blob: b41606a16c56c8dbd382944ccd5fc888ac35d440 [file] [log] [blame]
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "platform/image-decoders/ImageDecoderTestHelpers.h"
#include "platform/SharedBuffer.h"
#include "platform/image-decoders/ImageFrame.h"
#include "platform/testing/UnitTestHelpers.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "wtf/StringHasher.h"
#include "wtf/text/StringBuilder.h"
#include <memory>
namespace blink {
PassRefPtr<SharedBuffer> readFile(const char* fileName) {
String filePath = testing::blinkRootDir();
filePath.append(fileName);
return testing::readFromFile(filePath);
}
PassRefPtr<SharedBuffer> readFile(const char* dir, const char* fileName) {
StringBuilder filePath;
filePath.append(testing::blinkRootDir());
filePath.append('/');
filePath.append(dir);
filePath.append('/');
filePath.append(fileName);
return testing::readFromFile(filePath.toString());
}
unsigned hashBitmap(const SkBitmap& bitmap) {
return StringHasher::hashMemory(bitmap.getPixels(), bitmap.getSize());
}
static unsigned createDecodingBaseline(DecoderCreator createDecoder,
SharedBuffer* data) {
std::unique_ptr<ImageDecoder> decoder = createDecoder();
decoder->setData(data, true);
ImageFrame* frame = decoder->frameBufferAtIndex(0);
return hashBitmap(frame->bitmap());
}
void createDecodingBaseline(DecoderCreator createDecoder,
SharedBuffer* data,
Vector<unsigned>* baselineHashes) {
std::unique_ptr<ImageDecoder> decoder = createDecoder();
decoder->setData(data, true);
size_t frameCount = decoder->frameCount();
for (size_t i = 0; i < frameCount; ++i) {
ImageFrame* frame = decoder->frameBufferAtIndex(i);
baselineHashes->push_back(hashBitmap(frame->bitmap()));
}
}
void testByteByByteDecode(DecoderCreator createDecoder,
SharedBuffer* data,
size_t expectedFrameCount,
int expectedRepetitionCount) {
ASSERT_TRUE(data->data());
Vector<unsigned> baselineHashes;
createDecodingBaseline(createDecoder, data, &baselineHashes);
std::unique_ptr<ImageDecoder> decoder = createDecoder();
size_t frameCount = 0;
size_t framesDecoded = 0;
// Pass data to decoder byte by byte.
RefPtr<SharedBuffer> sourceData[2] = {SharedBuffer::create(),
SharedBuffer::create()};
const char* source = data->data();
for (size_t length = 1; length <= data->size() && !decoder->failed();
++length) {
sourceData[0]->append(source, 1u);
sourceData[1]->append(source++, 1u);
// Alternate the buffers to cover the JPEGImageDecoder::onSetData restart
// code.
decoder->setData(sourceData[length & 1].get(), length == data->size());
EXPECT_LE(frameCount, decoder->frameCount());
frameCount = decoder->frameCount();
if (!decoder->isSizeAvailable())
continue;
for (size_t i = framesDecoded; i < frameCount; ++i) {
// In ICOImageDecoder memory layout could differ from frame order.
// E.g. memory layout could be |<frame1><frame0>| and frameCount
// would return 1 until receiving full file.
// When file is completely received frameCount would return 2 and
// only then both frames could be completely decoded.
ImageFrame* frame = decoder->frameBufferAtIndex(i);
if (frame && frame->getStatus() == ImageFrame::FrameComplete)
++framesDecoded;
}
}
EXPECT_FALSE(decoder->failed());
EXPECT_EQ(expectedFrameCount, decoder->frameCount());
EXPECT_EQ(expectedFrameCount, framesDecoded);
EXPECT_EQ(expectedRepetitionCount, decoder->repetitionCount());
ASSERT_EQ(expectedFrameCount, baselineHashes.size());
for (size_t i = 0; i < decoder->frameCount(); i++) {
ImageFrame* frame = decoder->frameBufferAtIndex(i);
EXPECT_EQ(baselineHashes[i], hashBitmap(frame->bitmap()));
}
}
// This test verifies that calling SharedBuffer::mergeSegmentsIntoBuffer() does
// not break decoding at a critical point: in between a call to decode the size
// (when the decoder stops while it may still have input data to read) and a
// call to do a full decode.
static void testMergeBuffer(DecoderCreator createDecoder, SharedBuffer* data) {
const unsigned hash = createDecodingBaseline(createDecoder, data);
// In order to do any verification, this test needs to move the data owned
// by the SharedBuffer. A way to guarantee that is to create a new one, and
// then append a string of characters greater than kSegmentSize. This
// results in writing the data into a segment, skipping the internal
// contiguous buffer.
