheHoleValueRootIndex);
__ Branch(&skip, ne, a2, Operand(at));
EmitStoreToStackLocalOrContextSlot(var, location);
__ bind(&skip);
}
} else {
DCHECK(var->mode() == CONST_LEGACY && op != Token::INIT);
if (is_strict(language_mode())) {
__ CallRuntime(Runtime::kThrowConstAssignError);
}
// Silently ignore store in sloppy mode.
}
}
void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) {
// Assignment to a property, using a named store IC.
Property* prop = expr->target()->AsProperty();
DCHECK(prop != NULL);
DCHECK(prop->key()->IsLiteral());
__ mov(StoreDescriptor::ValueRegister(), result_register());
__ li(StoreDescriptor::NameRegister(),
Operand(prop->key()->AsLiteral()->value()));
__ pop(StoreDescriptor::ReceiverRegister());
EmitLoadStoreICSlot(expr->AssignmentSlot());
CallStoreIC();
PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
context()->Plug(v0);
}
void FullCodeGenerator::EmitNamedSuperPropertyStore(Property* prop) {
// Assignment to named property of super.
// v0 : value
// stack : receiver ('this'), home_object
DCHECK(prop != NULL);
Literal* key = prop->key()->AsLiteral();
DCHECK(key != NULL);
__ Push(key->value());
__ Push(v0);
__ CallRuntime((is_strict(language_mode()) ? Runtime::kStoreToSuper_Strict
: Runtime::kStoreToSuper_Sloppy));
}
void FullCodeGenerator::EmitKeyedSuperPropertyStore(Property* prop) {
// Assignment to named property of super.
// v0 : value
// stack : receiver ('this'), home_object, key
DCHECK(prop != NULL);
__ Push(v0);
__ CallRuntime((is_strict(language_mode())
? Runtime::kStoreKeyedToSuper_Strict
: Runtime::kStoreKeyedToSuper_Sloppy));
}
void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) {
// Assignment to a property, using a keyed store IC.
// Call keyed store IC.
// The arguments are:
// - a0 is the value,
// - a1 is the key,
// - a2 is the receiver.
__ mov(StoreDescriptor::ValueRegister(), result_register());
__ Pop(StoreDescriptor::ReceiverRegister(), StoreDescriptor::NameRegister());
DCHECK(StoreDescriptor::ValueRegister().is(a0));
Handle<Code> ic =
CodeFactory::KeyedStoreIC(isolate(), language_mode()).code();
EmitLoadStoreICSlot(expr->AssignmentSlot());
CallIC(ic);
PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
context()->Plug(v0);
}
void FullCodeGenerator::VisitProperty(Property* expr) {
Comment cmnt(masm_, "[ Property");
SetExpressionPosition(expr);
Expression* key = expr->key();
if (key->IsPropertyName()) {
if (!expr->IsSuperAccess()) {
VisitForAccumulatorValue(expr->obj());
__ Move(LoadDescriptor::ReceiverRegister(), v0);
EmitNamedPropertyLoad(expr);
} else {
VisitForStackValue(expr->obj()->AsSuperPropertyReference()->this_var());
VisitForStackValue(
expr->obj()->AsSuperPropertyReference()->home_object());
EmitNamedSuperPropertyLoad(expr);
}
} else {
if (!expr->IsSuperAccess()) {
VisitForStackValue(expr->obj());
VisitForAccumulatorValue(expr->key());
__ Move(LoadDescriptor::NameRegister(), v0);
__ pop(LoadDescriptor::ReceiverRegister());
EmitKeyedPropertyLoad(expr);
} else {
VisitForStackValue(expr->obj()->AsSuperPropertyReference()->this_var());
VisitForStackValue(
expr->obj()->AsSuperPropertyReference()->home_object());
VisitForStackValue(expr->key());
EmitKeyedSuperPropertyLoad(expr);
}
}
PrepareForBailoutForId(expr->LoadId(), TOS_REG);
context()->Plug(v0);
}
void FullCodeGenerator::CallIC(Handle<Code> code,
TypeFeedbackId id) {
ic_total_count_++;
__ Call(code, RelocInfo::CODE_TARGET, id);
}
// Code common for calls using the IC.
void FullCodeGenerator::EmitCallWithLoadIC(Call* expr) {
Expression* callee = expr->expression();
// Get the target function.
ConvertReceiverMode convert_mode;
if (callee->IsVariableProxy()) {
{ StackValueContext context(this);
EmitVariableLoad(callee->AsVariableProxy());
PrepareForBailout(callee, NO_REGISTERS);
}
// Push undefined as receiver. This is patched in the method prologue if it
// is a sloppy mode method.
__ LoadRoot(at, Heap::kUndefinedValueRootIndex);
__ push(at);
convert_mode = ConvertReceiverMode::kNullOrUndefined;
} else {
// Load the function from the receiver.
DCHECK(callee->IsProperty());
DCHECK(!callee->AsProperty()->IsSuperAccess());
__ ld(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0));
EmitNamedPropertyLoad(callee->AsProperty());
PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG);
// Push the target function under the receiver.
__ ld(at, MemOperand(sp, 0));
__ push(at);
__ sd(v0, MemOperand(sp, kPointerSize));
convert_mode = ConvertReceiverMode::kNotNullOrUndefined;
}
EmitCall(expr, convert_mode);
}
void FullCodeGenerator::EmitSuperCallWithLoadIC(Call* expr) {
SetExpressionPosition(expr);
Expression* callee = expr->expression();
DCHECK(callee->IsProperty());
Property* prop = callee->AsProperty();
DCHECK(prop->IsSuperAccess());
Literal* key = prop->key()->AsLiteral();
DCHECK(!key->value()->IsSmi());
// Load the function from the receiver.
const Register scratch = a1;
SuperPropertyReference* super_ref = prop->obj()->AsSuperPropertyReference();
VisitForAccumulatorValue(super_ref->home_object());
__ mov(scratch, v0);
VisitForAccumulatorValue(super_ref->this_var());
__ Push(scratch, v0, v0, scratch);
__ Push(key->value());
// Stack here:
// - home_object
// - this (receiver)
// - this (receiver) <-- LoadFromSuper will pop here and below.
// - home_object
// - key
__ CallRuntime(Runtime::kLoadFromSuper);
// Replace home_object with target function.
__ sd(v0, MemOperand(sp, kPointerSize));
// Stack here:
// - target function
// - this (receiver)
EmitCall(expr);
}
// Code common for calls using the IC.
void FullCodeGenerator::EmitKeyedCallWithLoadIC(Call* expr,
Expression* key) {
// Load the key.
VisitForAccumulatorValue(key);
Expression* callee = expr->expression();
// Load the function from the receiver.
DCHECK(callee->IsProperty());
__ ld(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0));
__ Move(LoadDescriptor::NameRegister(), v0);
EmitKeyedPropertyLoad(callee->AsProperty());
PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG);
// Push the target function under the receiver.
__ ld(at, MemOperand(sp, 0));
__ push(at);
__ sd(v0, MemOperand(sp, kPointerSize));
EmitCall(expr, ConvertReceiverMode::kNotNullOrUndefined);
}
void FullCodeGenerator::EmitKeyedSuperCallWithLoadIC(Call* expr) {
Expression* callee = expr->expression();
DCHECK(callee->IsProperty());
Property* prop = callee->AsProperty();
DCHECK(prop->IsSuperAccess());
SetExpressionPosition(prop);
// Load the function from the receiver.
const Register scratch = a1;
SuperPropertyReference* super_ref = prop->obj()->AsSuperPropertyReference();
VisitForAccumulatorValue(super_ref->home_object());
__ Move(scratch, v0);
VisitForAccumulatorValue(super_ref->this_var());
__ Push(scratch, v0, v0, scratch);
VisitForStackValue(prop->key());
// Stack here:
// - home_object
// - this (receiver)
// - this (receiver) <-- LoadKeyedFromSuper will pop here and below.
