blob: 1ebaa28a76022352a799019e89d1cf2eed0498d1 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_ISOLATE_H_
#define V8_ISOLATE_H_
#include <queue>
#include <set>
#include "include/v8-debug.h"
#include "src/allocation.h"
#include "src/assert-scope.h"
#include "src/base/atomicops.h"
#include "src/builtins.h"
#include "src/cancelable-task.h"
#include "src/contexts.h"
#include "src/date.h"
#include "src/execution.h"
#include "src/frames.h"
#include "src/futex-emulation.h"
#include "src/global-handles.h"
#include "src/handles.h"
#include "src/hashmap.h"
#include "src/heap/heap.h"
#include "src/messages.h"
#include "src/optimizing-compile-dispatcher.h"
#include "src/regexp/regexp-stack.h"
#include "src/runtime/runtime.h"
#include "src/runtime-profiler.h"
#include "src/zone.h"
namespace v8 {
namespace base {
class RandomNumberGenerator;
}
namespace internal {
class BasicBlockProfiler;
class Bootstrapper;
class CallInterfaceDescriptorData;
class CodeGenerator;
class CodeRange;
class CodeStubDescriptor;
class CodeTracer;
class CompilationCache;
class CompilationStatistics;
class ContextSlotCache;
class Counters;
class CpuFeatures;
class CpuProfiler;
class DeoptimizerData;
class Deserializer;
class EmptyStatement;
class ExternalCallbackScope;
class ExternalReferenceTable;
class Factory;
class FunctionInfoListener;
class HandleScopeImplementer;
class HeapProfiler;
class HStatistics;
class HTracer;
class InlineRuntimeFunctionsTable;
class InnerPointerToCodeCache;
class Logger;
class MaterializedObjectStore;
class CodeAgingHelper;
class RegExpStack;
class SaveContext;
class StatsTable;
class StringTracker;
class StubCache;
class SweeperThread;
class ThreadManager;
class ThreadState;
class ThreadVisitor; // Defined in v8threads.h
class UnicodeCache;
template <StateTag Tag> class VMState;
// 'void function pointer', used to roundtrip the
// ExternalReference::ExternalReferenceRedirector since we can not include
// assembler.h, where it is defined, here.
typedef void* ExternalReferenceRedirectorPointer();
class Debug;
class PromiseOnStack;
class Redirection;
class Simulator;
namespace interpreter {
class Interpreter;
}
// Static indirection table for handles to constants. If a frame
// element represents a constant, the data contains an index into
// this table of handles to the actual constants.
// Static indirection table for handles to constants. If a Result
// represents a constant, the data contains an index into this table
// of handles to the actual constants.
typedef ZoneList<Handle<Object> > ZoneObjectList;
#define RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate) \
do { \
Isolate* __isolate__ = (isolate); \
if (__isolate__->has_scheduled_exception()) { \
return __isolate__->PromoteScheduledException(); \
} \
} while (false)
// Macros for MaybeHandle.
#define RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, value) \
do { \
Isolate* __isolate__ = (isolate); \
if (__isolate__->has_scheduled_exception()) { \
__isolate__->PromoteScheduledException(); \
return value; \
} \
} while (false)
#define RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, T) \
RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, MaybeHandle<T>())
#define ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, dst, call, value) \
do { \
if (!(call).ToHandle(&dst)) { \
DCHECK((isolate)->has_pending_exception()); \
return value; \
} \
} while (false)
#define ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, dst, call) \
ASSIGN_RETURN_ON_EXCEPTION_VALUE( \
isolate, dst, call, isolate->heap()->exception())
#define ASSIGN_RETURN_ON_EXCEPTION(isolate, dst, call, T) \
ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, dst, call, MaybeHandle<T>())
#define THROW_NEW_ERROR(isolate, call, T) \
do { \
return isolate->Throw<T>(isolate->factory()->call); \
} while (false)
#define THROW_NEW_ERROR_RETURN_FAILURE(isolate, call) \
do { \
return isolate->Throw(*isolate->factory()->call); \
} while (false)
#define RETURN_ON_EXCEPTION_VALUE(isolate, call, value) \
do { \
if ((call).is_null()) { \
DCHECK((isolate)->has_pending_exception()); \
return value; \
} \
} while (false)
#define RETURN_FAILURE_ON_EXCEPTION(isolate, call) \
RETURN_ON_EXCEPTION_VALUE(isolate, call, isolate->heap()->exception())
#define RETURN_ON_EXCEPTION(isolate, call, T) \
RETURN_ON_EXCEPTION_VALUE(isolate, call, MaybeHandle<T>())
#define FOR_EACH_ISOLATE_ADDRESS_NAME(C) \
C(Handler, handler) \
C(CEntryFP, c_entry_fp) \
C(CFunction, c_function) \
C(Context, context) \
C(PendingException, pending_exception) \
C(PendingHandlerContext, pending_handler_context) \
C(PendingHandlerCode, pending_handler_code) \
C(PendingHandlerOffset, pending_handler_offset) \
C(PendingHandlerFP, pending_handler_fp) \
C(PendingHandlerSP, pending_handler_sp) \
C(ExternalCaughtException, external_caught_exception) \
C(JSEntrySP, js_entry_sp)
#define FOR_WITH_HANDLE_SCOPE(isolate, loop_var_type, init, loop_var, \
limit_check, increment, body) \
do { \
loop_var_type init; \
loop_var_type for_with_handle_limit = loop_var; \
Isolate* for_with_handle_isolate = isolate; \
while (limit_check) { \
for_with_handle_limit += 1024; \
HandleScope loop_scope(for_with_handle_isolate); \
for (; limit_check && loop_var < for_with_handle_limit; increment) { \
body \
} \
} \
} while (false)
// Platform-independent, reliable thread identifier.
class ThreadId {
public:
// Creates an invalid ThreadId.
ThreadId() { base::NoBarrier_Store(&id_, kInvalidId); }
ThreadId& operator=(const ThreadId& other) {
base::NoBarrier_Store(&id_, base::NoBarrier_Load(&other.id_));
return *this;
}
// Returns ThreadId for current thread.
static ThreadId Current() { return ThreadId(GetCurrentThreadId()); }
// Returns invalid ThreadId (guaranteed not to be equal to any thread).
static ThreadId Invalid() { return ThreadId(kInvalidId); }
// Compares ThreadIds for equality.
INLINE(bool Equals(const ThreadId& other) const) {
return base::NoBarrier_Load(&id_) == base::NoBarrier_Load(&other.id_);
}
// Checks whether this ThreadId refers to any thread.
