blob: d97b4b618859dbd6ffe867df51ec37ed3e7c5aea [file] [log] [blame]
/*
* Copyright 2009 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_P2P_BASE_FAKETRANSPORTCONTROLLER_H_
#define WEBRTC_P2P_BASE_FAKETRANSPORTCONTROLLER_H_
#include <map>
#include <memory>
#include <string>
#include <vector>
#include "webrtc/base/bind.h"
#include "webrtc/base/buffer.h"
#include "webrtc/base/fakesslidentity.h"
#include "webrtc/base/messagequeue.h"
#include "webrtc/base/sigslot.h"
#include "webrtc/base/sslfingerprint.h"
#include "webrtc/base/thread.h"
#include "webrtc/p2p/base/candidatepairinterface.h"
#include "webrtc/p2p/base/dtlstransportinternal.h"
#include "webrtc/p2p/base/icetransportinternal.h"
#include "webrtc/p2p/base/transportcontroller.h"
#ifdef HAVE_QUIC
#include "webrtc/p2p/quic/quictransport.h"
#endif
namespace cricket {
namespace {
struct PacketMessageData : public rtc::MessageData {
PacketMessageData(const char* data, size_t len) : packet(data, len) {}
rtc::Buffer packet;
};
} // namespace
class FakeIceTransport : public IceTransportInternal,
public rtc::MessageHandler {
public:
explicit FakeIceTransport(const std::string& name, int component)
: name_(name), component_(component) {}
~FakeIceTransport() { Reset(); }
const std::string& transport_name() const override { return name_; }
int component() const override { return component_; }
uint64_t IceTiebreaker() const { return tiebreaker_; }
IceMode remote_ice_mode() const { return remote_ice_mode_; }
const std::string& ice_ufrag() const { return ice_ufrag_; }
const std::string& ice_pwd() const { return ice_pwd_; }
const std::string& remote_ice_ufrag() const { return remote_ice_ufrag_; }
const std::string& remote_ice_pwd() const { return remote_ice_pwd_; }
// If async, will send packets by "Post"-ing to message queue instead of
// synchronously "Send"-ing.
void SetAsync(bool async) { async_ = async; }
void SetAsyncDelay(int delay_ms) { async_delay_ms_ = delay_ms; }
IceTransportState GetState() const override {
if (connection_count_ == 0) {
return had_connection_ ? IceTransportState::STATE_FAILED
: IceTransportState::STATE_INIT;
}
if (connection_count_ == 1) {
return IceTransportState::STATE_COMPLETED;
}
return IceTransportState::STATE_CONNECTING;
}
void SetIceRole(IceRole role) override { role_ = role; }
IceRole GetIceRole() const override { return role_; }
void SetIceTiebreaker(uint64_t tiebreaker) override {
tiebreaker_ = tiebreaker;
}
void SetIceParameters(const IceParameters& ice_params) override {
ice_ufrag_ = ice_params.ufrag;
ice_pwd_ = ice_params.pwd;
}
void SetRemoteIceParameters(const IceParameters& params) override {
remote_ice_ufrag_ = params.ufrag;
remote_ice_pwd_ = params.pwd;
}
void SetRemoteIceMode(IceMode mode) override { remote_ice_mode_ = mode; }
void MaybeStartGathering() override {
if (gathering_state_ == kIceGatheringNew) {
gathering_state_ = kIceGatheringGathering;
SignalGatheringState(this);
}
}
IceGatheringState gathering_state() const override {
return gathering_state_;
}
void Reset() {
if (state_ != STATE_INIT) {
state_ = STATE_INIT;
if (dest_) {
dest_->state_ = STATE_INIT;
dest_->dest_ = nullptr;
dest_ = nullptr;
}
}
}
void SetWritable(bool writable) { set_writable(writable); }
void set_writable(bool writable) {
if (writable_ == writable) {
return;
}
LOG(INFO) << "set_writable from:" << writable_ << " to " << writable;
writable_ = writable;
if (writable_) {
SignalReadyToSend(this);
}
SignalWritableState(this);
}
bool writable() const override { return writable_; }
// Simulates the two transports connecting to each other.