RefPtr<SharedBuffer> segmentedData = SharedBuffer::create();
segmentedData->append(data->data(), data->size());
std::unique_ptr<ImageDecoder> decoder = createDecoder();
decoder->setData(segmentedData.get(), true);
ASSERT_TRUE(decoder->isSizeAvailable());
// This will call SharedBuffer::mergeSegmentsIntoBuffer, copying all
// segments into the contiguous buffer. If the ImageDecoder was pointing to
// data in a segment, its pointer would no longer be valid.
segmentedData->data();
ImageFrame* frame = decoder->frameBufferAtIndex(0);
ASSERT_FALSE(decoder->failed());
EXPECT_EQ(frame->getStatus(), ImageFrame::FrameComplete);
EXPECT_EQ(hashBitmap(frame->bitmap()), hash);
}
static void testRandomFrameDecode(DecoderCreator createDecoder,
SharedBuffer* fullData,
size_t skippingStep) {
Vector<unsigned> baselineHashes;
createDecodingBaseline(createDecoder, fullData, &baselineHashes);
size_t frameCount = baselineHashes.size();
// Random decoding should get the same results as sequential decoding.
std::unique_ptr<ImageDecoder> decoder = createDecoder();
decoder->setData(fullData, true);
for (size_t i = 0; i < skippingStep; ++i) {
for (size_t j = i; j < frameCount; j += skippingStep) {
SCOPED_TRACE(::testing::Message() << "Random i:" << i << " j:" << j);
ImageFrame* frame = decoder->frameBufferAtIndex(j);
EXPECT_EQ(baselineHashes[j], hashBitmap(frame->bitmap()));
}
}
// Decoding in reverse order.
decoder = createDecoder();
decoder->setData(fullData, true);
for (size_t i = frameCount; i; --i) {
SCOPED_TRACE(::testing::Message() << "Reverse i:" << i);
ImageFrame* frame = decoder->frameBufferAtIndex(i - 1);
EXPECT_EQ(baselineHashes[i - 1], hashBitmap(frame->bitmap()));
}
}
static void testRandomDecodeAfterClearFrameBufferCache(
DecoderCreator createDecoder,
SharedBuffer* data,
size_t skippingStep) {
Vector<unsigned> baselineHashes;
createDecodingBaseline(createDecoder, data, &baselineHashes);
size_t frameCount = baselineHashes.size();
std::unique_ptr<ImageDecoder> decoder = createDecoder();
decoder->setData(data, true);
for (size_t clearExceptFrame = 0; clearExceptFrame < frameCount;
++clearExceptFrame) {
decoder->clearCacheExceptFrame(clearExceptFrame);
for (size_t i = 0; i < skippingStep; ++i) {
for (size_t j = 0; j < frameCount; j += skippingStep) {
SCOPED_TRACE(::testing::Message() << "Random i:" << i << " j:" << j);
ImageFrame* frame = decoder->frameBufferAtIndex(j);
EXPECT_EQ(baselineHashes[j], hashBitmap(frame->bitmap()));
}
}
}
}
static void testDecodeAfterReallocatingData(DecoderCreator createDecoder,
SharedBuffer* data) {
std::unique_ptr<ImageDecoder> decoder = createDecoder();
// Parse from 'data'.
decoder->setData(data, true);
size_t frameCount = decoder->frameCount();
// ... and then decode frames from 'reallocatedData'.
RefPtr<SharedBuffer> reallocatedData = data->copy();
ASSERT_TRUE(reallocatedData.get());
data->clear();
decoder->setData(reallocatedData.get(), true);
for (size_t i = 0; i < frameCount; ++i) {
const ImageFrame* const frame = decoder->frameBufferAtIndex(i);
EXPECT_EQ(ImageFrame::FrameComplete, frame->getStatus());
}
}
static void testByteByByteSizeAvailable(DecoderCreator createDecoder,
SharedBuffer* data,
size_t frameOffset,
bool hasColorSpace,
int expectedRepetitionCount) {
std::unique_ptr<ImageDecoder> decoder = createDecoder();
EXPECT_LT(frameOffset, data->size());
// Send data to the decoder byte-by-byte and use the provided frame offset in
// the data to check that isSizeAvailable() changes state only when that
// offset is reached. Also check other decoder state.