INLINE(bool IsValid() const) {
return base::NoBarrier_Load(&id_) != kInvalidId;
}
// Converts ThreadId to an integer representation
// (required for public API: V8::V8::GetCurrentThreadId).
int ToInteger() const { return static_cast<int>(base::NoBarrier_Load(&id_)); }
// Converts ThreadId to an integer representation
// (required for public API: V8::V8::TerminateExecution).
static ThreadId FromInteger(int id) { return ThreadId(id); }
private:
static const int kInvalidId = -1;
explicit ThreadId(int id) { base::NoBarrier_Store(&id_, id); }
static int AllocateThreadId();
static int GetCurrentThreadId();
base::Atomic32 id_;
static base::Atomic32 highest_thread_id_;
friend class Isolate;
};
#define FIELD_ACCESSOR(type, name) \
inline void set_##name(type v) { name##_ = v; } \
inline type name() const { return name##_; }
class ThreadLocalTop BASE_EMBEDDED {
public:
// Does early low-level initialization that does not depend on the
// isolate being present.
ThreadLocalTop();
// Initialize the thread data.
void Initialize();
// Get the top C++ try catch handler or NULL if none are registered.
//
// This method is not guaranteed to return an address that can be
// used for comparison with addresses into the JS stack. If such an
// address is needed, use try_catch_handler_address.
FIELD_ACCESSOR(v8::TryCatch*, try_catch_handler)
// Get the address of the top C++ try catch handler or NULL if
// none are registered.
//
// This method always returns an address that can be compared to
// pointers into the JavaScript stack. When running on actual
// hardware, try_catch_handler_address and TryCatchHandler return
// the same pointer. When running on a simulator with a separate JS
// stack, try_catch_handler_address returns a JS stack address that
// corresponds to the place on the JS stack where the C++ handler
// would have been if the stack were not separate.
Address try_catch_handler_address() {
return reinterpret_cast<Address>(
v8::TryCatch::JSStackComparableAddress(try_catch_handler()));
}
void Free();
Isolate* isolate_;
// The context where the current execution method is created and for variable
// lookups.
Context* context_;
ThreadId thread_id_;
Object* pending_exception_;
// Communication channel between Isolate::FindHandler and the CEntryStub.
Context* pending_handler_context_;
Code* pending_handler_code_;
intptr_t pending_handler_offset_;
Address pending_handler_fp_;
Address pending_handler_sp_;
// Communication channel between Isolate::Throw and message consumers.
bool rethrowing_message_;
Object* pending_message_obj_;
// Use a separate value for scheduled exceptions to preserve the
// invariants that hold about pending_exception. We may want to
// unify them later.
Object* scheduled_exception_;
bool external_caught_exception_;
SaveContext* save_context_;
// Stack.
Address c_entry_fp_; // the frame pointer of the top c entry frame
Address handler_; // try-blocks are chained through the stack
Address c_function_; // C function that was called at c entry.
// Throwing an exception may cause a Promise rejection. For this purpose
// we keep track of a stack of nested promises and the corresponding
// try-catch handlers.
PromiseOnStack* promise_on_stack_;
#ifdef USE_SIMULATOR
Simulator* simulator_;
#endif
Address js_entry_sp_; // the stack pointer of the bottom JS entry frame
// the external callback we're currently in
ExternalCallbackScope* external_callback_scope_;
StateTag current_vm_state_;
// Call back function to report unsafe JS accesses.
v8::FailedAccessCheckCallback failed_access_check_callback_;
private:
void InitializeInternal();
v8::TryCatch* try_catch_handler_;
};
#if USE_SIMULATOR
#define ISOLATE_INIT_SIMULATOR_LIST(V) \
V(bool, simulator_initialized, false) \
V(HashMap*, simulator_i_cache, NULL) \
V(Redirection*, simulator_redirection, NULL)
#else
#define ISOLATE_INIT_SIMULATOR_LIST(V)
#endif
#ifdef DEBUG
#define ISOLATE_INIT_DEBUG_ARRAY_LIST(V) \
V(CommentStatistic, paged_space_comments_statistics, \
CommentStatistic::kMaxComments + 1) \
V(int, code_kind_statistics, Code::NUMBER_OF_KINDS)
#else
#define ISOLATE_INIT_DEBUG_ARRAY_LIST(V)
#endif
#define ISOLATE_INIT_ARRAY_LIST(V) \
/* SerializerDeserializer state. */ \
V(int32_t, jsregexp_static_offsets_vector, kJSRegexpStaticOffsetsVectorSize) \
V(int, bad_char_shift_table, kUC16AlphabetSize) \
V(int, good_suffix_shift_table, (kBMMaxShift + 1)) \
V(int, suffix_table, (kBMMaxShift + 1)) \
V(uint32_t, private_random_seed, 2) \
ISOLATE_INIT_DEBUG_ARRAY_LIST(V)
typedef List<HeapObject*> DebugObjectCache;
#define ISOLATE_INIT_LIST(V) \
/* Assembler state. */ \
V(FatalErrorCallback, exception_behavior, NULL) \
V(LogEventCallback, event_logger, NULL) \
V(AllowCodeGenerationFromStringsCallback, allow_code_gen_callback, NULL) \
/* To distinguish the function templates, so that we can find them in the */ \
/* function cache of the native context. */ \
V(int, next_serial_number, 0) \
V(ExternalReferenceRedirectorPointer*, external_reference_redirector, NULL) \
/* Part of the state of liveedit. */ \
V(FunctionInfoListener*, active_function_info_listener, NULL) \
/* State for Relocatable. */ \
V(Relocatable*, relocatable_top, NULL) \
V(DebugObjectCache*, string_stream_debug_object_cache, NULL) \
V(Object*, string_stream_current_security_token, NULL) \
V(ExternalReferenceTable*, external_reference_table, NULL) \
V(HashMap*, external_reference_map, NULL) \
V(HashMap*, root_index_map, NULL) \
V(int, pending_microtask_count, 0) \
V(HStatistics*, hstatistics, NULL) \
V(CompilationStatistics*, turbo_statistics, NULL) \
V(HTracer*, htracer, NULL) \
V(CodeTracer*, code_tracer, NULL) \
V(bool, fp_stubs_generated, false) \
V(uint32_t, per_isolate_assert_data, 0xFFFFFFFFu) \
V(PromiseRejectCallback, promise_reject_callback, NULL) \
V(const v8::StartupData*, snapshot_blob, NULL) \
ISOLATE_INIT_SIMULATOR_LIST(V)
#define THREAD_LOCAL_TOP_ACCESSOR(type, name) \
inline void set_##name(type v) { thread_local_top_.name##_ = v; } \
inline type name() const { return thread_local_top_.name##_; }
#define THREAD_LOCAL_TOP_ADDRESS(type, name) \
type* name##_address() { return &thread_local_top_.name##_; }
class Isolate {
// These forward declarations are required to make the friend declarations in
// PerIsolateThreadData work on some older versions of gcc.
