blob: 6d1bffb13fc7f102b76d0f737e0c55dc765ead2b [file] [log] [blame]
/*
* Copyright (C) 1997 Martin Jones (mjones@kde.org)
* (C) 1997 Torben Weis (weis@kde.org)
* (C) 1998 Waldo Bastian (bastian@kde.org)
* (C) 1999 Lars Knoll (knoll@kde.org)
* (C) 1999 Antti Koivisto (koivisto@kde.org)
* Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2013 Apple Inc. All rights reserved.
* Copyright (C) 2006 Alexey Proskuryakov (ap@nypop.com)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#include "core/layout/LayoutTable.h"
#include "core/HTMLNames.h"
#include "core/dom/Document.h"
#include "core/frame/FrameView.h"
#include "core/html/HTMLTableElement.h"
#include "core/layout/HitTestResult.h"
#include "core/layout/LayoutAnalyzer.h"
#include "core/layout/LayoutTableCaption.h"
#include "core/layout/LayoutTableCell.h"
#include "core/layout/LayoutTableCol.h"
#include "core/layout/LayoutTableSection.h"
#include "core/layout/LayoutView.h"
#include "core/layout/SubtreeLayoutScope.h"
#include "core/layout/TableLayoutAlgorithmAuto.h"
#include "core/layout/TableLayoutAlgorithmFixed.h"
#include "core/layout/TextAutosizer.h"
#include "core/paint/BoxPainter.h"
#include "core/paint/PaintLayer.h"
#include "core/paint/TablePainter.h"
#include "core/style/StyleInheritedData.h"
namespace blink {
using namespace HTMLNames;
LayoutTable::LayoutTable(Element* element)
: LayoutBlock(element)
, m_head(nullptr)
, m_foot(nullptr)
, m_firstBody(nullptr)
, m_collapsedBordersValid(false)
, m_hasColElements(false)
, m_needsSectionRecalc(false)
, m_columnLogicalWidthChanged(false)
, m_columnLayoutObjectsValid(false)
, m_hasCellColspanThatDeterminesTableWidth(false)
, m_hSpacing(0)
, m_vSpacing(0)
, m_borderStart(0)
, m_borderEnd(0)
{
ASSERT(!childrenInline());
m_effectiveColumnPositions.fill(0, 1);
}
LayoutTable::~LayoutTable()
{
}
void LayoutTable::styleDidChange(StyleDifference diff, const ComputedStyle* oldStyle)
{
LayoutBlock::styleDidChange(diff, oldStyle);
propagateStyleToAnonymousChildren();
bool oldFixedTableLayout = oldStyle ? oldStyle->isFixedTableLayout() : false;
// In the collapsed border model, there is no cell spacing.
m_hSpacing = collapseBorders() ? 0 : style()->horizontalBorderSpacing();
m_vSpacing = collapseBorders() ? 0 : style()->verticalBorderSpacing();
m_effectiveColumnPositions[0] = m_hSpacing;
if (!m_tableLayout || style()->isFixedTableLayout() != oldFixedTableLayout) {
if (m_tableLayout)
m_tableLayout->willChangeTableLayout();
// According to the CSS2 spec, you only use fixed table layout if an
// explicit width is specified on the table. Auto width implies auto table layout.
if (style()->isFixedTableLayout())
m_tableLayout = adoptPtr(new TableLayoutAlgorithmFixed(this));
else
m_tableLayout = adoptPtr(new TableLayoutAlgorithmAuto(this));
}
// If border was changed, invalidate collapsed borders cache.
if (!needsLayout() && oldStyle && oldStyle->border() != style()->border())
invalidateCollapsedBorders();
}
static inline void resetSectionPointerIfNotBefore(LayoutTableSection*& ptr, LayoutObject* before)
{
if (!before || !ptr)
return;
LayoutObject* o = before->previousSibling();
while (o && o != ptr)
o = o->previousSibling();
if (!o)
ptr = 0;
}
static inline bool needsTableSection(LayoutObject* object)
{
// Return true if 'object' can't exist in an anonymous table without being
// wrapped in a table section box.
EDisplay display = object->style()->display();
return display != TABLE_CAPTION && display != TABLE_COLUMN_GROUP && display != TABLE_COLUMN;
}
void LayoutTable::addChild(LayoutObject* child, LayoutObject* beforeChild)
{
bool wrapInAnonymousSection = !child->isOutOfFlowPositioned();
if (child->isTableCaption()) {
wrapInAnonymousSection = false;
} else if (child->isLayoutTableCol()) {
m_hasColElements = true;
wrapInAnonymousSection = false;
} else if (child->isTableSection()) {
switch (child->style()->display()) {
case TABLE_HEADER_GROUP:
resetSectionPointerIfNotBefore(m_head, beforeChild);
if (!m_head) {
m_head = toLayoutTableSection(child);
} else {
resetSectionPointerIfNotBefore(m_firstBody, beforeChild);
if (!m_firstBody)
m_firstBody = toLayoutTableSection(child);
}
wrapInAnonymousSection = false;
break;
case TABLE_FOOTER_GROUP:
resetSectionPointerIfNotBefore(m_foot, beforeChild);
if (!m_foot) {
m_foot = toLayoutTableSection(child);
wrapInAnonymousSection = false;
break;
}
// Fall through.
case TABLE_ROW_GROUP:
resetSectionPointerIfNotBefore(m_firstBody, beforeChild);
if (!m_firstBody)
m_firstBody = toLayoutTableSection(child);
wrapInAnonymousSection = false;
break;
default:
ASSERT_NOT_REACHED();
}
} else {
wrapInAnonymousSection = true;
}
if (child->isTableSection())
setNeedsSectionRecalc();
if (!wrapInAnonymousSection) {
if (beforeChild && beforeChild->parent() != this)
beforeChild = splitAnonymousBoxesAroundChild(beforeChild);
LayoutBox::addChild(child, beforeChild);
return;
}
if (!beforeChild && lastChild() && lastChild()->isTableSection() && lastChild()->isAnonymous() && !lastChild()->isBeforeContent()) {
lastChild()->addChild(child);
return;
}
if (beforeChild && !beforeChild->isAnonymous() && beforeChild->parent() == this) {
LayoutObject* section = beforeChild->previousSibling();
if (section && section->isTableSection() && section->isAnonymous()) {
section->addChild(child);
return;
}
}
LayoutObject* lastBox = beforeChild;
while (lastBox && lastBox->parent()->isAnonymous() && !lastBox->isTableSection() && needsTableSection(lastBox))
lastBox = lastBox->parent();
if (lastBox && lastBox->isAnonymous() && !isAfterContent(lastBox)) {
if (beforeChild == lastBox)
beforeChild = lastBox->slowFirstChild();
lastBox->addChild(child, beforeChild);
return;
}
if (beforeChild && !beforeChild->isTableSection() && needsTableSection(beforeChild))
beforeChild = 0;
LayoutTableSection* section = LayoutTableSection::createAnonymousWithParent(this);
addChild(section, beforeChild);
section->addChild(child);
}
void LayoutTable::addChildIgnoringContinuation(LayoutObject* newChild, LayoutObject* beforeChild)
{
// We need to bypass the LayoutBlock implementation and instead do a normal addChild() (or we
// won't get there at all), so that any missing anonymous table part layoutObjects are
// inserted. Otherwise we might end up with an insane layout tree with inlines or blocks as
// direct children of a table, which will break assumptions made all over the code, which may
// lead to crashers and security issues.
