blob: a4045106859b7e4c826f9454f50db7776a577b3f [file] [log] [blame]
/*
* Copyright (C) 1999 Lars Knoll (knoll@kde.org)
* (C) 1999 Antti Koivisto (koivisto@kde.org)
* (C) 2001 Dirk Mueller (mueller@kde.org)
* Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 Apple Inc. All rights reserved.
* Copyright (C) 2008 Nokia Corporation and/or its subsidiary(-ies)
* Copyright (C) 2009 Torch Mobile Inc. All rights reserved. (http://www.torchmobile.com/)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#include "core/dom/Node.h"
#include "bindings/core/v8/DOMDataStore.h"
#include "bindings/core/v8/ExceptionState.h"
#include "bindings/core/v8/Microtask.h"
#include "bindings/core/v8/V8DOMWrapper.h"
#include "core/HTMLNames.h"
#include "core/css/CSSSelector.h"
#include "core/css/resolver/StyleResolver.h"
#include "core/dom/AXObjectCache.h"
#include "core/dom/Attr.h"
#include "core/dom/Attribute.h"
#include "core/dom/ChildListMutationScope.h"
#include "core/dom/ChildNodeList.h"
#include "core/dom/DOMNodeIds.h"
#include "core/dom/Document.h"
#include "core/dom/DocumentFragment.h"
#include "core/dom/DocumentType.h"
#include "core/dom/Element.h"
#include "core/dom/ElementRareData.h"
#include "core/dom/ElementTraversal.h"
#include "core/dom/ExceptionCode.h"
#include "core/dom/LayoutTreeBuilderTraversal.h"
#include "core/dom/NodeRareData.h"
#include "core/dom/NodeTraversal.h"
#include "core/dom/ProcessingInstruction.h"
#include "core/dom/Range.h"
#include "core/dom/StaticNodeList.h"
#include "core/dom/StyleEngine.h"
#include "core/dom/TemplateContentDocumentFragment.h"
#include "core/dom/Text.h"
#include "core/dom/TreeScopeAdopter.h"
#include "core/dom/UserActionElementSet.h"
#include "core/dom/shadow/ElementShadow.h"
#include "core/dom/shadow/FlatTreeTraversal.h"
#include "core/dom/shadow/InsertionPoint.h"
#include "core/dom/shadow/ShadowRoot.h"
#include "core/editing/EditingUtilities.h"
#include "core/editing/markers/DocumentMarkerController.h"
#include "core/events/Event.h"
#include "core/events/EventDispatchMediator.h"
#include "core/events/EventDispatcher.h"
#include "core/events/EventListener.h"
#include "core/events/GestureEvent.h"
#include "core/events/InputEvent.h"
#include "core/events/KeyboardEvent.h"
#include "core/events/MouseEvent.h"
#include "core/events/MutationEvent.h"
#include "core/events/PointerEvent.h"
#include "core/events/TextEvent.h"
#include "core/events/TouchEvent.h"
#include "core/events/UIEvent.h"
#include "core/events/WheelEvent.h"
#include "core/frame/EventHandlerRegistry.h"
#include "core/frame/LocalDOMWindow.h"
#include "core/frame/LocalFrame.h"
#include "core/html/HTMLDialogElement.h"
#include "core/html/HTMLFrameOwnerElement.h"
#include "core/html/HTMLSlotElement.h"
#include "core/input/EventHandler.h"
#include "core/inspector/InstanceCounters.h"
#include "core/layout/LayoutBox.h"
#include "core/page/ContextMenuController.h"
#include "core/page/Page.h"
#include "core/svg/graphics/SVGImage.h"
#include "platform/EventDispatchForbiddenScope.h"
#include "platform/RuntimeEnabledFeatures.h"
#include "platform/TraceEvent.h"
#include "platform/TracedValue.h"
#include "wtf/HashSet.h"
#include "wtf/Partitions.h"
#include "wtf/PassOwnPtr.h"
#include "wtf/Vector.h"
#include "wtf/text/CString.h"
#include "wtf/text/StringBuilder.h"
namespace blink {
using namespace HTMLNames;
struct SameSizeAsNode : NODE_BASE_CLASSES {
uint32_t m_nodeFlags;
Member<void*> m_willbeMember[4];
void* m_pointer;
};
static_assert(sizeof(Node) <= sizeof(SameSizeAsNode), "Node should stay small");
#if !ENABLE(OILPAN)
void* Node::operator new(size_t size)
{
DCHECK(isMainThread());
return partitionAlloc(WTF::Partitions::nodePartition(), size, "blink::Node");
}
void Node::operator delete(void* ptr)
{
DCHECK(isMainThread());
partitionFree(ptr);
}
#endif
#if DUMP_NODE_STATISTICS
using WeakNodeSet = HeapHashSet<WeakMember<Node>>;
static WeakNodeSet& liveNodeSet()
{
DEFINE_STATIC_LOCAL(WeakNodeSet, set, (new WeakNodeSet));
return set;
}
#endif
void Node::dumpStatistics()
{
#if DUMP_NODE_STATISTICS
size_t nodesWithRareData = 0;
size_t elementNodes = 0;
size_t attrNodes = 0;
size_t textNodes = 0;
size_t cdataNodes = 0;
size_t commentNodes = 0;
size_t piNodes = 0;
size_t documentNodes = 0;
size_t docTypeNodes = 0;
size_t fragmentNodes = 0;
size_t shadowRootNodes = 0;
HashMap<String, size_t> perTagCount;
size_t attributes = 0;
size_t elementsWithAttributeStorage = 0;
size_t elementsWithRareData = 0;
size_t elementsWithNamedNodeMap = 0;
{
ScriptForbiddenScope forbidScriptDuringRawIteration;
for (Node* node : liveNodeSet()) {
if (node->hasRareData()) {
++nodesWithRareData;
if (node->isElementNode()) {
++elementsWithRareData;
if (toElement(node)->hasNamedNodeMap())
++elementsWithNamedNodeMap;
}
}
switch (node->getNodeType()) {
case ELEMENT_NODE: {
++elementNodes;
// Tag stats
Element* element = toElement(node);
HashMap<String, size_t>::AddResult result = perTagCount.add(element->tagName(), 1);
if (!result.isNewEntry)
result.storedValue->value++;
if (const ElementData* elementData = element->elementData()) {
attributes += elementData->attributes().size();
++elementsWithAttributeStorage;
}
break;
}
case ATTRIBUTE_NODE: {
++attrNodes;
break;
}
case TEXT_NODE: {
++textNodes;
break;
}
case CDATA_SECTION_NODE: {
++cdataNodes;
break;
}
case COMMENT_NODE: {
++commentNodes;
break;
}
case PROCESSING_INSTRUCTION_NODE: {
++piNodes;
break;
}
case DOCUMENT_NODE: {
++documentNodes;
break;
}
case DOCUMENT_TYPE_NODE: {
++docTypeNodes;
break;
}
case DOCUMENT_FRAGMENT_NODE: {
if (node->isShadowRoot())
++shadowRootNodes;
else
++fragmentNodes;
break;
}
}
}
}
printf("Number of Nodes: %d\n\n", liveNodeSet().size());
printf("Number of Nodes with RareData: %zu\n\n", nodesWithRareData);
printf("NodeType distribution:\n");
printf(" Number of Element nodes: %zu\n", elementNodes);
printf(" Number of Attribute nodes: %zu\n", attrNodes);
printf(" Number of Text nodes: %zu\n", textNodes);
printf(" Number of CDATASection nodes: %zu\n", cdataNodes);
printf(" Number of Comment nodes: %zu\n", commentNodes);
printf(" Number of ProcessingInstruction nodes: %zu\n", piNodes);
printf(" Number of Document nodes: %zu\n", documentNodes);
printf(" Number of DocumentType nodes: %zu\n", docTypeNodes);
printf(" Number of DocumentFragment nodes: %zu\n", fragmentNodes);
printf(" Number of ShadowRoot nodes: %zu\n", shadowRootNodes);
printf("Element tag name distibution:\n");
for (const auto& entry : perTagCount)
printf(" Number of <%s> tags: %zu\n", entry.key.utf8().data(), entry.value);
printf("Attributes:\n");
printf(" Number of Attributes (non-Node and Node): %zu [%zu]\n", attributes, sizeof(Attribute));
printf(" Number of Elements with attribute storage: %zu [%zu]\n", elementsWithAttributeStorage, sizeof(ElementData));
printf(" Number of Elements with RareData: %zu\n", elementsWithRareData);
printf(" Number of Elements with NamedNodeMap: %zu [%zu]\n", elementsWithNamedNodeMap, sizeof(NamedNodeMap));
#endif
}
void Node::trackForDebugging()
{
#if DUMP_NODE_STATISTICS
liveNodeSet().add(this);
#endif
}
Node::Node(TreeScope* treeScope, ConstructionType type)
: m_nodeFlags(type)
, m_parentOrShadowHostNode(nullptr)
, m_treeScope(treeScope)
, m_previous(nullptr)
, m_next(nullptr)
{
DCHECK(m_treeScope || type == CreateDocument || type == CreateShadowRoot);
#if !ENABLE(OILPAN)
if (m_treeScope)
m_treeScope->guardRef();
#endif
#if !defined(NDEBUG) || (defined(DUMP_NODE_STATISTICS) && DUMP_NODE_STATISTICS)
trackForDebugging();
#endif
InstanceCounters::incrementCounter(InstanceCounters::NodeCounter);
}
Node::~Node()
{
#if !ENABLE(OILPAN)
#if DUMP_NODE_STATISTICS
liveNodeSet().remove(this);
#endif
if (hasRareData())
clearRareData();
RELEASE_ASSERT(!layoutObject());
if (!isContainerNode())
willBeDeletedFromDocument();
if (m_previous)
m_previous->setNextSibling(nullptr);
if (m_next)
m_next->setPreviousSibling(nullptr);
if (m_treeScope)
m_treeScope->guardDeref();
if (getFlag(HasWeakReferencesFlag))
WeakIdentifierMap<Node>::notifyObjectDestroyed(this);
// clearEventTargetData() must be always done,
// or eventTargetDataMap() may keep a raw pointer to a deleted object.