// - home_object
// - key
__ CallRuntime(Runtime::kLoadKeyedFromSuper);
// Replace home_object with target function.
__ sd(v0, MemOperand(sp, kPointerSize));
// Stack here:
// - target function
// - this (receiver)
EmitCall(expr);
}
void FullCodeGenerator::EmitCall(Call* expr, ConvertReceiverMode mode) {
// Load the arguments.
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
VisitForStackValue(args->at(i));
}
PrepareForBailoutForId(expr->CallId(), NO_REGISTERS);
// Record source position of the IC call.
SetCallPosition(expr);
if (expr->tail_call_mode() == TailCallMode::kAllow) {
if (FLAG_trace) {
__ CallRuntime(Runtime::kTraceTailCall);
}
// Update profiling counters before the tail call since we will
// not return to this function.
EmitProfilingCounterHandlingForReturnSequence(true);
}
Handle<Code> ic =
CodeFactory::CallIC(isolate(), arg_count, mode, expr->tail_call_mode())
.code();
__ li(a3, Operand(SmiFromSlot(expr->CallFeedbackICSlot())));
__ ld(a1, MemOperand(sp, (arg_count + 1) * kPointerSize));
// Don't assign a type feedback id to the IC, since type feedback is provided
// by the vector above.
CallIC(ic);
RecordJSReturnSite(expr);
// Restore context register.
__ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
context()->DropAndPlug(1, v0);
}
void FullCodeGenerator::EmitResolvePossiblyDirectEval(int arg_count) {
// a6: copy of the first argument or undefined if it doesn't exist.
if (arg_count > 0) {
__ ld(a6, MemOperand(sp, arg_count * kPointerSize));
} else {
__ LoadRoot(a6, Heap::kUndefinedValueRootIndex);
}
// a5: the receiver of the enclosing function.
__ ld(a5, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
// a4: the language mode.
__ li(a4, Operand(Smi::FromInt(language_mode())));
// a1: the start position of the scope the calls resides in.
__ li(a1, Operand(Smi::FromInt(scope()->start_position())));
// Do the runtime call.
__ Push(a6, a5, a4, a1);
__ CallRuntime(Runtime::kResolvePossiblyDirectEval);
}
// See http://www.ecma-international.org/ecma-262/6.0/#sec-function-calls.
void FullCodeGenerator::PushCalleeAndWithBaseObject(Call* expr) {
VariableProxy* callee = expr->expression()->AsVariableProxy();
if (callee->var()->IsLookupSlot()) {
Label slow, done;
SetExpressionPosition(callee);
// Generate code for loading from variables potentially shadowed by
// eval-introduced variables.
EmitDynamicLookupFastCase(callee, NOT_INSIDE_TYPEOF, &slow, &done);
__ bind(&slow);
// Call the runtime to find the function to call (returned in v0)
// and the object holding it (returned in v1).
__ Push(callee->name());
__ CallRuntime(Runtime::kLoadLookupSlotForCall);
__ Push(v0, v1); // Function, receiver.
PrepareForBailoutForId(expr->LookupId(), NO_REGISTERS);
// If fast case code has been generated, emit code to push the
// function and receiver and have the slow path jump around this
// code.
if (done.is_linked()) {
Label call;
__ Branch(&call);
__ bind(&done);
// Push function.
__ push(v0);
// The receiver is implicitly the global receiver. Indicate this
// by passing the hole to the call function stub.
__ LoadRoot(a1, Heap::kUndefinedValueRootIndex);
__ push(a1);
__ bind(&call);
}
} else {
VisitForStackValue(callee);
// refEnv.WithBaseObject()
__ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
__ push(a2); // Reserved receiver slot.
}
}
void FullCodeGenerator::EmitPossiblyEvalCall(Call* expr) {
// In a call to eval, we first call RuntimeHidden_ResolvePossiblyDirectEval
// to resolve the function we need to call. Then we call the resolved
// function using the given arguments.
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
PushCalleeAndWithBaseObject(expr);
// Push the arguments.
for (int i = 0; i < arg_count; i++) {
VisitForStackValue(args->at(i));
}
// Push a copy of the function (found below the arguments) and
// resolve eval.
__ ld(a1, MemOperand(sp, (arg_count + 1) * kPointerSize));
__ push(a1);
EmitResolvePossiblyDirectEval(arg_count);
// Touch up the stack with the resolved function.
__ sd(v0, MemOperand(sp, (arg_count + 1) * kPointerSize));
PrepareForBailoutForId(expr->EvalId(), NO_REGISTERS);
// Record source position for debugger.
SetCallPosition(expr);
__ ld(a1, MemOperand(sp, (arg_count + 1) * kPointerSize));
__ li(a0, Operand(arg_count));
__ Call(isolate()->builtins()->Call(ConvertReceiverMode::kAny,
expr->tail_call_mode()),
RelocInfo::CODE_TARGET);
RecordJSReturnSite(expr);
// Restore context register.
__ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
context()->DropAndPlug(1, v0);
}
void FullCodeGenerator::VisitCallNew(CallNew* expr) {
Comment cmnt(masm_, "[ CallNew");
// According to ECMA-262, section 11.2.2, page 44, the function
// expression in new calls must be evaluated before the
// arguments.
// Push constructor on the stack. If it's not a function it's used as
// receiver for CALL_NON_FUNCTION, otherwise the value on the stack is
// ignored.
DCHECK(!expr->expression()->IsSuperPropertyReference());
VisitForStackValue(expr->expression());
// Push the arguments ("left-to-right") on the stack.
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
VisitForStackValue(args->at(i));
}
// Call the construct call builtin that handles allocation and
// constructor invocation.
SetConstructCallPosition(expr);
// Load function and argument count into a1 and a0.
__ li(a0, Operand(arg_count));
__ ld(a1, MemOperand(sp, arg_count * kPointerSize));
// Record call targets in unoptimized code.
__ EmitLoadTypeFeedbackVector(a2);
__ li(a3, Operand(SmiFromSlot(expr->CallNewFeedbackSlot())));
CallConstructStub stub(isolate());
__ Call(stub.GetCode(), RelocInfo::CODE_TARGET);
PrepareForBailoutForId(expr->ReturnId(), TOS_REG);
// Restore context register.
__ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
context()->Plug(v0);
}
void FullCodeGenerator::EmitSuperConstructorCall(Call* expr) {
SuperCallReference* super_call_ref =
expr->expression()->AsSuperCallReference();
DCHECK_NOT_NULL(super_call_ref);
// Push the super constructor target on the stack (may be null,
// but the Construct builtin can deal with that properly).
VisitForAccumulatorValue(super_call_ref->this_function_var());
__ AssertFunction(result_register());
__ ld(result_register(),
FieldMemOperand(result_register(), HeapObject::kMapOffset));
__ ld(result_register(),
FieldMemOperand(result_register(), Map::kPrototypeOffset));
__ Push(result_register());
// Push the arguments ("left-to-right") on the stack.
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
VisitForStackValue(args->at(i));
}
// Call the construct call builtin that handles allocation and
// constructor invocation.
SetConstructCallPosition(expr);
// Load new target into a3.
VisitForAccumulatorValue(super_call_ref->new_target_var());
__ mov(a3, result_register());
// Load function and argument count into a1 and a0.
__ li(a0, Operand(arg_count));
__ ld(a1, MemOperand(sp, arg_count * kPointerSize));
__ Call(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
RecordJSReturnSite(expr);
// Restore context register.
__ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
context()->Plug(v0);
}
void FullCodeGenerator::EmitIsSmi(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
__ SmiTst(v0, a4);
Split(eq, a4, Operand(zero_reg), if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsJSReceiver(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ JumpIfSmi(v0, if_false);
__ GetObjectType(v0, a1, a1);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(ge, a1, Operand(FIRST_JS_RECEIVER_TYPE),
if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsArray(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ JumpIfSmi(v0, if_false);
__ GetObjectType(v0, a1, a1);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(eq, a1, Operand(JS_ARRAY_TYPE),
if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsTypedArray(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
&if_false, &fall_through);
__ JumpIfSmi(v0, if_false);
__ GetObjectType(v0, a1, a1);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(eq, a1, Operand(JS_TYPED_ARRAY_TYPE), if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsRegExp(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ JumpIfSmi(v0, if_false);
__ GetObjectType(v0, a1, a1);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(eq, a1, Operand(JS_REGEXP_TYPE), if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsJSProxy(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
&if_false, &fall_through);
__ JumpIfSmi(v0, if_false);
__ GetObjectType(v0, a1, a1);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(eq, a1, Operand(JS_PROXY_TYPE), if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitClassOf(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
Label done, null, function, non_function_constructor;
VisitForAccumulatorValue(args->at(0));
// If the object is not a JSReceiver, we return null.
__ JumpIfSmi(v0, &null);
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ GetObjectType(v0, v0, a1); // Map is now in v0.
__ Branch(&null, lt, a1, Operand(FIRST_JS_RECEIVER_TYPE));
// Return 'Function' for JSFunction objects.
__ Branch(&function, eq, a1, Operand(JS_FUNCTION_TYPE));
// Check if the constructor in the map is a JS function.
Register instance_type = a2;
__ GetMapConstructor(v0, v0, a1, instance_type);
__ Branch(&non_function_constructor, ne, instance_type,
Operand(JS_FUNCTION_TYPE));
// v0 now contains the constructor function. Grab the
// instance class name from there.
__ ld(v0, FieldMemOperand(v0, JSFunction::kSharedFunctionInfoOffset));
__ ld(v0, FieldMemOperand(v0, SharedFunctionInfo::kInstanceClassNameOffset));
__ Branch(&done);
// Functions have class 'Function'.
__ bind(&function);
__ LoadRoot(v0, Heap::kFunction_stringRootIndex);
__ jmp(&done);
// Objects with a non-function constructor have class 'Object'.
__ bind(&non_function_constructor);
__ LoadRoot(v0, Heap::kObject_stringRootIndex);
__ jmp(&done);
// Non-JS objects have class null.
__ bind(&null);
__ LoadRoot(v0, Heap::kNullValueRootIndex);
// All done.
__ bind(&done);
context()->Plug(v0);
}
void FullCodeGenerator::EmitValueOf(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
VisitForAccumulatorValue(args->at(0)); // Load the object.
Label done;
// If the object is a smi return the object.
__ JumpIfSmi(v0, &done);
// If the object is not a value type, return the object.
__ GetObjectType(v0, a1, a1);
__ Branch(&done, ne, a1, Operand(JS_VALUE_TYPE));
__ ld(v0, FieldMemOperand(v0, JSValue::kValueOffset));
__ bind(&done);
context()->Plug(v0);
}
void FullCodeGenerator::EmitOneByteSeqStringSetChar(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK_EQ(3, args->length());
Register string = v0;
Register index = a1;
Register value = a2;
VisitForStackValue(args->at(0)); // index
VisitForStackValue(args->at(1)); // value
VisitForAccumulatorValue(args->at(2)); // string
__ Pop(index, value);
if (FLAG_debug_code) {
__ SmiTst(value, at);
__ Check(eq, kNonSmiValue, at, Operand(zero_reg));
__ SmiTst(index, at);
__ Check(eq, kNonSmiIndex, at, Operand(zero_reg));
__ SmiUntag(index, index);
static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
Register scratch = t1;
__ EmitSeqStringSetCharCheck(
string, index, value, scratch, one_byte_seq_type);
__ SmiTag(index, index);
}
__ SmiUntag(value, value);
__ Daddu(at,
string,
Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
__ SmiUntag(index);
__ Daddu(at, at, index);
__ sb(value, MemOperand(at));
context()->Plug(string);
}
void FullCodeGenerator::EmitTwoByteSeqStringSetChar(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK_EQ(3, args->length());
Register string = v0;
Register index = a1;
Register value = a2;
VisitForStackValue(args->at(0)); // index
VisitForStackValue(args->at(1)); // value
VisitForAccumulatorValue(args->at(2)); // string
__ Pop(index, value);
if (FLAG_debug_code) {
__ SmiTst(value, at);
__ Check(eq, kNonSmiValue, at, Operand(zero_reg));
__ SmiTst(index, at);
__ Check(eq, kNonSmiIndex, at, Operand(zero_reg));
__ SmiUntag(index, index);
static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
Register scratch = t1;
__ EmitSeqStringSetCharCheck(
string, index, value, scratch, two_byte_seq_type);
__ SmiTag(index, index);
}
__ SmiUntag(value, value);
__ Daddu(at,
string,
Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
__ dsra(index, index, 32 - 1);
__ Daddu(at, at, index);
STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
__ sh(value, MemOperand(at));
context()->Plug(string);
}
void FullCodeGenerator::EmitToInteger(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK_EQ(1, args->length());
// Load the argument into v0 and convert it.
VisitForAccumulatorValue(args->at(0));
// Convert the object to an integer.
Label done_convert;
__ JumpIfSmi(v0, &done_convert);
__ Push(v0);
__ CallRuntime(Runtime::kToInteger);
__ bind(&done_convert);
context()->Plug(v0);
}
void FullCodeGenerator::EmitStringCharFromCode(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label done;
StringCharFromCodeGenerator generator(v0, a1);
generator.GenerateFast(masm_);
__ jmp(&done);
NopRuntimeCallHelper call_helper;
generator.GenerateSlow(masm_, call_helper);
__ bind(&done);
context()->Plug(a1);
}
void FullCodeGenerator::EmitStringCharCodeAt(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 2);
VisitForStackValue(args->at(0));
VisitForAccumulatorValue(args->at(1));
__ mov(a0, result_register());
Register object = a1;
Register index = a0;
Register result = v0;
__ pop(object);
Label need_conversion;
Label index_out_of_range;
Label done;
StringCharCodeAtGenerator generator(object,
index,
result,
&need_conversion,
&need_conversion,
&index_out_of_range,
STRING_INDEX_IS_NUMBER);
generator.GenerateFast(masm_);
__ jmp(&done);
__ bind(&index_out_of_range);
// When the index is out of range, the spec requires us to return
// NaN.
__ LoadRoot(result, Heap::kNanValueRootIndex);
__ jmp(&done);
__ bind(&need_conversion);
// Load the undefined value into the result register, which will
// trigger conversion.
__ LoadRoot(result, Heap::kUndefinedValueRootIndex);
__ jmp(&done);
NopRuntimeCallHelper call_helper;
generator.GenerateSlow(masm_, NOT_PART_OF_IC_HANDLER, call_helper);
__ bind(&done);
context()->Plug(result);
}
void FullCodeGenerator::EmitStringCharAt(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 2);
VisitForStackValue(args->at(0));
VisitForAccumulatorValue(args->at(1));
__ mov(a0, result_register());
Register object = a1;
Register index = a0;
Register scratch = a3;
Register result = v0;
__ pop(object);
Label need_conversion;
Label index_out_of_range;
Label done;
StringCharAtGenerator generator(object,
index,
scratch,
result,
&need_conversion,
&need_conversion,
&index_out_of_range,
STRING_INDEX_IS_NUMBER);
generator.GenerateFast(masm_);
__ jmp(&done);
__ bind(&index_out_of_range);
// When the index is out of range, the spec requires us to return
// the empty string.
__ LoadRoot(result, Heap::kempty_stringRootIndex);
__ jmp(&done);
__ bind(&need_conversion);
// Move smi zero into the result register, which will trigger
// conversion.