class ThreadDataTable;
class EntryStackItem;
public:
~Isolate();
// A thread has a PerIsolateThreadData instance for each isolate that it has
// entered. That instance is allocated when the isolate is initially entered
// and reused on subsequent entries.
class PerIsolateThreadData {
public:
PerIsolateThreadData(Isolate* isolate, ThreadId thread_id)
: isolate_(isolate),
thread_id_(thread_id),
stack_limit_(0),
thread_state_(NULL),
#if USE_SIMULATOR
simulator_(NULL),
#endif
next_(NULL),
prev_(NULL) { }
~PerIsolateThreadData();
Isolate* isolate() const { return isolate_; }
ThreadId thread_id() const { return thread_id_; }
FIELD_ACCESSOR(uintptr_t, stack_limit)
FIELD_ACCESSOR(ThreadState*, thread_state)
#if USE_SIMULATOR
FIELD_ACCESSOR(Simulator*, simulator)
#endif
bool Matches(Isolate* isolate, ThreadId thread_id) const {
return isolate_ == isolate && thread_id_.Equals(thread_id);
}
private:
Isolate* isolate_;
ThreadId thread_id_;
uintptr_t stack_limit_;
ThreadState* thread_state_;
#if USE_SIMULATOR
Simulator* simulator_;
#endif
PerIsolateThreadData* next_;
PerIsolateThreadData* prev_;
friend class Isolate;
friend class ThreadDataTable;
friend class EntryStackItem;
DISALLOW_COPY_AND_ASSIGN(PerIsolateThreadData);
};
enum AddressId {
#define DECLARE_ENUM(CamelName, hacker_name) k##CamelName##Address,
FOR_EACH_ISOLATE_ADDRESS_NAME(DECLARE_ENUM)
#undef DECLARE_ENUM
kIsolateAddressCount
};
static void InitializeOncePerProcess();
// Returns the PerIsolateThreadData for the current thread (or NULL if one is
// not currently set).
static PerIsolateThreadData* CurrentPerIsolateThreadData() {
return reinterpret_cast<PerIsolateThreadData*>(
base::Thread::GetThreadLocal(per_isolate_thread_data_key_));
}
// Returns the isolate inside which the current thread is running.
INLINE(static Isolate* Current()) {
DCHECK(base::NoBarrier_Load(&isolate_key_created_) == 1);
Isolate* isolate = reinterpret_cast<Isolate*>(
base::Thread::GetExistingThreadLocal(isolate_key_));
DCHECK(isolate != NULL);
return isolate;
}
// Like Current, but skips the check that |isolate_key_| was initialized.
// Callers have to ensure that themselves.
// DO NOT USE. The only remaining callsite will be deleted soon.
INLINE(static Isolate* UnsafeCurrent()) {
return reinterpret_cast<Isolate*>(
base::Thread::GetThreadLocal(isolate_key_));
}
// Usually called by Init(), but can be called early e.g. to allow
// testing components that require logging but not the whole
// isolate.
//
// Safe to call more than once.
void InitializeLoggingAndCounters();
bool Init(Deserializer* des);
// True if at least one thread Enter'ed this isolate.
bool IsInUse() { return entry_stack_ != NULL; }
// Destroys the non-default isolates.
// Sets default isolate into "has_been_disposed" state rather then destroying,
// for legacy API reasons.
void TearDown();
static void GlobalTearDown();
void ClearSerializerData();
// Find the PerThread for this particular (isolate, thread) combination
// If one does not yet exist, return null.
PerIsolateThreadData* FindPerThreadDataForThisThread();
// Find the PerThread for given (isolate, thread) combination
// If one does not yet exist, return null.
PerIsolateThreadData* FindPerThreadDataForThread(ThreadId thread_id);
// Discard the PerThread for this particular (isolate, thread) combination
// If one does not yet exist, no-op.
void DiscardPerThreadDataForThisThread();
// Returns the key used to store the pointer to the current isolate.
// Used internally for V8 threads that do not execute JavaScript but still
// are part of the domain of an isolate (like the context switcher).
static base::Thread::LocalStorageKey isolate_key() {
return isolate_key_;
}
// Returns the key used to store process-wide thread IDs.
static base::Thread::LocalStorageKey thread_id_key() {
return thread_id_key_;
}
static base::Thread::LocalStorageKey per_isolate_thread_data_key();
// Mutex for serializing access to break control structures.
base::RecursiveMutex* break_access() { return &break_access_; }
Address get_address_from_id(AddressId id);
// Access to top context (where the current function object was created).
Context* context() { return thread_local_top_.context_; }
inline void set_context(Context* context);
Context** context_address() { return &thread_local_top_.context_; }
THREAD_LOCAL_TOP_ACCESSOR(SaveContext*, save_context)
// Access to current thread id.
THREAD_LOCAL_TOP_ACCESSOR(ThreadId, thread_id)
// Interface to pending exception.
inline Object* pending_exception();
inline void set_pending_exception(Object* exception_obj);
inline void clear_pending_exception();
THREAD_LOCAL_TOP_ADDRESS(Object*, pending_exception)
inline bool has_pending_exception();
THREAD_LOCAL_TOP_ADDRESS(Context*, pending_handler_context)
THREAD_LOCAL_TOP_ADDRESS(Code*, pending_handler_code)
THREAD_LOCAL_TOP_ADDRESS(intptr_t, pending_handler_offset)
THREAD_LOCAL_TOP_ADDRESS(Address, pending_handler_fp)
THREAD_LOCAL_TOP_ADDRESS(Address, pending_handler_sp)
THREAD_LOCAL_TOP_ACCESSOR(bool, external_caught_exception)
v8::TryCatch* try_catch_handler() {
return thread_local_top_.try_catch_handler();
}
bool* external_caught_exception_address() {
return &thread_local_top_.external_caught_exception_;
}
THREAD_LOCAL_TOP_ADDRESS(Object*, scheduled_exception)
inline void clear_pending_message();
Address pending_message_obj_address() {
return reinterpret_cast<Address>(&thread_local_top_.pending_message_obj_);
}
inline Object* scheduled_exception();
inline bool has_scheduled_exception();
inline void clear_scheduled_exception();
bool IsJavaScriptHandlerOnTop(Object* exception);
bool IsExternalHandlerOnTop(Object* exception);
inline bool is_catchable_by_javascript(Object* exception);
// JS execution stack (see frames.h).
static Address c_entry_fp(ThreadLocalTop* thread) {
return thread->c_entry_fp_;
}
static Address handler(ThreadLocalTop* thread) { return thread->handler_; }
Address c_function() { return thread_local_top_.c_function_; }
inline Address* c_entry_fp_address() {
return &thread_local_top_.c_entry_fp_;
}
inline Address* handler_address() { return &thread_local_top_.handler_; }
inline Address* c_function_address() {
return &thread_local_top_.c_function_;
}
// Bottom JS entry.