DCHECK(!hasEventTargetData());
#else
// With Oilpan, the rare data finalizer also asserts for
// this condition (we cannot directly access it here.)
RELEASE_ASSERT(hasRareData() || !layoutObject());
#endif
InstanceCounters::decrementCounter(InstanceCounters::NodeCounter);
}
#if !ENABLE(OILPAN)
// With Oilpan all of this is handled with weak processing of the document.
void Node::willBeDeletedFromDocument()
{
if (hasEventTargetData())
clearEventTargetData();
if (!isTreeScopeInitialized())
return;
Document& document = this->document();
if (document.frameHost())
document.frameHost()->eventHandlerRegistry().didRemoveAllEventHandlers(*this);
document.markers().removeMarkers(this);
}
#endif
NodeRareData* Node::rareData() const
{
ASSERT_WITH_SECURITY_IMPLICATION(hasRareData());
return static_cast<NodeRareData*>(m_data.m_rareData);
}
NodeRareData& Node::ensureRareData()
{
if (hasRareData())
return *rareData();
if (isElementNode())
m_data.m_rareData = ElementRareData::create(m_data.m_layoutObject);
else
m_data.m_rareData = NodeRareData::create(m_data.m_layoutObject);
DCHECK(m_data.m_rareData);
setFlag(HasRareDataFlag);
return *rareData();
}
#if !ENABLE(OILPAN)
void Node::clearRareData()
{
DCHECK(hasRareData());
DCHECK(!transientMutationObserverRegistry() || transientMutationObserverRegistry()->isEmpty());
LayoutObject* layoutObject = m_data.m_rareData->layoutObject();
if (isElementNode())
delete static_cast<ElementRareData*>(m_data.m_rareData);
else
delete static_cast<NodeRareData*>(m_data.m_rareData);
m_data.m_layoutObject = layoutObject;
clearFlag(HasRareDataFlag);
}
#endif
Node* Node::toNode()
{
return this;
}
short Node::tabIndex() const
{
return 0;
}
String Node::nodeValue() const
{
return String();
}
void Node::setNodeValue(const String&)
{
// By default, setting nodeValue has no effect.
}
NodeList* Node::childNodes()
{
if (isContainerNode())
return ensureRareData().ensureNodeLists().ensureChildNodeList(toContainerNode(*this));
return ensureRareData().ensureNodeLists().ensureEmptyChildNodeList(*this);
}
Node* Node::pseudoAwarePreviousSibling() const
{
if (parentElement() && !previousSibling()) {
Element* parent = parentElement();
if (isAfterPseudoElement() && parent->lastChild())
return parent->lastChild();
if (!isBeforePseudoElement())
return parent->pseudoElement(PseudoIdBefore);
}
return previousSibling();
}
Node* Node::pseudoAwareNextSibling() const
{
if (parentElement() && !nextSibling()) {
Element* parent = parentElement();
if (isBeforePseudoElement() && parent->hasChildren())
return parent->firstChild();
if (!isAfterPseudoElement())
return parent->pseudoElement(PseudoIdAfter);
}
return nextSibling();
}
Node* Node::pseudoAwareFirstChild() const
{
if (isElementNode()) {
const Element* currentElement = toElement(this);
Node* first = currentElement->pseudoElement(PseudoIdBefore);
if (first)
return first;
first = currentElement->firstChild();
if (!first)
first = currentElement->pseudoElement(PseudoIdAfter);
return first;
}
return firstChild();
}
Node* Node::pseudoAwareLastChild() const
{
if (isElementNode()) {
const Element* currentElement = toElement(this);
Node* last = currentElement->pseudoElement(PseudoIdAfter);
if (last)
return last;
last = currentElement->lastChild();
if (!last)
last = currentElement->pseudoElement(PseudoIdBefore);
return last;
}
return lastChild();
}
Node& Node::treeRoot() const
{
if (isInTreeScope())
return treeScope().rootNode();
const Node* node = this;
while (node->parentNode())
node = node->parentNode();
return const_cast<Node&>(*node);
}
Node* Node::insertBefore(Node* newChild, Node* refChild, ExceptionState& exceptionState)
{
if (isContainerNode())
return toContainerNode(this)->insertBefore(newChild, refChild, exceptionState);
exceptionState.throwDOMException(HierarchyRequestError, "This node type does not support this method.");
return nullptr;
}
Node* Node::replaceChild(Node* newChild, Node* oldChild, ExceptionState& exceptionState)
{
if (isContainerNode())
return toContainerNode(this)->replaceChild(newChild, oldChild, exceptionState);
exceptionState.throwDOMException(HierarchyRequestError, "This node type does not support this method.");
return nullptr;
}
Node* Node::removeChild(Node* oldChild, ExceptionState& exceptionState)
{
if (isContainerNode())
return toContainerNode(this)->removeChild(oldChild, exceptionState);
exceptionState.throwDOMException(NotFoundError, "This node type does not support this method.");
return nullptr;
}
Node* Node::appendChild(Node* newChild, ExceptionState& exceptionState)
{
if (isContainerNode())
return toContainerNode(this)->appendChild(newChild, exceptionState);
exceptionState.throwDOMException(HierarchyRequestError, "This node type does not support this method.");
return nullptr;
}
void Node::remove(ExceptionState& exceptionState)
{
if (ContainerNode* parent = parentNode())
parent->removeChild(this, exceptionState);
}
void Node::normalize()
{
updateDistribution();
// Go through the subtree beneath us, normalizing all nodes. This means that
// any two adjacent text nodes are merged and any empty text nodes are removed.
Node* node = this;
while (Node* firstChild = node->firstChild())
node = firstChild;
while (node) {
if (node == this)
break;
if (node->getNodeType() == TEXT_NODE)
node = toText(node)->mergeNextSiblingNodesIfPossible();
else
node = NodeTraversal::nextPostOrder(*node);
}
}
bool Node::isContentEditable(UserSelectAllTreatment treatment) const
{
document().updateLayoutTree();
return hasEditableStyle(Editable, treatment);
}
bool Node::isContentRichlyEditable() const
{
document().updateLayoutTree();
return hasEditableStyle(RichlyEditable, UserSelectAllIsAlwaysNonEditable);
}
bool Node::hasEditableStyle(EditableLevel editableLevel, UserSelectAllTreatment treatment) const
{
if (isPseudoElement())
return false;
// Ideally we'd call DCHECK(!needsStyleRecalc()) here, but
// ContainerNode::setFocus() calls setNeedsStyleRecalc(), so the assertion
// would fire in the middle of Document::setFocusedNode().
for (const Node* node = this; node; node = node->parentNode()) {
if ((node->isHTMLElement() || node->isDocumentNode()) && node->layoutObject()) {
// Elements with user-select: all style are considered atomic
// therefore non editable.
if (nodeIsUserSelectAll(node) && treatment == UserSelectAllIsAlwaysNonEditable)
return false;
switch (node->layoutObject()->style()->userModify()) {
case READ_ONLY:
return false;
case READ_WRITE:
return true;
case READ_WRITE_PLAINTEXT_ONLY:
return editableLevel != RichlyEditable;
}
ASSERT_NOT_REACHED();
return false;
}
}
return false;
}
bool Node::isEditableToAccessibility(EditableLevel editableLevel) const
{
if (hasEditableStyle(editableLevel))
return true;
// FIXME: Respect editableLevel for ARIA editable elements.
if (editableLevel == RichlyEditable)
return false;
// FIXME(dmazzoni): support ScopedAXObjectCache (crbug/489851).
if (AXObjectCache* cache = document().existingAXObjectCache())
return cache->rootAXEditableElement(this);
return false;
}
LayoutBox* Node::layoutBox() const
{
LayoutObject* layoutObject = this->layoutObject();
return layoutObject && layoutObject->isBox() ? toLayoutBox(layoutObject) : nullptr;
}
LayoutBoxModelObject* Node::layoutBoxModelObject() const
{
LayoutObject* layoutObject = this->layoutObject();
return layoutObject && layoutObject->isBoxModelObject() ? toLayoutBoxModelObject(layoutObject) : nullptr;
}
LayoutRect Node::boundingBox() const
{
if (layoutObject())
return LayoutRect(layoutObject()->absoluteBoundingBoxRect());
return LayoutRect();
}
#ifndef NDEBUG
inline static ShadowRoot* oldestShadowRootFor(const Node* node)
{
if (!node->isElementNode())
return nullptr;
if (ElementShadow* shadow = toElement(node)->shadow())
return shadow->oldestShadowRoot();
return nullptr;
}
#endif
Node& Node::shadowIncludingRoot() const
{
if (inShadowIncludingDocument())
return document();
Node* root = const_cast<Node*>(this);
while (Node* host = root->shadowHost())
root = host;
while (Node* ancestor = root->parentNode())
root = ancestor;
DCHECK(!root->shadowHost());
return *root;
}
#if DCHECK_IS_ON()
bool Node::needsDistributionRecalc() const
{
return shadowIncludingRoot().childNeedsDistributionRecalc();
}
#endif
void Node::updateDistribution()
{
// Extra early out to avoid spamming traces.
if (inShadowIncludingDocument() && !document().childNeedsDistributionRecalc())
return;
TRACE_EVENT0("blink", "Node::updateDistribution");
ScriptForbiddenScope forbidScript;
Node& root = shadowIncludingRoot();
if (root.childNeedsDistributionRecalc())
root.recalcDistribution();
}
void Node::recalcDistribution()
{
DCHECK(childNeedsDistributionRecalc());
if (isElementNode()) {
if (ElementShadow* shadow = toElement(this)->shadow())
shadow->distributeIfNeeded();
}
DCHECK(ScriptForbiddenScope::isScriptForbidden());
for (Node* child = firstChild(); child; child = child->nextSibling()) {
if (child->childNeedsDistributionRecalc())
child->recalcDistribution();
}
for (ShadowRoot* root = youngestShadowRoot(); root; root = root->olderShadowRoot()) {
if (root->childNeedsDistributionRecalc())
root->recalcDistribution();
}
clearChildNeedsDistributionRecalc();
}
void Node::setIsLink(bool isLink)
{
setFlag(isLink && !SVGImage::isInSVGImage(toElement(this)), IsLinkFlag);
}
void Node::setNeedsStyleInvalidation()
{
DCHECK(isElementNode());
setFlag(NeedsStyleInvalidationFlag);
markAncestorsWithChildNeedsStyleInvalidation();
}
void Node::markAncestorsWithChildNeedsStyleInvalidation()
{
ScriptForbiddenScope forbidScriptDuringRawIteration;
for (Node* node = parentOrShadowHostNode(); node && !node->childNeedsStyleInvalidation(); node = node->parentOrShadowHostNode())
node->setChildNeedsStyleInvalidation();
document().scheduleLayoutTreeUpdateIfNeeded();
}
void Node::markAncestorsWithChildNeedsDistributionRecalc()
{
ScriptForbiddenScope forbidScriptDuringRawIteration;
if (RuntimeEnabledFeatures::shadowDOMV1Enabled() && inShadowIncludingDocument() && !document().childNeedsDistributionRecalc()) {
// TODO(hayato): Support a non-document composed tree.
