blob: 832ee1164ec7a345d32b9fb293da6176f5f10292 [file] [log] [blame]
/*
* Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011, 2012 Apple Inc. All rights reserved.
*
* Portions are Copyright (C) 1998 Netscape Communications Corporation.
*
* Other contributors:
* Robert O'Callahan <roc+@cs.cmu.edu>
* David Baron <dbaron@fas.harvard.edu>
* Christian Biesinger <cbiesinger@web.de>
* Randall Jesup <rjesup@wgate.com>
* Roland Mainz <roland.mainz@informatik.med.uni-giessen.de>
* Josh Soref <timeless@mac.com>
* Boris Zbarsky <bzbarsky@mit.edu>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Alternatively, the contents of this file may be used under the terms
* of either the Mozilla Public License Version 1.1, found at
* http://www.mozilla.org/MPL/ (the "MPL") or the GNU General Public
* License Version 2.0, found at http://www.fsf.org/copyleft/gpl.html
* (the "GPL"), in which case the provisions of the MPL or the GPL are
* applicable instead of those above. If you wish to allow use of your
* version of this file only under the terms of one of those two
* licenses (the MPL or the GPL) and not to allow others to use your
* version of this file under the LGPL, indicate your decision by
* deletingthe provisions above and replace them with the notice and
* other provisions required by the MPL or the GPL, as the case may be.
* If you do not delete the provisions above, a recipient may use your
* version of this file under any of the LGPL, the MPL or the GPL.
*/
#include "core/paint/PaintLayer.h"
#include "core/CSSPropertyNames.h"
#include "core/HTMLNames.h"
#include "core/css/PseudoStyleRequest.h"
#include "core/dom/Document.h"
#include "core/dom/shadow/ShadowRoot.h"
#include "core/frame/DeprecatedScheduleStyleRecalcDuringLayout.h"
#include "core/frame/FrameView.h"
#include "core/frame/LocalFrame.h"
#include "core/frame/Settings.h"
#include "core/html/HTMLFrameElement.h"
#include "core/layout/HitTestRequest.h"
#include "core/layout/HitTestResult.h"
#include "core/layout/HitTestingTransformState.h"
#include "core/layout/LayoutFlowThread.h"
#include "core/layout/LayoutGeometryMap.h"
#include "core/layout/LayoutInline.h"
#include "core/layout/LayoutPart.h"
#include "core/layout/LayoutReplica.h"
#include "core/layout/LayoutScrollbar.h"
#include "core/layout/LayoutScrollbarPart.h"
#include "core/layout/LayoutTreeAsText.h"
#include "core/layout/LayoutView.h"
#include "core/layout/compositing/CompositedLayerMapping.h"
#include "core/layout/compositing/PaintLayerCompositor.h"
#include "core/layout/svg/LayoutSVGResourceClipper.h"
#include "core/layout/svg/LayoutSVGRoot.h"
#include "core/layout/svg/ReferenceFilterBuilder.h"
#include "core/page/Page.h"
#include "core/page/scrolling/ScrollingCoordinator.h"
#include "core/paint/FilterEffectBuilder.h"
#include "core/paint/PaintTiming.h"
#include "platform/LengthFunctions.h"
#include "platform/RuntimeEnabledFeatures.h"
#include "platform/TraceEvent.h"
#include "platform/geometry/FloatPoint3D.h"
#include "platform/geometry/FloatRect.h"
#include "platform/geometry/TransformState.h"
#include "platform/graphics/filters/Filter.h"
#include "platform/graphics/filters/SourceGraphic.h"
#include "platform/transforms/ScaleTransformOperation.h"
#include "platform/transforms/TransformationMatrix.h"
#include "platform/transforms/TranslateTransformOperation.h"
#include "public/platform/Platform.h"
#include "wtf/StdLibExtras.h"
#include "wtf/allocator/Partitions.h"
#include "wtf/text/CString.h"
namespace blink {
namespace {
static CompositingQueryMode gCompositingQueryMode =
CompositingQueriesAreOnlyAllowedInCertainDocumentLifecyclePhases;
struct SameSizeAsPaintLayer : DisplayItemClient {
int bitFields;
void* pointers[10];
LayoutUnit layoutUnits[4];
IntSize size;
Persistent<PaintLayerScrollableArea> scrollableArea;
struct {
IntRect rect;
void* pointers[2];
} ancestorCompositingInputs;
struct {
IntSize size;
void* pointer;
LayoutRect rect;
} previousPaintStatus;
};
static_assert(sizeof(PaintLayer) == sizeof(SameSizeAsPaintLayer), "PaintLayer should stay small");
} // namespace
using namespace HTMLNames;
PaintLayerRareData::PaintLayerRareData()
: enclosingPaginationLayer(nullptr)
, potentialCompositingReasonsFromStyle(CompositingReasonNone)
, compositingReasons(CompositingReasonNone)
, squashingDisallowedReasons(SquashingDisallowedReasonsNone)
, groupedMapping(nullptr)
{
}
PaintLayerRareData::~PaintLayerRareData()
{
}
PaintLayer::PaintLayer(LayoutBoxModelObject* layoutObject, PaintLayerType type)
: m_layerType(type)
, m_hasSelfPaintingLayerDescendant(false)
, m_hasSelfPaintingLayerDescendantDirty(false)
, m_isRootLayer(layoutObject->isLayoutView())
, m_visibleContentStatusDirty(true)
, m_hasVisibleContent(false)
, m_visibleDescendantStatusDirty(false)
, m_hasVisibleDescendant(false)
, m_hasVisibleNonLayerContent(false)
#if ENABLE(ASSERT)