addChild(newChild, beforeChild);
}
void LayoutTable::addCaption(const LayoutTableCaption* caption)
{
ASSERT(m_captions.find(caption) == kNotFound);
m_captions.append(const_cast<LayoutTableCaption*>(caption));
}
void LayoutTable::removeCaption(const LayoutTableCaption* oldCaption)
{
size_t index = m_captions.find(oldCaption);
ASSERT(index != kNotFound);
if (index == kNotFound)
return;
m_captions.remove(index);
}
void LayoutTable::invalidateCachedColumns()
{
m_columnLayoutObjectsValid = false;
m_columnLayoutObjects.resize(0);
}
void LayoutTable::addColumn(const LayoutTableCol*)
{
invalidateCachedColumns();
}
void LayoutTable::removeColumn(const LayoutTableCol*)
{
invalidateCachedColumns();
// We don't really need to recompute our sections, but we need to update our
// column count and whether we have a column. Currently, we only have one
// size-fit-all flag but we may have to consider splitting it.
setNeedsSectionRecalc();
}
bool LayoutTable::isLogicalWidthAuto() const
{
Length styleLogicalWidth = style()->logicalWidth();
return (!styleLogicalWidth.isSpecified() || !styleLogicalWidth.isPositive()) && !styleLogicalWidth.isIntrinsic();
}
void LayoutTable::updateLogicalWidth()
{
recalcSectionsIfNeeded();
if (isOutOfFlowPositioned()) {
LogicalExtentComputedValues computedValues;
computePositionedLogicalWidth(computedValues);
setLogicalWidth(computedValues.m_extent);
setLogicalLeft(computedValues.m_position);
setMarginStart(computedValues.m_margins.m_start);
setMarginEnd(computedValues.m_margins.m_end);
}
LayoutBlock* cb = containingBlock();
LayoutUnit availableLogicalWidth = containingBlockLogicalWidthForContent() + (isOutOfFlowPositioned() ? cb->paddingLogicalWidth() : LayoutUnit());
bool hasPerpendicularContainingBlock = cb->style()->isHorizontalWritingMode() != style()->isHorizontalWritingMode();
LayoutUnit containerWidthInInlineDirection = hasPerpendicularContainingBlock ? perpendicularContainingBlockLogicalHeight() : availableLogicalWidth;
Length styleLogicalWidth = style()->logicalWidth();
if (!isLogicalWidthAuto()) {
setLogicalWidth(convertStyleLogicalWidthToComputedWidth(styleLogicalWidth, containerWidthInInlineDirection));
} else {
// Subtract out any fixed margins from our available width for auto width tables.
LayoutUnit marginStart = minimumValueForLength(style()->marginStart(), availableLogicalWidth);
LayoutUnit marginEnd = minimumValueForLength(style()->marginEnd(), availableLogicalWidth);
LayoutUnit marginTotal = marginStart + marginEnd;
// Subtract out our margins to get the available content width.
LayoutUnit availableContentLogicalWidth = (containerWidthInInlineDirection - marginTotal).clampNegativeToZero();
if (shrinkToAvoidFloats() && cb->isLayoutBlockFlow() && toLayoutBlockFlow(cb)->containsFloats() && !hasPerpendicularContainingBlock)
availableContentLogicalWidth = shrinkLogicalWidthToAvoidFloats(marginStart, marginEnd, toLayoutBlockFlow(cb));
// Ensure we aren't bigger than our available width.
setLogicalWidth(LayoutUnit(std::min(availableContentLogicalWidth, maxPreferredLogicalWidth()).floor()));
}
// Ensure we aren't bigger than our max-width style.
Length styleMaxLogicalWidth = style()->logicalMaxWidth();
if ((styleMaxLogicalWidth.isSpecified() && !styleMaxLogicalWidth.isNegative()) || styleMaxLogicalWidth.isIntrinsic()) {
LayoutUnit computedMaxLogicalWidth = convertStyleLogicalWidthToComputedWidth(styleMaxLogicalWidth, availableLogicalWidth);
setLogicalWidth(LayoutUnit(std::min(logicalWidth(), computedMaxLogicalWidth).floor()));
}
// Ensure we aren't smaller than our min preferred width. This MUST be done after 'max-width' as
// we ignore it if it means we wouldn't accommodate our content.
setLogicalWidth(LayoutUnit(std::max(logicalWidth(), minPreferredLogicalWidth()).floor()));
// Ensure we aren't smaller than our min-width style.
Length styleMinLogicalWidth = style()->logicalMinWidth();
if ((styleMinLogicalWidth.isSpecified() && !styleMinLogicalWidth.isNegative()) || styleMinLogicalWidth.isIntrinsic()) {
LayoutUnit computedMinLogicalWidth = convertStyleLogicalWidthToComputedWidth(styleMinLogicalWidth, availableLogicalWidth);
setLogicalWidth(LayoutUnit(std::max(logicalWidth(), computedMinLogicalWidth).floor()));
}
// Finally, with our true width determined, compute our margins for real.
ComputedMarginValues marginValues;
computeMarginsForDirection(InlineDirection, cb, availableLogicalWidth, logicalWidth(), marginValues.m_start, marginValues.m_end, style()->marginStart(), style()->marginEnd());
setMarginStart(marginValues.m_start);
setMarginEnd(marginValues.m_end);
// We should NEVER shrink the table below the min-content logical width, or else the table can't accommodate
// its own content which doesn't match CSS nor what authors expect.
// FIXME: When we convert to sub-pixel layout for tables we can remove the int conversion
// https://code.google.com/p/chromium/issues/detail?id=241198
ASSERT(logicalWidth().floor() >= minPreferredLogicalWidth().floor());
}
// This method takes a ComputedStyle's logical width, min-width, or max-width length and computes its actual value.
LayoutUnit LayoutTable::convertStyleLogicalWidthToComputedWidth(const Length& styleLogicalWidth, LayoutUnit availableWidth)
{
if (styleLogicalWidth.isIntrinsic())
return computeIntrinsicLogicalWidthUsing(styleLogicalWidth, availableWidth, bordersPaddingAndSpacingInRowDirection());
// HTML tables' width styles already include borders and paddings, but CSS tables' width styles do not.
LayoutUnit borders;
bool isCSSTable = !isHTMLTableElement(node());
if (isCSSTable && styleLogicalWidth.isSpecified() && styleLogicalWidth.isPositive() && style()->boxSizing() == BoxSizingContentBox)
borders = borderStart() + borderEnd() + (collapseBorders() ? LayoutUnit() : paddingStart() + paddingEnd());
return minimumValueForLength(styleLogicalWidth, availableWidth) + borders;
}
LayoutUnit LayoutTable::convertStyleLogicalHeightToComputedHeight(const Length& styleLogicalHeight)
{
LayoutUnit borderAndPaddingBefore = borderBefore() + (collapseBorders() ? LayoutUnit() : paddingBefore());
LayoutUnit borderAndPaddingAfter = borderAfter() + (collapseBorders() ? LayoutUnit() : paddingAfter());
LayoutUnit borderAndPadding = borderAndPaddingBefore + borderAndPaddingAfter;
LayoutUnit computedLogicalHeight;
if (styleLogicalHeight.isFixed()) {
// HTML tables size as though CSS height includes border/padding, CSS tables do not.