// TODO(hayato): Enqueue a task only if a 'slotchange' event listner is registered in the document composed tree.
Microtask::enqueueMicrotask(WTF::bind(&Document::updateDistribution, &document()));
}
for (Node* node = this; node && !node->childNeedsDistributionRecalc(); node = node->parentOrShadowHostNode())
node->setChildNeedsDistributionRecalc();
document().scheduleLayoutTreeUpdateIfNeeded();
}
inline void Node::setStyleChange(StyleChangeType changeType)
{
m_nodeFlags = (m_nodeFlags & ~StyleChangeMask) | changeType;
}
void Node::markAncestorsWithChildNeedsStyleRecalc()
{
for (ContainerNode* p = parentOrShadowHostNode(); p && !p->childNeedsStyleRecalc(); p = p->parentOrShadowHostNode())
p->setChildNeedsStyleRecalc();
document().scheduleLayoutTreeUpdateIfNeeded();
}
void Node::setNeedsStyleRecalc(StyleChangeType changeType, const StyleChangeReasonForTracing& reason)
{
DCHECK(changeType != NoStyleChange);
if (!inActiveDocument())
return;
TRACE_EVENT_INSTANT1(
TRACE_DISABLED_BY_DEFAULT("devtools.timeline.invalidationTracking"),
"StyleRecalcInvalidationTracking",
TRACE_EVENT_SCOPE_THREAD,
"data",
InspectorStyleRecalcInvalidationTrackingEvent::data(this, reason));
StyleChangeType existingChangeType = getStyleChangeType();
if (changeType > existingChangeType)
setStyleChange(changeType);
if (existingChangeType == NoStyleChange)
markAncestorsWithChildNeedsStyleRecalc();
if (isElementNode() && hasRareData())
toElement(*this).setAnimationStyleChange(false);
}
void Node::clearNeedsStyleRecalc()
{
m_nodeFlags &= ~StyleChangeMask;
clearSVGFilterNeedsLayerUpdate();
if (isElementNode() && hasRareData())
toElement(*this).setAnimationStyleChange(false);
}
bool Node::inActiveDocument() const
{
return inShadowIncludingDocument() && document().isActive();
}
Node* Node::focusDelegate()
{
return this;
}
bool Node::shouldHaveFocusAppearance() const
{
DCHECK(focused());
return true;
}
bool Node::isInert() const
{
const HTMLDialogElement* dialog = document().activeModalDialog();
if (dialog && this != document() && (!canParticipateInFlatTree() || !FlatTreeTraversal::containsIncludingPseudoElement(*dialog, *this)))
return true;
return document().ownerElement() && document().ownerElement()->isInert();
}
unsigned Node::nodeIndex() const
{
const Node* tempNode = previousSibling();
unsigned count = 0;
for (count = 0; tempNode; count++)
tempNode = tempNode->previousSibling();
return count;
}
NodeListsNodeData* Node::nodeLists()
{
return hasRareData() ? rareData()->nodeLists() : nullptr;
}
void Node::clearNodeLists()
{
rareData()->clearNodeLists();
}
bool Node::isDescendantOf(const Node *other) const
{
// Return true if other is an ancestor of this, otherwise false
if (!other || !other->hasChildren() || inShadowIncludingDocument() != other->inShadowIncludingDocument())
return false;
if (other->treeScope() != treeScope())
return false;
if (other->isTreeScope())
return !isTreeScope();
for (const ContainerNode* n = parentNode(); n; n = n->parentNode()) {
if (n == other)
return true;
}
return false;
}
bool Node::contains(const Node* node) const
{
if (!node)
return false;
return this == node || node->isDescendantOf(this);
}
bool Node::isShadowIncludingInclusiveAncestorOf(const Node* node) const
{
if (!node)
return false;
if (this == node)
return true;
if (document() != node->document())
return false;
if (inShadowIncludingDocument() != node->inShadowIncludingDocument())
return false;
bool hasChildren = isContainerNode() && toContainerNode(this)->hasChildren();
bool hasShadow = isElementNode() && toElement(this)->shadow();
if (!hasChildren && !hasShadow)
return false;
for (; node; node = node->shadowHost()) {
if (treeScope() == node->treeScope())
return contains(node);
}
return false;
}
Node* Node::retarget(const Node& target) const
{
for (const Node* ancestor = &target; ancestor; ancestor = ancestor->shadowHost()) {
if (treeScope() == ancestor->treeScope())
return const_cast<Node*>(ancestor);
}
return nullptr;
}
bool Node::containsIncludingHostElements(const Node& node) const
{
const Node* current = &node;
do {
if (current == this)
return true;
if (current->isDocumentFragment() && toDocumentFragment(current)->isTemplateContent())
current = static_cast<const TemplateContentDocumentFragment*>(current)->host();
else
current = current->parentOrShadowHostNode();
} while (current);
return false;
}
Node* Node::commonAncestor(const Node& other, ContainerNode* (*parent)(const Node&)) const
{
if (this == other)
return const_cast<Node*>(this);
if (document() != other.document())
return nullptr;
int thisDepth = 0;
for (const Node* node = this; node; node = parent(*node)) {
if (node == &other)
return const_cast<Node*>(node);
thisDepth++;
}
int otherDepth = 0;
for (const Node* node = &other; node; node = parent(*node)) {
if (node == this)
return const_cast<Node*>(this);
otherDepth++;
}
const Node* thisIterator = this;
const Node* otherIterator = &other;
if (thisDepth > otherDepth) {
for (int i = thisDepth; i > otherDepth; --i)
thisIterator = parent(*thisIterator);
} else if (otherDepth > thisDepth) {
for (int i = otherDepth; i > thisDepth; --i)
otherIterator = parent(*otherIterator);
}
while (thisIterator) {
if (thisIterator == otherIterator)
return const_cast<Node*>(thisIterator);
thisIterator = parent(*thisIterator);
otherIterator = parent(*otherIterator);
}
DCHECK(!otherIterator);
return nullptr;
}
void Node::reattach(const AttachContext& context)
{
AttachContext reattachContext(context);
reattachContext.performingReattach = true;
// We only need to detach if the node has already been through attach().
if (getStyleChangeType() < NeedsReattachStyleChange)
detach(reattachContext);
attach(reattachContext);
}
void Node::attach(const AttachContext&)
{
DCHECK(document().inStyleRecalc() || isDocumentNode());
DCHECK(!document().lifecycle().inDetach());
DCHECK(needsAttach());
DCHECK(!layoutObject() || (layoutObject()->style() && (layoutObject()->parent() || layoutObject()->isLayoutView())));
clearNeedsStyleRecalc();
if (AXObjectCache* cache = document().axObjectCache())
cache->updateCacheAfterNodeIsAttached(this);
}
void Node::detach(const AttachContext& context)
{
DCHECK(document().lifecycle().stateAllowsDetach());
DocumentLifecycle::DetachScope willDetach(document().lifecycle());
if (layoutObject())
layoutObject()->destroyAndCleanupAnonymousWrappers();
setLayoutObject(nullptr);
setStyleChange(NeedsReattachStyleChange);
clearChildNeedsStyleInvalidation();
}
void Node::reattachWhitespaceSiblingsIfNeeded(Text* start)
{
ScriptForbiddenScope forbidScriptDuringRawIteration;
for (Node* sibling = start; sibling; sibling = sibling->nextSibling()) {
if (sibling->isTextNode() && toText(sibling)->containsOnlyWhitespace()) {
bool hadLayoutObject = !!sibling->layoutObject();
toText(sibling)->reattachIfNeeded();
// If sibling's layout object status didn't change we don't need to continue checking
// other siblings since their layout object status won't change either.
if (!!sibling->layoutObject() == hadLayoutObject)
return;
} else if (sibling->layoutObject()) {
return;
}
}
}
const ComputedStyle* Node::virtualEnsureComputedStyle(PseudoId pseudoElementSpecifier)
{
return parentOrShadowHostNode() ? parentOrShadowHostNode()->ensureComputedStyle(pseudoElementSpecifier) : nullptr;
}
int Node::maxCharacterOffset() const
{
ASSERT_NOT_REACHED();
return 0;
}
// FIXME: Shouldn't these functions be in the editing code? Code that asks questions about HTML in the core DOM class
// is obviously misplaced.
bool Node::canStartSelection() const
{
if (hasEditableStyle())
return true;
if (layoutObject()) {
const ComputedStyle& style = layoutObject()->styleRef();
// We allow selections to begin within an element that has -webkit-user-select: none set,
// but if the element is draggable then dragging should take priority over selection.