RefPtr<SharedBuffer> tempData = SharedBuffer::create();
const char* source = data->data();
for (size_t length = 1; length <= frameOffset; ++length) {
tempData->append(source++, 1u);
decoder->setData(tempData.get(), false);
if (length < frameOffset) {
EXPECT_FALSE(decoder->isSizeAvailable());
EXPECT_TRUE(decoder->size().isEmpty());
EXPECT_FALSE(decoder->hasEmbeddedColorSpace());
EXPECT_EQ(0u, decoder->frameCount());
EXPECT_EQ(cAnimationLoopOnce, decoder->repetitionCount());
EXPECT_FALSE(decoder->frameBufferAtIndex(0));
} else {
EXPECT_TRUE(decoder->isSizeAvailable());
EXPECT_FALSE(decoder->size().isEmpty());
EXPECT_EQ(decoder->hasEmbeddedColorSpace(), hasColorSpace);
EXPECT_EQ(1u, decoder->frameCount());
EXPECT_EQ(expectedRepetitionCount, decoder->repetitionCount());
}
ASSERT_FALSE(decoder->failed());
}
}
static void testProgressiveDecoding(DecoderCreator createDecoder,
SharedBuffer* fullData,
size_t increment) {
const size_t fullLength = fullData->size();
std::unique_ptr<ImageDecoder> decoder;
Vector<unsigned> truncatedHashes;
Vector<unsigned> progressiveHashes;
// Compute hashes when the file is truncated.
RefPtr<SharedBuffer> data = SharedBuffer::create();
const char* source = fullData->data();
for (size_t i = 1; i <= fullLength; i += increment) {
decoder = createDecoder();
data->append(source++, 1u);
decoder->setData(data.get(), i == fullLength);
ImageFrame* frame = decoder->frameBufferAtIndex(0);
if (!frame) {
truncatedHashes.push_back(0);
continue;
}
truncatedHashes.push_back(hashBitmap(frame->bitmap()));
}
// Compute hashes when the file is progressively decoded.
decoder = createDecoder();
data = SharedBuffer::create();
source = fullData->data();
for (size_t i = 1; i <= fullLength; i += increment) {
data->append(source++, 1u);
decoder->setData(data.get(), i == fullLength);
ImageFrame* frame = decoder->frameBufferAtIndex(0);
if (!frame) {
progressiveHashes.push_back(0);
continue;
}
progressiveHashes.push_back(hashBitmap(frame->bitmap()));
}
for (size_t i = 0; i < truncatedHashes.size(); ++i)
ASSERT_EQ(truncatedHashes[i], progressiveHashes[i]);
}
void testUpdateRequiredPreviousFrameAfterFirstDecode(
DecoderCreator createDecoder,
SharedBuffer* fullData) {
std::unique_ptr<ImageDecoder> decoder = createDecoder();
// Give it data that is enough to parse but not decode in order to check the
// status of requiredPreviousFrameIndex before decoding.
RefPtr<SharedBuffer> data = SharedBuffer::create();
const char* source = fullData->data();
do {
data->append(source++, 1u);
decoder->setData(data.get(), false);
} while (!decoder->frameCount() ||
decoder->frameBufferAtIndex(0)->getStatus() ==
ImageFrame::FrameEmpty);
EXPECT_EQ(kNotFound,
decoder->frameBufferAtIndex(0)->requiredPreviousFrameIndex());
unsigned frameCount = decoder->frameCount();
for (size_t i = 1; i < frameCount; ++i) {
EXPECT_EQ(i - 1,
decoder->frameBufferAtIndex(i)->requiredPreviousFrameIndex());
}
decoder->setData(fullData, true);
for (size_t i = 0; i < frameCount; ++i) {
EXPECT_EQ(kNotFound,
decoder->frameBufferAtIndex(i)->requiredPreviousFrameIndex());
}
}
void testResumePartialDecodeAfterClearFrameBufferCache(
DecoderCreator createDecoder,
SharedBuffer* fullData) {
Vector<unsigned> baselineHashes;
createDecodingBaseline(createDecoder, fullData, &baselineHashes);
size_t frameCount = baselineHashes.size();
std::unique_ptr<ImageDecoder> decoder = createDecoder();
// Let frame 0 be partially decoded.
RefPtr<SharedBuffer> data = SharedBuffer::create();
const char* source = fullData->data();
do {
data->append(source++, 1u);
decoder->setData(data.get(), false);
} while (!decoder->frameCount() ||
decoder->frameBufferAtIndex(0)->getStatus() ==
ImageFrame::FrameEmpty);
// Skip to the last frame and clear.
decoder->setData(fullData, true);
EXPECT_EQ(frameCount, decoder->frameCount());
ImageFrame* lastFrame = decoder->frameBufferAtIndex(frameCount - 1);
EXPECT_EQ(baselineHashes[frameCount - 1], hashBitmap(lastFrame->bitmap()));
decoder->clearCacheExceptFrame(kNotFound);
// Resume decoding of the first frame.