LayoutUnit borders = LayoutUnit();
// FIXME: We cannot apply box-sizing: content-box on <table> which other browsers allow.
if (isHTMLTableElement(node()) || style()->boxSizing() == BoxSizingBorderBox) {
borders = borderAndPadding;
}
computedLogicalHeight = LayoutUnit(styleLogicalHeight.value() - borders);
} else if (styleLogicalHeight.hasPercent()) {
computedLogicalHeight = computePercentageLogicalHeight(styleLogicalHeight);
} else if (styleLogicalHeight.isIntrinsic()) {
computedLogicalHeight = computeIntrinsicLogicalContentHeightUsing(styleLogicalHeight, logicalHeight() - borderAndPadding, borderAndPadding);
} else {
ASSERT_NOT_REACHED();
}
return computedLogicalHeight.clampNegativeToZero();
}
void LayoutTable::layoutCaption(LayoutTableCaption& caption)
{
if (caption.needsLayout()) {
// The margins may not be available but ensure the caption is at least located beneath any previous sibling caption
// so that it does not mistakenly think any floats in the previous caption intrude into it.
caption.setLogicalLocation(LayoutPoint(caption.marginStart(), collapsedMarginBeforeForChild(caption) + logicalHeight()));
// If LayoutTableCaption ever gets a layout() function, use it here.
caption.layoutIfNeeded();
}
// Apply the margins to the location now that they are definitely available from layout
LayoutUnit captionLogicalTop = collapsedMarginBeforeForChild(caption) + logicalHeight();
caption.setLogicalLocation(LayoutPoint(caption.marginStart(), captionLogicalTop));
if (!selfNeedsLayout())
caption.setMayNeedPaintInvalidation();
setLogicalHeight(logicalHeight() + caption.logicalHeight() + collapsedMarginBeforeForChild(caption) + collapsedMarginAfterForChild(caption));
}
void LayoutTable::distributeExtraLogicalHeight(int extraLogicalHeight)
{
if (extraLogicalHeight <= 0)
return;
// FIXME: Distribute the extra logical height between all table sections instead of giving it all to the first one.
if (LayoutTableSection* section = firstBody())
extraLogicalHeight -= section->distributeExtraLogicalHeightToRows(extraLogicalHeight);
// FIXME: We really would like to enable this ASSERT to ensure that all the extra space has been distributed.
// However our current distribution algorithm does not round properly and thus we can have some remaining height.
// ASSERT(!topSection() || !extraLogicalHeight);
}
void LayoutTable::simplifiedNormalFlowLayout()
{
// FIXME: We should walk through the items in the tree in tree order to do the layout here
// instead of walking through individual parts of the tree. crbug.com/442737
for (auto& caption : m_captions)
caption->layoutIfNeeded();
for (LayoutTableSection* section = topSection(); section; section = sectionBelow(section)) {
section->layoutIfNeeded();
section->layoutRows();
section->computeOverflowFromCells();
section->updateLayerTransformAfterLayout();
section->addVisualEffectOverflow();
}
}
void LayoutTable::layout()
{
ASSERT(needsLayout());
LayoutAnalyzer::Scope analyzer(*this);
if (simplifiedLayout())
return;
// Note: LayoutTable is handled differently than other LayoutBlocks and the LayoutScope
// must be created before the table begins laying out.
TextAutosizer::LayoutScope textAutosizerLayoutScope(this);
recalcSectionsIfNeeded();
// FIXME: We should do this recalc lazily in borderStart/borderEnd so that we don't have to make sure
// to call this before we call borderStart/borderEnd to avoid getting a stale value.
recalcBordersInRowDirection();
SubtreeLayoutScope layouter(*this);
// If any table section moved vertically, we will just issue paint invalidations for everything from that
// section down (it is quite unlikely that any of the following sections
// did not shift).
bool sectionMoved = false;
{
LayoutState state(*this, locationOffset());
LayoutUnit oldLogicalWidth = logicalWidth();
LayoutUnit oldLogicalHeight = logicalHeight();
setLogicalHeight(LayoutUnit());
updateLogicalWidth();
if (logicalWidth() != oldLogicalWidth) {
for (unsigned i = 0; i < m_captions.size(); i++)
layouter.setNeedsLayout(m_captions[i], LayoutInvalidationReason::TableChanged);
}
// FIXME: The optimisation below doesn't work since the internal table
// layout could have changed. We need to add a flag to the table
// layout that tells us if something has changed in the min max
// calculations to do it correctly.
// if ( oldWidth != width() || columns.size() + 1 != columnPos.size() )
m_tableLayout->layout();
LayoutUnit totalSectionLogicalHeight;
LayoutUnit oldTableLogicalTop;
for (unsigned i = 0; i < m_captions.size(); i++)
oldTableLogicalTop += m_captions[i]->logicalHeight() + m_captions[i]->marginBefore() + m_captions[i]->marginAfter();
bool collapsing = collapseBorders();
for (LayoutObject* child = firstChild(); child; child = child->nextSibling()) {
if (!child->needsLayout() && child->isBox())
toLayoutBox(child)->markForPaginationRelayoutIfNeeded(layouter);
if (child->isTableSection()) {
LayoutTableSection* section = toLayoutTableSection(child);
if (m_columnLogicalWidthChanged)
layouter.setChildNeedsLayout(section);
section->layoutIfNeeded();
totalSectionLogicalHeight += section->calcRowLogicalHeight();
if (collapsing)
section->recalcOuterBorder();
ASSERT(!section->needsLayout());
} else if (child->isLayoutTableCol()) {
child->layoutIfNeeded();
ASSERT(!child->needsLayout());
} else {
// FIXME: We should never have other type of children (they should be wrapped in an
// anonymous table section) but our code is too crazy and this can happen in practice.
// Until this is fixed, let's make sure we don't leave non laid out children in the tree.
child->layoutIfNeeded();
}
}
// FIXME: Collapse caption margin.
if (!m_captions.isEmpty()) {
for (unsigned i = 0; i < m_captions.size(); i++) {
if (m_captions[i]->style()->captionSide() == CaptionSideBottom)
continue;
layoutCaption(*m_captions[i]);
}
sectionMoved = logicalHeight() != oldTableLogicalTop;
}
LayoutUnit borderAndPaddingBefore = borderBefore() + (collapsing ? LayoutUnit() : paddingBefore());
LayoutUnit borderAndPaddingAfter = borderAfter() + (collapsing ? LayoutUnit() : paddingAfter());
setLogicalHeight(logicalHeight() + borderAndPaddingBefore);
LayoutUnit computedLogicalHeight;
Length logicalHeightLength = style()->logicalHeight();
if (logicalHeightLength.isIntrinsic() || (logicalHeightLength.isSpecified() && logicalHeightLength.isPositive()))
computedLogicalHeight = convertStyleLogicalHeightToComputedHeight(logicalHeightLength);
Length logicalMaxHeightLength = style()->logicalMaxHeight();
if (logicalMaxHeightLength.isIntrinsic() || (logicalMaxHeightLength.isSpecified() && !logicalMaxHeightLength.isNegative())) {
LayoutUnit computedMaxLogicalHeight = convertStyleLogicalHeightToComputedHeight(logicalMaxHeightLength);
computedLogicalHeight = std::min(computedLogicalHeight, computedMaxLogicalHeight);
}
Length logicalMinHeightLength = style()->logicalMinHeight();
if (logicalMinHeightLength.isIntrinsic() || (logicalMinHeightLength.isSpecified() && !logicalMinHeightLength.isNegative())) {
LayoutUnit computedMinLogicalHeight = convertStyleLogicalHeightToComputedHeight(logicalMinHeightLength);
computedLogicalHeight = std::max(computedLogicalHeight, computedMinLogicalHeight);
}
distributeExtraLogicalHeight(floorToInt(computedLogicalHeight - totalSectionLogicalHeight));
for (LayoutTableSection* section = topSection(); section; section = sectionBelow(section))
section->layoutRows();
if (!topSection() && computedLogicalHeight > totalSectionLogicalHeight && !document().inQuirksMode()) {
// Completely empty tables (with no sections or anything) should at least honor specified height
// in strict mode.
