blob: 2e64cdbbb17e5eb7dbc192df3134dbafde6cd686 [file] [log] [blame]
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "test/fake_encoder.h"
#include <string.h>
#include <algorithm>
#include <cstdint>
#include <memory>
#include <string>
#include "api/video/video_content_type.h"
#include "common_types.h" // NOLINT(build/include)
#include "modules/video_coding/codecs/h264/include/h264_globals.h"
#include "modules/video_coding/include/video_codec_interface.h"
#include "modules/video_coding/include/video_error_codes.h"
#include "rtc_base/checks.h"
#include "system_wrappers/include/sleep.h"
namespace webrtc {
namespace test {
namespace {
const int kKeyframeSizeFactor = 5;
// Inverse of proportion of frames assigned to each temporal layer for all
// possible temporal layers numbers.
const int kTemporalLayerRateFactor[4][4] = {
{1, 0, 0, 0}, // 1/1
{2, 2, 0, 0}, // 1/2 + 1/2
{4, 4, 2, 0}, // 1/4 + 1/4 + 1/2
{8, 8, 4, 2}, // 1/8 + 1/8 + 1/4 + 1/2
};
void WriteCounter(unsigned char* payload, uint32_t counter) {
payload[0] = (counter & 0x00FF);
payload[1] = (counter & 0xFF00) >> 8;
payload[2] = (counter & 0xFF0000) >> 16;
payload[3] = (counter & 0xFF000000) >> 24;
}
}; // namespace
FakeEncoder::FakeEncoder(Clock* clock)
: clock_(clock),
callback_(nullptr),
configured_input_framerate_(-1),
max_target_bitrate_kbps_(-1),
pending_keyframe_(true),
counter_(0),
debt_bytes_(0) {
// Generate some arbitrary not-all-zero data
for (size_t i = 0; i < sizeof(encoded_buffer_); ++i) {
encoded_buffer_[i] = static_cast<uint8_t>(i);
}
for (bool& used : used_layers_) {
used = false;
}
}
void FakeEncoder::SetMaxBitrate(int max_kbps) {
RTC_DCHECK_GE(max_kbps, -1); // max_kbps == -1 disables it.
rtc::CritScope cs(&crit_sect_);
max_target_bitrate_kbps_ = max_kbps;
SetRateAllocation(target_bitrate_, configured_input_framerate_);
}
int32_t FakeEncoder::InitEncode(const VideoCodec* config,
int32_t number_of_cores,
size_t max_payload_size) {
rtc::CritScope cs(&crit_sect_);
config_ = *config;
target_bitrate_.SetBitrate(0, 0, config_.startBitrate * 1000);
configured_input_framerate_ = config_.maxFramerate;
pending_keyframe_ = true;
last_frame_info_ = FrameInfo();
return 0;
}
int32_t FakeEncoder::Encode(const VideoFrame& input_image,
const CodecSpecificInfo* codec_specific_info,
const std::vector<FrameType>* frame_types) {
unsigned char max_framerate;
unsigned char num_simulcast_streams;
SimulcastStream simulcast_streams[kMaxSimulcastStreams];
EncodedImageCallback* callback;
VideoBitrateAllocation target_bitrate;
int framerate;
VideoCodecMode mode;
bool keyframe;
uint32_t counter;
{
rtc::CritScope cs(&crit_sect_);
max_framerate = config_.maxFramerate;
num_simulcast_streams = config_.numberOfSimulcastStreams;
for (int i = 0; i < num_simulcast_streams; ++i) {
simulcast_streams[i] = config_.simulcastStream[i];
}
callback = callback_;
target_bitrate = target_bitrate_;
mode = config_.mode;
if (configured_input_framerate_ > 0) {
framerate = configured_input_framerate_;
} else {
framerate = max_framerate;
}
keyframe = pending_keyframe_;
pending_keyframe_ = false;
counter = counter_++;
}
FrameInfo frame_info =
NextFrame(frame_types, keyframe, num_simulcast_streams, target_bitrate,
simulcast_streams, framerate);
for (uint8_t i = 0; i < frame_info.layers.size(); ++i) {
constexpr int kMinPayLoadLength = 14;
if (frame_info.layers[i].size < kMinPayLoadLength) {
// Drop this temporal layer.
continue;
}
CodecSpecificInfo specifics;
memset(&specifics, 0, sizeof(specifics));
specifics.codecType = kVideoCodecGeneric;
std::unique_ptr<uint8_t[]> encoded_buffer(
new uint8_t[frame_info.layers[i].size]);
memcpy(encoded_buffer.get(), encoded_buffer_,
frame_info.layers[i].size - 4);
// Write a counter to the image to make each frame unique.