, m_needsPositionUpdate(true)
#endif
, m_3DTransformedDescendantStatusDirty(true)
, m_has3DTransformedDescendant(false)
, m_containsDirtyOverlayScrollbars(false)
, m_needsAncestorDependentCompositingInputsUpdate(true)
, m_needsDescendantDependentCompositingInputsUpdate(true)
, m_childNeedsCompositingInputsUpdate(true)
, m_hasCompositingDescendant(false)
, m_hasNonCompositedChild(false)
, m_shouldIsolateCompositedDescendants(false)
, m_lostGroupedMapping(false)
, m_needsRepaint(false)
, m_previousPaintResult(PaintLayerPainter::FullyPainted)
, m_needsPaintPhaseDescendantOutlines(false)
, m_needsPaintPhaseFloat(false)
, m_needsPaintPhaseDescendantBlockBackgrounds(false)
, m_hasDescendantWithClipPath(false)
, m_hasNonIsolatedDescendantWithBlendMode(false)
, m_hasAncestorWithClipPath(false)
, m_layoutObject(layoutObject)
, m_parent(0)
, m_previous(0)
, m_next(0)
, m_first(0)
, m_last(0)
, m_staticInlinePosition(0)
, m_staticBlockPosition(0)
, m_ancestorOverflowLayer(nullptr)
{
updateStackingNode();
m_isSelfPaintingLayer = shouldBeSelfPaintingLayer();
if (!layoutObject->slowFirstChild() && layoutObject->style()) {
m_visibleContentStatusDirty = false;
m_hasVisibleContent = layoutObject->style()->visibility() == VISIBLE;
}
updateScrollableArea();
}
PaintLayer::~PaintLayer()
{
if (layoutObject()->frame() && layoutObject()->frame()->page()) {
if (ScrollingCoordinator* scrollingCoordinator = layoutObject()->frame()->page()->scrollingCoordinator())
scrollingCoordinator->willDestroyLayer(this);
}
if (groupedMapping()) {
DisableCompositingQueryAsserts disabler;
setGroupedMapping(0, InvalidateLayerAndRemoveFromMapping);
}
// Child layers will be deleted by their corresponding layout objects, so
// we don't need to delete them ourselves.
clearCompositedLayerMapping(true);
if (m_scrollableArea)
m_scrollableArea->dispose();
}
String PaintLayer::debugName() const
{
if (isReflection())
return layoutObject()->parent()->debugName() + " (reflection)";
return layoutObject()->debugName();
}
LayoutRect PaintLayer::visualRect() const
{
return m_layoutObject->visualRect();
}
PaintLayerCompositor* PaintLayer::compositor() const
{
if (!layoutObject()->view())
return 0;
return layoutObject()->view()->compositor();
}
void PaintLayer::contentChanged(ContentChangeType changeType)
{
// updateLayerCompositingState will query compositingReasons for accelerated overflow scrolling.
// This is tripped by LayoutTests/compositing/content-changed-chicken-egg.html
DisableCompositingQueryAsserts disabler;
if (changeType == CanvasChanged)
compositor()->setNeedsCompositingUpdate(CompositingUpdateAfterCompositingInputChange);
if (changeType == CanvasContextChanged) {
compositor()->setNeedsCompositingUpdate(CompositingUpdateAfterCompositingInputChange);
// Although we're missing test coverage, we need to call
// GraphicsLayer::setContentsToPlatformLayer with the new platform
// layer for this canvas.
// See http://crbug.com/349195
if (hasCompositedLayerMapping())
compositedLayerMapping()->setNeedsGraphicsLayerUpdate(GraphicsLayerUpdateSubtree);
}
if (CompositedLayerMapping* compositedLayerMapping = this->compositedLayerMapping())
compositedLayerMapping->contentChanged(changeType);
}
bool PaintLayer::paintsWithFilters() const
{
if (!layoutObject()->hasFilterInducingProperty())
return false;
// https://code.google.com/p/chromium/issues/detail?id=343759
DisableCompositingQueryAsserts disabler;
return !compositedLayerMapping() || compositingState() != PaintsIntoOwnBacking;
}
bool PaintLayer::paintsWithBackdropFilters() const
{
if (!layoutObject()->hasBackdropFilter())
return false;
// https://code.google.com/p/chromium/issues/detail?id=343759
DisableCompositingQueryAsserts disabler;
return !compositedLayerMapping() || compositingState() != PaintsIntoOwnBacking;
}
LayoutSize PaintLayer::subpixelAccumulation() const
{
return m_rareData ? m_rareData->subpixelAccumulation : LayoutSize();
}
void PaintLayer::setSubpixelAccumulation(const LayoutSize& size)
{
if (m_rareData || !size.isZero())
ensureRareData().subpixelAccumulation = size;
}
void PaintLayer::updateLayerPositionsAfterLayout()
{
TRACE_EVENT0("blink,benchmark", "PaintLayer::updateLayerPositionsAfterLayout");
clipper().clearClipRectsIncludingDescendants();
updateLayerPositionRecursive();
{
// FIXME: Remove incremental compositing updates after fixing the chicken/egg issues
// https://code.google.com/p/chromium/issues/detail?id=343756
DisableCompositingQueryAsserts disabler;
updatePaginationRecursive(enclosingPaginationLayer());
}
}
void PaintLayer::updateLayerPositionRecursive()
{
updateLayerPosition();
if (m_rareData && m_rareData->reflectionInfo)
m_rareData->reflectionInfo->reflection()->layout();
// FIXME(400589): We would like to do this in PaintLayerScrollableArea::updateAfterLayout,
// but it depends on the size computed by updateLayerPosition.