__ li(result, Operand(Smi::FromInt(0)));
__ jmp(&done);
NopRuntimeCallHelper call_helper;
generator.GenerateSlow(masm_, NOT_PART_OF_IC_HANDLER, call_helper);
__ bind(&done);
context()->Plug(result);
}
void FullCodeGenerator::EmitCall(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK_LE(2, args->length());
// Push target, receiver and arguments onto the stack.
for (Expression* const arg : *args) {
VisitForStackValue(arg);
}
PrepareForBailoutForId(expr->CallId(), NO_REGISTERS);
// Move target to a1.
int const argc = args->length() - 2;
__ ld(a1, MemOperand(sp, (argc + 1) * kPointerSize));
// Call the target.
__ li(a0, Operand(argc));
__ Call(isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
// Restore context register.
__ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
// Discard the function left on TOS.
context()->DropAndPlug(1, v0);
}
void FullCodeGenerator::EmitHasCachedArrayIndex(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ lwu(a0, FieldMemOperand(v0, String::kHashFieldOffset));
__ And(a0, a0, Operand(String::kContainsCachedArrayIndexMask));
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(eq, a0, Operand(zero_reg), if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitGetCachedArrayIndex(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
__ AssertString(v0);
__ lwu(v0, FieldMemOperand(v0, String::kHashFieldOffset));
__ IndexFromHash(v0, v0);
context()->Plug(v0);
}
void FullCodeGenerator::EmitGetSuperConstructor(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK_EQ(1, args->length());
VisitForAccumulatorValue(args->at(0));
__ AssertFunction(v0);
__ ld(v0, FieldMemOperand(v0, HeapObject::kMapOffset));
__ ld(v0, FieldMemOperand(v0, Map::kPrototypeOffset));
context()->Plug(v0);
}
void FullCodeGenerator::EmitFastOneByteArrayJoin(CallRuntime* expr) {
Label bailout, done, one_char_separator, long_separator,
non_trivial_array, not_size_one_array, loop,
empty_separator_loop, one_char_separator_loop,
one_char_separator_loop_entry, long_separator_loop;
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 2);
VisitForStackValue(args->at(1));
VisitForAccumulatorValue(args->at(0));
// All aliases of the same register have disjoint lifetimes.
Register array = v0;
Register elements = no_reg; // Will be v0.
Register result = no_reg; // Will be v0.
Register separator = a1;
Register array_length = a2;
Register result_pos = no_reg; // Will be a2.
Register string_length = a3;
Register string = a4;
Register element = a5;
Register elements_end = a6;
Register scratch1 = a7;
Register scratch2 = t1;
Register scratch3 = t0;
// Separator operand is on the stack.
__ pop(separator);
// Check that the array is a JSArray.
__ JumpIfSmi(array, &bailout);
__ GetObjectType(array, scratch1, scratch2);
__ Branch(&bailout, ne, scratch2, Operand(JS_ARRAY_TYPE));
// Check that the array has fast elements.
__ CheckFastElements(scratch1, scratch2, &bailout);
// If the array has length zero, return the empty string.
__ ld(array_length, FieldMemOperand(array, JSArray::kLengthOffset));
__ SmiUntag(array_length);
__ Branch(&non_trivial_array, ne, array_length, Operand(zero_reg));
__ LoadRoot(v0, Heap::kempty_stringRootIndex);
__ Branch(&done);
__ bind(&non_trivial_array);
// Get the FixedArray containing array's elements.
elements = array;
__ ld(elements, FieldMemOperand(array, JSArray::kElementsOffset));
array = no_reg; // End of array's live range.
// Check that all array elements are sequential one-byte strings, and
// accumulate the sum of their lengths, as a smi-encoded value.
__ mov(string_length, zero_reg);
__ Daddu(element,
elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ Dlsa(elements_end, element, array_length, kPointerSizeLog2);
// Loop condition: while (element < elements_end).
// Live values in registers:
// elements: Fixed array of strings.
// array_length: Length of the fixed array of strings (not smi)
// separator: Separator string
// string_length: Accumulated sum of string lengths (smi).
// element: Current array element.
// elements_end: Array end.
if (generate_debug_code_) {
__ Assert(gt, kNoEmptyArraysHereInEmitFastOneByteArrayJoin, array_length,
Operand(zero_reg));
}
__ bind(&loop);
__ ld(string, MemOperand(element));
__ Daddu(element, element, kPointerSize);
__ JumpIfSmi(string, &bailout);
__ ld(scratch1, FieldMemOperand(string, HeapObject::kMapOffset));
__ lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
__ JumpIfInstanceTypeIsNotSequentialOneByte(scratch1, scratch2, &bailout);
__ ld(scratch1, FieldMemOperand(string, SeqOneByteString::kLengthOffset));
__ DadduAndCheckForOverflow(string_length, string_length, scratch1, scratch3);
__ BranchOnOverflow(&bailout, scratch3);
__ Branch(&loop, lt, element, Operand(elements_end));
// If array_length is 1, return elements[0], a string.
__ Branch(&not_size_one_array, ne, array_length, Operand(1));
__ ld(v0, FieldMemOperand(elements, FixedArray::kHeaderSize));
__ Branch(&done);
__ bind(&not_size_one_array);
// Live values in registers:
// separator: Separator string
// array_length: Length of the array.
// string_length: Sum of string lengths (smi).
// elements: FixedArray of strings.
// Check that the separator is a flat one-byte string.
__ JumpIfSmi(separator, &bailout);
__ ld(scratch1, FieldMemOperand(separator, HeapObject::kMapOffset));
__ lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
__ JumpIfInstanceTypeIsNotSequentialOneByte(scratch1, scratch2, &bailout);
// Add (separator length times array_length) - separator length to the
// string_length to get the length of the result string. array_length is not
// smi but the other values are, so the result is a smi.
__ ld(scratch1, FieldMemOperand(separator, SeqOneByteString::kLengthOffset));
__ Dsubu(string_length, string_length, Operand(scratch1));
__ SmiUntag(scratch1);
__ Dmul(scratch2, array_length, scratch1);
// Check for smi overflow. No overflow if higher 33 bits of 64-bit result are
// zero.
__ dsra32(scratch1, scratch2, 0);
__ Branch(&bailout, ne, scratch2, Operand(zero_reg));
__ SmiUntag(string_length);
__ AdduAndCheckForOverflow(string_length, string_length, scratch2, scratch3);
__ BranchOnOverflow(&bailout, scratch3);
// Bailout for large object allocations.
__ Branch(&bailout, gt, string_length,
Operand(Page::kMaxRegularHeapObjectSize));
// Get first element in the array to free up the elements register to be used
// for the result.
__ Daddu(element,
elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
result = elements; // End of live range for elements.
elements = no_reg;
// Live values in registers:
// element: First array element
// separator: Separator string
// string_length: Length of result string (not smi)
// array_length: Length of the array.
__ AllocateOneByteString(result, string_length, scratch1, scratch2,
elements_end, &bailout);
// Prepare for looping. Set up elements_end to end of the array. Set
// result_pos to the position of the result where to write the first
// character.
__ Dlsa(elements_end, element, array_length, kPointerSizeLog2);
result_pos = array_length; // End of live range for array_length.
array_length = no_reg;
__ Daddu(result_pos,
result,
Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
// Check the length of the separator.
__ ld(scratch1, FieldMemOperand(separator, SeqOneByteString::kLengthOffset));
__ li(at, Operand(Smi::FromInt(1)));
__ Branch(&one_char_separator, eq, scratch1, Operand(at));
__ Branch(&long_separator, gt, scratch1, Operand(at));
// Empty separator case.
__ bind(&empty_separator_loop);
// Live values in registers:
// result_pos: the position to which we are currently copying characters.
// element: Current array element.
// elements_end: Array end.
// Copy next array element to the result.