WriteCounter(encoded_buffer.get() + frame_info.layers[i].size - 4, counter);
EncodedImage encoded(encoded_buffer.get(), frame_info.layers[i].size,
sizeof(encoded_buffer_));
encoded.SetTimestamp(input_image.timestamp());
encoded.capture_time_ms_ = input_image.render_time_ms();
encoded._frameType =
frame_info.keyframe ? kVideoFrameKey : kVideoFrameDelta;
encoded._encodedWidth = simulcast_streams[i].width;
encoded._encodedHeight = simulcast_streams[i].height;
encoded.rotation_ = input_image.rotation();
encoded.content_type_ = (mode == VideoCodecMode::kScreensharing)
? VideoContentType::SCREENSHARE
: VideoContentType::UNSPECIFIED;
encoded.SetSpatialIndex(i);
if (callback->OnEncodedImage(encoded, &specifics, nullptr).error !=
EncodedImageCallback::Result::OK) {
return -1;
}
}
return 0;
}
FakeEncoder::FrameInfo FakeEncoder::NextFrame(
const std::vector<FrameType>* frame_types,
bool keyframe,
uint8_t num_simulcast_streams,
const VideoBitrateAllocation& target_bitrate,
SimulcastStream simulcast_streams[kMaxSimulcastStreams],
int framerate) {
FrameInfo frame_info;
frame_info.keyframe = keyframe;
if (frame_types) {
for (FrameType frame_type : *frame_types) {
if (frame_type == kVideoFrameKey) {
frame_info.keyframe = true;
break;
}
}
}
rtc::CritScope cs(&crit_sect_);
for (uint8_t i = 0; i < num_simulcast_streams; ++i) {
if (target_bitrate.GetBitrate(i, 0) > 0) {
int temporal_id = last_frame_info_.layers.size() > i
? ++last_frame_info_.layers[i].temporal_id %
simulcast_streams[i].numberOfTemporalLayers
: 0;
frame_info.layers.emplace_back(0, temporal_id);
}
}
if (last_frame_info_.layers.size() < frame_info.layers.size()) {
// A new keyframe is needed since a new layer will be added.
frame_info.keyframe = true;
}
for (uint8_t i = 0; i < frame_info.layers.size(); ++i) {
FrameInfo::SpatialLayer& layer_info = frame_info.layers[i];
if (frame_info.keyframe) {
layer_info.temporal_id = 0;
size_t avg_frame_size =
(target_bitrate.GetBitrate(i, 0) + 7) *
kTemporalLayerRateFactor[frame_info.layers.size() - 1][i] /
(8 * framerate);
// The first frame is a key frame and should be larger.
// Store the overshoot bytes and distribute them over the coming frames,
// so that we on average meet the bitrate target.
debt_bytes_ += (kKeyframeSizeFactor - 1) * avg_frame_size;
layer_info.size = kKeyframeSizeFactor * avg_frame_size;
} else {
size_t avg_frame_size =
(target_bitrate.GetBitrate(i, layer_info.temporal_id) + 7) *
kTemporalLayerRateFactor[frame_info.layers.size() - 1][i] /
(8 * framerate);
layer_info.size = avg_frame_size;
if (debt_bytes_ > 0) {
// Pay at most half of the frame size for old debts.