setLogicalHeight(logicalHeight() + computedLogicalHeight);
}
LayoutUnit sectionLogicalLeft = LayoutUnit(style()->isLeftToRightDirection() ? borderStart() : borderEnd());
if (!collapsing)
sectionLogicalLeft += style()->isLeftToRightDirection() ? paddingStart() : paddingEnd();
// position the table sections
LayoutTableSection* section = topSection();
while (section) {
if (!sectionMoved && section->logicalTop() != logicalHeight())
sectionMoved = true;
section->setLogicalLocation(LayoutPoint(sectionLogicalLeft, logicalHeight()));
// As we may skip invalidation on the table, we need to ensure that sections are invalidated when they moved.
if (sectionMoved && !section->selfNeedsLayout())
section->setMayNeedPaintInvalidation();
setLogicalHeight(logicalHeight() + section->logicalHeight());
section->updateLayerTransformAfterLayout();
section->addVisualEffectOverflow();
section = sectionBelow(section);
}
setLogicalHeight(logicalHeight() + borderAndPaddingAfter);
for (unsigned i = 0; i < m_captions.size(); i++) {
if (m_captions[i]->style()->captionSide() != CaptionSideBottom)
continue;
layoutCaption(*m_captions[i]);
}
updateLogicalHeight();
// table can be containing block of positioned elements.
bool dimensionChanged = oldLogicalWidth != logicalWidth() || oldLogicalHeight != logicalHeight();
layoutPositionedObjects(dimensionChanged);
updateLayerTransformAfterLayout();
// Layout was changed, so probably borders too.
invalidateCollapsedBorders();
computeOverflow(clientLogicalBottom());
updateAfterLayout();
}
// FIXME: This value isn't the intrinsic content logical height, but we need
// to update the value as its used by flexbox layout. crbug.com/367324
setIntrinsicContentLogicalHeight(contentLogicalHeight());
if (view()->layoutState()->pageLogicalHeight())
setPageLogicalOffset(view()->layoutState()->pageLogicalOffset(*this, logicalTop()));
m_columnLogicalWidthChanged = false;
clearNeedsLayout();
}
void LayoutTable::invalidateCollapsedBorders()
{
m_collapsedBorders.clear();
if (!collapseBorders())
return;
m_collapsedBordersValid = false;
setMayNeedPaintInvalidation();
}
// Collect all the unique border values that we want to paint in a sorted list.
// During the collection, each cell saves its recalculated borders into the cache
// of its containing section, and invalidates itself if any border changes.
// This method doesn't affect layout.
void LayoutTable::recalcCollapsedBordersIfNeeded()
{
if (m_collapsedBordersValid || !collapseBorders())
return;
m_collapsedBordersValid = true;
m_collapsedBorders.clear();
for (LayoutObject* section = firstChild(); section; section = section->nextSibling()) {
if (!section->isTableSection())
continue;
for (LayoutTableRow* row = toLayoutTableSection(section)->firstRow(); row; row = row->nextRow()) {
for (LayoutTableCell* cell = row->firstCell(); cell; cell = cell->nextCell()) {
ASSERT(cell->table() == this);
cell->collectBorderValues(m_collapsedBorders);
}
}
}
LayoutTableCell::sortBorderValues(m_collapsedBorders);
}
void LayoutTable::addOverflowFromChildren()
{
// Add overflow from borders.
// Technically it's odd that we are incorporating the borders into layout overflow, which is only supposed to be about overflow from our
// descendant objects, but since tables don't support overflow:auto, this works out fine.
if (collapseBorders()) {
int rightBorderOverflow = size().width() + outerBorderRight() - borderRight();
int leftBorderOverflow = borderLeft() - outerBorderLeft();
int bottomBorderOverflow = size().height() + outerBorderBottom() - borderBottom();
int topBorderOverflow = borderTop() - outerBorderTop();
IntRect borderOverflowRect(leftBorderOverflow, topBorderOverflow, rightBorderOverflow - leftBorderOverflow, bottomBorderOverflow - topBorderOverflow);
if (borderOverflowRect != pixelSnappedBorderBoxRect()) {
LayoutRect borderLayoutRect(borderOverflowRect);
addLayoutOverflow(borderLayoutRect);
addVisualOverflow(borderLayoutRect);
}
}
// Add overflow from our caption.
for (unsigned i = 0; i < m_captions.size(); i++)
addOverflowFromChild(m_captions[i]);
// Add overflow from our sections.
for (LayoutTableSection* section = topSection(); section; section = sectionBelow(section))
addOverflowFromChild(section);
}
void LayoutTable::paintObject(const PaintInfo& paintInfo, const LayoutPoint& paintOffset) const
{
TablePainter(*this).paintObject(paintInfo, paintOffset);
}
void LayoutTable::subtractCaptionRect(LayoutRect& rect) const
{
for (unsigned i = 0; i < m_captions.size(); i++) {
LayoutUnit captionLogicalHeight = m_captions[i]->logicalHeight() + m_captions[i]->marginBefore() + m_captions[i]->marginAfter();
bool captionIsBefore = (m_captions[i]->style()->captionSide() != CaptionSideBottom) ^ style()->isFlippedBlocksWritingMode();
if (style()->isHorizontalWritingMode()) {
rect.setHeight(rect.height() - captionLogicalHeight);
if (captionIsBefore)
rect.move(LayoutUnit(), captionLogicalHeight);
} else {
rect.setWidth(rect.width() - captionLogicalHeight);
if (captionIsBefore)
rect.move(captionLogicalHeight, LayoutUnit());
}
}
}
void LayoutTable::paintBoxDecorationBackground(const PaintInfo& paintInfo, const LayoutPoint& paintOffset) const
{
TablePainter(*this).paintBoxDecorationBackground(paintInfo, paintOffset);
}
void LayoutTable::paintMask(const PaintInfo& paintInfo, const LayoutPoint& paintOffset) const
{
TablePainter(*this).paintMask(paintInfo, paintOffset);
}
void LayoutTable::computeIntrinsicLogicalWidths(LayoutUnit& minWidth, LayoutUnit& maxWidth) const
{
recalcSectionsIfNeeded();
// FIXME: Do the recalc in borderStart/borderEnd and make those const_cast this call.
// Then m_borderStart/m_borderEnd will be transparent a cache and it removes the possibility
// of reading out stale values.
const_cast<LayoutTable*>(this)->recalcBordersInRowDirection();
// FIXME: Restructure the table layout code so that we can make this method const.
const_cast<LayoutTable*>(this)->m_tableLayout->computeIntrinsicLogicalWidths(minWidth, maxWidth);
// FIXME: We should include captions widths here like we do in computePreferredLogicalWidths.