if (m_scrollableArea) {
if (ScrollAnimatorBase* scrollAnimator = m_scrollableArea->existingScrollAnimator())
scrollAnimator->updateAfterLayout();
}
// FIXME: We should be able to remove this call because we don't care about
// any descendant-dependent flags, but code somewhere else is reading these
// flags and depending on us to update them.
updateDescendantDependentFlags();
for (PaintLayer* child = firstChild(); child; child = child->nextSibling())
child->updateLayerPositionRecursive();
}
void PaintLayer::updateHasSelfPaintingLayerDescendant() const
{
ASSERT(m_hasSelfPaintingLayerDescendantDirty);
m_hasSelfPaintingLayerDescendant = false;
for (PaintLayer* child = firstChild(); child; child = child->nextSibling()) {
if (child->isSelfPaintingLayer() || child->hasSelfPaintingLayerDescendant()) {
m_hasSelfPaintingLayerDescendant = true;
break;
}
}
m_hasSelfPaintingLayerDescendantDirty = false;
}
void PaintLayer::dirtyAncestorChainHasSelfPaintingLayerDescendantStatus()
{
for (PaintLayer* layer = this; layer; layer = layer->parent()) {
layer->m_hasSelfPaintingLayerDescendantDirty = true;
// If we have reached a self-painting layer, we know our parent should have a self-painting descendant
// in this case, there is no need to dirty our ancestors further.
if (layer->isSelfPaintingLayer()) {
ASSERT(!parent() || parent()->m_hasSelfPaintingLayerDescendantDirty || parent()->m_hasSelfPaintingLayerDescendant);
break;
}
}
}
bool PaintLayer::scrollsWithViewport() const
{
return (layoutObject()->style()->position() == FixedPosition && layoutObject()->containerForFixedPosition() == layoutObject()->view())
|| (layoutObject()->style()->position() == StickyPosition && !ancestorScrollingLayer());
}
bool PaintLayer::scrollsWithRespectTo(const PaintLayer* other) const
{
if (scrollsWithViewport() != other->scrollsWithViewport())
return true;
return ancestorScrollingLayer() != other->ancestorScrollingLayer();
}
void PaintLayer::updateLayerPositionsAfterOverflowScroll(const DoubleSize& scrollDelta)
{
clipper().clearClipRectsIncludingDescendants();
updateLayerPositionsAfterScrollRecursive(scrollDelta, isPaintInvalidationContainer());
}
void PaintLayer::updateLayerPositionsAfterScrollRecursive(const DoubleSize& scrollDelta, bool paintInvalidationContainerWasScrolled)
{
updateLayerPosition();
if (paintInvalidationContainerWasScrolled && !isPaintInvalidationContainer()) {
// Paint invalidation rects are in the coordinate space of the paint invalidation container.
// If it has scrolled, the rect must be adjusted. Note that it is not safe to reset it to
// the current bounds rect, as the LayoutObject may have moved since the last invalidation.
// FIXME(416535): Ideally, pending invalidations of scrolling content should be stored in
// the coordinate space of the scrolling content layer, so that they need no adjustment.
m_layoutObject->adjustPreviousPaintInvalidationForScrollIfNeeded(scrollDelta);
}
for (PaintLayer* child = firstChild(); child; child = child->nextSibling()) {
child->updateLayerPositionsAfterScrollRecursive(scrollDelta,
paintInvalidationContainerWasScrolled && !child->isPaintInvalidationContainer());
}
}
void PaintLayer::updateTransformationMatrix()
{
if (TransformationMatrix* transform = this->transform()) {
LayoutBox* box = layoutBox();
ASSERT(box);
transform->makeIdentity();
box->style()->applyTransform(*transform, LayoutSize(box->pixelSnappedSize()), ComputedStyle::IncludeTransformOrigin, ComputedStyle::IncludeMotionPath, ComputedStyle::IncludeIndependentTransformProperties);
makeMatrixRenderable(*transform, compositor()->hasAcceleratedCompositing());
}
}
void PaintLayer::updateTransform(const ComputedStyle* oldStyle, const ComputedStyle& newStyle)
{
if (oldStyle && newStyle.transformDataEquivalent(*oldStyle))
return;
// hasTransform() on the layoutObject is also true when there is transform-style: preserve-3d or perspective set,
// so check style too.