size_t payment_size = std::min(avg_frame_size / 2, debt_bytes_);
debt_bytes_ -= payment_size;
layer_info.size -= payment_size;
}
}
}
last_frame_info_ = frame_info;
return frame_info;
}
int32_t FakeEncoder::RegisterEncodeCompleteCallback(
EncodedImageCallback* callback) {
rtc::CritScope cs(&crit_sect_);
callback_ = callback;
return 0;
}
int32_t FakeEncoder::Release() {
return 0;
}
int32_t FakeEncoder::SetRateAllocation(
const VideoBitrateAllocation& rate_allocation,
uint32_t framerate) {
rtc::CritScope cs(&crit_sect_);
target_bitrate_ = rate_allocation;
int allocated_bitrate_kbps = target_bitrate_.get_sum_kbps();
// Scale bitrate allocation to not exceed the given max target bitrate.
if (max_target_bitrate_kbps_ > 0 &&
allocated_bitrate_kbps > max_target_bitrate_kbps_) {
for (uint8_t spatial_idx = 0; spatial_idx < kMaxSpatialLayers;
++spatial_idx) {
for (uint8_t temporal_idx = 0; temporal_idx < kMaxTemporalStreams;
++temporal_idx) {
if (target_bitrate_.HasBitrate(spatial_idx, temporal_idx)) {
uint32_t bitrate =
target_bitrate_.GetBitrate(spatial_idx, temporal_idx);
bitrate = static_cast<uint32_t>(
(bitrate * int64_t{max_target_bitrate_kbps_}) /
allocated_bitrate_kbps);
target_bitrate_.SetBitrate(spatial_idx, temporal_idx, bitrate);
}
}
}
}
configured_input_framerate_ = framerate;
return 0;
}
const char* FakeEncoder::kImplementationName = "fake_encoder";
VideoEncoder::EncoderInfo FakeEncoder::GetEncoderInfo() const {
EncoderInfo info;
info.implementation_name = kImplementationName;
return info;
}
int FakeEncoder::GetConfiguredInputFramerate() const {
rtc::CritScope cs(&crit_sect_);
return configured_input_framerate_;
}
FakeH264Encoder::FakeH264Encoder(Clock* clock)
: FakeEncoder(clock), callback_(nullptr), idr_counter_(0) {
FakeEncoder::RegisterEncodeCompleteCallback(this);
}
int32_t FakeH264Encoder::RegisterEncodeCompleteCallback(
EncodedImageCallback* callback) {
rtc::CritScope cs(&local_crit_sect_);
callback_ = callback;
return 0;
}
EncodedImageCallback::Result FakeH264Encoder::OnEncodedImage(
const EncodedImage& encoded_image,
const CodecSpecificInfo* codec_specific_info,
const RTPFragmentationHeader* fragments) {
const size_t kSpsSize = 8;
const size_t kPpsSize = 11;
const int kIdrFrequency = 10;
EncodedImageCallback* callback;
int current_idr_counter;
{
rtc::CritScope cs(&local_crit_sect_);
callback = callback_;
current_idr_counter = idr_counter_;
++idr_counter_;
}
RTPFragmentationHeader fragmentation;
if (current_idr_counter % kIdrFrequency == 0 &&
encoded_image.size() > kSpsSize + kPpsSize + 1) {
const size_t kNumSlices = 3;
fragmentation.VerifyAndAllocateFragmentationHeader(kNumSlices);
fragmentation.fragmentationOffset[0] = 0;
fragmentation.fragmentationLength[0] = kSpsSize;
fragmentation.fragmentationOffset[1] = kSpsSize;
fragmentation.fragmentationLength[1] = kPpsSize;
fragmentation.fragmentationOffset[2] = kSpsSize + kPpsSize;
fragmentation.fragmentationLength[2] =
encoded_image.size() - (kSpsSize + kPpsSize);
const size_t kSpsNalHeader = 0x67;
const size_t kPpsNalHeader = 0x68;
const size_t kIdrNalHeader = 0x65;
encoded_image._buffer[fragmentation.fragmentationOffset[0]] = kSpsNalHeader;
encoded_image._buffer[fragmentation.fragmentationOffset[1]] = kPpsNalHeader;
encoded_image._buffer[fragmentation.fragmentationOffset[2]] = kIdrNalHeader;
} else {
const size_t kNumSlices = 1;
fragmentation.VerifyAndAllocateFragmentationHeader(kNumSlices);
fragmentation.fragmentationOffset[0] = 0;
fragmentation.fragmentationLength[0] = encoded_image.size();
const size_t kNalHeader = 0x41;
encoded_image._buffer[fragmentation.fragmentationOffset[0]] = kNalHeader;
}
uint8_t value = 0;
int fragment_counter = 0;
for (size_t i = 0; i < encoded_image.size(); ++i) {
if (fragment_counter == fragmentation.fragmentationVectorSize ||
i != fragmentation.fragmentationOffset[fragment_counter]) {
encoded_image._buffer[i] = value++;
} else {
++fragment_counter;
}
}
CodecSpecificInfo specifics;
memset(&specifics, 0, sizeof(specifics));
specifics.codecType = kVideoCodecH264;
specifics.codecSpecific.H264.packetization_mode =
H264PacketizationMode::NonInterleaved;
RTC_DCHECK(callback);
return callback->OnEncodedImage(encoded_image, &specifics, &fragmentation);
}
DelayedEncoder::DelayedEncoder(Clock* clock, int delay_ms)
: test::FakeEncoder(clock), delay_ms_(delay_ms) {
// The encoder could be created on a different thread than
// it is being used on.