}
void LayoutTable::computePreferredLogicalWidths()
{
ASSERT(preferredLogicalWidthsDirty());
computeIntrinsicLogicalWidths(m_minPreferredLogicalWidth, m_maxPreferredLogicalWidth);
int bordersPaddingAndSpacing = bordersPaddingAndSpacingInRowDirection();
m_minPreferredLogicalWidth += bordersPaddingAndSpacing;
m_maxPreferredLogicalWidth += bordersPaddingAndSpacing;
m_tableLayout->applyPreferredLogicalWidthQuirks(m_minPreferredLogicalWidth, m_maxPreferredLogicalWidth);
for (unsigned i = 0; i < m_captions.size(); i++)
m_minPreferredLogicalWidth = std::max(m_minPreferredLogicalWidth, m_captions[i]->minPreferredLogicalWidth());
const ComputedStyle& styleToUse = styleRef();
// FIXME: This should probably be checking for isSpecified since you should be able to use percentage or calc values for min-width.
if (styleToUse.logicalMinWidth().isFixed() && styleToUse.logicalMinWidth().value() > 0) {
m_maxPreferredLogicalWidth = std::max(m_maxPreferredLogicalWidth, adjustContentBoxLogicalWidthForBoxSizing(styleToUse.logicalMinWidth().value()));
m_minPreferredLogicalWidth = std::max(m_minPreferredLogicalWidth, adjustContentBoxLogicalWidthForBoxSizing(styleToUse.logicalMinWidth().value()));
}
// FIXME: This should probably be checking for isSpecified since you should be able to use percentage or calc values for maxWidth.
if (styleToUse.logicalMaxWidth().isFixed()) {
// We don't constrain m_minPreferredLogicalWidth as the table should be at least the size of its min-content, regardless of 'max-width'.
m_maxPreferredLogicalWidth = std::min(m_maxPreferredLogicalWidth, adjustContentBoxLogicalWidthForBoxSizing(styleToUse.logicalMaxWidth().value()));
m_maxPreferredLogicalWidth = std::max(m_minPreferredLogicalWidth, m_maxPreferredLogicalWidth);
}
// FIXME: We should be adding borderAndPaddingLogicalWidth here, but m_tableLayout->computePreferredLogicalWidths already does,
// so a bunch of tests break doing this naively.
clearPreferredLogicalWidthsDirty();
}
LayoutTableSection* LayoutTable::topNonEmptySection() const
{
LayoutTableSection* section = topSection();
if (section && !section->numRows())
section = sectionBelow(section, SkipEmptySections);
return section;
}
void LayoutTable::splitEffectiveColumn(unsigned index, unsigned firstSpan)
{
// We split the column at |index|, taking |firstSpan| cells from the span.
ASSERT(m_effectiveColumns[index].span > firstSpan);
m_effectiveColumns.insert(index, firstSpan);
m_effectiveColumns[index + 1].span -= firstSpan;
// Propagate the change in our columns representation to the sections that don't need
// cell recalc. If they do, they will be synced up directly with m_columns later.
for (LayoutObject* child = firstChild(); child; child = child->nextSibling()) {
if (!child->isTableSection())
continue;
LayoutTableSection* section = toLayoutTableSection(child);
if (section->needsCellRecalc())
continue;
section->splitEffectiveColumn(index, firstSpan);
}
m_effectiveColumnPositions.grow(numEffectiveColumns() + 1);
}
void LayoutTable::appendEffectiveColumn(unsigned span)
{
unsigned newColumnIndex = m_effectiveColumns.size();
m_effectiveColumns.append(span);
// Unless the table has cell(s) with colspan that exceed the number of columns afforded
// by the other rows in the table we can use the fast path when mapping columns to effective columns.
m_hasCellColspanThatDeterminesTableWidth = m_hasCellColspanThatDeterminesTableWidth || span > 1;
// Propagate the change in our columns representation to the sections that don't need
// cell recalc. If they do, they will be synced up directly with m_columns later.
for (LayoutObject* child = firstChild(); child; child = child->nextSibling()) {
if (!child->isTableSection())
continue;
LayoutTableSection* section = toLayoutTableSection(child);
if (section->needsCellRecalc())
continue;
section->appendEffectiveColumn(newColumnIndex);
}
m_effectiveColumnPositions.grow(numEffectiveColumns() + 1);
}
LayoutTableCol* LayoutTable::firstColumn() const
{
for (LayoutObject* child = firstChild(); child; child = child->nextSibling()) {
if (child->isLayoutTableCol())
return toLayoutTableCol(child);
}
return nullptr;
}
void LayoutTable::updateColumnCache() const
{
ASSERT(m_hasColElements);
ASSERT(m_columnLayoutObjects.isEmpty());
ASSERT(!m_columnLayoutObjectsValid);
for (LayoutTableCol* columnLayoutObject = firstColumn(); columnLayoutObject; columnLayoutObject = columnLayoutObject->nextColumn()) {
if (columnLayoutObject->isTableColumnGroupWithColumnChildren())
continue;
m_columnLayoutObjects.append(columnLayoutObject);
}
m_columnLayoutObjectsValid = true;
}
LayoutTable::ColAndColGroup LayoutTable::slowColElementAtAbsoluteColumn(unsigned absoluteColumnIndex) const
{
ASSERT(m_hasColElements);
if (!m_columnLayoutObjectsValid)
updateColumnCache();
unsigned columnCount = 0;
for (unsigned i = 0; i < m_columnLayoutObjects.size(); i++) {
LayoutTableCol* columnLayoutObject = m_columnLayoutObjects[i];
ASSERT(!columnLayoutObject->isTableColumnGroupWithColumnChildren());
unsigned span = columnLayoutObject->span();
unsigned startCol = columnCount;
ASSERT(span >= 1);
unsigned endCol = columnCount + span - 1;
columnCount += span;
if (columnCount > absoluteColumnIndex) {
ColAndColGroup colAndColGroup;
bool isAtStartEdge = startCol == absoluteColumnIndex;
bool isAtEndEdge = endCol == absoluteColumnIndex;
if (columnLayoutObject->isTableColumnGroup()) {
colAndColGroup.colgroup = columnLayoutObject;
colAndColGroup.adjoinsStartBorderOfColGroup = isAtStartEdge;
colAndColGroup.adjoinsEndBorderOfColGroup = isAtEndEdge;
} else {
colAndColGroup.col = columnLayoutObject;
colAndColGroup.colgroup = columnLayoutObject->enclosingColumnGroup();
if (colAndColGroup.colgroup) {
colAndColGroup.adjoinsStartBorderOfColGroup = isAtStartEdge && !colAndColGroup.col->previousSibling();
colAndColGroup.adjoinsEndBorderOfColGroup = isAtEndEdge && !colAndColGroup.col->nextSibling();
}
}
return colAndColGroup;
}
}
return ColAndColGroup();
}
void LayoutTable::recalcSections() const
{
ASSERT(m_needsSectionRecalc);
m_head = nullptr;
m_foot = nullptr;
m_firstBody = nullptr;
m_hasColElements = false;
m_hasCellColspanThatDeterminesTableWidth = hasCellColspanThatDeterminesTableWidth();
// We need to get valid pointers to caption, head, foot and first body again
LayoutObject* nextSibling;
for (LayoutObject* child = firstChild(); child; child = nextSibling) {
nextSibling = child->nextSibling();
switch (child->style()->display()) {
case TABLE_COLUMN:
case TABLE_COLUMN_GROUP:
m_hasColElements = true;
break;
case TABLE_HEADER_GROUP:
if (child->isTableSection()) {
LayoutTableSection* section = toLayoutTableSection(child);
if (!m_head)
m_head = section;
else if (!m_firstBody)
m_firstBody = section;
section->recalcCellsIfNeeded();
}
break;
case TABLE_FOOTER_GROUP:
if (child->isTableSection()) {
LayoutTableSection* section = toLayoutTableSection(child);
if (!m_foot)
m_foot = section;
else if (!m_firstBody)
m_firstBody = section;
section->recalcCellsIfNeeded();
}
break;
case TABLE_ROW_GROUP:
if (child->isTableSection()) {
LayoutTableSection* section = toLayoutTableSection(child);
if (!m_firstBody)
m_firstBody = section;
section->recalcCellsIfNeeded();
}
break;
default:
break;
}
}
// repair column count (addChild can grow it too much, because it always adds elements to the last row of a section)
unsigned maxCols = 0;
for (LayoutObject* child = firstChild(); child; child = child->nextSibling()) {
if (child->isTableSection()) {
LayoutTableSection* section = toLayoutTableSection(child);
unsigned sectionCols = section->numEffectiveColumns();
if (sectionCols > maxCols)
maxCols = sectionCols;
}
}
m_effectiveColumns.resize(maxCols);
m_effectiveColumnPositions.resize(maxCols + 1);
ASSERT(selfNeedsLayout());
m_needsSectionRecalc = false;
}
int LayoutTable::calcBorderStart() const
{
if (!collapseBorders())
return LayoutBlock::borderStart();
// Determined by the first cell of the first row. See the CSS 2.1 spec, section 17.6.2.