Address js_entry_sp() {
return thread_local_top_.js_entry_sp_;
}
inline Address* js_entry_sp_address() {
return &thread_local_top_.js_entry_sp_;
}
// Returns the global object of the current context. It could be
// a builtin object, or a JS global object.
inline Handle<JSGlobalObject> global_object();
// Returns the global proxy object of the current context.
JSObject* global_proxy() {
return context()->global_proxy();
}
static int ArchiveSpacePerThread() { return sizeof(ThreadLocalTop); }
void FreeThreadResources() { thread_local_top_.Free(); }
// This method is called by the api after operations that may throw
// exceptions. If an exception was thrown and not handled by an external
// handler the exception is scheduled to be rethrown when we return to running
// JavaScript code. If an exception is scheduled true is returned.
bool OptionalRescheduleException(bool is_bottom_call);
// Push and pop a promise and the current try-catch handler.
void PushPromise(Handle<JSObject> promise, Handle<JSFunction> function);
void PopPromise();
Handle<Object> GetPromiseOnStackOnThrow();
class ExceptionScope {
public:
// Scope currently can only be used for regular exceptions,
// not termination exception.
inline explicit ExceptionScope(Isolate* isolate);
inline ~ExceptionScope();
private:
Isolate* isolate_;
Handle<Object> pending_exception_;
};
void SetCaptureStackTraceForUncaughtExceptions(
bool capture,
int frame_limit,
StackTrace::StackTraceOptions options);
void SetAbortOnUncaughtExceptionCallback(
v8::Isolate::AbortOnUncaughtExceptionCallback callback);
enum PrintStackMode { kPrintStackConcise, kPrintStackVerbose };
void PrintCurrentStackTrace(FILE* out);
void PrintStack(StringStream* accumulator,
PrintStackMode mode = kPrintStackVerbose);
void PrintStack(FILE* out, PrintStackMode mode = kPrintStackVerbose);
Handle<String> StackTraceString();
NO_INLINE(void PushStackTraceAndDie(unsigned int magic, void* ptr1,
void* ptr2, unsigned int magic2));
Handle<JSArray> CaptureCurrentStackTrace(
int frame_limit,
StackTrace::StackTraceOptions options);
Handle<Object> CaptureSimpleStackTrace(Handle<JSObject> error_object,
Handle<Object> caller);
MaybeHandle<JSObject> CaptureAndSetDetailedStackTrace(
Handle<JSObject> error_object);
MaybeHandle<JSObject> CaptureAndSetSimpleStackTrace(
Handle<JSObject> error_object, Handle<Object> caller);
Handle<JSArray> GetDetailedStackTrace(Handle<JSObject> error_object);
Handle<JSArray> GetDetailedFromSimpleStackTrace(
Handle<JSObject> error_object);
// Returns if the given context may access the given global object. If
// the result is false, the pending exception is guaranteed to be
// set.
bool MayAccess(Handle<Context> accessing_context, Handle<JSObject> receiver);
void SetFailedAccessCheckCallback(v8::FailedAccessCheckCallback callback);
void ReportFailedAccessCheck(Handle<JSObject> receiver);
// Exception throwing support. The caller should use the result
// of Throw() as its return value.
Object* Throw(Object* exception, MessageLocation* location = NULL);
Object* ThrowIllegalOperation();
template <typename T>
MUST_USE_RESULT MaybeHandle<T> Throw(Handle<Object> exception,
MessageLocation* location = NULL) {
Throw(*exception, location);
return MaybeHandle<T>();
}
// Re-throw an exception. This involves no error reporting since error
// reporting was handled when the exception was thrown originally.
Object* ReThrow(Object* exception);
// Find the correct handler for the current pending exception. This also
// clears and returns the current pending exception.
Object* UnwindAndFindHandler();
// Tries to predict whether an exception will be caught. Note that this can
// only produce an estimate, because it is undecidable whether a finally
// clause will consume or re-throw an exception. We conservatively assume any
// finally clause will behave as if the exception were consumed.
enum CatchType { NOT_CAUGHT, CAUGHT_BY_JAVASCRIPT, CAUGHT_BY_EXTERNAL };
CatchType PredictExceptionCatcher();
void ScheduleThrow(Object* exception);
// Re-set pending message, script and positions reported to the TryCatch
// back to the TLS for re-use when rethrowing.
void RestorePendingMessageFromTryCatch(v8::TryCatch* handler);
// Un-schedule an exception that was caught by a TryCatch handler.
void CancelScheduledExceptionFromTryCatch(v8::TryCatch* handler);
void ReportPendingMessages();
// Return pending location if any or unfilled structure.
MessageLocation GetMessageLocation();
// Promote a scheduled exception to pending. Asserts has_scheduled_exception.
Object* PromoteScheduledException();
// Attempts to compute the current source location, storing the
// result in the target out parameter.
bool ComputeLocation(MessageLocation* target);
bool ComputeLocationFromException(MessageLocation* target,
Handle<Object> exception);
bool ComputeLocationFromStackTrace(MessageLocation* target,
Handle<Object> exception);
Handle<JSMessageObject> CreateMessage(Handle<Object> exception,
MessageLocation* location);
// Out of resource exception helpers.
Object* StackOverflow();
Object* TerminateExecution();
void CancelTerminateExecution();
void RequestInterrupt(InterruptCallback callback, void* data);
void InvokeApiInterruptCallbacks();
// Administration
void Iterate(ObjectVisitor* v);
void Iterate(ObjectVisitor* v, ThreadLocalTop* t);
char* Iterate(ObjectVisitor* v, char* t);
void IterateThread(ThreadVisitor* v, char* t);
// Returns the current native context.
Handle<Context> native_context();
// Returns the native context of the calling JavaScript code. That
// is, the native context of the top-most JavaScript frame.
Handle<Context> GetCallingNativeContext();
void RegisterTryCatchHandler(v8::TryCatch* that);
void UnregisterTryCatchHandler(v8::TryCatch* that);
char* ArchiveThread(char* to);
char* RestoreThread(char* from);
static const char* const kStackOverflowMessage;
static const int kUC16AlphabetSize = 256; // See StringSearchBase.
static const int kBMMaxShift = 250; // See StringSearchBase.
// Accessors.