// If |asymmetric| is true this method only affects this FakeIceTransport.
// If false, it affects |dest| as well.
void SetDestination(FakeIceTransport* dest, bool asymmetric = false) {
if (state_ == STATE_INIT && dest) {
// This simulates the delivery of candidates.
dest_ = dest;
state_ = STATE_CONNECTED;
set_writable(true);
if (!asymmetric) {
dest->SetDestination(this, true);
}
} else if (state_ == STATE_CONNECTED && !dest) {
// Simulates loss of connectivity, by asymmetrically forgetting dest_.
dest_ = nullptr;
state_ = STATE_INIT;
set_writable(false);
}
}
void SetConnectionCount(size_t connection_count) {
size_t old_connection_count = connection_count_;
connection_count_ = connection_count;
if (connection_count)
had_connection_ = true;
// In this fake transport channel, |connection_count_| determines the
// transport channel state.
if (connection_count_ < old_connection_count)
SignalStateChanged(this);
}
void SetCandidatesGatheringComplete() {
if (gathering_state_ != kIceGatheringComplete) {
gathering_state_ = kIceGatheringComplete;
SignalGatheringState(this);
}
}
void SetReceiving(bool receiving) { set_receiving(receiving); }
void set_receiving(bool receiving) {
if (receiving_ == receiving) {
return;
}
receiving_ = receiving;
SignalReceivingState(this);
}
bool receiving() const override { return receiving_; }
void SetIceConfig(const IceConfig& config) override { ice_config_ = config; }
int receiving_timeout() const { return ice_config_.receiving_timeout; }
bool gather_continually() const { return ice_config_.gather_continually(); }
int SendPacket(const char* data,
size_t len,
const rtc::PacketOptions& options,
int flags) override {
if (state_ != STATE_CONNECTED) {
return -1;
}
if (flags != PF_SRTP_BYPASS && flags != 0) {
return -1;
}
PacketMessageData* packet = new PacketMessageData(data, len);
if (async_) {
if (async_delay_ms_) {
rtc::Thread::Current()->PostDelayed(RTC_FROM_HERE, async_delay_ms_,
this, 0, packet);
} else {
rtc::Thread::Current()->Post(RTC_FROM_HERE, this, 0, packet);
}
} else {
rtc::Thread::Current()->Send(RTC_FROM_HERE, this, 0, packet);
}
rtc::SentPacket sent_packet(options.packet_id, rtc::TimeMillis());
SignalSentPacket(this, sent_packet);
return static_cast<int>(len);
}
int SetOption(rtc::Socket::Option opt, int value) override { return true; }
bool GetOption(rtc::Socket::Option opt, int* value) override { return true; }
int GetError() override { return 0; }
void AddRemoteCandidate(const Candidate& candidate) override {
remote_candidates_.push_back(candidate);
}
void RemoveRemoteCandidate(const Candidate& candidate) override {}
const Candidates& remote_candidates() const { return remote_candidates_; }
void OnMessage(rtc::Message* msg) override {
PacketMessageData* data = static_cast<PacketMessageData*>(msg->pdata);
dest_->SignalReadPacket(dest_, data->packet.data<char>(),
data->packet.size(), rtc::CreatePacketTime(0), 0);
delete data;
}
bool GetStats(ConnectionInfos* infos) override {
ConnectionInfo info;
infos->clear();
infos->push_back(info);
return true;
}
void SetMetricsObserver(webrtc::MetricsObserverInterface* observer) override {
}
private:
std::string name_;
int component_;
enum State { STATE_INIT, STATE_CONNECTED };
FakeIceTransport* dest_ = nullptr;
State state_ = STATE_INIT;
bool async_ = false;