bool hasTransform = layoutObject()->hasTransformRelatedProperty() && newStyle.hasTransform();
bool had3DTransform = has3DTransform();
bool hadTransform = transform();
if (hasTransform != hadTransform) {
if (hasTransform)
ensureRareData().transform = TransformationMatrix::create();
else
m_rareData->transform.clear();
// PaintLayers with transforms act as clip rects roots, so clear the cached clip rects here.
clipper().clearClipRectsIncludingDescendants();
} else if (hasTransform) {
clipper().clearClipRectsIncludingDescendants(AbsoluteClipRects);
}
updateTransformationMatrix();
if (had3DTransform != has3DTransform())
dirty3DTransformedDescendantStatus();
}
static PaintLayer* enclosingLayerForContainingBlock(PaintLayer* layer)
{
if (LayoutObject* containingBlock = layer->layoutObject()->containingBlock())
return containingBlock->enclosingLayer();
return 0;
}
static const PaintLayer* enclosingLayerForContainingBlock(const PaintLayer* layer)
{
if (const LayoutObject* containingBlock = layer->layoutObject()->containingBlock())
return containingBlock->enclosingLayer();
return 0;
}
PaintLayer* PaintLayer::renderingContextRoot()
{
PaintLayer* renderingContext = 0;
if (shouldPreserve3D())
renderingContext = this;
for (PaintLayer* current = enclosingLayerForContainingBlock(this); current && current->shouldPreserve3D(); current = enclosingLayerForContainingBlock(current))
renderingContext = current;
return renderingContext;
}
const PaintLayer* PaintLayer::renderingContextRoot() const
{
const PaintLayer* renderingContext = 0;
if (shouldPreserve3D())
renderingContext = this;
for (const PaintLayer* current = enclosingLayerForContainingBlock(this); current && current->shouldPreserve3D(); current = enclosingLayerForContainingBlock(current))
renderingContext = current;
return renderingContext;
}
TransformationMatrix PaintLayer::currentTransform() const
{
if (TransformationMatrix* transform = this->transform())
return *transform;
return TransformationMatrix();
}
TransformationMatrix PaintLayer::renderableTransform(GlobalPaintFlags globalPaintFlags) const
{
TransformationMatrix* transform = this->transform();
if (!transform)
return TransformationMatrix();
if (globalPaintFlags & GlobalPaintFlattenCompositingLayers) {
TransformationMatrix matrix = *transform;
makeMatrixRenderable(matrix, false /* flatten 3d */);
return matrix;
}
return *transform;
}
void PaintLayer::convertFromFlowThreadToVisualBoundingBoxInAncestor(const PaintLayer* ancestorLayer, LayoutRect& rect) const
{
PaintLayer* paginationLayer = enclosingPaginationLayer();
ASSERT(paginationLayer);
LayoutFlowThread* flowThread = toLayoutFlowThread(paginationLayer->layoutObject());
// First make the flow thread rectangle relative to the flow thread, not to |layer|.
LayoutPoint offsetWithinPaginationLayer;
convertToLayerCoords(paginationLayer, offsetWithinPaginationLayer);
rect.moveBy(offsetWithinPaginationLayer);
// Then make the rectangle visual, relative to the fragmentation context. Split our box up into
// the actual fragment boxes that layout in the columns/pages and unite those together to get
// our true bounding box.
rect = flowThread->fragmentsBoundingBox(rect);
// Finally, make the visual rectangle relative to |ancestorLayer|.
if (ancestorLayer->enclosingPaginationLayer() != paginationLayer) {
rect.moveBy(paginationLayer->visualOffsetFromAncestor(ancestorLayer));
return;
}
// The ancestor layer is inside the same pagination layer as |layer|, so we need to subtract
// the visual distance from the ancestor layer to the pagination layer.
rect.moveBy(-ancestorLayer->visualOffsetFromAncestor(paginationLayer));
}
void PaintLayer::updatePaginationRecursive(bool needsPaginationUpdate)
{
if (m_rareData)
m_rareData->enclosingPaginationLayer = nullptr;
if (layoutObject()->isLayoutFlowThread())
needsPaginationUpdate = true;
if (needsPaginationUpdate) {
// Each paginated layer has to paint on its own. There is no recurring into child layers. Each
// layer has to be checked individually and genuinely know if it is going to have to split
// itself up when painting only its contents (and not any other descendant layers). We track an
// enclosingPaginationLayer instead of using a simple bit, since we want to be able to get back
// to that layer easily.
if (LayoutFlowThread* containingFlowThread = layoutObject()->flowThreadContainingBlock())
ensureRareData().enclosingPaginationLayer = containingFlowThread->layer();
}
for (PaintLayer* child = firstChild(); child; child = child->nextSibling())
child->updatePaginationRecursive(needsPaginationUpdate);
}
void PaintLayer::clearPaginationRecursive()
{
if (m_rareData)
m_rareData->enclosingPaginationLayer = nullptr;
for (PaintLayer* child = firstChild(); child; child = child->nextSibling())
child->clearPaginationRecursive();
}
void PaintLayer::mapPointInPaintInvalidationContainerToBacking(const LayoutBoxModelObject& paintInvalidationContainer, FloatPoint& point)
{
PaintLayer* paintInvalidationLayer = paintInvalidationContainer.layer();
if (!paintInvalidationLayer->groupedMapping()) {
point.move(paintInvalidationLayer->compositedLayerMapping()->contentOffsetInCompositingLayer());
return;
}
LayoutBoxModelObject* transformedAncestor = paintInvalidationLayer->enclosingTransformedAncestor()->layoutObject();
if (!transformedAncestor)
return;
// |paintInvalidationContainer| may have a local 2D transform on it, so take that into account when mapping into the space of the
// transformed ancestor.