ImageFrame* firstFrame = decoder->frameBufferAtIndex(0);
EXPECT_EQ(ImageFrame::FrameComplete, firstFrame->getStatus());
EXPECT_EQ(baselineHashes[0], hashBitmap(firstFrame->bitmap()));
}
void testByteByByteDecode(DecoderCreator createDecoder,
const char* file,
size_t expectedFrameCount,
int expectedRepetitionCount) {
RefPtr<SharedBuffer> data = readFile(file);
ASSERT_TRUE(data.get());
testByteByByteDecode(createDecoder, data.get(), expectedFrameCount,
expectedRepetitionCount);
}
void testByteByByteDecode(DecoderCreator createDecoder,
const char* dir,
const char* file,
size_t expectedFrameCount,
int expectedRepetitionCount) {
RefPtr<SharedBuffer> data = readFile(dir, file);
ASSERT_TRUE(data.get());
testByteByByteDecode(createDecoder, data.get(), expectedFrameCount,
expectedRepetitionCount);
}
void testMergeBuffer(DecoderCreator createDecoder, const char* file) {
RefPtr<SharedBuffer> data = readFile(file);
ASSERT_TRUE(data.get());
testMergeBuffer(createDecoder, data.get());
}
void testMergeBuffer(DecoderCreator createDecoder,
const char* dir,
const char* file) {
RefPtr<SharedBuffer> data = readFile(dir, file);
ASSERT_TRUE(data.get());
testMergeBuffer(createDecoder, data.get());
}
void testRandomFrameDecode(DecoderCreator createDecoder,
const char* file,
size_t skippingStep) {
RefPtr<SharedBuffer> data = readFile(file);
ASSERT_TRUE(data.get());
SCOPED_TRACE(file);
testRandomFrameDecode(createDecoder, data.get(), skippingStep);
}
void testRandomFrameDecode(DecoderCreator createDecoder,
const char* dir,
const char* file,
size_t skippingStep) {
RefPtr<SharedBuffer> data = readFile(dir, file);
ASSERT_TRUE(data.get());
SCOPED_TRACE(file);
testRandomFrameDecode(createDecoder, data.get(), skippingStep);
}
void testRandomDecodeAfterClearFrameBufferCache(DecoderCreator createDecoder,
const char* file,
size_t skippingStep) {
RefPtr<SharedBuffer> data = readFile(file);
ASSERT_TRUE(data.get());
SCOPED_TRACE(file);
testRandomDecodeAfterClearFrameBufferCache(createDecoder, data.get(),
skippingStep);
}
void testRandomDecodeAfterClearFrameBufferCache(DecoderCreator createDecoder,
const char* dir,
const char* file,
size_t skippingStep) {
RefPtr<SharedBuffer> data = readFile(dir, file);
ASSERT_TRUE(data.get());
SCOPED_TRACE(file);
testRandomDecodeAfterClearFrameBufferCache(createDecoder, data.get(),
skippingStep);
}
void testDecodeAfterReallocatingData(DecoderCreator createDecoder,
const char* file) {
RefPtr<SharedBuffer> data = readFile(file);
ASSERT_TRUE(data.get());
testDecodeAfterReallocatingData(createDecoder, data.get());
}
void testDecodeAfterReallocatingData(DecoderCreator createDecoder,
const char* dir,
const char* file) {
RefPtr<SharedBuffer> data = readFile(dir, file);
ASSERT_TRUE(data.get());
testDecodeAfterReallocatingData(createDecoder, data.get());
}
void testByteByByteSizeAvailable(DecoderCreator createDecoder,
const char* file,
size_t frameOffset,
bool hasColorSpace,
int expectedRepetitionCount) {
RefPtr<SharedBuffer> data = readFile(file);
ASSERT_TRUE(data.get());
testByteByByteSizeAvailable(createDecoder, data.get(), frameOffset,
hasColorSpace, expectedRepetitionCount);
}
void testByteByByteSizeAvailable(DecoderCreator createDecoder,
const char* dir,
const char* file,
size_t frameOffset,
bool hasColorSpace,
int expectedRepetitionCount) {
RefPtr<SharedBuffer> data = readFile(dir, file);
ASSERT_TRUE(data.get());
testByteByByteSizeAvailable(createDecoder, data.get(), frameOffset,
hasColorSpace, expectedRepetitionCount);
}