if (style.userDrag() == DRAG_ELEMENT && style.userSelect() == SELECT_NONE)
return false;
}
ContainerNode* parent = FlatTreeTraversal::parent(*this);
return parent ? parent->canStartSelection() : true;
}
bool Node::canParticipateInFlatTree() const
{
return !isShadowRoot() && !isSlotOrActiveInsertionPoint();
}
bool Node::isSlotOrActiveInsertionPoint() const
{
return isHTMLSlotElement(*this) || isActiveInsertionPoint(*this);
}
AtomicString Node::slotName() const
{
DCHECK(slottable());
if (isElementNode())
return normalizeSlotName(toElement(*this).fastGetAttribute(HTMLNames::slotAttr));
DCHECK(isTextNode());
return emptyAtom;
}
// static
AtomicString Node::normalizeSlotName(const AtomicString& name)
{
return (name.isNull() || name.isEmpty()) ? emptyAtom : name;
}
bool Node::isInV1ShadowTree() const
{
ShadowRoot* shadowRoot = containingShadowRoot();
return shadowRoot && shadowRoot->isV1();
}
bool Node::isInV0ShadowTree() const
{
ShadowRoot* shadowRoot = containingShadowRoot();
return shadowRoot && !shadowRoot->isV1();
}
ElementShadow* Node::parentElementShadow() const
{
Element* parent = parentElement();
return parent ? parent->shadow() : nullptr;
}
bool Node::isChildOfV1ShadowHost() const
{
ElementShadow* parentShadow = parentElementShadow();
return parentShadow && parentShadow->isV1();
}
bool Node::isChildOfV0ShadowHost() const
{
ElementShadow* parentShadow = parentElementShadow();
return parentShadow && !parentShadow->isV1();
}
Element* Node::shadowHost() const
{
if (ShadowRoot* root = containingShadowRoot())
return root->host();
return nullptr;
}
ShadowRoot* Node::containingShadowRoot() const
{
Node& root = treeScope().rootNode();
return root.isShadowRoot() ? toShadowRoot(&root) : nullptr;
}
Node* Node::nonBoundaryShadowTreeRootNode()
{
DCHECK(!isShadowRoot());
Node* root = this;
while (root) {
if (root->isShadowRoot())
return root;
Node* parent = root->parentOrShadowHostNode();
if (parent && parent->isShadowRoot())
return root;
root = parent;
}
return nullptr;
}
ContainerNode* Node::nonShadowBoundaryParentNode() const
{
ContainerNode* parent = parentNode();
return parent && !parent->isShadowRoot() ? parent : nullptr;
}
Element* Node::parentOrShadowHostElement() const
{
ContainerNode* parent = parentOrShadowHostNode();
if (!parent)
return nullptr;
if (parent->isShadowRoot())
return toShadowRoot(parent)->host();
if (!parent->isElementNode())
return nullptr;
return toElement(parent);
}
ContainerNode* Node::parentOrShadowHostOrTemplateHostNode() const
{
if (isDocumentFragment() && toDocumentFragment(this)->isTemplateContent())
return static_cast<const TemplateContentDocumentFragment*>(this)->host();
return parentOrShadowHostNode();
}
bool Node::isRootEditableElement() const
{
return hasEditableStyle() && isElementNode() && (!parentNode() || !parentNode()->hasEditableStyle()
|| !parentNode()->isElementNode() || this == document().body());
}
Element* Node::rootEditableElement(EditableType editableType) const
{
if (editableType == HasEditableAXRole) {
if (AXObjectCache* cache = document().existingAXObjectCache())
return const_cast<Element*>(cache->rootAXEditableElement(this));
}
return rootEditableElement();
}
Element* Node::rootEditableElement() const
{
const Node* result = nullptr;
for (const Node* n = this; n && n->hasEditableStyle(); n = n->parentNode()) {
if (n->isElementNode())
result = n;
if (document().body() == n)
break;
}
return toElement(const_cast<Node*>(result));
}
// FIXME: End of obviously misplaced HTML editing functions. Try to move these out of Node.
Document* Node::ownerDocument() const
{
Document* doc = &document();
return doc == this ? nullptr : doc;
}
const KURL& Node::baseURI() const
{
return document().baseURL();
}
bool Node::isEqualNode(Node* other) const
{
if (!other)
return false;
NodeType nodeType = this->getNodeType();
if (nodeType != other->getNodeType())
return false;
if (nodeValue() != other->nodeValue())
return false;
if (isAttributeNode()) {
if (toAttr(this)->localName() != toAttr(other)->localName())
return false;
if (toAttr(this)->namespaceURI() != toAttr(other)->namespaceURI())
return false;
} else if (isElementNode()) {
if (toElement(this)->tagQName() != toElement(other)->tagQName())
return false;
if (!toElement(this)->hasEquivalentAttributes(toElement(other)))
return false;
} else if (nodeName() != other->nodeName()) {
return false;
}
Node* child = firstChild();
Node* otherChild = other->firstChild();
while (child) {
if (!child->isEqualNode(otherChild))
return false;
child = child->nextSibling();
otherChild = otherChild->nextSibling();
}
if (otherChild)
return false;
if (isDocumentTypeNode()) {
const DocumentType* documentTypeThis = toDocumentType(this);
const DocumentType* documentTypeOther = toDocumentType(other);
if (documentTypeThis->publicId() != documentTypeOther->publicId())
return false;
if (documentTypeThis->systemId() != documentTypeOther->systemId())
return false;
}
return true;
}
bool Node::isDefaultNamespace(const AtomicString& namespaceURIMaybeEmpty) const
{
const AtomicString& namespaceURI = namespaceURIMaybeEmpty.isEmpty() ? nullAtom : namespaceURIMaybeEmpty;
switch (getNodeType()) {
case ELEMENT_NODE: {
const Element& element = toElement(*this);
if (element.prefix().isNull())
return element.namespaceURI() == namespaceURI;
AttributeCollection attributes = element.attributes();
for (const Attribute& attr : attributes) {
if (attr.localName() == xmlnsAtom)
return attr.value() == namespaceURI;
}
if (Element* parent = parentElement())
return parent->isDefaultNamespace(namespaceURI);
return false;
}
case DOCUMENT_NODE:
if (Element* de = toDocument(this)->documentElement())
return de->isDefaultNamespace(namespaceURI);
return false;
case DOCUMENT_TYPE_NODE:
case DOCUMENT_FRAGMENT_NODE:
return false;
case ATTRIBUTE_NODE: {
const Attr* attr = toAttr(this);
if (attr->ownerElement())
return attr->ownerElement()->isDefaultNamespace(namespaceURI);
return false;
}
default:
if (Element* parent = parentElement())
return parent->isDefaultNamespace(namespaceURI);
return false;
}
}
const AtomicString& Node::lookupPrefix(const AtomicString& namespaceURI) const
{
// Implemented according to
// https://dom.spec.whatwg.org/#dom-node-lookupprefix
if (namespaceURI.isEmpty() || namespaceURI.isNull())
return nullAtom;
const Element* context;
switch (getNodeType()) {
case ELEMENT_NODE:
context = toElement(this);
break;
case DOCUMENT_NODE:
context = toDocument(this)->documentElement();
break;
case DOCUMENT_FRAGMENT_NODE:
case DOCUMENT_TYPE_NODE:
context = nullptr;
break;
// FIXME: Remove this when Attr no longer extends Node (CR305105)
case ATTRIBUTE_NODE:
context = toAttr(this)->ownerElement();
break;
default:
context = parentElement();
break;
}
if (!context)
return nullAtom;
return context->locateNamespacePrefix(namespaceURI);
}
const AtomicString& Node::lookupNamespaceURI(const String& prefix) const
{
// Implemented according to
// http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/namespaces-algorithms.html#lookupNamespaceURIAlgo
if (!prefix.isNull() && prefix.isEmpty())
return nullAtom;
switch (getNodeType()) {
case ELEMENT_NODE: {
const Element& element = toElement(*this);
if (!element.namespaceURI().isNull() && element.prefix() == prefix)
return element.namespaceURI();
AttributeCollection attributes = element.attributes();
for (const Attribute& attr : attributes) {
if (attr.prefix() == xmlnsAtom && attr.localName() == prefix) {
if (!attr.value().isEmpty())
return attr.value();
return nullAtom;
}
if (attr.localName() == xmlnsAtom && prefix.isNull()) {
if (!attr.value().isEmpty())
return attr.value();
return nullAtom;
}
}
if (Element* parent = parentElement())
return parent->lookupNamespaceURI(prefix);
return nullAtom;
}
case DOCUMENT_NODE:
if (Element* de = toDocument(this)->documentElement())
return de->lookupNamespaceURI(prefix);
return nullAtom;
case DOCUMENT_TYPE_NODE:
case DOCUMENT_FRAGMENT_NODE:
return nullAtom;
case ATTRIBUTE_NODE: {
const Attr *attr = toAttr(this);
if (attr->ownerElement())
return attr->ownerElement()->lookupNamespaceURI(prefix);
return nullAtom;
}
default:
if (Element* parent = parentElement())
return parent->lookupNamespaceURI(prefix);
return nullAtom;
}
}
String Node::textContent(bool convertBRsToNewlines) const
{
// This covers ProcessingInstruction and Comment that should return their
// value when .textContent is accessed on them, but should be ignored when
// iterated over as a descendant of a ContainerNode.
if (isCharacterDataNode())
return toCharacterData(this)->data();
// Documents and non-container nodes (that are not CharacterData)
// have null textContent.
if (isDocumentNode() || !isContainerNode())
return String();
StringBuilder content;
for (const Node& node : NodeTraversal::inclusiveDescendantsOf(*this)) {
if (isHTMLBRElement(node) && convertBRsToNewlines) {
content.append('\n');
} else if (node.isTextNode()) {
content.append(toText(node).data());
}
}
return content.toString();
}
void Node::setTextContent(const String& text)
{
switch (getNodeType()) {
case TEXT_NODE:
case CDATA_SECTION_NODE:
case COMMENT_NODE:
case PROCESSING_INSTRUCTION_NODE:
setNodeValue(text);
return;
case ELEMENT_NODE:
case DOCUMENT_FRAGMENT_NODE: {
// FIXME: Merge this logic into replaceChildrenWithText.
ContainerNode* container = toContainerNode(this);
// Note: This is an intentional optimization.
// See crbug.com/352836 also.