point = paintInvalidationContainer.localToAncestorPoint(point, transformedAncestor);
point.moveBy(-paintInvalidationLayer->groupedMapping()->squashingOffsetFromTransformedAncestor());
}
void PaintLayer::mapRectInPaintInvalidationContainerToBacking(const LayoutBoxModelObject& paintInvalidationContainer, LayoutRect& rect)
{
PaintLayer* paintInvalidationLayer = paintInvalidationContainer.layer();
if (!paintInvalidationLayer->groupedMapping()) {
rect.move(paintInvalidationLayer->compositedLayerMapping()->contentOffsetInCompositingLayer());
return;
}
LayoutBoxModelObject* transformedAncestor = paintInvalidationLayer->enclosingTransformedAncestor()->layoutObject();
if (!transformedAncestor)
return;
// |paintInvalidationContainer| may have a local 2D transform on it, so take that into account when mapping into the space of the
// transformed ancestor.
rect = LayoutRect(paintInvalidationContainer.localToAncestorQuad(FloatRect(rect), transformedAncestor).boundingBox());
rect.moveBy(-paintInvalidationLayer->groupedMapping()->squashingOffsetFromTransformedAncestor());
}
void PaintLayer::mapRectToPaintInvalidationBacking(const LayoutObject& layoutObject, const LayoutBoxModelObject& paintInvalidationContainer, LayoutRect& rect)
{
if (!paintInvalidationContainer.layer()->groupedMapping()) {
layoutObject.mapToVisualRectInAncestorSpace(&paintInvalidationContainer, rect);
return;
}
// This code adjusts the paint invalidation rectangle to be in the space of the transformed ancestor of the grouped (i.e. squashed)
// layer. This is because all layers that squash together need to issue paint invalidations w.r.t. a single container that is
// an ancestor of all of them, in order to properly take into account any local transforms etc.
// FIXME: remove this special-case code that works around the paint invalidation code structure.
layoutObject.mapToVisualRectInAncestorSpace(&paintInvalidationContainer, rect);
mapRectInPaintInvalidationContainerToBacking(paintInvalidationContainer, rect);
}
void PaintLayer::dirtyVisibleContentStatus()
{
compositor()->setNeedsUpdateDescendantDependentFlags();
m_visibleContentStatusDirty = true;
if (parent())
parent()->dirtyAncestorChainVisibleDescendantStatus();
// Non-self-painting layers paint into their ancestor layer, and count as part of the "visible contents" of the parent, so we need to dirty it.
if (!isSelfPaintingLayer())
parent()->dirtyVisibleContentStatus();
}
void PaintLayer::potentiallyDirtyVisibleContentStatus(EVisibility visibility)
{
if (m_visibleContentStatusDirty)
return;
if (hasVisibleContent() == (visibility == VISIBLE))
return;
dirtyVisibleContentStatus();
}
void PaintLayer::dirtyAncestorChainVisibleDescendantStatus()
{
compositor()->setNeedsUpdateDescendantDependentFlags();
for (PaintLayer* layer = this; layer; layer = layer->parent()) {
if (layer->m_visibleDescendantStatusDirty)
break;
layer->m_visibleDescendantStatusDirty = true;
}
}
// FIXME: this is quite brute-force. We could be more efficient if we were to
// track state and update it as appropriate as changes are made in the layout tree.