#define GLOBAL_ACCESSOR(type, name, initialvalue) \
inline type name() const { \
DCHECK(OFFSET_OF(Isolate, name##_) == name##_debug_offset_); \
return name##_; \
} \
inline void set_##name(type value) { \
DCHECK(OFFSET_OF(Isolate, name##_) == name##_debug_offset_); \
name##_ = value; \
}
ISOLATE_INIT_LIST(GLOBAL_ACCESSOR)
#undef GLOBAL_ACCESSOR
#define GLOBAL_ARRAY_ACCESSOR(type, name, length) \
inline type* name() { \
DCHECK(OFFSET_OF(Isolate, name##_) == name##_debug_offset_); \
return &(name##_)[0]; \
}
ISOLATE_INIT_ARRAY_LIST(GLOBAL_ARRAY_ACCESSOR)
#undef GLOBAL_ARRAY_ACCESSOR
#define NATIVE_CONTEXT_FIELD_ACCESSOR(index, type, name) \
inline Handle<type> name(); \
inline bool is_##name(type* value);
NATIVE_CONTEXT_FIELDS(NATIVE_CONTEXT_FIELD_ACCESSOR)
#undef NATIVE_CONTEXT_FIELD_ACCESSOR
Bootstrapper* bootstrapper() { return bootstrapper_; }
Counters* counters() {
// Call InitializeLoggingAndCounters() if logging is needed before
// the isolate is fully initialized.
DCHECK(counters_ != NULL);
return counters_;
}
CodeRange* code_range() { return code_range_; }
RuntimeProfiler* runtime_profiler() { return runtime_profiler_; }
CompilationCache* compilation_cache() { return compilation_cache_; }
Logger* logger() {
// Call InitializeLoggingAndCounters() if logging is needed before
// the isolate is fully initialized.
DCHECK(logger_ != NULL);
return logger_;
}
StackGuard* stack_guard() { return &stack_guard_; }
Heap* heap() { return &heap_; }
StatsTable* stats_table();
StubCache* stub_cache() { return stub_cache_; }
CodeAgingHelper* code_aging_helper() { return code_aging_helper_; }
DeoptimizerData* deoptimizer_data() { return deoptimizer_data_; }
bool deoptimizer_lazy_throw() const { return deoptimizer_lazy_throw_; }
void set_deoptimizer_lazy_throw(bool value) {
deoptimizer_lazy_throw_ = value;
}
ThreadLocalTop* thread_local_top() { return &thread_local_top_; }
MaterializedObjectStore* materialized_object_store() {
return materialized_object_store_;
}
MemoryAllocator* memory_allocator() {
return memory_allocator_;
}
KeyedLookupCache* keyed_lookup_cache() {
return keyed_lookup_cache_;
}
ContextSlotCache* context_slot_cache() {
return context_slot_cache_;
}
DescriptorLookupCache* descriptor_lookup_cache() {
return descriptor_lookup_cache_;
}
HandleScopeData* handle_scope_data() { return &handle_scope_data_; }
HandleScopeImplementer* handle_scope_implementer() {
DCHECK(handle_scope_implementer_);
return handle_scope_implementer_;
}
Zone* runtime_zone() { return &runtime_zone_; }
Zone* interface_descriptor_zone() { return &interface_descriptor_zone_; }
UnicodeCache* unicode_cache() {
return unicode_cache_;
}
InnerPointerToCodeCache* inner_pointer_to_code_cache() {
return inner_pointer_to_code_cache_;
}
GlobalHandles* global_handles() { return global_handles_; }
EternalHandles* eternal_handles() { return eternal_handles_; }
ThreadManager* thread_manager() { return thread_manager_; }
unibrow::Mapping<unibrow::Ecma262UnCanonicalize>* jsregexp_uncanonicalize() {
return &jsregexp_uncanonicalize_;
}
unibrow::Mapping<unibrow::CanonicalizationRange>* jsregexp_canonrange() {
return &jsregexp_canonrange_;
}
RuntimeState* runtime_state() { return &runtime_state_; }
Builtins* builtins() { return &builtins_; }
void NotifyExtensionInstalled() {
has_installed_extensions_ = true;
}
bool has_installed_extensions() { return has_installed_extensions_; }
unibrow::Mapping<unibrow::Ecma262Canonicalize>*
regexp_macro_assembler_canonicalize() {
return &regexp_macro_assembler_canonicalize_;
}
RegExpStack* regexp_stack() { return regexp_stack_; }
unibrow::Mapping<unibrow::Ecma262Canonicalize>*
interp_canonicalize_mapping() {
return &regexp_macro_assembler_canonicalize_;
}
Debug* debug() { return debug_; }
CpuProfiler* cpu_profiler() const { return cpu_profiler_; }
HeapProfiler* heap_profiler() const { return heap_profiler_; }
#ifdef DEBUG
HistogramInfo* heap_histograms() { return heap_histograms_; }
JSObject::SpillInformation* js_spill_information() {
return &js_spill_information_;
}
#endif
Factory* factory() { return reinterpret_cast<Factory*>(this); }
static const int kJSRegexpStaticOffsetsVectorSize = 128;
THREAD_LOCAL_TOP_ACCESSOR(ExternalCallbackScope*, external_callback_scope)
THREAD_LOCAL_TOP_ACCESSOR(StateTag, current_vm_state)
void SetData(uint32_t slot, void* data) {
DCHECK(slot < Internals::kNumIsolateDataSlots);
embedder_data_[slot] = data;
}
void* GetData(uint32_t slot) {
DCHECK(slot < Internals::kNumIsolateDataSlots);
return embedder_data_[slot];
}
bool serializer_enabled() const { return serializer_enabled_; }
bool snapshot_available() const {
return snapshot_blob_ != NULL && snapshot_blob_->raw_size != 0;
}
bool IsDead() { return has_fatal_error_; }
void SignalFatalError() { has_fatal_error_ = true; }
bool use_crankshaft() const;
bool initialized_from_snapshot() { return initialized_from_snapshot_; }
double time_millis_since_init() {
return heap_.MonotonicallyIncreasingTimeInMs() - time_millis_at_init_;
}
DateCache* date_cache() {
return date_cache_;
}
void set_date_cache(DateCache* date_cache) {
if (date_cache != date_cache_) {
delete date_cache_;
}
date_cache_ = date_cache;
}
Map* get_initial_js_array_map(ElementsKind kind);
static const int kArrayProtectorValid = 1;
static const int kArrayProtectorInvalid = 0;
bool IsFastArrayConstructorPrototypeChainIntact();
bool IsArraySpeciesLookupChainIntact();
// On intent to set an element in object, make sure that appropriate
// notifications occur if the set is on the elements of the array or
// object prototype. Also ensure that changes to prototype chain between
// Array and Object fire notifications.
void UpdateArrayProtectorOnSetElement(Handle<JSObject> object);
void UpdateArrayProtectorOnSetLength(Handle<JSObject> object) {
UpdateArrayProtectorOnSetElement(object);
}
void UpdateArrayProtectorOnSetPrototype(Handle<JSObject> object) {
UpdateArrayProtectorOnSetElement(object);
}
void UpdateArrayProtectorOnNormalizeElements(Handle<JSObject> object) {
UpdateArrayProtectorOnSetElement(object);
}
void InvalidateArraySpeciesProtector();
// Returns true if array is the initial array prototype in any native context.
bool IsAnyInitialArrayPrototype(Handle<JSArray> array);
CallInterfaceDescriptorData* call_descriptor_data(int index);
void IterateDeferredHandles(ObjectVisitor* visitor);
void LinkDeferredHandles(DeferredHandles* deferred_handles);
void UnlinkDeferredHandles(DeferredHandles* deferred_handles);
#ifdef DEBUG
bool IsDeferredHandle(Object** location);
#endif // DEBUG
bool concurrent_recompilation_enabled() {
// Thread is only available with flag enabled.