if (!numEffectiveColumns())
return 0;
int borderWidth = 0;
const BorderValue& tableStartBorder = style()->borderStart();
if (tableStartBorder.style() == BorderStyleHidden)
return 0;
if (tableStartBorder.style() > BorderStyleHidden)
borderWidth = tableStartBorder.width();
// TODO(dgrogan): This logic doesn't properly account for the first column in the first column-group case.
if (LayoutTableCol* column = colElementAtAbsoluteColumn(0).innermostColOrColGroup()) {
// FIXME: We don't account for direction on columns and column groups.
const BorderValue& columnAdjoiningBorder = column->style()->borderStart();
if (columnAdjoiningBorder.style() == BorderStyleHidden)
return 0;
if (columnAdjoiningBorder.style() > BorderStyleHidden)
borderWidth = std::max(borderWidth, columnAdjoiningBorder.width());
}
if (const LayoutTableSection* topNonEmptySection = this->topNonEmptySection()) {
const BorderValue& sectionAdjoiningBorder = topNonEmptySection->borderAdjoiningTableStart();
if (sectionAdjoiningBorder.style() == BorderStyleHidden)
return 0;
if (sectionAdjoiningBorder.style() > BorderStyleHidden)
borderWidth = std::max(borderWidth, sectionAdjoiningBorder.width());
if (const LayoutTableCell* adjoiningStartCell = topNonEmptySection->firstRowCellAdjoiningTableStart()) {
// FIXME: Make this work with perpendicular and flipped cells.
const BorderValue& startCellAdjoiningBorder = adjoiningStartCell->borderAdjoiningTableStart();
if (startCellAdjoiningBorder.style() == BorderStyleHidden)
return 0;
const BorderValue& firstRowAdjoiningBorder = adjoiningStartCell->row()->borderAdjoiningTableStart();
if (firstRowAdjoiningBorder.style() == BorderStyleHidden)
return 0;
if (startCellAdjoiningBorder.style() > BorderStyleHidden)
borderWidth = std::max(borderWidth, startCellAdjoiningBorder.width());
if (firstRowAdjoiningBorder.style() > BorderStyleHidden)
borderWidth = std::max(borderWidth, firstRowAdjoiningBorder.width());
}
}
return (borderWidth + (style()->isLeftToRightDirection() ? 0 : 1)) / 2;
}
int LayoutTable::calcBorderEnd() const
{
if (!collapseBorders())
return LayoutBlock::borderEnd();
// Determined by the last cell of the first row. See the CSS 2.1 spec, section 17.6.2.
if (!numEffectiveColumns())
return 0;
int borderWidth = 0;
const BorderValue& tableEndBorder = style()->borderEnd();
if (tableEndBorder.style() == BorderStyleHidden)
return 0;
if (tableEndBorder.style() > BorderStyleHidden)
borderWidth = tableEndBorder.width();
unsigned endColumn = numEffectiveColumns() - 1;
// TODO(dgrogan): This logic doesn't properly account for the last column in the last column-group case.
if (LayoutTableCol* column = colElementAtAbsoluteColumn(endColumn).innermostColOrColGroup()) {
// FIXME: We don't account for direction on columns and column groups.
const BorderValue& columnAdjoiningBorder = column->style()->borderEnd();
if (columnAdjoiningBorder.style() == BorderStyleHidden)
return 0;
if (columnAdjoiningBorder.style() > BorderStyleHidden)
borderWidth = std::max(borderWidth, columnAdjoiningBorder.width());
}
if (const LayoutTableSection* topNonEmptySection = this->topNonEmptySection()) {
const BorderValue& sectionAdjoiningBorder = topNonEmptySection->borderAdjoiningTableEnd();
if (sectionAdjoiningBorder.style() == BorderStyleHidden)
return 0;
if (sectionAdjoiningBorder.style() > BorderStyleHidden)
borderWidth = std::max(borderWidth, sectionAdjoiningBorder.width());
if (const LayoutTableCell* adjoiningEndCell = topNonEmptySection->firstRowCellAdjoiningTableEnd()) {
// FIXME: Make this work with perpendicular and flipped cells.
const BorderValue& endCellAdjoiningBorder = adjoiningEndCell->borderAdjoiningTableEnd();
if (endCellAdjoiningBorder.style() == BorderStyleHidden)
return 0;
const BorderValue& firstRowAdjoiningBorder = adjoiningEndCell->row()->borderAdjoiningTableEnd();
if (firstRowAdjoiningBorder.style() == BorderStyleHidden)
return 0;
if (endCellAdjoiningBorder.style() > BorderStyleHidden)
borderWidth = std::max(borderWidth, endCellAdjoiningBorder.width());
if (firstRowAdjoiningBorder.style() > BorderStyleHidden)
borderWidth = std::max(borderWidth, firstRowAdjoiningBorder.width());
}
}
return (borderWidth + (style()->isLeftToRightDirection() ? 1 : 0)) / 2;
}
void LayoutTable::recalcBordersInRowDirection()
{
// FIXME: We need to compute the collapsed before / after borders in the same fashion.