// No need to do anything if the text is identical.
if (container->hasOneTextChild() && toText(container->firstChild())->data() == text)
return;
ChildListMutationScope mutation(*this);
// Note: This API will not insert empty text nodes:
// https://dom.spec.whatwg.org/#dom-node-textcontent
if (text.isEmpty()) {
container->removeChildren(DispatchSubtreeModifiedEvent);
} else {
container->removeChildren(OmitSubtreeModifiedEvent);
container->appendChild(document().createTextNode(text), ASSERT_NO_EXCEPTION);
}
return;
}
case ATTRIBUTE_NODE:
case DOCUMENT_NODE:
case DOCUMENT_TYPE_NODE:
// Do nothing.
return;
}
ASSERT_NOT_REACHED();
}
bool Node::offsetInCharacters() const
{
return isCharacterDataNode();
}
unsigned short Node::compareDocumentPosition(const Node* otherNode, ShadowTreesTreatment treatment) const
{
if (otherNode == this)
return DOCUMENT_POSITION_EQUIVALENT;
const Attr* attr1 = getNodeType() == ATTRIBUTE_NODE ? toAttr(this) : nullptr;
const Attr* attr2 = otherNode->getNodeType() == ATTRIBUTE_NODE ? toAttr(otherNode) : nullptr;
const Node* start1 = attr1 ? attr1->ownerElement() : this;
const Node* start2 = attr2 ? attr2->ownerElement() : otherNode;
// If either of start1 or start2 is null, then we are disconnected, since one of the nodes is
// an orphaned attribute node.
if (!start1 || !start2) {
unsigned short direction = (this > otherNode) ? DOCUMENT_POSITION_PRECEDING : DOCUMENT_POSITION_FOLLOWING;
return DOCUMENT_POSITION_DISCONNECTED | DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC | direction;
}
HeapVector<Member<const Node>, 16> chain1;
HeapVector<Member<const Node>, 16> chain2;
if (attr1)
chain1.append(attr1);
if (attr2)
chain2.append(attr2);
if (attr1 && attr2 && start1 == start2 && start1) {
// We are comparing two attributes on the same node. Crawl our attribute map and see which one we hit first.
const Element* owner1 = attr1->ownerElement();
AttributeCollection attributes = owner1->attributes();
for (const Attribute& attr : attributes) {
// If neither of the two determining nodes is a child node and nodeType is the same for both determining nodes, then an
// implementation-dependent order between the determining nodes is returned. This order is stable as long as no nodes of
// the same nodeType are inserted into or removed from the direct container. This would be the case, for example,
// when comparing two attributes of the same element, and inserting or removing additional attributes might change
// the order between existing attributes.
if (attr1->getQualifiedName() == attr.name())
return DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC | DOCUMENT_POSITION_FOLLOWING;
if (attr2->getQualifiedName() == attr.name())
return DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC | DOCUMENT_POSITION_PRECEDING;
}
ASSERT_NOT_REACHED();
return DOCUMENT_POSITION_DISCONNECTED;
}
// If one node is in the document and the other is not, we must be disconnected.
// If the nodes have different owning documents, they must be disconnected. Note that we avoid
// comparing Attr nodes here, since they return false from inShadowIncludingDocument() all the time (which seems like a bug).
if (start1->inShadowIncludingDocument() != start2->inShadowIncludingDocument() || (treatment == TreatShadowTreesAsDisconnected && start1->treeScope() != start2->treeScope())) {
unsigned short direction = (this > otherNode) ? DOCUMENT_POSITION_PRECEDING : DOCUMENT_POSITION_FOLLOWING;
return DOCUMENT_POSITION_DISCONNECTED | DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC | direction;
}
// We need to find a common ancestor container, and then compare the indices of the two immediate children.
const Node* current;
for (current = start1; current; current = current->parentOrShadowHostNode())
chain1.append(current);
for (current = start2; current; current = current->parentOrShadowHostNode())
chain2.append(current);
unsigned index1 = chain1.size();
unsigned index2 = chain2.size();
// If the two elements don't have a common root, they're not in the same tree.
if (chain1[index1 - 1] != chain2[index2 - 1]) {
unsigned short direction = (this > otherNode) ? DOCUMENT_POSITION_PRECEDING : DOCUMENT_POSITION_FOLLOWING;
return DOCUMENT_POSITION_DISCONNECTED | DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC | direction;
}
unsigned connection = start1->treeScope() != start2->treeScope() ? DOCUMENT_POSITION_DISCONNECTED | DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC : 0;
// Walk the two chains backwards and look for the first difference.
for (unsigned i = std::min(index1, index2); i; --i) {
const Node* child1 = chain1[--index1];
const Node* child2 = chain2[--index2];
if (child1 != child2) {
// If one of the children is an attribute, it wins.
if (child1->getNodeType() == ATTRIBUTE_NODE)
return DOCUMENT_POSITION_FOLLOWING | connection;
if (child2->getNodeType() == ATTRIBUTE_NODE)
return DOCUMENT_POSITION_PRECEDING | connection;
// If one of the children is a shadow root,
if (child1->isShadowRoot() || child2->isShadowRoot()) {
if (!child2->isShadowRoot())
return Node::DOCUMENT_POSITION_FOLLOWING | connection;
if (!child1->isShadowRoot())
return Node::DOCUMENT_POSITION_PRECEDING | connection;
for (const ShadowRoot* child = toShadowRoot(child2)->olderShadowRoot(); child; child = child->olderShadowRoot()) {
if (child == child1) {
return Node::DOCUMENT_POSITION_FOLLOWING | connection;
}
}
return Node::DOCUMENT_POSITION_PRECEDING | connection;
}
if (!child2->nextSibling())
return DOCUMENT_POSITION_FOLLOWING | connection;
if (!child1->nextSibling())
return DOCUMENT_POSITION_PRECEDING | connection;
// Otherwise we need to see which node occurs first. Crawl backwards from child2 looking for child1.
for (const Node* child = child2->previousSibling(); child; child = child->previousSibling()) {
if (child == child1)
return DOCUMENT_POSITION_FOLLOWING | connection;
}
return DOCUMENT_POSITION_PRECEDING | connection;
}
}
// There was no difference between the two parent chains, i.e., one was a subset of the other. The shorter
// chain is the ancestor.
return index1 < index2 ?
DOCUMENT_POSITION_FOLLOWING | DOCUMENT_POSITION_CONTAINED_BY | connection :
DOCUMENT_POSITION_PRECEDING | DOCUMENT_POSITION_CONTAINS | connection;
}
String Node::debugName() const
{
StringBuilder name;
name.append(debugNodeName());
if (isElementNode()) {
const Element& thisElement = toElement(*this);
if (thisElement.hasID()) {
name.appendLiteral(" id=\'");
name.append(thisElement.getIdAttribute());
name.append('\'');
}
if (thisElement.hasClass()) {
name.appendLiteral(" class=\'");
for (size_t i = 0; i < thisElement.classNames().size(); ++i) {
if (i > 0)
name.append(' ');
name.append(thisElement.classNames()[i]);
}
name.append('\'');
}
}
return name.toString();
}
String Node::debugNodeName() const
{
return nodeName();
}
static void appendAttributeDesc(const Node* node, StringBuilder& stringBuilder, const QualifiedName& name, const char* attrDesc)
{
if (!node->isElementNode())
return;
String attr = toElement(node)->getAttribute(name);
if (attr.isEmpty())
return;
stringBuilder.append(attrDesc);
stringBuilder.appendLiteral("=\"");
stringBuilder.append(attr);
stringBuilder.appendLiteral("\"");
}
// |std::ostream| version of |Node::showNode|
std::ostream& operator<<(std::ostream& ostream, const Node& node)
{
ostream << node.nodeName();
if (node.isTextNode())
return ostream << " " << node.nodeValue();
StringBuilder attrs;
appendAttributeDesc(&node, attrs, HTMLNames::idAttr, " ID");
appendAttributeDesc(&node, attrs, HTMLNames::classAttr, " CLASS");
appendAttributeDesc(&node, attrs, HTMLNames::styleAttr, " STYLE");
return ostream << attrs.toString();
}
std::ostream& operator<<(std::ostream& ostream, const Node* node)
{
if (!node)
return ostream << "null";
return ostream << *node;
}
#ifndef NDEBUG
void Node::showNode(const char* prefix) const
{
if (!prefix)
prefix = "";
if (isTextNode()) {
String value = nodeValue();
value.replace('\\', "\\\\");
value.replace('\n', "\\n");
WTFLogAlways("%s%s\t%p \"%s\"\n", prefix, nodeName().utf8().data(), this, value.utf8().data());
} else if (isDocumentTypeNode()) {
WTFLogAlways("%sDOCTYPE %s\t%p\n", prefix, nodeName().utf8().data(), this);
} else if (getNodeType() == PROCESSING_INSTRUCTION_NODE) {
WTFLogAlways("%s?%s\t%p\n", prefix, nodeName().utf8().data(), this);
} else if (isShadowRoot()) {
// nodeName of ShadowRoot is #document-fragment. It's confused with
// DocumentFragment.