DCHECK(optimizing_compile_dispatcher_ == NULL ||
FLAG_concurrent_recompilation);
return optimizing_compile_dispatcher_ != NULL;
}
OptimizingCompileDispatcher* optimizing_compile_dispatcher() {
return optimizing_compile_dispatcher_;
}
int id() const { return static_cast<int>(id_); }
HStatistics* GetHStatistics();
CompilationStatistics* GetTurboStatistics();
HTracer* GetHTracer();
CodeTracer* GetCodeTracer();
void DumpAndResetCompilationStats();
FunctionEntryHook function_entry_hook() { return function_entry_hook_; }
void set_function_entry_hook(FunctionEntryHook function_entry_hook) {
function_entry_hook_ = function_entry_hook;
}
void* stress_deopt_count_address() { return &stress_deopt_count_; }
void* virtual_handler_register_address() {
return &virtual_handler_register_;
}
void* virtual_slot_register_address() { return &virtual_slot_register_; }
base::RandomNumberGenerator* random_number_generator();
// Given an address occupied by a live code object, return that object.
Object* FindCodeObject(Address a);
int NextOptimizationId() {
int id = next_optimization_id_++;
if (!Smi::IsValid(next_optimization_id_)) {
next_optimization_id_ = 0;
}
return id;
}
void IncrementJsCallsFromApiCounter() { ++js_calls_from_api_counter_; }
unsigned int js_calls_from_api_counter() {
return js_calls_from_api_counter_;
}
// Get (and lazily initialize) the registry for per-isolate symbols.
Handle<JSObject> GetSymbolRegistry();
void AddCallCompletedCallback(CallCompletedCallback callback);
void RemoveCallCompletedCallback(CallCompletedCallback callback);
void FireCallCompletedCallback();
void AddBeforeCallEnteredCallback(BeforeCallEnteredCallback callback);
void RemoveBeforeCallEnteredCallback(BeforeCallEnteredCallback callback);
void FireBeforeCallEnteredCallback();
void AddMicrotasksCompletedCallback(MicrotasksCompletedCallback callback);
void RemoveMicrotasksCompletedCallback(MicrotasksCompletedCallback callback);
void FireMicrotasksCompletedCallback();
void SetPromiseRejectCallback(PromiseRejectCallback callback);
void ReportPromiseReject(Handle<JSObject> promise, Handle<Object> value,
v8::PromiseRejectEvent event);
void EnqueueMicrotask(Handle<Object> microtask);
void RunMicrotasks();
void SetUseCounterCallback(v8::Isolate::UseCounterCallback callback);
void CountUsage(v8::Isolate::UseCounterFeature feature);
BasicBlockProfiler* GetOrCreateBasicBlockProfiler();
BasicBlockProfiler* basic_block_profiler() { return basic_block_profiler_; }
std::string GetTurboCfgFileName();
#if TRACE_MAPS
int GetNextUniqueSharedFunctionInfoId() { return next_unique_sfi_id_++; }
#endif
// Support for dynamically disabling tail call elimination.
Address is_tail_call_elimination_enabled_address() {
return reinterpret_cast<Address>(&is_tail_call_elimination_enabled_);
}
bool is_tail_call_elimination_enabled() const {
return is_tail_call_elimination_enabled_;
}
void set_tail_call_elimination_enabled(bool enabled) {
is_tail_call_elimination_enabled_ = enabled;
}
void AddDetachedContext(Handle<Context> context);
void CheckDetachedContextsAfterGC();
List<Object*>* partial_snapshot_cache() { return &partial_snapshot_cache_; }
void set_array_buffer_allocator(v8::ArrayBuffer::Allocator* allocator) {
array_buffer_allocator_ = allocator;
}
v8::ArrayBuffer::Allocator* array_buffer_allocator() const {
return array_buffer_allocator_;
}
FutexWaitListNode* futex_wait_list_node() { return &futex_wait_list_node_; }
CancelableTaskManager* cancelable_task_manager() {
return cancelable_task_manager_;
}
interpreter::Interpreter* interpreter() const { return interpreter_; }
protected:
explicit Isolate(bool enable_serializer);
private:
friend struct GlobalState;
friend struct InitializeGlobalState;
Handle<JSObject> SetUpSubregistry(Handle<JSObject> registry, Handle<Map> map,
const char* name);
// These fields are accessed through the API, offsets must be kept in sync
// with v8::internal::Internals (in include/v8.h) constants. This is also
// verified in Isolate::Init() using runtime checks.
void* embedder_data_[Internals::kNumIsolateDataSlots];
Heap heap_;
// The per-process lock should be acquired before the ThreadDataTable is
// modified.
class ThreadDataTable {
public:
ThreadDataTable();
~ThreadDataTable();
PerIsolateThreadData* Lookup(Isolate* isolate, ThreadId thread_id);
void Insert(PerIsolateThreadData* data);
void Remove(PerIsolateThreadData* data);
void RemoveAllThreads(Isolate* isolate);
private:
PerIsolateThreadData* list_;
};
// These items form a stack synchronously with threads Enter'ing and Exit'ing
// the Isolate. The top of the stack points to a thread which is currently
// running the Isolate. When the stack is empty, the Isolate is considered
// not entered by any thread and can be Disposed.