m_borderStart = calcBorderStart();
m_borderEnd = calcBorderEnd();
}
int LayoutTable::borderBefore() const
{
if (collapseBorders()) {
recalcSectionsIfNeeded();
return outerBorderBefore();
}
return LayoutBlock::borderBefore();
}
int LayoutTable::borderAfter() const
{
if (collapseBorders()) {
recalcSectionsIfNeeded();
return outerBorderAfter();
}
return LayoutBlock::borderAfter();
}
int LayoutTable::outerBorderBefore() const
{
if (!collapseBorders())
return 0;
int borderWidth = 0;
if (LayoutTableSection* topSection = this->topSection()) {
borderWidth = topSection->outerBorderBefore();
if (borderWidth < 0)
return 0; // Overridden by hidden
}
const BorderValue& tb = style()->borderBefore();
if (tb.style() == BorderStyleHidden)
return 0;
if (tb.style() > BorderStyleHidden)
borderWidth = std::max<int>(borderWidth, tb.width() / 2);
return borderWidth;
}
int LayoutTable::outerBorderAfter() const
{
if (!collapseBorders())
return 0;
int borderWidth = 0;
if (LayoutTableSection* section = bottomSection()) {
borderWidth = section->outerBorderAfter();
if (borderWidth < 0)
return 0; // Overridden by hidden
}
const BorderValue& tb = style()->borderAfter();
if (tb.style() == BorderStyleHidden)
return 0;
if (tb.style() > BorderStyleHidden)
borderWidth = std::max<int>(borderWidth, (tb.width() + 1) / 2);
return borderWidth;
}
int LayoutTable::outerBorderStart() const
{
if (!collapseBorders())
return 0;
int borderWidth = 0;
const BorderValue& tb = style()->borderStart();
if (tb.style() == BorderStyleHidden)
return 0;
if (tb.style() > BorderStyleHidden)
borderWidth = (tb.width() + (style()->isLeftToRightDirection() ? 0 : 1)) / 2;
bool allHidden = true;
for (LayoutTableSection* section = topSection(); section; section = sectionBelow(section)) {
int sw = section->outerBorderStart();
if (sw < 0)
continue;
allHidden = false;
borderWidth = std::max(borderWidth, sw);
}
if (allHidden)
return 0;
return borderWidth;
}
int LayoutTable::outerBorderEnd() const
{
if (!collapseBorders())
return 0;
int borderWidth = 0;
const BorderValue& tb = style()->borderEnd();
if (tb.style() == BorderStyleHidden)
return 0;
if (tb.style() > BorderStyleHidden)
borderWidth = (tb.width() + (style()->isLeftToRightDirection() ? 1 : 0)) / 2;
bool allHidden = true;
for (LayoutTableSection* section = topSection(); section; section = sectionBelow(section)) {
int sw = section->outerBorderEnd();
if (sw < 0)
continue;
allHidden = false;
borderWidth = std::max(borderWidth, sw);
}
if (allHidden)
return 0;
return borderWidth;
}
LayoutTableSection* LayoutTable::sectionAbove(const LayoutTableSection* section, SkipEmptySectionsValue skipEmptySections) const
{
recalcSectionsIfNeeded();
if (section == m_head)
return 0;
LayoutObject* prevSection = section == m_foot ? lastChild() : section->previousSibling();
while (prevSection) {
if (prevSection->isTableSection() && prevSection != m_head && prevSection != m_foot && (skipEmptySections == DoNotSkipEmptySections || toLayoutTableSection(prevSection)->numRows()))
break;
prevSection = prevSection->previousSibling();
}
if (!prevSection && m_head && (skipEmptySections == DoNotSkipEmptySections || m_head->numRows()))
prevSection = m_head;
return toLayoutTableSection(prevSection);
}
LayoutTableSection* LayoutTable::sectionBelow(const LayoutTableSection* section, SkipEmptySectionsValue skipEmptySections) const
{
recalcSectionsIfNeeded();
if (section == m_foot)
return nullptr;
LayoutObject* nextSection = section == m_head ? firstChild() : section->nextSibling();
while (nextSection) {
if (nextSection->isTableSection() && nextSection != m_head && nextSection != m_foot && (skipEmptySections == DoNotSkipEmptySections || toLayoutTableSection(nextSection)->numRows()))
break;
nextSection = nextSection->nextSibling();
}
if (!nextSection && m_foot && (skipEmptySections == DoNotSkipEmptySections || m_foot->numRows()))
nextSection = m_foot;
return toLayoutTableSection(nextSection);
}
LayoutTableSection* LayoutTable::bottomSection() const
{
recalcSectionsIfNeeded();
if (m_foot)
return m_foot;
for (LayoutObject* child = lastChild(); child; child = child->previousSibling()) {
if (child->isTableSection())
return toLayoutTableSection(child);
}
return nullptr;
}
LayoutTableCell* LayoutTable::cellAbove(const LayoutTableCell* cell) const
{
recalcSectionsIfNeeded();
// Find the section and row to look in
unsigned r = cell->rowIndex();
LayoutTableSection* section = nullptr;
unsigned rAbove = 0;
if (r > 0) {
// cell is not in the first row, so use the above row in its own section
section = cell->section();
rAbove = r - 1;
} else {
section = sectionAbove(cell->section(), SkipEmptySections);
if (section) {
ASSERT(section->numRows());
rAbove = section->numRows() - 1;
}
}
// Look up the cell in the section's grid, which requires effective col index
if (section) {
unsigned effCol = absoluteColumnToEffectiveColumn(cell->absoluteColumnIndex());
LayoutTableSection::CellStruct& aboveCell = section->cellAt(rAbove, effCol);
return aboveCell.primaryCell();
}
return nullptr;
}
LayoutTableCell* LayoutTable::cellBelow(const LayoutTableCell* cell) const
{
recalcSectionsIfNeeded();
// Find the section and row to look in
unsigned r = cell->rowIndex() + cell->rowSpan() - 1;
LayoutTableSection* section = nullptr;
unsigned rBelow = 0;
if (r < cell->section()->numRows() - 1) {
// The cell is not in the last row, so use the next row in the section.
section = cell->section();
rBelow = r + 1;
} else {
section = sectionBelow(cell->section(), SkipEmptySections);
if (section)
rBelow = 0;
}
// Look up the cell in the section's grid, which requires effective col index
if (section) {
unsigned effCol = absoluteColumnToEffectiveColumn(cell->absoluteColumnIndex());
LayoutTableSection::CellStruct& belowCell = section->cellAt(rBelow, effCol);
return belowCell.primaryCell();
}
return nullptr;
}
LayoutTableCell* LayoutTable::cellBefore(const LayoutTableCell* cell) const
{
recalcSectionsIfNeeded();
LayoutTableSection* section = cell->section();
unsigned effCol = absoluteColumnToEffectiveColumn(cell->absoluteColumnIndex());
if (!effCol)
return nullptr;
// If we hit a colspan back up to a real cell.
LayoutTableSection::CellStruct& prevCell = section->cellAt(cell->rowIndex(), effCol - 1);
return prevCell.primaryCell();
}
LayoutTableCell* LayoutTable::cellAfter(const LayoutTableCell* cell) const
{
recalcSectionsIfNeeded();
unsigned effCol = absoluteColumnToEffectiveColumn(cell->absoluteColumnIndex() + cell->colSpan());
if (effCol >= numEffectiveColumns())
return nullptr;
return cell->section()->primaryCellAt(cell->rowIndex(), effCol);
}
int LayoutTable::baselinePosition(FontBaseline baselineType, bool firstLine, LineDirectionMode direction, LinePositionMode linePositionMode) const
{
ASSERT(linePositionMode == PositionOnContainingLine);
int baseline = firstLineBoxBaseline();
if (baseline != -1) {
if (isInline())
return beforeMarginInLineDirection(direction) + baseline;
return baseline;
}
return LayoutBox::baselinePosition(baselineType, firstLine, direction, linePositionMode);
}
int LayoutTable::inlineBlockBaseline(LineDirectionMode) const
{
// Tables are skipped when computing an inline-block's baseline.
return -1;
}
int LayoutTable::firstLineBoxBaseline() const
{
// The baseline of a 'table' is the same as the 'inline-table' baseline per CSS 3 Flexbox (CSS 2.1
// doesn't define the baseline of a 'table' only an 'inline-table').