int async_delay_ms_ = 0;
Candidates remote_candidates_;
IceConfig ice_config_;
IceRole role_ = ICEROLE_UNKNOWN;
uint64_t tiebreaker_ = 0;
std::string ice_ufrag_;
std::string ice_pwd_;
std::string remote_ice_ufrag_;
std::string remote_ice_pwd_;
IceMode remote_ice_mode_ = ICEMODE_FULL;
size_t connection_count_ = 0;
IceGatheringState gathering_state_ = kIceGatheringNew;
bool had_connection_ = false;
bool writable_ = false;
bool receiving_ = false;
};
class FakeDtlsTransport : public DtlsTransportInternal {
public:
explicit FakeDtlsTransport(FakeIceTransport* ice_transport)
: ice_transport_(ice_transport),
transport_name_(ice_transport->transport_name()),
component_(ice_transport->component()),
dtls_fingerprint_("", nullptr, 0) {
ice_transport_->SignalReadPacket.connect(
this, &FakeDtlsTransport::OnIceTransportReadPacket);
}
// If this constructor is called, a new fake ice transport will be created,
// and this FakeDtlsTransport will take the ownership.
explicit FakeDtlsTransport(const std::string& name, int component)
: owned_ice_transport_(new FakeIceTransport(name, component)),
transport_name_(owned_ice_transport_->transport_name()),
component_(owned_ice_transport_->component()),
dtls_fingerprint_("", nullptr, 0) {
ice_transport_ = owned_ice_transport_.get();
ice_transport_->SignalReadPacket.connect(
this, &FakeDtlsTransport::OnIceTransportReadPacket);
}
~FakeDtlsTransport() override { Reset(); }
uint64_t IceTiebreaker() const { return ice_transport_->IceTiebreaker(); }
IceMode remote_ice_mode() const { return ice_transport_->remote_ice_mode(); }
const std::string& ice_ufrag() const { return ice_transport_->ice_ufrag(); }
const std::string& ice_pwd() const { return ice_transport_->ice_pwd(); }
const std::string& remote_ice_ufrag() const {
return ice_transport_->remote_ice_ufrag();
}
const std::string& remote_ice_pwd() const {
return ice_transport_->remote_ice_pwd();
}
DtlsTransportState dtls_state() const override { return dtls_state_; }
const std::string& transport_name() const override { return transport_name_; }
int component() const override { return component_; }
const rtc::SSLFingerprint& dtls_fingerprint() const {
return dtls_fingerprint_;
}
// If async, will send packets by "Post"-ing to message queue instead of
// synchronously "Send"-ing.
void SetAsync(bool async) { ice_transport_->SetAsync(async); }
void SetAsyncDelay(int delay_ms) { ice_transport_->SetAsyncDelay(delay_ms); }
IceRole GetIceRole() const { return ice_transport_->GetIceRole(); }
bool SetRemoteFingerprint(const std::string& alg,
const uint8_t* digest,
size_t digest_len) override {
dtls_fingerprint_ = rtc::SSLFingerprint(alg, digest, digest_len);
return true;
}
bool SetSslRole(rtc::SSLRole role) override {
ssl_role_ = role;
return true;
}
bool GetSslRole(rtc::SSLRole* role) const override {
*role = ssl_role_;
return true;
}
IceGatheringState gathering_state() const {
return ice_transport_->gathering_state();
}
void Reset() {
if (state_ != STATE_INIT) {
state_ = STATE_INIT;
if (dest_) {
dest_->state_ = STATE_INIT;
dest_->dest_ = nullptr;
dest_ = nullptr;
}
}
}
void SetWritable(bool writable) { set_writable(writable); }
// Simulates the two transport channels connecting to each other.
// If |asymmetric| is true this method only affects this FakeDtlsTransport.