WTFLogAlways("%s#shadow-root\t%p\n", prefix, this);
} else {
StringBuilder attrs;
appendAttributeDesc(this, attrs, idAttr, " ID");
appendAttributeDesc(this, attrs, classAttr, " CLASS");
appendAttributeDesc(this, attrs, styleAttr, " STYLE");
if (hasEditableStyle())
attrs.appendLiteral(" (editable)");
if (document().focusedElement() == this)
attrs.appendLiteral(" (focused)");
WTFLogAlways("%s%s\t%p%s\n", prefix, nodeName().utf8().data(), this, attrs.toString().utf8().data());
}
}
void Node::showTreeForThis() const
{
showTreeAndMark(this, "*");
}
void Node::showTreeForThisInFlatTree() const
{
showTreeAndMarkInFlatTree(this, "*");
}
void Node::showNodePathForThis() const
{
HeapVector<Member<const Node>, 16> chain;
const Node* node = this;
while (node->parentOrShadowHostNode()) {
chain.append(node);
node = node->parentOrShadowHostNode();
}
for (unsigned index = chain.size(); index > 0; --index) {
const Node* node = chain[index - 1];
if (node->isShadowRoot()) {
int count = 0;
for (const ShadowRoot* shadowRoot = toShadowRoot(node)->olderShadowRoot(); shadowRoot; shadowRoot = shadowRoot->olderShadowRoot())
++count;
WTFLogAlways("/#shadow-root[%d]", count);
continue;
}
switch (node->getNodeType()) {
case ELEMENT_NODE: {
WTFLogAlways("/%s", node->nodeName().utf8().data());
const Element* element = toElement(node);
const AtomicString& idattr = element->getIdAttribute();
bool hasIdAttr = !idattr.isNull() && !idattr.isEmpty();
if (node->previousSibling() || node->nextSibling()) {
int count = 0;
for (const Node* previous = node->previousSibling(); previous; previous = previous->previousSibling()) {
if (previous->nodeName() == node->nodeName()) {
++count;
}
}
if (hasIdAttr)
WTFLogAlways("[@id=\"%s\" and position()=%d]", idattr.utf8().data(), count);
else
WTFLogAlways("[%d]", count);
} else if (hasIdAttr) {
WTFLogAlways("[@id=\"%s\"]", idattr.utf8().data());
}
break;
}
case TEXT_NODE:
WTFLogAlways("/text()");
break;
case ATTRIBUTE_NODE:
WTFLogAlways("/@%s", node->nodeName().utf8().data());
break;
default:
break;
}
}
WTFLogAlways("\n");
}
static void traverseTreeAndMark(const String& baseIndent, const Node* rootNode, const Node* markedNode1, const char* markedLabel1, const Node* markedNode2, const char* markedLabel2)
{
for (const Node& node : NodeTraversal::inclusiveDescendantsOf(*rootNode)) {
StringBuilder indent;
if (node == markedNode1)
indent.append(markedLabel1);
if (node == markedNode2)
indent.append(markedLabel2);
indent.append(baseIndent);
for (const Node* tmpNode = &node; tmpNode && tmpNode != rootNode; tmpNode = tmpNode->parentOrShadowHostNode())
indent.append('\t');
node.showNode(indent.toString().utf8().data());
indent.append('\t');
if (node.isElementNode()) {
const Element& element = toElement(node);
if (Element* pseudo = element.pseudoElement(PseudoIdBefore))
traverseTreeAndMark(indent.toString(), pseudo, markedNode1, markedLabel1, markedNode2, markedLabel2);
if (Element* pseudo = element.pseudoElement(PseudoIdAfter))
traverseTreeAndMark(indent.toString(), pseudo, markedNode1, markedLabel1, markedNode2, markedLabel2);
if (Element* pseudo = element.pseudoElement(PseudoIdFirstLetter))
traverseTreeAndMark(indent.toString(), pseudo, markedNode1, markedLabel1, markedNode2, markedLabel2);
if (Element* pseudo = element.pseudoElement(PseudoIdBackdrop))
traverseTreeAndMark(indent.toString(), pseudo, markedNode1, markedLabel1, markedNode2, markedLabel2);
}
if (node.isShadowRoot()) {
if (ShadowRoot* youngerShadowRoot = toShadowRoot(node).youngerShadowRoot())
traverseTreeAndMark(indent.toString(), youngerShadowRoot, markedNode1, markedLabel1, markedNode2, markedLabel2);
} else if (ShadowRoot* oldestShadowRoot = oldestShadowRootFor(&node)) {
traverseTreeAndMark(indent.toString(), oldestShadowRoot, markedNode1, markedLabel1, markedNode2, markedLabel2);
}
}
}
static void traverseTreeAndMarkInFlatTree(const String& baseIndent, const Node* rootNode, const Node* markedNode1, const char* markedLabel1, const Node* markedNode2, const char* markedLabel2)
{
for (const Node* node = rootNode; node; node = FlatTreeTraversal::nextSibling(*node)) {
StringBuilder indent;
if (node == markedNode1)
indent.append(markedLabel1);
if (node == markedNode2)
indent.append(markedLabel2);
indent.append(baseIndent);
node->showNode(indent.toString().utf8().data());
indent.append('\t');
Node* child = FlatTreeTraversal::firstChild(*node);
if (child)
traverseTreeAndMarkInFlatTree(indent.toString(), child, markedNode1, markedLabel1, markedNode2, markedLabel2);
}
}
void Node::showTreeAndMark(const Node* markedNode1, const char* markedLabel1, const Node* markedNode2, const char* markedLabel2) const
{
const Node* rootNode;
const Node* node = this;
while (node->parentOrShadowHostNode() && !isHTMLBodyElement(*node))
node = node->parentOrShadowHostNode();
rootNode = node;
String startingIndent;
traverseTreeAndMark(startingIndent, rootNode, markedNode1, markedLabel1, markedNode2, markedLabel2);
}
void Node::showTreeAndMarkInFlatTree(const Node* markedNode1, const char* markedLabel1, const Node* markedNode2, const char* markedLabel2) const
{
const Node* rootNode;
const Node* node = this;
while (node->parentOrShadowHostNode() && !isHTMLBodyElement(*node))
node = node->parentOrShadowHostNode();
rootNode = node;
String startingIndent;
traverseTreeAndMarkInFlatTree(startingIndent, rootNode, markedNode1, markedLabel1, markedNode2, markedLabel2);
}
void Node::formatForDebugger(char* buffer, unsigned length) const
{
String result;
String s;
s = nodeName();
if (s.isEmpty())
result = "<none>";
else
result = s;
strncpy(buffer, result.utf8().data(), length - 1);
}
static ContainerNode* parentOrShadowHostOrFrameOwner(const Node* node)
{
ContainerNode* parent = node->parentOrShadowHostNode();
if (!parent && node->document().frame())
parent = node->document().frame()->deprecatedLocalOwner();
return parent;
}
static void showSubTreeAcrossFrame(const Node* node, const Node* markedNode, const String& indent)
{
if (node == markedNode)
fputs("*", stderr);
fputs(indent.utf8().data(), stderr);
node->showNode();
if (node->isShadowRoot()) {
if (ShadowRoot* youngerShadowRoot = toShadowRoot(node)->youngerShadowRoot())
showSubTreeAcrossFrame(youngerShadowRoot, markedNode, indent + "\t");
} else {
if (node->isFrameOwnerElement())
showSubTreeAcrossFrame(toHTMLFrameOwnerElement(node)->contentDocument(), markedNode, indent + "\t");
if (ShadowRoot* oldestShadowRoot = oldestShadowRootFor(node))
showSubTreeAcrossFrame(oldestShadowRoot, markedNode, indent + "\t");
}
for (const Node* child = node->firstChild(); child; child = child->nextSibling())
showSubTreeAcrossFrame(child, markedNode, indent + "\t");
}
void Node::showTreeForThisAcrossFrame() const
{
const Node* rootNode = this;
while (parentOrShadowHostOrFrameOwner(rootNode))
rootNode = parentOrShadowHostOrFrameOwner(rootNode);
showSubTreeAcrossFrame(rootNode, this, "");
}
#endif
// --------
Element* Node::enclosingLinkEventParentOrSelf() const
{
const Node* result = nullptr;
for (const Node* node = this; node; node = FlatTreeTraversal::parent(*node)) {
// For imagemaps, the enclosing link node is the associated area element not the image itself.
// So we don't let images be the enclosingLinkNode, even though isLink sometimes returns true
// for them.
if (node->isLink() && !isHTMLImageElement(*node)) {
// Casting to Element is safe because only HTMLAnchorElement, HTMLImageElement and
// SVGAElement can return true for isLink().