void testProgressiveDecoding(DecoderCreator createDecoder,
const char* file,
size_t increment) {
RefPtr<SharedBuffer> data = readFile(file);
ASSERT_TRUE(data.get());
testProgressiveDecoding(createDecoder, data.get(), increment);
}
void testProgressiveDecoding(DecoderCreator createDecoder,
const char* dir,
const char* file,
size_t increment) {
RefPtr<SharedBuffer> data = readFile(dir, file);
ASSERT_TRUE(data.get());
testProgressiveDecoding(createDecoder, data.get(), increment);
}
void testUpdateRequiredPreviousFrameAfterFirstDecode(
DecoderCreator createDecoder,
const char* dir,
const char* file) {
RefPtr<SharedBuffer> data = readFile(dir, file);
ASSERT_TRUE(data.get());
testUpdateRequiredPreviousFrameAfterFirstDecode(createDecoder, data.get());
}
void testUpdateRequiredPreviousFrameAfterFirstDecode(
DecoderCreator createDecoder,
const char* file) {
RefPtr<SharedBuffer> data = readFile(file);
ASSERT_TRUE(data.get());
testUpdateRequiredPreviousFrameAfterFirstDecode(createDecoder, data.get());
}
void testResumePartialDecodeAfterClearFrameBufferCache(
DecoderCreator createDecoder,
const char* dir,
const char* file) {
RefPtr<SharedBuffer> data = readFile(dir, file);
ASSERT_TRUE(data.get());
testResumePartialDecodeAfterClearFrameBufferCache(createDecoder, data.get());
}
void testResumePartialDecodeAfterClearFrameBufferCache(
DecoderCreator createDecoder,
const char* file) {
RefPtr<SharedBuffer> data = readFile(file);
ASSERT_TRUE(data.get());
testResumePartialDecodeAfterClearFrameBufferCache(createDecoder, data.get());
}
static uint32_t premultiplyColor(uint32_t c) {
return SkPremultiplyARGBInline(SkGetPackedA32(c), SkGetPackedR32(c),
SkGetPackedG32(c), SkGetPackedB32(c));
}
static void verifyFramesMatch(const char* file,
const ImageFrame* const a,
const ImageFrame* const b) {
const SkBitmap& bitmapA = a->bitmap();
const SkBitmap& bitmapB = b->bitmap();
ASSERT_EQ(bitmapA.width(), bitmapB.width());
ASSERT_EQ(bitmapA.height(), bitmapB.height());
int maxDifference = 0;
for (int y = 0; y < bitmapA.height(); ++y) {
for (int x = 0; x < bitmapA.width(); ++x) {
uint32_t colorA = *bitmapA.getAddr32(x, y);
if (!a->premultiplyAlpha())
colorA = premultiplyColor(colorA);
uint32_t colorB = *bitmapB.getAddr32(x, y);
if (!b->premultiplyAlpha())
colorB = premultiplyColor(colorB);
uint8_t* pixelA = reinterpret_cast<uint8_t*>(&colorA);
uint8_t* pixelB = reinterpret_cast<uint8_t*>(&colorB);
for (int channel = 0; channel < 4; ++channel) {
const int difference = abs(pixelA[channel] - pixelB[channel]);
if (difference > maxDifference)
maxDifference = difference;
}
}
}
// Pre-multiplication could round the RGBA channel values. So, we declare
// that the frames match if the RGBA channel values differ by at most 2.
EXPECT_GE(2, maxDifference) << file;
}
// Verifies that result of alpha blending is similar for AlphaPremultiplied and
// AlphaNotPremultiplied cases.
void testAlphaBlending(DecoderCreatorWithAlpha createDecoder,
const char* file) {
RefPtr<SharedBuffer> data = readFile(file);
ASSERT_TRUE(data.get());
std::unique_ptr<ImageDecoder> decoderA =
createDecoder(ImageDecoder::AlphaPremultiplied);
decoderA->setData(data.get(), true);
std::unique_ptr<ImageDecoder> decoderB =
createDecoder(ImageDecoder::AlphaNotPremultiplied);
decoderB->setData(data.get(), true);
size_t frameCount = decoderA->frameCount();
ASSERT_EQ(frameCount, decoderB->frameCount());
for (size_t i = 0; i < frameCount; ++i) {
verifyFramesMatch(file, decoderA->frameBufferAtIndex(i),
decoderB->frameBufferAtIndex(i));
}
}
} // namespace blink