__ ld(string, MemOperand(element));
__ Daddu(element, element, kPointerSize);
__ ld(string_length, FieldMemOperand(string, String::kLengthOffset));
__ SmiUntag(string_length);
__ Daddu(string, string, SeqOneByteString::kHeaderSize - kHeapObjectTag);
__ CopyBytes(string, result_pos, string_length, scratch1);
// End while (element < elements_end).
__ Branch(&empty_separator_loop, lt, element, Operand(elements_end));
DCHECK(result.is(v0));
__ Branch(&done);
// One-character separator case.
__ bind(&one_char_separator);
// Replace separator with its one-byte character value.
__ lbu(separator, FieldMemOperand(separator, SeqOneByteString::kHeaderSize));
// Jump into the loop after the code that copies the separator, so the first
// element is not preceded by a separator.
__ jmp(&one_char_separator_loop_entry);
__ bind(&one_char_separator_loop);
// Live values in registers:
// result_pos: the position to which we are currently copying characters.
// element: Current array element.
// elements_end: Array end.
// separator: Single separator one-byte char (in lower byte).
// Copy the separator character to the result.
__ sb(separator, MemOperand(result_pos));
__ Daddu(result_pos, result_pos, 1);
// Copy next array element to the result.
__ bind(&one_char_separator_loop_entry);
__ ld(string, MemOperand(element));
__ Daddu(element, element, kPointerSize);
__ ld(string_length, FieldMemOperand(string, String::kLengthOffset));
__ SmiUntag(string_length);
__ Daddu(string, string, SeqOneByteString::kHeaderSize - kHeapObjectTag);
__ CopyBytes(string, result_pos, string_length, scratch1);
// End while (element < elements_end).
__ Branch(&one_char_separator_loop, lt, element, Operand(elements_end));
DCHECK(result.is(v0));
__ Branch(&done);
// Long separator case (separator is more than one character). Entry is at the
// label long_separator below.
__ bind(&long_separator_loop);
// Live values in registers:
// result_pos: the position to which we are currently copying characters.
// element: Current array element.
// elements_end: Array end.
// separator: Separator string.
// Copy the separator to the result.
__ ld(string_length, FieldMemOperand(separator, String::kLengthOffset));
__ SmiUntag(string_length);
__ Daddu(string,
separator,
Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
__ CopyBytes(string, result_pos, string_length, scratch1);
__ bind(&long_separator);
__ ld(string, MemOperand(element));
__ Daddu(element, element, kPointerSize);
__ ld(string_length, FieldMemOperand(string, String::kLengthOffset));
__ SmiUntag(string_length);
__ Daddu(string, string, SeqOneByteString::kHeaderSize - kHeapObjectTag);
__ CopyBytes(string, result_pos, string_length, scratch1);
// End while (element < elements_end).
__ Branch(&long_separator_loop, lt, element, Operand(elements_end));
DCHECK(result.is(v0));
__ Branch(&done);
__ bind(&bailout);
__ LoadRoot(v0, Heap::kUndefinedValueRootIndex);
__ bind(&done);
context()->Plug(v0);
}
void FullCodeGenerator::EmitDebugIsActive(CallRuntime* expr) {
DCHECK(expr->arguments()->length() == 0);
ExternalReference debug_is_active =
ExternalReference::debug_is_active_address(isolate());
__ li(at, Operand(debug_is_active));
__ lbu(v0, MemOperand(at));
__ SmiTag(v0);
context()->Plug(v0);
}
void FullCodeGenerator::EmitCreateIterResultObject(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK_EQ(2, args->length());
VisitForStackValue(args->at(0));
VisitForStackValue(args->at(1));
Label runtime, done;
__ Allocate(JSIteratorResult::kSize, v0, a2, a3, &runtime, TAG_OBJECT);
__ LoadNativeContextSlot(Context::ITERATOR_RESULT_MAP_INDEX, a1);
__ Pop(a2, a3);
__ LoadRoot(a4, Heap::kEmptyFixedArrayRootIndex);
__ sd(a1, FieldMemOperand(v0, HeapObject::kMapOffset));
__ sd(a4, FieldMemOperand(v0, JSObject::kPropertiesOffset));
__ sd(a4, FieldMemOperand(v0, JSObject::kElementsOffset));
__ sd(a2, FieldMemOperand(v0, JSIteratorResult::kValueOffset));
__ sd(a3, FieldMemOperand(v0, JSIteratorResult::kDoneOffset));
STATIC_ASSERT(JSIteratorResult::kSize == 5 * kPointerSize);
__ jmp(&done);
__ bind(&runtime);
__ CallRuntime(Runtime::kCreateIterResultObject);
__ bind(&done);
context()->Plug(v0);
}
void FullCodeGenerator::EmitLoadJSRuntimeFunction(CallRuntime* expr) {
// Push undefined as the receiver.
__ LoadRoot(v0, Heap::kUndefinedValueRootIndex);
__ push(v0);
__ LoadNativeContextSlot(expr->context_index(), v0);
}
void FullCodeGenerator::EmitCallJSRuntimeFunction(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
SetCallPosition(expr);
__ ld(a1, MemOperand(sp, (arg_count + 1) * kPointerSize));
__ li(a0, Operand(arg_count));
__ Call(isolate()->builtins()->Call(ConvertReceiverMode::kNullOrUndefined),
RelocInfo::CODE_TARGET);
}
void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
if (expr->is_jsruntime()) {
Comment cmnt(masm_, "[ CallRuntime");
EmitLoadJSRuntimeFunction(expr);
// Push the target function under the receiver.
__ ld(at, MemOperand(sp, 0));
__ push(at);
__ sd(v0, MemOperand(sp, kPointerSize));
// Push the arguments ("left-to-right").
for (int i = 0; i < arg_count; i++) {
VisitForStackValue(args->at(i));
}
PrepareForBailoutForId(expr->CallId(), NO_REGISTERS);
EmitCallJSRuntimeFunction(expr);
// Restore context register.
__ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
context()->DropAndPlug(1, v0);
} else {
const Runtime::Function* function = expr->function();
switch (function->function_id) {
#define CALL_INTRINSIC_GENERATOR(Name) \
case Runtime::kInline##Name: { \
Comment cmnt(masm_, "[ Inline" #Name); \
return Emit##Name(expr); \
}
FOR_EACH_FULL_CODE_INTRINSIC(CALL_INTRINSIC_GENERATOR)
#undef CALL_INTRINSIC_GENERATOR
default: {
Comment cmnt(masm_, "[ CallRuntime for unhandled intrinsic");
// Push the arguments ("left-to-right").
for (int i = 0; i < arg_count; i++) {
VisitForStackValue(args->at(i));
}
// Call the C runtime function.
PrepareForBailoutForId(expr->CallId(), NO_REGISTERS);
__ CallRuntime(expr->function(), arg_count);
context()->Plug(v0);
}
}
}
}
void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) {
switch (expr->op()) {
case Token::DELETE: {
Comment cmnt(masm_, "[ UnaryOperation (DELETE)");
Property* property = expr->expression()->AsProperty();
VariableProxy* proxy = expr->expression()->AsVariableProxy();
if (property != NULL) {
VisitForStackValue(property->obj());
VisitForStackValue(property->key());
__ CallRuntime(is_strict(language_mode())
? Runtime::kDeleteProperty_Strict
: Runtime::kDeleteProperty_Sloppy);
context()->Plug(v0);
} else if (proxy != NULL) {
Variable* var = proxy->var();
// Delete of an unqualified identifier is disallowed in strict mode but
// "delete this" is allowed.
bool is_this = var->HasThisName(isolate());
DCHECK(is_sloppy(language_mode()) || is_this);
if (var->IsUnallocatedOrGlobalSlot()) {
__ LoadGlobalObject(a2);
__ li(a1, Operand(var->name()));
__ Push(a2, a1);
__ CallRuntime(Runtime::kDeleteProperty_Sloppy);
context()->Plug(v0);
} else if (var->IsStackAllocated() || var->IsContextSlot()) {
// Result of deleting non-global, non-dynamic variables is false.