result = node;
break;
}
}
return toElement(const_cast<Node*>(result));
}
const AtomicString& Node::interfaceName() const
{
return EventTargetNames::Node;
}
ExecutionContext* Node::getExecutionContext() const
{
return document().contextDocument();
}
void Node::didMoveToNewDocument(Document& oldDocument)
{
TreeScopeAdopter::ensureDidMoveToNewDocumentWasCalled(oldDocument);
if (const EventTargetData* eventTargetData = this->eventTargetData()) {
const EventListenerMap& listenerMap = eventTargetData->eventListenerMap;
if (!listenerMap.isEmpty()) {
Vector<AtomicString> types = listenerMap.eventTypes();
for (unsigned i = 0; i < types.size(); ++i)
document().addListenerTypeIfNeeded(types[i]);
}
}
oldDocument.markers().removeMarkers(this);
oldDocument.updateRangesAfterNodeMovedToAnotherDocument(*this);
if (oldDocument.frameHost() && !document().frameHost())
oldDocument.frameHost()->eventHandlerRegistry().didMoveOutOfFrameHost(*this);
else if (document().frameHost() && !oldDocument.frameHost())
document().frameHost()->eventHandlerRegistry().didMoveIntoFrameHost(*this);
else if (oldDocument.frameHost() != document().frameHost())
EventHandlerRegistry::didMoveBetweenFrameHosts(*this, oldDocument.frameHost(), document().frameHost());
if (HeapVector<Member<MutationObserverRegistration>>* registry = mutationObserverRegistry()) {
for (size_t i = 0; i < registry->size(); ++i) {
document().addMutationObserverTypes(registry->at(i)->mutationTypes());
}
}
if (transientMutationObserverRegistry()) {
for (MutationObserverRegistration* registration : *transientMutationObserverRegistry())
document().addMutationObserverTypes(registration->mutationTypes());
}
}
bool Node::addEventListenerInternal(const AtomicString& eventType, EventListener* listener, const EventListenerOptions& options)
{
if (!EventTarget::addEventListenerInternal(eventType, listener, options))
return false;
document().addListenerTypeIfNeeded(eventType);
if (FrameHost* frameHost = document().frameHost())
frameHost->eventHandlerRegistry().didAddEventHandler(*this, eventType, options);
return true;
}
bool Node::removeEventListenerInternal(const AtomicString& eventType, EventListener* listener, const EventListenerOptions& options)
{
if (!EventTarget::removeEventListenerInternal(eventType, listener, options))
return false;
// FIXME: Notify Document that the listener has vanished. We need to keep track of a number of
// listeners for each type, not just a bool - see https://bugs.webkit.org/show_bug.cgi?id=33861
if (FrameHost* frameHost = document().frameHost())
frameHost->eventHandlerRegistry().didRemoveEventHandler(*this, eventType, options);
return true;
}
void Node::removeAllEventListeners()
{
if (hasEventListeners() && document().frameHost())
document().frameHost()->eventHandlerRegistry().didRemoveAllEventHandlers(*this);
EventTarget::removeAllEventListeners();
}
void Node::removeAllEventListenersRecursively()
{
ScriptForbiddenScope forbidScriptDuringRawIteration;
for (Node& node : NodeTraversal::startsAt(this)) {
node.removeAllEventListeners();
for (ShadowRoot* root = node.youngestShadowRoot(); root; root = root->olderShadowRoot())
root->removeAllEventListenersRecursively();
}
}
using EventTargetDataMap = HeapHashMap<WeakMember<Node>, Member<EventTargetData>>;
static EventTargetDataMap& eventTargetDataMap()
{
DEFINE_STATIC_LOCAL(EventTargetDataMap, map, (new EventTargetDataMap));
return map;
}
EventTargetData* Node::eventTargetData()
{
return hasEventTargetData() ? eventTargetDataMap().get(this) : nullptr;
}
EventTargetData& Node::ensureEventTargetData()
{
if (hasEventTargetData())
return *eventTargetDataMap().get(this);
DCHECK(!eventTargetDataMap().contains(this));
setHasEventTargetData(true);
EventTargetData* data = new EventTargetData;
eventTargetDataMap().set(this, data);
return *data;
}
#if !ENABLE(OILPAN)
void Node::clearEventTargetData()
{
eventTargetDataMap().remove(this);
#if DCHECK_IS_ON()
setHasEventTargetData(false);
#endif
}
#endif
HeapVector<Member<MutationObserverRegistration>>* Node::mutationObserverRegistry()
{
if (!hasRareData())
return nullptr;
NodeMutationObserverData* data = rareData()->mutationObserverData();
if (!data)
return nullptr;
return &data->registry;
}
HeapHashSet<Member<MutationObserverRegistration>>* Node::transientMutationObserverRegistry()
{
if (!hasRareData())
return nullptr;
NodeMutationObserverData* data = rareData()->mutationObserverData();
if (!data)
return nullptr;
return &data->transientRegistry;
}
template<typename Registry>
static inline void collectMatchingObserversForMutation(HeapHashMap<Member<MutationObserver>, MutationRecordDeliveryOptions>& observers, Registry* registry, Node& target, MutationObserver::MutationType type, const QualifiedName* attributeName)
{
if (!registry)
return;
for (const auto& registration : *registry) {
if (registration->shouldReceiveMutationFrom(target, type, attributeName)) {
MutationRecordDeliveryOptions deliveryOptions = registration->deliveryOptions();
HeapHashMap<Member<MutationObserver>, MutationRecordDeliveryOptions>::AddResult result = observers.add(&registration->observer(), deliveryOptions);
if (!result.isNewEntry)
result.storedValue->value |= deliveryOptions;
}
}
}
void Node::getRegisteredMutationObserversOfType(HeapHashMap<Member<MutationObserver>, MutationRecordDeliveryOptions>& observers, MutationObserver::MutationType type, const QualifiedName* attributeName)
{
DCHECK((type == MutationObserver::Attributes && attributeName) || !attributeName);
collectMatchingObserversForMutation(observers, mutationObserverRegistry(), *this, type, attributeName);
collectMatchingObserversForMutation(observers, transientMutationObserverRegistry(), *this, type, attributeName);
ScriptForbiddenScope forbidScriptDuringRawIteration;
for (Node* node = parentNode(); node; node = node->parentNode()) {
collectMatchingObserversForMutation(observers, node->mutationObserverRegistry(), *this, type, attributeName);
collectMatchingObserversForMutation(observers, node->transientMutationObserverRegistry(), *this, type, attributeName);
}
}
void Node::registerMutationObserver(MutationObserver& observer, MutationObserverOptions options, const HashSet<AtomicString>& attributeFilter)
{
MutationObserverRegistration* registration = nullptr;
HeapVector<Member<MutationObserverRegistration>>& registry = ensureRareData().ensureMutationObserverData().registry;
for (size_t i = 0; i < registry.size(); ++i) {
if (&registry[i]->observer() == &observer) {
registration = registry[i].get();
registration->resetObservation(options, attributeFilter);
}
}
if (!registration) {
registry.append(MutationObserverRegistration::create(observer, this, options, attributeFilter));
registration = registry.last().get();
}
document().addMutationObserverTypes(registration->mutationTypes());
}
void Node::unregisterMutationObserver(MutationObserverRegistration* registration)
{
HeapVector<Member<MutationObserverRegistration>>* registry = mutationObserverRegistry();
DCHECK(registry);
if (!registry)
return;
size_t index = registry->find(registration);
DCHECK_NE(index, kNotFound);
if (index == kNotFound)
return;
// FIXME: Simplify the registration/transient registration logic to make this understandable by humans.
#if ENABLE(OILPAN)
// The explicit dispose() is needed to have the registration
// object unregister itself promptly.
registration->dispose();
#endif
registry->remove(index);
}
void Node::registerTransientMutationObserver(MutationObserverRegistration* registration)
{
ensureRareData().ensureMutationObserverData().transientRegistry.add(registration);
}
void Node::unregisterTransientMutationObserver(MutationObserverRegistration* registration)
{
HeapHashSet<Member<MutationObserverRegistration>>* transientRegistry = transientMutationObserverRegistry();
DCHECK(transientRegistry);
if (!transientRegistry)
return;
DCHECK(transientRegistry->contains(registration));
transientRegistry->remove(registration);
}
void Node::notifyMutationObserversNodeWillDetach()
{
if (!document().hasMutationObservers())
return;
ScriptForbiddenScope forbidScriptDuringRawIteration;
for (Node* node = parentNode(); node; node = node->parentNode()) {
if (HeapVector<Member<MutationObserverRegistration>>* registry = node->mutationObserverRegistry()) {
const size_t size = registry->size();
for (size_t i = 0; i < size; ++i)
registry->at(i)->observedSubtreeNodeWillDetach(*this);
}
if (HeapHashSet<Member<MutationObserverRegistration>>* transientRegistry = node->transientMutationObserverRegistry()) {
for (auto& registration : *transientRegistry)
registration->observedSubtreeNodeWillDetach(*this);
}
}
}
void Node::handleLocalEvents(Event& event)
{
if (!hasEventTargetData())
return;
if (isDisabledFormControl(this) && event.isMouseEvent())
return;
fireEventListeners(&event);
}
void Node::dispatchScopedEvent(Event* event)
{
event->setTrusted(true);
EventDispatcher::dispatchScopedEvent(*this, event->createMediator());
}
DispatchEventResult Node::dispatchEventInternal(Event* event)
{
return EventDispatcher::dispatchEvent(*this, event->createMediator());
}
void Node::dispatchSubtreeModifiedEvent()
{
if (isInShadowTree())
return;
#if DCHECK_IS_ON()
DCHECK(!EventDispatchForbiddenScope::isEventDispatchForbidden());
#endif
if (!document().hasListenerType(Document::DOMSUBTREEMODIFIED_LISTENER))
return;
dispatchScopedEvent(MutationEvent::create(EventTypeNames::DOMSubtreeModified, true));
}
DispatchEventResult Node::dispatchDOMActivateEvent(int detail, Event* underlyingEvent)
{
#if DCHECK_IS_ON()
DCHECK(!EventDispatchForbiddenScope::isEventDispatchForbidden());
#endif
UIEvent* event = UIEvent::create(EventTypeNames::DOMActivate, true, true, document().domWindow(), detail);
event->setUnderlyingEvent(underlyingEvent);
dispatchScopedEvent(event);
// TODO(dtapuska): Dispatching scoped events shouldn't check the return
// type because the scoped event could get put off in the delayed queue.
return EventTarget::dispatchEventResult(*event);
}
DispatchEventResult Node::dispatchMouseEvent(const PlatformMouseEvent& nativeEvent, const AtomicString& eventType,
int detail, Node* relatedTarget)
{
MouseEvent* event = MouseEvent::create(eventType, document().domWindow(), nativeEvent, detail, relatedTarget);
return dispatchEvent(event);
}
void Node::dispatchSimulatedClick(Event* underlyingEvent, SimulatedClickMouseEventOptions eventOptions, SimulatedClickCreationScope scope)
{
EventDispatcher::dispatchSimulatedClick(*this, underlyingEvent, eventOptions, scope);
}
void Node::dispatchInputEvent()
{
if (RuntimeEnabledFeatures::inputEventEnabled()) {
InputEventInit eventInitDict;
eventInitDict.setBubbles(true);
dispatchScopedEvent(InputEvent::create(EventTypeNames::input, eventInitDict));
} else {
dispatchScopedEvent(Event::createBubble(EventTypeNames::input));
}
}
void Node::defaultEventHandler(Event* event)
{
if (event->target() != this)
return;
const AtomicString& eventType = event->type();
if (eventType == EventTypeNames::keydown || eventType == EventTypeNames::keypress) {
if (event->isKeyboardEvent()) {
if (LocalFrame* frame = document().frame())
frame->eventHandler().defaultKeyboardEventHandler(toKeyboardEvent(event));
}
} else if (eventType == EventTypeNames::click) {
int detail = event->isUIEvent() ? static_cast<UIEvent*>(event)->detail() : 0;
if (dispatchDOMActivateEvent(detail, event) != DispatchEventResult::NotCanceled)
event->setDefaultHandled();
} else if (eventType == EventTypeNames::contextmenu) {
if (Page* page = document().page())
page->contextMenuController().handleContextMenuEvent(event);
} else if (eventType == EventTypeNames::textInput) {
if (event->hasInterface(EventNames::TextEvent)) {
if (LocalFrame* frame = document().frame())
frame->eventHandler().defaultTextInputEventHandler(toTextEvent(event));
}
#if OS(WIN)
} else if (eventType == EventTypeNames::mousedown && event->isMouseEvent()) {
MouseEvent* mouseEvent = toMouseEvent(event);
if (mouseEvent->button() == MiddleButton) {
if (enclosingLinkEventParentOrSelf())
return;
// Avoid that canBeScrolledAndHasScrollableArea changes layout tree
// structure.