// If the same thread enters the Isolate more then once, the entry_count_
// is incremented rather then a new item pushed to the stack.
class EntryStackItem {
public:
EntryStackItem(PerIsolateThreadData* previous_thread_data,
Isolate* previous_isolate,
EntryStackItem* previous_item)
: entry_count(1),
previous_thread_data(previous_thread_data),
previous_isolate(previous_isolate),
previous_item(previous_item) { }
int entry_count;
PerIsolateThreadData* previous_thread_data;
Isolate* previous_isolate;
EntryStackItem* previous_item;
private:
DISALLOW_COPY_AND_ASSIGN(EntryStackItem);
};
static base::LazyMutex thread_data_table_mutex_;
static base::Thread::LocalStorageKey per_isolate_thread_data_key_;
static base::Thread::LocalStorageKey isolate_key_;
static base::Thread::LocalStorageKey thread_id_key_;
static ThreadDataTable* thread_data_table_;
// A global counter for all generated Isolates, might overflow.
static base::Atomic32 isolate_counter_;
#if DEBUG
static base::Atomic32 isolate_key_created_;
#endif
void Deinit();
static void SetIsolateThreadLocals(Isolate* isolate,
PerIsolateThreadData* data);
// Find the PerThread for this particular (isolate, thread) combination.
// If one does not yet exist, allocate a new one.
PerIsolateThreadData* FindOrAllocatePerThreadDataForThisThread();
// Initializes the current thread to run this Isolate.
// Not thread-safe. Multiple threads should not Enter/Exit the same isolate
// at the same time, this should be prevented using external locking.
void Enter();
// Exits the current thread. The previosuly entered Isolate is restored
// for the thread.
// Not thread-safe. Multiple threads should not Enter/Exit the same isolate
// at the same time, this should be prevented using external locking.
void Exit();
void InitializeThreadLocal();
void MarkCompactPrologue(bool is_compacting,
ThreadLocalTop* archived_thread_data);
void MarkCompactEpilogue(bool is_compacting,
ThreadLocalTop* archived_thread_data);
void FillCache();
// Propagate pending exception message to the v8::TryCatch.
// If there is no external try-catch or message was successfully propagated,
// then return true.
bool PropagatePendingExceptionToExternalTryCatch();
// Remove per-frame stored materialized objects when we are unwinding
// the frame.
void RemoveMaterializedObjectsOnUnwind(StackFrame* frame);
void RunMicrotasksInternal();
base::Atomic32 id_;
EntryStackItem* entry_stack_;
int stack_trace_nesting_level_;
StringStream* incomplete_message_;
Address isolate_addresses_[kIsolateAddressCount + 1]; // NOLINT
Bootstrapper* bootstrapper_;
RuntimeProfiler* runtime_profiler_;
CompilationCache* compilation_cache_;
Counters* counters_;
CodeRange* code_range_;
base::RecursiveMutex break_access_;
Logger* logger_;
StackGuard stack_guard_;
StatsTable* stats_table_;
StubCache* stub_cache_;
CodeAgingHelper* code_aging_helper_;
DeoptimizerData* deoptimizer_data_;
bool deoptimizer_lazy_throw_;
MaterializedObjectStore* materialized_object_store_;
ThreadLocalTop thread_local_top_;
bool capture_stack_trace_for_uncaught_exceptions_;
int stack_trace_for_uncaught_exceptions_frame_limit_;
StackTrace::StackTraceOptions stack_trace_for_uncaught_exceptions_options_;
MemoryAllocator* memory_allocator_;
KeyedLookupCache* keyed_lookup_cache_;
ContextSlotCache* context_slot_cache_;
DescriptorLookupCache* descriptor_lookup_cache_;
HandleScopeData handle_scope_data_;
HandleScopeImplementer* handle_scope_implementer_;
UnicodeCache* unicode_cache_;
Zone runtime_zone_;
Zone interface_descriptor_zone_;
InnerPointerToCodeCache* inner_pointer_to_code_cache_;
GlobalHandles* global_handles_;
EternalHandles* eternal_handles_;
ThreadManager* thread_manager_;
RuntimeState runtime_state_;
Builtins builtins_;
bool has_installed_extensions_;
unibrow::Mapping<unibrow::Ecma262UnCanonicalize> jsregexp_uncanonicalize_;
unibrow::Mapping<unibrow::CanonicalizationRange> jsregexp_canonrange_;
unibrow::Mapping<unibrow::Ecma262Canonicalize>
regexp_macro_assembler_canonicalize_;
RegExpStack* regexp_stack_;
DateCache* date_cache_;
CallInterfaceDescriptorData* call_descriptor_data_;
base::RandomNumberGenerator* random_number_generator_;
// Whether the isolate has been created for snapshotting.
bool serializer_enabled_;
// True if fatal error has been signaled for this isolate.
bool has_fatal_error_;
// True if this isolate was initialized from a snapshot.
bool initialized_from_snapshot_;
// True if ES2015 tail call elimination feature is enabled.
bool is_tail_call_elimination_enabled_;
// Time stamp at initialization.
double time_millis_at_init_;
#ifdef DEBUG
// A static array of histogram info for each type.
HistogramInfo heap_histograms_[LAST_TYPE + 1];
JSObject::SpillInformation js_spill_information_;
#endif
Debug* debug_;
CpuProfiler* cpu_profiler_;
HeapProfiler* heap_profiler_;
FunctionEntryHook function_entry_hook_;
interpreter::Interpreter* interpreter_;
typedef std::pair<InterruptCallback, void*> InterruptEntry;
std::queue<InterruptEntry> api_interrupts_queue_;
#define GLOBAL_BACKING_STORE(type, name, initialvalue) \
type name##_;
ISOLATE_INIT_LIST(GLOBAL_BACKING_STORE)
#undef GLOBAL_BACKING_STORE
#define GLOBAL_ARRAY_BACKING_STORE(type, name, length) \
type name##_[length];
ISOLATE_INIT_ARRAY_LIST(GLOBAL_ARRAY_BACKING_STORE)
#undef GLOBAL_ARRAY_BACKING_STORE
#ifdef DEBUG
// This class is huge and has a number of fields controlled by
// preprocessor defines. Make sure the offsets of these fields agree
// between compilation units.
#define ISOLATE_FIELD_OFFSET(type, name, ignored) \
static const intptr_t name##_debug_offset_;
ISOLATE_INIT_LIST(ISOLATE_FIELD_OFFSET)
ISOLATE_INIT_ARRAY_LIST(ISOLATE_FIELD_OFFSET)
#undef ISOLATE_FIELD_OFFSET
#endif
DeferredHandles* deferred_handles_head_;
OptimizingCompileDispatcher* optimizing_compile_dispatcher_;
// Counts deopt points if deopt_every_n_times is enabled.
unsigned int stress_deopt_count_;
Address virtual_handler_register_;
Address virtual_slot_register_;
int next_optimization_id_;
// Counts javascript calls from the API. Wraps around on overflow.
unsigned int js_calls_from_api_counter_;
#if TRACE_MAPS
int next_unique_sfi_id_;
#endif
// List of callbacks before a Call starts execution.
List<BeforeCallEnteredCallback> before_call_entered_callbacks_;
// List of callbacks when a Call completes.