void PaintLayer::updateScrollingStateAfterCompositingChange()
{
TRACE_EVENT0("blink", "PaintLayer::updateScrollingStateAfterCompositingChange");
m_hasVisibleNonLayerContent = false;
for (LayoutObject* r = layoutObject()->slowFirstChild(); r; r = r->nextSibling()) {
if (!r->hasLayer()) {
m_hasVisibleNonLayerContent = true;
break;
}
}
m_hasNonCompositedChild = false;
for (PaintLayer* child = firstChild(); child; child = child->nextSibling()) {
if (child->compositingState() == NotComposited) {
m_hasNonCompositedChild = true;
return;
}
}
}
void PaintLayer::updateDescendantDependentFlags()
{
if (m_visibleDescendantStatusDirty) {
m_hasVisibleDescendant = false;
for (PaintLayer* child = firstChild(); child; child = child->nextSibling()) {
child->updateDescendantDependentFlags();
if (child->m_hasVisibleContent || child->m_hasVisibleDescendant) {
m_hasVisibleDescendant = true;
break;
}
}
m_visibleDescendantStatusDirty = false;
}
if (m_visibleContentStatusDirty) {
bool previouslyHasVisibleContent = m_hasVisibleContent;
if (layoutObject()->style()->visibility() == VISIBLE) {
m_hasVisibleContent = true;
} else {
// layer may be hidden but still have some visible content, check for this
m_hasVisibleContent = false;
LayoutObject* r = layoutObject()->slowFirstChild();
while (r) {
if (r->style()->visibility() == VISIBLE && (!r->hasLayer() || !r->enclosingLayer()->isSelfPaintingLayer())) {
m_hasVisibleContent = true;
break;
}
LayoutObject* layoutObjectFirstChild = r->slowFirstChild();
if (layoutObjectFirstChild && (!r->hasLayer() || !r->enclosingLayer()->isSelfPaintingLayer())) {
r = layoutObjectFirstChild;
} else if (r->nextSibling()) {
r = r->nextSibling();
} else {
do {
r = r->parent();
if (r == layoutObject())
r = 0;
} while (r && !r->nextSibling());
if (r)
r = r->nextSibling();
}
}
}
m_visibleContentStatusDirty = false;
if (hasVisibleContent() != previouslyHasVisibleContent) {
setNeedsCompositingInputsUpdate();
// We need to tell m_layoutObject to recheck its rect because we
// pretend that invisible LayoutObjects have 0x0 rects. Changing
// visibility therefore changes our rect and we need to visit
// this LayoutObject during the invalidateTreeIfNeeded walk.
m_layoutObject->setMayNeedPaintInvalidation();
}
}
}
void PaintLayer::dirty3DTransformedDescendantStatus()
{
PaintLayerStackingNode* stackingNode = m_stackingNode->ancestorStackingContextNode();
if (!stackingNode)
return;
stackingNode->layer()->m_3DTransformedDescendantStatusDirty = true;
// This propagates up through preserve-3d hierarchies to the enclosing flattening layer.
// Note that preserves3D() creates stacking context, so we can just run up the stacking containers.
while (stackingNode && stackingNode->layer()->preserves3D()) {
stackingNode->layer()->m_3DTransformedDescendantStatusDirty = true;
stackingNode = stackingNode->ancestorStackingContextNode();
}
}
// Return true if this layer or any preserve-3d descendants have 3d.
bool PaintLayer::update3DTransformedDescendantStatus()
{
if (m_3DTransformedDescendantStatusDirty) {
m_has3DTransformedDescendant = false;
m_stackingNode->updateZOrderLists();
// Transformed or preserve-3d descendants can only be in the z-order lists, not
// in the normal flow list, so we only need to check those.
PaintLayerStackingNodeIterator iterator(*m_stackingNode.get(), PositiveZOrderChildren | NegativeZOrderChildren);
while (PaintLayerStackingNode* node = iterator.next())
m_has3DTransformedDescendant |= node->layer()->update3DTransformedDescendantStatus();
m_3DTransformedDescendantStatusDirty = false;
}
// If we live in a 3d hierarchy, then the layer at the root of that hierarchy needs
// the m_has3DTransformedDescendant set.
if (preserves3D())
return has3DTransform() || m_has3DTransformedDescendant;
return has3DTransform();
}
void PaintLayer::updateLayerPosition()
{
LayoutPoint localPoint;
LayoutPoint inlineBoundingBoxOffset; // We don't put this into the Layer x/y for inlines, so we need to subtract it out when done.
if (layoutObject()->isInline() && layoutObject()->isLayoutInline()) {
LayoutInline* inlineFlow = toLayoutInline(layoutObject());
IntRect lineBox = inlineFlow->linesBoundingBox();
m_size = lineBox.size();
inlineBoundingBoxOffset = lineBox.location();
localPoint.moveBy(inlineBoundingBoxOffset);
} else if (LayoutBox* box = layoutBox()) {
m_size = pixelSnappedIntSize(box->size(), box->location());
localPoint.moveBy(box->topLeftLocation());
}
if (!layoutObject()->isOutOfFlowPositioned() && !layoutObject()->isColumnSpanAll() && layoutObject()->parent()) {
// We must adjust our position by walking up the layout tree looking for the
// nearest enclosing object with a layer.
LayoutObject* curr = layoutObject()->parent();
while (curr && !curr->hasLayer()) {
if (curr->isBox() && !curr->isTableRow()) {
// Rows and cells share the same coordinate space (that of the section).
// Omit them when computing our xpos/ypos.
localPoint.moveBy(toLayoutBox(curr)->topLeftLocation());
}
curr = curr->parent();
}
if (curr->isBox() && curr->isTableRow()) {
// Put ourselves into the row coordinate space.
localPoint.moveBy(-toLayoutBox(curr)->topLeftLocation());
}
}
// Subtract our parent's scroll offset.
if (PaintLayer* containingLayer = layoutObject()->isOutOfFlowPositioned() ? containingLayerForOutOfFlowPositioned() : nullptr) {
// For positioned layers, we subtract out the enclosing positioned layer's scroll offset.