// The subexpression does not have side effects.
context()->Plug(is_this);
} else {
// Non-global variable. Call the runtime to try to delete from the
// context where the variable was introduced.
DCHECK(!context_register().is(a2));
__ Push(var->name());
__ CallRuntime(Runtime::kDeleteLookupSlot);
context()->Plug(v0);
}
} else {
// Result of deleting non-property, non-variable reference is true.
// The subexpression may have side effects.
VisitForEffect(expr->expression());
context()->Plug(true);
}
break;
}
case Token::VOID: {
Comment cmnt(masm_, "[ UnaryOperation (VOID)");
VisitForEffect(expr->expression());
context()->Plug(Heap::kUndefinedValueRootIndex);
break;
}
case Token::NOT: {
Comment cmnt(masm_, "[ UnaryOperation (NOT)");
if (context()->IsEffect()) {
// Unary NOT has no side effects so it's only necessary to visit the
// subexpression. Match the optimizing compiler by not branching.
VisitForEffect(expr->expression());
} else if (context()->IsTest()) {
const TestContext* test = TestContext::cast(context());
// The labels are swapped for the recursive call.
VisitForControl(expr->expression(),
test->false_label(),
test->true_label(),
test->fall_through());
context()->Plug(test->true_label(), test->false_label());
} else {
// We handle value contexts explicitly rather than simply visiting
// for control and plugging the control flow into the context,
// because we need to prepare a pair of extra administrative AST ids
// for the optimizing compiler.
DCHECK(context()->IsAccumulatorValue() || context()->IsStackValue());
Label materialize_true, materialize_false, done;
VisitForControl(expr->expression(),
&materialize_false,
&materialize_true,
&materialize_true);
__ bind(&materialize_true);
PrepareForBailoutForId(expr->MaterializeTrueId(), NO_REGISTERS);
__ LoadRoot(v0, Heap::kTrueValueRootIndex);
if (context()->IsStackValue()) __ push(v0);
__ jmp(&done);
__ bind(&materialize_false);
PrepareForBailoutForId(expr->MaterializeFalseId(), NO_REGISTERS);
__ LoadRoot(v0, Heap::kFalseValueRootIndex);
if (context()->IsStackValue()) __ push(v0);
__ bind(&done);
}
break;
}
case Token::TYPEOF: {
Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)");
{
AccumulatorValueContext context(this);
VisitForTypeofValue(expr->expression());
}
__ mov(a3, v0);
TypeofStub typeof_stub(isolate());
__ CallStub(&typeof_stub);
context()->Plug(v0);
break;
}
default:
UNREACHABLE();
}
}
void FullCodeGenerator::VisitCountOperation(CountOperation* expr) {
DCHECK(expr->expression()->IsValidReferenceExpressionOrThis());
Comment cmnt(masm_, "[ CountOperation");
Property* prop = expr->expression()->AsProperty();
LhsKind assign_type = Property::GetAssignType(prop);
// Evaluate expression and get value.
if (assign_type == VARIABLE) {
DCHECK(expr->expression()->AsVariableProxy()->var() != NULL);
AccumulatorValueContext context(this);
EmitVariableLoad(expr->expression()->AsVariableProxy());
} else {
// Reserve space for result of postfix operation.
if (expr->is_postfix() && !context()->IsEffect()) {
__ li(at, Operand(Smi::FromInt(0)));
__ push(at);
}
switch (assign_type) {
case NAMED_PROPERTY: {
// Put the object both on the stack and in the register.
VisitForStackValue(prop->obj());
__ ld(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0));
EmitNamedPropertyLoad(prop);
break;
}
case NAMED_SUPER_PROPERTY: {
VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
VisitForAccumulatorValue(
prop->obj()->AsSuperPropertyReference()->home_object());
__ Push(result_register());
const Register scratch = a1;
__ ld(scratch, MemOperand(sp, kPointerSize));
__ Push(scratch, result_register());
EmitNamedSuperPropertyLoad(prop);
break;
}
case KEYED_SUPER_PROPERTY: {
VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
VisitForAccumulatorValue(
prop->obj()->AsSuperPropertyReference()->home_object());
const Register scratch = a1;
const Register scratch1 = a4;
__ Move(scratch, result_register());
VisitForAccumulatorValue(prop->key());
__ Push(scratch, result_register());
__ ld(scratch1, MemOperand(sp, 2 * kPointerSize));
__ Push(scratch1, scratch, result_register());
EmitKeyedSuperPropertyLoad(prop);
break;
}
case KEYED_PROPERTY: {
VisitForStackValue(prop->obj());
VisitForStackValue(prop->key());
__ ld(LoadDescriptor::ReceiverRegister(),
MemOperand(sp, 1 * kPointerSize));
__ ld(LoadDescriptor::NameRegister(), MemOperand(sp, 0));
EmitKeyedPropertyLoad(prop);
break;
}
case VARIABLE:
UNREACHABLE();
}
}
// We need a second deoptimization point after loading the value
// in case evaluating the property load my have a side effect.
if (assign_type == VARIABLE) {
PrepareForBailout(expr->expression(), TOS_REG);
} else {
PrepareForBailoutForId(prop->LoadId(), TOS_REG);
}
// Inline smi case if we are in a loop.
Label stub_call, done;
JumpPatchSite patch_site(masm_);
int count_value = expr->op() == Token::INC ? 1 : -1;
__ mov(a0, v0);
if (ShouldInlineSmiCase(expr->op())) {
Label slow;
patch_site.EmitJumpIfNotSmi(v0, &slow);
// Save result for postfix expressions.
if (expr->is_postfix()) {
if (!context()->IsEffect()) {
// Save the result on the stack. If we have a named or keyed property
// we store the result under the receiver that is currently on top
// of the stack.
switch (assign_type) {
case VARIABLE:
__ push(v0);
break;
case NAMED_PROPERTY:
__ sd(v0, MemOperand(sp, kPointerSize));
break;
case NAMED_SUPER_PROPERTY:
__ sd(v0, MemOperand(sp, 2 * kPointerSize));
break;
case KEYED_PROPERTY:
__ sd(v0, MemOperand(sp, 2 * kPointerSize));
break;
case KEYED_SUPER_PROPERTY:
__ sd(v0, MemOperand(sp, 3 * kPointerSize));
break;
}
}
}
Register scratch1 = a1;
Register scratch2 = a4;
__ li(scratch1, Operand(Smi::FromInt(count_value)));
__ DadduAndCheckForOverflow(v0, v0, scratch1, scratch2);
__ BranchOnNoOverflow(&done, scratch2);
// Call stub. Undo operation first.