// This is also needed to properly determine the baseline of a cell if it has a table child.
if (isWritingModeRoot())
return -1;
recalcSectionsIfNeeded();
const LayoutTableSection* topNonEmptySection = this->topNonEmptySection();
if (!topNonEmptySection)
return -1;
int baseline = topNonEmptySection->firstLineBoxBaseline();
if (baseline >= 0)
return topNonEmptySection->logicalTop() + baseline;
// FF, Presto and IE use the top of the section as the baseline if its first row is empty of cells or content.
// The baseline of an empty row isn't specified by CSS 2.1.
if (topNonEmptySection->firstRow() && !topNonEmptySection->firstRow()->firstCell())
return topNonEmptySection->logicalTop();
return -1;
}
LayoutRect LayoutTable::overflowClipRect(const LayoutPoint& location, OverlayScrollbarSizeRelevancy relevancy) const
{
LayoutRect rect = LayoutBlock::overflowClipRect(location, relevancy);
// If we have a caption, expand the clip to include the caption.
// FIXME: Technically this is wrong, but it's virtually impossible to fix this
// for real until captions have been re-written.
// FIXME: This code assumes (like all our other caption code) that only top/bottom are
// supported. When we actually support left/right and stop mapping them to top/bottom,
// we might have to hack this code first (depending on what order we do these bug fixes in).
if (!m_captions.isEmpty()) {
if (style()->isHorizontalWritingMode()) {
rect.setHeight(size().height());
rect.setY(location.y());
} else {
rect.setWidth(size().width());
rect.setX(location.x());
}
}
return rect;
}
bool LayoutTable::nodeAtPoint(HitTestResult& result, const HitTestLocation& locationInContainer, const LayoutPoint& accumulatedOffset, HitTestAction action)
{
LayoutPoint adjustedLocation = accumulatedOffset + location();
// Check kids first.
if (!hasOverflowClip() || locationInContainer.intersects(overflowClipRect(adjustedLocation))) {
for (LayoutObject* child = lastChild(); child; child = child->previousSibling()) {
if (child->isBox() && !toLayoutBox(child)->hasSelfPaintingLayer() && (child->isTableSection() || child->isTableCaption())) {
LayoutPoint childPoint = flipForWritingModeForChild(toLayoutBox(child), adjustedLocation);
if (child->nodeAtPoint(result, locationInContainer, childPoint, action)) {
updateHitTestResult(result, toLayoutPoint(locationInContainer.point() - childPoint));
return true;
}
}
}
}
// Check our bounds next.
LayoutRect boundsRect(adjustedLocation, size());
if (visibleToHitTestRequest(result.hitTestRequest()) && (action == HitTestBlockBackground || action == HitTestChildBlockBackground) && locationInContainer.intersects(boundsRect)) {
updateHitTestResult(result, flipForWritingMode(locationInContainer.point() - toLayoutSize(adjustedLocation)));
if (result.addNodeToListBasedTestResult(node(), locationInContainer, boundsRect) == StopHitTesting)
return true;
}
return false;
}
LayoutTable* LayoutTable::createAnonymousWithParent(const LayoutObject* parent)
{
RefPtr<ComputedStyle> newStyle = ComputedStyle::createAnonymousStyleWithDisplay(parent->styleRef(), parent->isLayoutInline() ? INLINE_TABLE : TABLE);
LayoutTable* newTable = new LayoutTable(nullptr);
newTable->setDocumentForAnonymous(&parent->document());
newTable->setStyle(newStyle.release());
return newTable;
}
const BorderValue& LayoutTable::tableStartBorderAdjoiningCell(const LayoutTableCell* cell) const
{
ASSERT(cell->isFirstOrLastCellInRow());
if (hasSameDirectionAs(cell->row()))
return style()->borderStart();
return style()->borderEnd();
}
const BorderValue& LayoutTable::tableEndBorderAdjoiningCell(const LayoutTableCell* cell) const
{
ASSERT(cell->isFirstOrLastCellInRow());
if (hasSameDirectionAs(cell->row()))
return style()->borderEnd();
return style()->borderStart();
}
PaintInvalidationReason LayoutTable::invalidatePaintIfNeeded(const PaintInvalidationState& paintInvalidationState)
{
// Information of collapsed borders doesn't affect layout and are for painting only.
// Do it now instead of during painting to invalidate table cells if needed.
recalcCollapsedBordersIfNeeded();
return LayoutBlock::invalidatePaintIfNeeded(paintInvalidationState);
}
void LayoutTable::invalidatePaintOfSubtreesIfNeeded(const PaintInvalidationState& childPaintInvalidationState)
{
// Table cells paint background from the containing column group, column, section and row.
// If background of any of them changed, we need to invalidate all affected cells.
// Here use shouldDoFullPaintInvalidation() as a broader condition of background change.
for (LayoutObject* section = firstChild(); section; section = section->nextSibling()) {
if (!section->isTableSection())
continue;
for (LayoutTableRow* row = toLayoutTableSection(section)->firstRow(); row; row = row->nextRow()) {
for (LayoutTableCell* cell = row->firstCell(); cell; cell = cell->nextCell()) {
ColAndColGroup colAndColGroup = colElementAtAbsoluteColumn(cell->absoluteColumnIndex());
LayoutTableCol* column = colAndColGroup.col;
LayoutTableCol* columnGroup = colAndColGroup.colgroup;
// Table cells paint container's background on the container's backing instead of its own (if any),
// so we must invalidate it by the containers.
bool invalidated = false;
if ((columnGroup && columnGroup->shouldDoFullPaintInvalidation())
|| (column && column->shouldDoFullPaintInvalidation())
|| section->shouldDoFullPaintInvalidation()) {
section->invalidateDisplayItemClient(*cell);
invalidated = true;
}
if ((!invalidated || row->isPaintInvalidationContainer()) && row->shouldDoFullPaintInvalidation())
row->invalidateDisplayItemClient(*cell);
}
}
}
LayoutBlock::invalidatePaintOfSubtreesIfNeeded(childPaintInvalidationState);
}
LayoutUnit LayoutTable::paddingTop() const
{
if (collapseBorders())
return LayoutUnit();
return LayoutBlock::paddingTop();
}
LayoutUnit LayoutTable::paddingBottom() const
{
if (collapseBorders())
return LayoutUnit();
return LayoutBlock::paddingBottom();
}
LayoutUnit LayoutTable::paddingLeft() const
{
if (collapseBorders())
return LayoutUnit();
return LayoutBlock::paddingLeft();
}
LayoutUnit LayoutTable::paddingRight() const
{
if (collapseBorders())
return LayoutUnit();
return LayoutBlock::paddingRight();
}
} // namespace blink