List<CallCompletedCallback> call_completed_callbacks_;
// List of callbacks after microtasks were run.
List<MicrotasksCompletedCallback> microtasks_completed_callbacks_;
v8::Isolate::UseCounterCallback use_counter_callback_;
BasicBlockProfiler* basic_block_profiler_;
List<Object*> partial_snapshot_cache_;
v8::ArrayBuffer::Allocator* array_buffer_allocator_;
FutexWaitListNode futex_wait_list_node_;
CancelableTaskManager* cancelable_task_manager_;
v8::Isolate::AbortOnUncaughtExceptionCallback
abort_on_uncaught_exception_callback_;
friend class ExecutionAccess;
friend class HandleScopeImplementer;
friend class OptimizingCompileDispatcher;
friend class SweeperThread;
friend class ThreadManager;
friend class Simulator;
friend class StackGuard;
friend class ThreadId;
friend class TestMemoryAllocatorScope;
friend class TestCodeRangeScope;
friend class v8::Isolate;
friend class v8::Locker;
friend class v8::Unlocker;
friend v8::StartupData v8::V8::CreateSnapshotDataBlob(const char*);
friend v8::StartupData v8::V8::WarmUpSnapshotDataBlob(v8::StartupData,
const char*);
DISALLOW_COPY_AND_ASSIGN(Isolate);
};
#undef FIELD_ACCESSOR
#undef THREAD_LOCAL_TOP_ACCESSOR
class PromiseOnStack {
public:
PromiseOnStack(Handle<JSFunction> function, Handle<JSObject> promise,
PromiseOnStack* prev)
: function_(function), promise_(promise), prev_(prev) {}
Handle<JSFunction> function() { return function_; }
Handle<JSObject> promise() { return promise_; }
PromiseOnStack* prev() { return prev_; }
private:
Handle<JSFunction> function_;
Handle<JSObject> promise_;
PromiseOnStack* prev_;
};
// If the GCC version is 4.1.x or 4.2.x an additional field is added to the
// class as a work around for a bug in the generated code found with these
// versions of GCC. See V8 issue 122 for details.
class SaveContext BASE_EMBEDDED {
public:
explicit SaveContext(Isolate* isolate);
~SaveContext();
Handle<Context> context() { return context_; }
SaveContext* prev() { return prev_; }
// Returns true if this save context is below a given JavaScript frame.
bool IsBelowFrame(JavaScriptFrame* frame) {
return (c_entry_fp_ == 0) || (c_entry_fp_ > frame->sp());
}
private:
Isolate* isolate_;
Handle<Context> context_;
SaveContext* prev_;
Address c_entry_fp_;
};
class AssertNoContextChange BASE_EMBEDDED {
#ifdef DEBUG
public:
explicit AssertNoContextChange(Isolate* isolate);
~AssertNoContextChange() {
DCHECK(isolate_->context() == *context_);
}
private:
Isolate* isolate_;
Handle<Context> context_;
#else
public:
explicit AssertNoContextChange(Isolate* isolate) { }
#endif
};
class ExecutionAccess BASE_EMBEDDED {
public:
explicit ExecutionAccess(Isolate* isolate) : isolate_(isolate) {
Lock(isolate);
}
~ExecutionAccess() { Unlock(isolate_); }
static void Lock(Isolate* isolate) { isolate->break_access()->Lock(); }
static void Unlock(Isolate* isolate) { isolate->break_access()->Unlock(); }
static bool TryLock(Isolate* isolate) {
return isolate->break_access()->TryLock();
}
private:
Isolate* isolate_;
};
// Support for checking for stack-overflows.
class StackLimitCheck BASE_EMBEDDED {
public:
explicit StackLimitCheck(Isolate* isolate) : isolate_(isolate) { }
// Use this to check for stack-overflows in C++ code.
bool HasOverflowed() const {
StackGuard* stack_guard = isolate_->stack_guard();
return GetCurrentStackPosition() < stack_guard->real_climit();
}
// Use this to check for interrupt request in C++ code.
bool InterruptRequested() {
StackGuard* stack_guard = isolate_->stack_guard();
return GetCurrentStackPosition() < stack_guard->climit();
}
// Use this to check for stack-overflow when entering runtime from JS code.
bool JsHasOverflowed(uintptr_t gap = 0) const;
private:
Isolate* isolate_;
};
// Support for temporarily postponing interrupts. When the outermost
// postpone scope is left the interrupts will be re-enabled and any
// interrupts that occurred while in the scope will be taken into
// account.
class PostponeInterruptsScope BASE_EMBEDDED {
public:
PostponeInterruptsScope(Isolate* isolate,
int intercept_mask = StackGuard::ALL_INTERRUPTS)
: stack_guard_(isolate->stack_guard()),
intercept_mask_(intercept_mask),
intercepted_flags_(0) {
stack_guard_->PushPostponeInterruptsScope(this);
}
~PostponeInterruptsScope() {
stack_guard_->PopPostponeInterruptsScope();
}
// Find the bottom-most scope that intercepts this interrupt.
// Return whether the interrupt has been intercepted.
bool Intercept(StackGuard::InterruptFlag flag);
private:
StackGuard* stack_guard_;
int intercept_mask_;
int intercepted_flags_;
PostponeInterruptsScope* prev_;
friend class StackGuard;
};
class CodeTracer final : public Malloced {
public:
explicit CodeTracer(int isolate_id)
: file_(NULL),
scope_depth_(0) {
if (!ShouldRedirect()) {
file_ = stdout;
return;
}
if (FLAG_redirect_code_traces_to == NULL) {
SNPrintF(filename_,
"code-%d-%d.asm",
base::OS::GetCurrentProcessId(),
isolate_id);
} else {
StrNCpy(filename_, FLAG_redirect_code_traces_to, filename_.length());
}
WriteChars(filename_.start(), "", 0, false);
}
class Scope {
public:
explicit Scope(CodeTracer* tracer) : tracer_(tracer) { tracer->OpenFile(); }
~Scope() { tracer_->CloseFile(); }
FILE* file() const { return tracer_->file(); }
private:
CodeTracer* tracer_;
};
void OpenFile() {
if (!ShouldRedirect()) {
return;
}
if (file_ == NULL) {
file_ = base::OS::FOpen(filename_.start(), "ab");
}
scope_depth_++;
}
void CloseFile() {
if (!ShouldRedirect()) {
return;
}
if (--scope_depth_ == 0) {
fclose(file_);
file_ = NULL;
}
}
FILE* file() const { return file_; }
private:
static bool ShouldRedirect() {
return FLAG_redirect_code_traces;
}
EmbeddedVector<char, 128> filename_;
FILE* file_;
int scope_depth_;
};
} // namespace internal
} // namespace v8
#endif // V8_ISOLATE_H_