// If false, it affects |dest| as well.
void SetDestination(FakeDtlsTransport* dest, bool asymmetric = false) {
if (state_ == STATE_INIT && dest) {
// This simulates the delivery of candidates.
dest_ = dest;
if (local_cert_ && dest_->local_cert_) {
do_dtls_ = true;
NegotiateSrtpCiphers();
}
state_ = STATE_CONNECTED;
SetWritable(true);
if (!asymmetric) {
dest->SetDestination(this, true);
}
ice_transport_->SetDestination(
static_cast<FakeIceTransport*>(dest->ice_transport()), asymmetric);
} else if (state_ == STATE_CONNECTED && !dest) {
// Simulates loss of connectivity, by asymmetrically forgetting dest_.
dest_ = nullptr;
state_ = STATE_INIT;
SetWritable(false);
ice_transport_->SetDestination(nullptr, asymmetric);
}
}
void SetConnectionCount(size_t connection_count) {
ice_transport_->SetConnectionCount(connection_count);
}
void SetCandidatesGatheringComplete() {
ice_transport_->SetCandidatesGatheringComplete();
}
void SetReceiving(bool receiving) {
ice_transport_->SetReceiving(receiving);
set_receiving(receiving);
}
int receiving_timeout() const { return ice_transport_->receiving_timeout(); }
bool gather_continually() const {
return ice_transport_->gather_continually();
}
int SendPacket(const char* data,
size_t len,
const rtc::PacketOptions& options,
int flags) override {
return ice_transport_->SendPacket(data, len, options, flags);
}
bool GetOption(rtc::Socket::Option opt, int* value) override { return true; }
const Candidates& remote_candidates() const {
return ice_transport_->remote_candidates();
}
void OnIceTransportReadPacket(PacketTransportInterface* ice_,
const char* data,
size_t len,
const rtc::PacketTime& time,
int flags) {
SignalReadPacket(this, data, len, time, flags);
}
bool SetLocalCertificate(
const rtc::scoped_refptr<rtc::RTCCertificate>& certificate) override {
local_cert_ = certificate;
return true;
}
void SetRemoteSSLCertificate(rtc::FakeSSLCertificate* cert) {
remote_cert_ = cert;
}
bool IsDtlsActive() const override { return do_dtls_; }
bool SetSrtpCryptoSuites(const std::vector<int>& ciphers) override {
srtp_ciphers_ = ciphers;
return true;
}
bool GetSrtpCryptoSuite(int* crypto_suite) override {
if (chosen_crypto_suite_ != rtc::SRTP_INVALID_CRYPTO_SUITE) {
*crypto_suite = chosen_crypto_suite_;
return true;
}
return false;
}
bool GetSslCipherSuite(int* cipher_suite) override { return false; }
rtc::scoped_refptr<rtc::RTCCertificate> GetLocalCertificate() const override {
return local_cert_;
}
std::unique_ptr<rtc::SSLCertificate> GetRemoteSSLCertificate()
const override {
return remote_cert_ ? std::unique_ptr<rtc::SSLCertificate>(
remote_cert_->GetReference())
: nullptr;
}
bool ExportKeyingMaterial(const std::string& label,
const uint8_t* context,
size_t context_len,
bool use_context,
uint8_t* result,
size_t result_len) override {
if (chosen_crypto_suite_ != rtc::SRTP_INVALID_CRYPTO_SUITE) {
memset(result, 0xff, result_len);
return true;
}
return false;
}
void set_ssl_max_protocol_version(rtc::SSLProtocolVersion version) {
ssl_max_version_ = version;
}
rtc::SSLProtocolVersion ssl_max_protocol_version() const {
return ssl_max_version_;
}
IceTransportInternal* ice_transport() override { return ice_transport_; }
bool writable() const override { return writable_; }
bool receiving() const override { return receiving_; }
int GetError() override { return ice_transport_->GetError(); }
int SetOption(rtc::Socket::Option opt, int value) override {
return ice_transport_->SetOption(opt, value);
}
bool SetSrtpCiphers(const std::vector<std::string>& ciphers) override {