__ Move(v0, a0);
__ jmp(&stub_call);
__ bind(&slow);
}
if (!is_strong(language_mode())) {
ToNumberStub convert_stub(isolate());
__ CallStub(&convert_stub);
PrepareForBailoutForId(expr->ToNumberId(), TOS_REG);
}
// Save result for postfix expressions.
if (expr->is_postfix()) {
if (!context()->IsEffect()) {
// Save the result on the stack. If we have a named or keyed property
// we store the result under the receiver that is currently on top
// of the stack.
switch (assign_type) {
case VARIABLE:
__ push(v0);
break;
case NAMED_PROPERTY:
__ sd(v0, MemOperand(sp, kPointerSize));
break;
case NAMED_SUPER_PROPERTY:
__ sd(v0, MemOperand(sp, 2 * kPointerSize));
break;
case KEYED_PROPERTY:
__ sd(v0, MemOperand(sp, 2 * kPointerSize));
break;
case KEYED_SUPER_PROPERTY:
__ sd(v0, MemOperand(sp, 3 * kPointerSize));
break;
}
}
}
__ bind(&stub_call);
__ mov(a1, v0);
__ li(a0, Operand(Smi::FromInt(count_value)));
SetExpressionPosition(expr);
Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), Token::ADD).code();
CallIC(code, expr->CountBinOpFeedbackId());
patch_site.EmitPatchInfo();
__ bind(&done);
if (is_strong(language_mode())) {
PrepareForBailoutForId(expr->ToNumberId(), TOS_REG);
}
// Store the value returned in v0.
switch (assign_type) {
case VARIABLE:
if (expr->is_postfix()) {
{ EffectContext context(this);
EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
Token::ASSIGN, expr->CountSlot());
PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
context.Plug(v0);
}
// For all contexts except EffectConstant we have the result on
// top of the stack.
if (!context()->IsEffect()) {
context()->PlugTOS();
}
} else {
EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
Token::ASSIGN, expr->CountSlot());
PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
context()->Plug(v0);
}
break;
case NAMED_PROPERTY: {
__ mov(StoreDescriptor::ValueRegister(), result_register());
__ li(StoreDescriptor::NameRegister(),
Operand(prop->key()->AsLiteral()->value()));
__ pop(StoreDescriptor::ReceiverRegister());
EmitLoadStoreICSlot(expr->CountSlot());
CallStoreIC();
PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
if (expr->is_postfix()) {
if (!context()->IsEffect()) {
context()->PlugTOS();
}
} else {
context()->Plug(v0);
}
break;
}
case NAMED_SUPER_PROPERTY: {
EmitNamedSuperPropertyStore(prop);
if (expr->is_postfix()) {
if (!context()->IsEffect()) {
context()->PlugTOS();
}
} else {
context()->Plug(v0);
}
break;
}
case KEYED_SUPER_PROPERTY: {
EmitKeyedSuperPropertyStore(prop);
if (expr->is_postfix()) {
if (!context()->IsEffect()) {
context()->PlugTOS();
}
} else {
context()->Plug(v0);
}
break;
}
case KEYED_PROPERTY: {
__ mov(StoreDescriptor::ValueRegister(), result_register());
__ Pop(StoreDescriptor::ReceiverRegister(),
StoreDescriptor::NameRegister());
Handle<Code> ic =
CodeFactory::KeyedStoreIC(isolate(), language_mode()).code();
EmitLoadStoreICSlot(expr->CountSlot());
CallIC(ic);
PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
if (expr->is_postfix()) {
if (!context()->IsEffect()) {
context()->PlugTOS();
}
} else {
context()->Plug(v0);
}
break;
}
}
}
void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr,
Expression* sub_expr,
Handle<String> check) {
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
{ AccumulatorValueContext context(this);
VisitForTypeofValue(sub_expr);
}
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Factory* factory = isolate()->factory();
if (String::Equals(check, factory->number_string())) {
__ JumpIfSmi(v0, if_true);
__ ld(v0, FieldMemOperand(v0, HeapObject::kMapOffset));
__ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
Split(eq, v0, Operand(at), if_true, if_false, fall_through);
} else if (String::Equals(check, factory->string_string())) {
__ JumpIfSmi(v0, if_false);
__ GetObjectType(v0, v0, a1);
Split(lt, a1, Operand(FIRST_NONSTRING_TYPE), if_true, if_false,
fall_through);
} else if (String::Equals(check, factory->symbol_string())) {
__ JumpIfSmi(v0, if_false);
__ GetObjectType(v0, v0, a1);
Split(eq, a1, Operand(SYMBOL_TYPE), if_true, if_false, fall_through);
} else if (String::Equals(check, factory->boolean_string())) {
__ LoadRoot(at, Heap::kTrueValueRootIndex);
__ Branch(if_true, eq, v0, Operand(at));
__ LoadRoot(at, Heap::kFalseValueRootIndex);
Split(eq, v0, Operand(at), if_true, if_false, fall_through);
} else if (String::Equals(check, factory->undefined_string())) {
__ LoadRoot(at, Heap::kNullValueRootIndex);
__ Branch(if_false, eq, v0, Operand(at));
__ JumpIfSmi(v0, if_false);
// Check for undetectable objects => true.
__ ld(v0, FieldMemOperand(v0, HeapObject::kMapOffset));
__ lbu(a1, FieldMemOperand(v0, Map::kBitFieldOffset));
__ And(a1, a1, Operand(1 << Map::kIsUndetectable));
Split(ne, a1, Operand(zero_reg), if_true, if_false, fall_through);
} else if (String::Equals(check, factory->function_string())) {
__ JumpIfSmi(v0, if_false);
__ ld(v0, FieldMemOperand(v0, HeapObject::kMapOffset));
__ lbu(a1, FieldMemOperand(v0, Map::kBitFieldOffset));
__ And(a1, a1,
Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
Split(eq, a1, Operand(1 << Map::kIsCallable), if_true, if_false,
fall_through);
} else if (String::Equals(check, factory->object_string())) {
__ JumpIfSmi(v0, if_false);
__ LoadRoot(at, Heap::kNullValueRootIndex);
__ Branch(if_true, eq, v0, Operand(at));
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ GetObjectType(v0, v0, a1);
__ Branch(if_false, lt, a1, Operand(FIRST_JS_RECEIVER_TYPE));
// Check for callable or undetectable objects => false.
__ lbu(a1, FieldMemOperand(v0, Map::kBitFieldOffset));
__ And(a1, a1,
Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
Split(eq, a1, Operand(zero_reg), if_true, if_false, fall_through);
// clang-format off
#define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \
} else if (String::Equals(check, factory->type##_string())) { \
__ JumpIfSmi(v0, if_false); \
__ ld(v0, FieldMemOperand(v0, HeapObject::kMapOffset)); \
__ LoadRoot(at, Heap::k##Type##MapRootIndex); \
Split(eq, v0, Operand(at), if_true, if_false, fall_through);
SIMD128_TYPES(SIMD128_TYPE)
#undef SIMD128_TYPE
// clang-format on
} else {
if (if_false != fall_through) __ jmp(if_false);
}
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) {
Comment cmnt(masm_, "[ CompareOperation");
SetExpressionPosition(expr);
// First we try a fast inlined version of the compare when one of
// the operands is a literal.
if (TryLiteralCompare(expr)) return;
// Always perform the comparison for its control flow. Pack the result
// into the expression's context after the comparison is performed.
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
Token::Value op = expr->op();
VisitForStackValue(expr->left());
switch (op) {
case Token::IN:
VisitForStackValue(expr->right());
__ CallRuntime(Runtime::kHasProperty);
PrepareForBailoutBeforeSplit(expr, false, NULL, NULL);
__ LoadRoot(a4, Heap::kTrueValueRootIndex);
Split(eq, v0, Operand(a4), if_true, if_false, fall_through);
break;
case Token::INSTANCEOF: {
VisitForAccumulatorValue(expr->right());
__ mov(a0, result_register());
__ pop(a1);
InstanceOfStub stub(isolate());
__ CallStub(&stub);
PrepareForBailoutBeforeSplit(expr, false, NULL, NULL);
__ LoadRoot(a4, Heap::kTrueValueRootIndex);
Split(eq, v0, Operand(a4), if_true, if_false, fall_through);
break;
}
default: {
VisitForAccumulatorValue(expr->right());
Condition cc = CompareIC::ComputeCondition(op);
__ mov(a0, result_register());
__ pop(a1);
bool inline_smi_code = ShouldInlineSmiCase(op);
JumpPatchSite patch_site(masm_);
if (inline_smi_code) {
Label slow_case;
__ Or(a2, a0, Operand(a1));
patch_site.EmitJumpIfNotSmi(a2, &slow_case);
Split(cc, a1, Operand(a0), if_true, if_false, NULL);
__ bind(&slow_case);
}
Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
CallIC(ic, expr->CompareOperationFeedbackId());
patch_site.EmitPatchInfo();
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(cc, v0, Operand(zero_reg), if_true, if_false, fall_through);
}
}
// Convert the result of the comparison into one expected for this
// expression's context.