if (containingLayer->layoutObject()->hasOverflowClip()) {
IntSize offset = containingLayer->layoutBox()->scrolledContentOffset();
localPoint -= offset;
}
if (containingLayer->layoutObject()->isInFlowPositioned() && containingLayer->layoutObject()->isLayoutInline()) {
LayoutSize offset = toLayoutInline(containingLayer->layoutObject())->offsetForInFlowPositionedInline(*toLayoutBox(layoutObject()));
localPoint += offset;
}
} else if (parent() && parent()->layoutObject()->hasOverflowClip()) {
IntSize scrollOffset = parent()->layoutBox()->scrolledContentOffset();
localPoint -= scrollOffset;
}
if (layoutObject()->isInFlowPositioned()) {
LayoutSize newOffset = layoutObject()->offsetForInFlowPosition();
if (m_rareData || !newOffset.isZero())
ensureRareData().offsetForInFlowPosition = newOffset;
localPoint.move(newOffset);
} else if (m_rareData) {
m_rareData->offsetForInFlowPosition = LayoutSize();
}
// FIXME: We'd really like to just get rid of the concept of a layer rectangle and rely on the layoutObjects.
localPoint.moveBy(-inlineBoundingBoxOffset);
if (m_location != localPoint) {
setNeedsRepaint();
}
m_location = localPoint;
#if ENABLE(ASSERT)
m_needsPositionUpdate = false;
#endif
}
TransformationMatrix PaintLayer::perspectiveTransform() const
{
if (!layoutObject()->hasTransformRelatedProperty())
return TransformationMatrix();
const ComputedStyle& style = layoutObject()->styleRef();
if (!style.hasPerspective())
return TransformationMatrix();
TransformationMatrix t;
t.applyPerspective(style.perspective());
return t;
}
FloatPoint PaintLayer::perspectiveOrigin() const
{
if (!layoutObject()->hasTransformRelatedProperty())
return FloatPoint();
const LayoutRect borderBox = toLayoutBox(layoutObject())->borderBoxRect();
const ComputedStyle& style = layoutObject()->styleRef();
return FloatPoint(floatValueForLength(style.perspectiveOriginX(), borderBox.width().toFloat()), floatValueForLength(style.perspectiveOriginY(), borderBox.height().toFloat()));
}
static inline bool isContainerForFixedPositioned(PaintLayer* layer)
{
return layer->isRootLayer() || layer->hasTransformRelatedProperty();
}
static inline bool isContainerForPositioned(PaintLayer* layer)
{
// FIXME: This is not in sync with containingBlock.
// LayoutObject::canContainFixedPositionObjects() should probably be used
// instead.
LayoutBoxModelObject* layerlayoutObject = layer->layoutObject();
return layer->isRootLayer() || layerlayoutObject->isPositioned() || layer->hasTransformRelatedProperty() || layerlayoutObject->style()->containsPaint();
}
PaintLayer* PaintLayer::containingLayerForOutOfFlowPositioned(const PaintLayer* ancestor, bool* skippedAncestor) const
{
ASSERT(!ancestor || skippedAncestor); // If we have specified an ancestor, surely the caller needs to know whether we skipped it.
if (skippedAncestor)
*skippedAncestor = false;
if (layoutObject()->style()->position() == FixedPosition) {
PaintLayer* curr = parent();
while (curr && !isContainerForFixedPositioned(curr)) {
if (skippedAncestor && curr == ancestor)
*skippedAncestor = true;
curr = curr->parent();
}
return curr;
}
PaintLayer* curr = parent();
while (curr && !isContainerForPositioned(curr)) {
if (skippedAncestor && curr == ancestor)
*skippedAncestor = true;
curr = curr->parent();
}
return curr;
}
PaintLayer* PaintLayer::enclosingTransformedAncestor() const
{
PaintLayer* curr = parent();
while (curr && !curr->isRootLayer() && !curr->layoutObject()->hasTransformRelatedProperty())
curr = curr->parent();
return curr;
}
LayoutPoint PaintLayer::computeOffsetFromTransformedAncestor() const
{
TransformState transformState(TransformState::ApplyTransformDirection, FloatPoint());
// FIXME: add a test that checks flipped writing mode and ApplyContainerFlip are correct.
layoutObject()->mapLocalToAncestor(transformAncestor() ? transformAncestor()->layoutObject() : nullptr, transformState, ApplyContainerFlip);
transformState.flatten();
return LayoutPoint(transformState.lastPlanarPoint());
}
PaintLayer* PaintLayer::compositingContainer() const
{
if (!stackingNode()->isStacked())
return parent();
if (PaintLayerStackingNode* ancestorStackingNode = stackingNode()->ancestorStackingContextNode())
return ancestorStackingNode->layer();
return nullptr;
}
bool PaintLayer::isPaintInvalidationContainer() const
{
return compositingState() == PaintsIntoOwnBacking || compositingState() == PaintsIntoGroupedBacking;
}
// Note: enclosingCompositingLayer does not include squashed layers. Compositing stacking children of squashed layers
// receive graphics layers that are parented to the compositing ancestor of the squashed layer.