std::vector<int> crypto_suites;
for (const auto cipher : ciphers) {
crypto_suites.push_back(rtc::SrtpCryptoSuiteFromName(cipher));
}
return SetSrtpCryptoSuites(crypto_suites);
}
private:
void NegotiateSrtpCiphers() {
for (std::vector<int>::const_iterator it1 = srtp_ciphers_.begin();
it1 != srtp_ciphers_.end(); ++it1) {
for (std::vector<int>::const_iterator it2 = dest_->srtp_ciphers_.begin();
it2 != dest_->srtp_ciphers_.end(); ++it2) {
if (*it1 == *it2) {
chosen_crypto_suite_ = *it1;
return;
}
}
}
}
void set_receiving(bool receiving) {
if (receiving_ == receiving) {
return;
}
receiving_ = receiving;
SignalReceivingState(this);
}
void set_writable(bool writable) {
if (writable_ == writable) {
return;
}
writable_ = writable;
if (writable_) {
SignalReadyToSend(this);
}
SignalWritableState(this);
}
enum State { STATE_INIT, STATE_CONNECTED };
FakeIceTransport* ice_transport_;
std::unique_ptr<FakeIceTransport> owned_ice_transport_;
std::string transport_name_;
int component_;
FakeDtlsTransport* dest_ = nullptr;
State state_ = STATE_INIT;
Candidates remote_candidates_;
rtc::scoped_refptr<rtc::RTCCertificate> local_cert_;
rtc::FakeSSLCertificate* remote_cert_ = nullptr;
bool do_dtls_ = false;
std::vector<int> srtp_ciphers_;
int chosen_crypto_suite_ = rtc::SRTP_INVALID_CRYPTO_SUITE;
rtc::SSLProtocolVersion ssl_max_version_ = rtc::SSL_PROTOCOL_DTLS_12;
rtc::SSLFingerprint dtls_fingerprint_;
rtc::SSLRole ssl_role_ = rtc::SSL_CLIENT;
DtlsTransportState dtls_state_ = DTLS_TRANSPORT_NEW;
bool receiving_ = false;
bool writable_ = false;
};
// Fake candidate pair class, which can be passed to BaseChannel for testing
// purposes.
class FakeCandidatePair : public CandidatePairInterface {
public:
FakeCandidatePair(const Candidate& local_candidate,
const Candidate& remote_candidate)
: local_candidate_(local_candidate),
remote_candidate_(remote_candidate) {}
const Candidate& local_candidate() const override { return local_candidate_; }
const Candidate& remote_candidate() const override {
return remote_candidate_;
}
private:
Candidate local_candidate_;
Candidate remote_candidate_;
};
// Fake TransportController class, which can be passed into a BaseChannel object
// for test purposes. Can be connected to other FakeTransportControllers via
// Connect().
//
// This fake is unusual in that for the most part, it's implemented with the
// real TransportController code, but with fake TransportChannels underneath.
class FakeTransportController : public TransportController {
public:
FakeTransportController()
: TransportController(rtc::Thread::Current(),
rtc::Thread::Current(),
nullptr) {}
explicit FakeTransportController(bool redetermine_role_on_ice_restart)
: TransportController(rtc::Thread::Current(),
rtc::Thread::Current(),
nullptr,
redetermine_role_on_ice_restart) {}
explicit FakeTransportController(IceRole role)
: TransportController(rtc::Thread::Current(),
rtc::Thread::Current(),
nullptr) {
SetIceRole(role);
}
explicit FakeTransportController(rtc::Thread* network_thread)
: TransportController(rtc::Thread::Current(), network_thread, nullptr) {}
FakeTransportController(rtc::Thread* network_thread, IceRole role)
: TransportController(rtc::Thread::Current(), network_thread, nullptr) {
SetIceRole(role);
}
FakeDtlsTransport* GetFakeDtlsTransport_n(const std::string& transport_name,
int component) {
return static_cast<FakeDtlsTransport*>(
get_channel_for_testing(transport_name, component));
}
// Simulate the exchange of transport descriptions, and the gathering and
// exchange of ICE candidates.