// FIXME: We should avoid synchronous layout if possible. We can
// remove this synchronous layout if we avoid synchronous layout in
// LayoutTextControlSingleLine::scrollHeight
document().updateLayoutIgnorePendingStylesheets();
LayoutObject* layoutObject = this->layoutObject();
while (layoutObject && (!layoutObject->isBox() || !toLayoutBox(layoutObject)->canBeScrolledAndHasScrollableArea()))
layoutObject = layoutObject->parent();
if (layoutObject) {
if (LocalFrame* frame = document().frame())
frame->eventHandler().startPanScrolling(layoutObject);
}
}
#endif
} else if ((eventType == EventTypeNames::wheel || eventType == EventTypeNames::mousewheel) && event->hasInterface(EventNames::WheelEvent)) {
WheelEvent* wheelEvent = toWheelEvent(event);
// If we don't have a layoutObject, send the wheel event to the first node we find with a layoutObject.
// This is needed for <option> and <optgroup> elements so that <select>s get a wheel scroll.
Node* startNode = this;
while (startNode && !startNode->layoutObject())
startNode = startNode->parentOrShadowHostNode();
if (startNode && startNode->layoutObject()) {
if (LocalFrame* frame = document().frame())
frame->eventHandler().defaultWheelEventHandler(startNode, wheelEvent);
}
} else if (event->type() == EventTypeNames::webkitEditableContentChanged) {
dispatchInputEvent();
}
}
void Node::willCallDefaultEventHandler(const Event&)
{
}
bool Node::willRespondToMouseMoveEvents()
{
if (isDisabledFormControl(this))
return false;
return hasEventListeners(EventTypeNames::mousemove) || hasEventListeners(EventTypeNames::mouseover) || hasEventListeners(EventTypeNames::mouseout);
}
bool Node::willRespondToMouseClickEvents()
{
if (isDisabledFormControl(this))
return false;
return isContentEditable(UserSelectAllIsAlwaysNonEditable) || hasEventListeners(EventTypeNames::mouseup) || hasEventListeners(EventTypeNames::mousedown) || hasEventListeners(EventTypeNames::click) || hasEventListeners(EventTypeNames::DOMActivate);
}
bool Node::willRespondToTouchEvents()
{
if (isDisabledFormControl(this))
return false;
return hasEventListeners(EventTypeNames::touchstart) || hasEventListeners(EventTypeNames::touchmove) || hasEventListeners(EventTypeNames::touchcancel) || hasEventListeners(EventTypeNames::touchend);
}
#if !ENABLE(OILPAN)
// This is here for inlining
inline void TreeScope::removedLastRefToScope()
{
ASSERT_WITH_SECURITY_IMPLICATION(!deletionHasBegun());
if (m_guardRefCount) {
// If removing a child removes the last self-only ref, we don't
// want the scope to be destructed until after
// removeDetachedChildren returns, so we guard ourselves with an
// extra self-only ref.
guardRef();
dispose();
#if DCHECK_IS_ON()
// We need to do this right now since guardDeref() can delete this.
rootNode().m_inRemovedLastRefFunction = false;
#endif
guardDeref();
} else {
#if DCHECK_IS_ON()
rootNode().m_inRemovedLastRefFunction = false;
#endif
#if ENABLE(SECURITY_ASSERT)
beginDeletion();
#endif
delete this;
}
}
// It's important not to inline removedLastRef, because we don't want to inline the code to
// delete a Node at each deref call site.
void Node::removedLastRef()
{
// An explicit check for Document here is better than a virtual function since it is
// faster for non-Document nodes, and because the call to removedLastRef that is inlined
// at all deref call sites is smaller if it's a non-virtual function.
if (isTreeScope()) {
treeScope().removedLastRefToScope();
return;
}
#if ENABLE(SECURITY_ASSERT)
m_deletionHasBegun = true;
#endif
delete this;
}
#endif
unsigned Node::connectedSubframeCount() const
{
return hasRareData() ? rareData()->connectedSubframeCount() : 0;
}
void Node::incrementConnectedSubframeCount()
{
DCHECK(isContainerNode());
ensureRareData().incrementConnectedSubframeCount();
}
void Node::decrementConnectedSubframeCount()
{
rareData()->decrementConnectedSubframeCount();
}
StaticNodeList* Node::getDestinationInsertionPoints()
{
updateDistribution();
HeapVector<Member<InsertionPoint>, 8> insertionPoints;
collectDestinationInsertionPoints(*this, insertionPoints);
HeapVector<Member<Node>> filteredInsertionPoints;
for (size_t i = 0; i < insertionPoints.size(); ++i) {
InsertionPoint* insertionPoint = insertionPoints[i];
DCHECK(insertionPoint->containingShadowRoot());
if (!insertionPoint->containingShadowRoot()->isOpenOrV0())
break;
filteredInsertionPoints.append(insertionPoint);
}
return StaticNodeList::adopt(filteredInsertionPoints);
}
HTMLSlotElement* Node::assignedSlot() const
{
#if DCHECK_IS_ON()
DCHECK(!needsDistributionRecalc());
#endif
if (ElementShadow* shadow = parentElementShadow()) {
if (shadow->isV1())
return shadow->assignedSlotFor(*this);
}
return nullptr;
}
HTMLSlotElement* Node::assignedSlotForBinding()
{
updateDistribution();
if (ElementShadow* shadow = parentElementShadow()) {
if (shadow->isV1() && shadow->isOpenOrV0())
return shadow->assignedSlotFor(*this);
}
return nullptr;
}
void Node::setFocus(bool flag)
{
document().userActionElements().setFocused(this, flag);
}
void Node::setActive(bool flag)
{
document().userActionElements().setActive(this, flag);
}
void Node::setHovered(bool flag)
{
document().userActionElements().setHovered(this, flag);
}
bool Node::isUserActionElementActive() const
{
DCHECK(isUserActionElement());
return document().userActionElements().isActive(this);
}
bool Node::isUserActionElementInActiveChain() const
{
DCHECK(isUserActionElement());
return document().userActionElements().isInActiveChain(this);
}
bool Node::isUserActionElementHovered() const
{
DCHECK(isUserActionElement());
return document().userActionElements().isHovered(this);
}
bool Node::isUserActionElementFocused() const
{
DCHECK(isUserActionElement());
return document().userActionElements().isFocused(this);
}
void Node::setCustomElementState(CustomElementState newState)
{
CustomElementState oldState = getCustomElementState();
switch (newState) {
case NotCustomElement:
ASSERT_NOT_REACHED(); // Everything starts in this state
return;
case WaitingForUpgrade:
DCHECK_EQ(NotCustomElement, oldState);
break;
case Upgraded:
DCHECK_EQ(WaitingForUpgrade, oldState);
break;
}
DCHECK(isHTMLElement() || isSVGElement());
setFlag(CustomElementFlag);
setFlag(newState == Upgraded, CustomElementUpgradedFlag);
if (oldState == NotCustomElement || newState == Upgraded)
toElement(this)->pseudoStateChanged(CSSSelector::PseudoUnresolved);
}
DEFINE_TRACE(Node)
{
visitor->trace(m_parentOrShadowHostNode);
visitor->trace(m_previous);
visitor->trace(m_next);
// rareData() and m_data.m_layoutObject share their storage. We have to trace
// only one of them.
if (hasRareData())
visitor->trace(rareData());
visitor->trace(m_treeScope);
EventTarget::trace(visitor);
}
unsigned Node::lengthOfContents() const
{
// This switch statement must be consistent with that of Range::processContentsBetweenOffsets.
switch (getNodeType()) {
case Node::TEXT_NODE:
case Node::CDATA_SECTION_NODE:
case Node::COMMENT_NODE:
case Node::PROCESSING_INSTRUCTION_NODE:
return toCharacterData(this)->length();
case Node::ELEMENT_NODE:
case Node::DOCUMENT_NODE:
case Node::DOCUMENT_FRAGMENT_NODE:
return toContainerNode(this)->countChildren();
case Node::ATTRIBUTE_NODE:
case Node::DOCUMENT_TYPE_NODE:
return 0;
}
ASSERT_NOT_REACHED();
return 0;
}
v8::Local<v8::Object> Node::wrap(v8::Isolate* isolate, v8::Local<v8::Object> creationContext)
{
DCHECK(!DOMDataStore::containsWrapper(this, isolate));
const WrapperTypeInfo* wrapperType = wrapperTypeInfo();
v8::Local<v8::Object> wrapper = V8DOMWrapper::createWrapper(isolate, creationContext, wrapperType, this);
if (UNLIKELY(wrapper.IsEmpty()))
return wrapper;
wrapperType->installConditionallyEnabledProperties(wrapper, isolate);
return associateWithWrapper(isolate, wrapperType, wrapper);
}
v8::Local<v8::Object> Node::associateWithWrapper(v8::Isolate* isolate, const WrapperTypeInfo* wrapperType, v8::Local<v8::Object> wrapper)
{
return V8DOMWrapper::associateObjectWithWrapper(isolate, this, wrapperType, wrapper);
}
} // namespace blink
#ifndef NDEBUG
void showNode(const blink::Node* node)
{
if (node)
node->showNode("");
else
fprintf(stderr, "Cannot showNode for (nil)\n");
}
void showTree(const blink::Node* node)
{
if (node)
node->showTreeForThis();
else
fprintf(stderr, "Cannot showTree for (nil)\n");
}
void showNodePath(const blink::Node* node)
{
if (node)
node->showNodePathForThis();
else
fprintf(stderr, "Cannot showNodePath for (nil)\n");
}
#endif