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr,
Expression* sub_expr,
NilValue nil) {
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
VisitForAccumulatorValue(sub_expr);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
__ mov(a0, result_register());
if (expr->op() == Token::EQ_STRICT) {
Heap::RootListIndex nil_value = nil == kNullValue ?
Heap::kNullValueRootIndex :
Heap::kUndefinedValueRootIndex;
__ LoadRoot(a1, nil_value);
Split(eq, a0, Operand(a1), if_true, if_false, fall_through);
} else {
Handle<Code> ic = CompareNilICStub::GetUninitialized(isolate(), nil);
CallIC(ic, expr->CompareOperationFeedbackId());
__ LoadRoot(a1, Heap::kTrueValueRootIndex);
Split(eq, v0, Operand(a1), if_true, if_false, fall_through);
}
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) {
__ ld(v0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
context()->Plug(v0);
}
Register FullCodeGenerator::result_register() {
return v0;
}
Register FullCodeGenerator::context_register() {
return cp;
}
void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) {
// DCHECK_EQ(POINTER_SIZE_ALIGN(frame_offset), frame_offset);
DCHECK(IsAligned(frame_offset, kPointerSize));
// __ sw(value, MemOperand(fp, frame_offset));
__ sd(value, MemOperand(fp, frame_offset));
}
void FullCodeGenerator::LoadContextField(Register dst, int context_index) {
__ ld(dst, ContextMemOperand(cp, context_index));
}
void FullCodeGenerator::PushFunctionArgumentForContextAllocation() {
Scope* closure_scope = scope()->ClosureScope();
if (closure_scope->is_script_scope() ||
closure_scope->is_module_scope()) {
// Contexts nested in the native context have a canonical empty function
// as their closure, not the anonymous closure containing the global
// code.
__ LoadNativeContextSlot(Context::CLOSURE_INDEX, at);
} else if (closure_scope->is_eval_scope()) {
// Contexts created by a call to eval have the same closure as the
// context calling eval, not the anonymous closure containing the eval
// code. Fetch it from the context.
__ ld(at, ContextMemOperand(cp, Context::CLOSURE_INDEX));
} else {
DCHECK(closure_scope->is_function_scope());
__ ld(at, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
}
__ push(at);
}
// ----------------------------------------------------------------------------
// Non-local control flow support.
void FullCodeGenerator::EnterFinallyBlock() {
DCHECK(!result_register().is(a1));
// Store pending message while executing finally block.
ExternalReference pending_message_obj =
ExternalReference::address_of_pending_message_obj(isolate());
__ li(at, Operand(pending_message_obj));
__ ld(a1, MemOperand(at));
__ push(a1);
ClearPendingMessage();
}
void FullCodeGenerator::ExitFinallyBlock() {
DCHECK(!result_register().is(a1));
// Restore pending message from stack.
__ pop(a1);
ExternalReference pending_message_obj =
ExternalReference::address_of_pending_message_obj(isolate());
__ li(at, Operand(pending_message_obj));
__ sd(a1, MemOperand(at));
}
void FullCodeGenerator::ClearPendingMessage() {
DCHECK(!result_register().is(a1));
ExternalReference pending_message_obj =
ExternalReference::address_of_pending_message_obj(isolate());
__ LoadRoot(a1, Heap::kTheHoleValueRootIndex);
__ li(at, Operand(pending_message_obj));
__ sd(a1, MemOperand(at));
}
void FullCodeGenerator::EmitLoadStoreICSlot(FeedbackVectorSlot slot) {
DCHECK(!slot.IsInvalid());
__ li(VectorStoreICTrampolineDescriptor::SlotRegister(),
Operand(SmiFromSlot(slot)));
}
void FullCodeGenerator::DeferredCommands::EmitCommands() {
__ Pop(result_register()); // Restore the accumulator.
__ Pop(a1); // Get the token.
for (DeferredCommand cmd : commands_) {
Label skip;
__ li(at, Operand(Smi::FromInt(cmd.token)));
__ Branch(&skip, ne, a1, Operand(at));
switch (cmd.command) {
case kReturn:
codegen_->EmitUnwindAndReturn();
break;
case kThrow:
__ Push(result_register());
__ CallRuntime(Runtime::kReThrow);
break;
case kContinue:
codegen_->EmitContinue(cmd.target);
break;
case kBreak:
codegen_->EmitBreak(cmd.target);
break;
}
__ bind(&skip);
}
}
#undef __
void BackEdgeTable::PatchAt(Code* unoptimized_code,
Address pc,
BackEdgeState target_state,
Code* replacement_code) {
static const int kInstrSize = Assembler::kInstrSize;
Address branch_address = pc - 8 * kInstrSize;
Isolate* isolate = unoptimized_code->GetIsolate();
CodePatcher patcher(isolate, branch_address, 1);
switch (target_state) {
case INTERRUPT:
// slt at, a3, zero_reg (in case of count based interrupts)
// beq at, zero_reg, ok
// lui t9, <interrupt stub address> upper
// ori t9, <interrupt stub address> u-middle
// dsll t9, t9, 16
// ori t9, <interrupt stub address> lower
// jalr t9
// nop
// ok-label ----- pc_after points here
patcher.masm()->slt(at, a3, zero_reg);
break;
case ON_STACK_REPLACEMENT:
case OSR_AFTER_STACK_CHECK:
// addiu at, zero_reg, 1
// beq at, zero_reg, ok ;; Not changed
// lui t9, <on-stack replacement address> upper
// ori t9, <on-stack replacement address> middle
// dsll t9, t9, 16
// ori t9, <on-stack replacement address> lower
// jalr t9 ;; Not changed
// nop ;; Not changed
// ok-label ----- pc_after points here
patcher.masm()->daddiu(at, zero_reg, 1);
break;
}
Address pc_immediate_load_address = pc - 6 * kInstrSize;
// Replace the stack check address in the load-immediate (6-instr sequence)
// with the entry address of the replacement code.
Assembler::set_target_address_at(isolate, pc_immediate_load_address,
replacement_code->entry());
unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch(
unoptimized_code, pc_immediate_load_address, replacement_code);
}
BackEdgeTable::BackEdgeState BackEdgeTable::GetBackEdgeState(
Isolate* isolate,
Code* unoptimized_code,
Address pc) {
static const int kInstrSize = Assembler::kInstrSize;
Address branch_address = pc - 8 * kInstrSize;
Address pc_immediate_load_address = pc - 6 * kInstrSize;
DCHECK(Assembler::IsBeq(Assembler::instr_at(pc - 7 * kInstrSize)));
if (!Assembler::IsAddImmediate(Assembler::instr_at(branch_address))) {
DCHECK(reinterpret_cast<uint64_t>(
Assembler::target_address_at(pc_immediate_load_address)) ==
reinterpret_cast<uint64_t>(
isolate->builtins()->InterruptCheck()->entry()));
return INTERRUPT;
}
DCHECK(Assembler::IsAddImmediate(Assembler::instr_at(branch_address)));
if (reinterpret_cast<uint64_t>(
Assembler::target_address_at(pc_immediate_load_address)) ==
reinterpret_cast<uint64_t>(
isolate->builtins()->OnStackReplacement()->entry())) {
return ON_STACK_REPLACEMENT;
}
DCHECK(reinterpret_cast<uint64_t>(
Assembler::target_address_at(pc_immediate_load_address)) ==
reinterpret_cast<uint64_t>(
isolate->builtins()->OsrAfterStackCheck()->entry()));
return OSR_AFTER_STACK_CHECK;
}
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_MIPS64