sequence_checker_.Detach();
}
void DelayedEncoder::SetDelay(int delay_ms) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
delay_ms_ = delay_ms;
}
int32_t DelayedEncoder::Encode(const VideoFrame& input_image,
const CodecSpecificInfo* codec_specific_info,
const std::vector<FrameType>* frame_types) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
SleepMs(delay_ms_);
return FakeEncoder::Encode(input_image, codec_specific_info, frame_types);
}
MultithreadedFakeH264Encoder::MultithreadedFakeH264Encoder(Clock* clock)
: test::FakeH264Encoder(clock),
current_queue_(0),
queue1_(nullptr),
queue2_(nullptr) {
// The encoder could be created on a different thread than
// it is being used on.
sequence_checker_.Detach();
}
int32_t MultithreadedFakeH264Encoder::InitEncode(const VideoCodec* config,
int32_t number_of_cores,
size_t max_payload_size) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
queue1_.reset(new rtc::TaskQueue("Queue 1"));
queue2_.reset(new rtc::TaskQueue("Queue 2"));
return FakeH264Encoder::InitEncode(config, number_of_cores, max_payload_size);
}
class MultithreadedFakeH264Encoder::EncodeTask : public rtc::QueuedTask {
public:
EncodeTask(MultithreadedFakeH264Encoder* encoder,
const VideoFrame& input_image,
const CodecSpecificInfo* codec_specific_info,
const std::vector<FrameType>* frame_types)
: encoder_(encoder),
input_image_(input_image),
codec_specific_info_(),
frame_types_(*frame_types) {
if (codec_specific_info)
codec_specific_info_ = *codec_specific_info;
}
private:
bool Run() override {
encoder_->EncodeCallback(input_image_, &codec_specific_info_,
&frame_types_);
return true;
}
MultithreadedFakeH264Encoder* const encoder_;
VideoFrame input_image_;
CodecSpecificInfo codec_specific_info_;
std::vector<FrameType> frame_types_;
};
int32_t MultithreadedFakeH264Encoder::Encode(
const VideoFrame& input_image,
const CodecSpecificInfo* codec_specific_info,
const std::vector<FrameType>* frame_types) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
std::unique_ptr<rtc::TaskQueue>& queue =
(current_queue_++ % 2 == 0) ? queue1_ : queue2_;
if (!queue) {
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
queue->PostTask(std::unique_ptr<rtc::QueuedTask>(
new EncodeTask(this, input_image, codec_specific_info, frame_types)));
return WEBRTC_VIDEO_CODEC_OK;
}
int32_t MultithreadedFakeH264Encoder::EncodeCallback(
const VideoFrame& input_image,
const CodecSpecificInfo* codec_specific_info,
const std::vector<FrameType>* frame_types) {
return FakeH264Encoder::Encode(input_image, codec_specific_info, frame_types);
}
int32_t MultithreadedFakeH264Encoder::Release() {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
queue1_.reset();
queue2_.reset();
return FakeH264Encoder::Release();
}
} // namespace test
} // namespace webrtc