void Connect(FakeTransportController* dest) {
for (const std::string& transport_name : transport_names_for_testing()) {
TransportDescription local_desc(
std::vector<std::string>(),
rtc::CreateRandomString(cricket::ICE_UFRAG_LENGTH),
rtc::CreateRandomString(cricket::ICE_PWD_LENGTH),
cricket::ICEMODE_FULL, cricket::CONNECTIONROLE_NONE,
certificate_for_testing()
? rtc::SSLFingerprint::CreateFromCertificate(
certificate_for_testing())
: nullptr);
TransportDescription remote_desc(
std::vector<std::string>(),
rtc::CreateRandomString(cricket::ICE_UFRAG_LENGTH),
rtc::CreateRandomString(cricket::ICE_PWD_LENGTH),
cricket::ICEMODE_FULL, cricket::CONNECTIONROLE_NONE,
dest->certificate_for_testing()
? rtc::SSLFingerprint::CreateFromCertificate(
dest->certificate_for_testing())
: nullptr);
std::string err;
SetLocalTransportDescription(transport_name, local_desc,
cricket::CA_OFFER, &err);
dest->SetRemoteTransportDescription(transport_name, local_desc,
cricket::CA_OFFER, &err);
dest->SetLocalTransportDescription(transport_name, remote_desc,
cricket::CA_ANSWER, &err);
SetRemoteTransportDescription(transport_name, remote_desc,
cricket::CA_ANSWER, &err);
}
MaybeStartGathering();
dest->MaybeStartGathering();
network_thread()->Invoke<void>(
RTC_FROM_HERE,
rtc::Bind(&FakeTransportController::SetChannelDestinations_n, this,
dest));
}
FakeCandidatePair* CreateFakeCandidatePair(
const rtc::SocketAddress& local_address,
int16_t local_network_id,
const rtc::SocketAddress& remote_address,
int16_t remote_network_id) {
Candidate local_candidate(0, "udp", local_address, 0u, "", "", "local", 0,
"foundation", local_network_id, 0);
Candidate remote_candidate(0, "udp", remote_address, 0u, "", "", "local", 0,
"foundation", remote_network_id, 0);
return new FakeCandidatePair(local_candidate, remote_candidate);
}
void DestroyRtcpTransport(const std::string& transport_name) {
DestroyDtlsTransport_n(transport_name,
cricket::ICE_CANDIDATE_COMPONENT_RTCP);
}
protected:
// The ICE channel is never actually used by TransportController directly,
// since (currently) the DTLS channel pretends to be both ICE + DTLS. This
// will change when we get rid of TransportChannelImpl.
IceTransportInternal* CreateIceTransportChannel_n(
const std::string& transport_name,
int component) override {
return new FakeIceTransport(transport_name, component);
}
DtlsTransportInternal* CreateDtlsTransportChannel_n(
const std::string& transport_name,
int component,
IceTransportInternal* ice) override {
return new FakeDtlsTransport(static_cast<FakeIceTransport*>(ice));
}
private:
void SetChannelDestinations_n(FakeTransportController* dest) {
for (DtlsTransportInternal* tc : channels_for_testing()) {
FakeDtlsTransport* local = static_cast<FakeDtlsTransport*>(tc);
FakeDtlsTransport* remote = dest->GetFakeDtlsTransport_n(
local->transport_name(), local->component());
if (remote) {
bool asymmetric = false;
local->SetDestination(remote, asymmetric);
}
}
}
};
} // namespace cricket
#endif // WEBRTC_P2P_BASE_FAKETRANSPORTCONTROLLER_H_