PaintLayer* PaintLayer::enclosingLayerWithCompositedLayerMapping(IncludeSelfOrNot includeSelf) const
{
ASSERT(isAllowedToQueryCompositingState());
if ((includeSelf == IncludeSelf) && compositingState() != NotComposited && compositingState() != PaintsIntoGroupedBacking)
return const_cast<PaintLayer*>(this);
for (PaintLayer* curr = compositingContainer(); curr; curr = curr->compositingContainer()) {
if (curr->compositingState() != NotComposited && curr->compositingState() != PaintsIntoGroupedBacking)
return curr;
}
return nullptr;
}
// Return the enclosingCompositedLayerForPaintInvalidation for the given Layer
// including crossing frame boundaries.
PaintLayer* PaintLayer::enclosingLayerForPaintInvalidationCrossingFrameBoundaries() const
{
const PaintLayer* layer = this;
PaintLayer* compositedLayer = 0;
while (!compositedLayer) {
compositedLayer = layer->enclosingLayerForPaintInvalidation();
if (!compositedLayer) {
RELEASE_ASSERT(layer->layoutObject()->frame());
LayoutObject* owner = layer->layoutObject()->frame()->ownerLayoutObject();
if (!owner)
break;
layer = owner->enclosingLayer();
}
}
return compositedLayer;
}
PaintLayer* PaintLayer::enclosingLayerForPaintInvalidation() const
{
ASSERT(isAllowedToQueryCompositingState());
if (isPaintInvalidationContainer())
return const_cast<PaintLayer*>(this);
for (PaintLayer* curr = compositingContainer(); curr; curr = curr->compositingContainer()) {
if (curr->isPaintInvalidationContainer())
return curr;
}
return nullptr;
}
void PaintLayer::setNeedsCompositingInputsUpdate()
{
m_needsAncestorDependentCompositingInputsUpdate = true;
m_needsDescendantDependentCompositingInputsUpdate = true;
for (PaintLayer* current = this; current && !current->m_childNeedsCompositingInputsUpdate; current = current->parent())
current->m_childNeedsCompositingInputsUpdate = true;
compositor()->setNeedsCompositingUpdate(CompositingUpdateAfterCompositingInputChange);
}
void PaintLayer::updateAncestorDependentCompositingInputs(const AncestorDependentCompositingInputs& compositingInputs, const RareAncestorDependentCompositingInputs& rareCompositingInputs, bool hasAncestorWithClipPath)
{
m_ancestorDependentCompositingInputs = compositingInputs;
if (rareCompositingInputs.isDefault())
m_rareAncestorDependentCompositingInputs.clear();
else
m_rareAncestorDependentCompositingInputs = adoptPtr(new RareAncestorDependentCompositingInputs(rareCompositingInputs));
m_hasAncestorWithClipPath = hasAncestorWithClipPath;
m_needsAncestorDependentCompositingInputsUpdate = false;
}
void PaintLayer::updateDescendantDependentCompositingInputs(bool hasDescendantWithClipPath, bool hasNonIsolatedDescendantWithBlendMode)
{
m_hasDescendantWithClipPath = hasDescendantWithClipPath;
m_hasNonIsolatedDescendantWithBlendMode = hasNonIsolatedDescendantWithBlendMode;
m_needsDescendantDependentCompositingInputsUpdate = false;
}
void PaintLayer::didUpdateCompositingInputs()
{
ASSERT(!needsCompositingInputsUpdate());
m_childNeedsCompositingInputsUpdate = false;
if (m_scrollableArea)
m_scrollableArea->updateNeedsCompositedScrolling();
}
bool PaintLayer::hasNonIsolatedDescendantWithBlendMode() const
{
ASSERT(!m_needsDescendantDependentCompositingInputsUpdate);
if (m_hasNonIsolatedDescendantWithBlendMode)
return true;
if (layoutObject()->isSVGRoot())
return toLayoutSVGRoot(layoutObject())->hasNonIsolatedBlendingDescendants();
return false;
}
void PaintLayer::setCompositingReasons(CompositingReasons reasons, CompositingReasons mask)
{
CompositingReasons oldReasons = m_rareData ? m_rareData->compositingReasons : CompositingReasonNone;
if ((oldReasons & mask) == (reasons & mask))
return;
CompositingReasons newReasons = (reasons & mask) | (oldReasons & ~mask);
if (m_rareData || newReasons != CompositingReasonNone)
ensureRareData().compositingReasons = newReasons;
}
void PaintLayer::setSquashingDisallowedReasons(SquashingDisallowedReasons reasons)
{
SquashingDisallowedReasons oldReasons = m_rareData ? m_rareData->squashingDisallowedReasons : SquashingDisallowedReasonsNone;
if (oldReasons == reasons)
return;
if (m_rareData || reasons != SquashingDisallowedReasonsNone)
ensureRareData().squashingDisallowedReasons = reasons;
}
void PaintLayer::setHasCompositingDescendant(bool hasCompositingDescendant)
{
if (m_hasCompositingDescendant == static_cast<unsigned>(hasCompositingDescendant))
return;
m_hasCompositingDescendant = hasCompositingDescendant;
if (hasCompositedLayerMapping())
compositedLayerMapping()->setNeedsGraphicsLayerUpdate(GraphicsLayerUpdateLocal);
}
void PaintLayer::setShouldIsolateCompositedDescendants(bool shouldIsolateCompositedDescendants)
{
if (m_shouldIsolateCompositedDescendants == static_cast<unsigned>(shouldIsolateCompositedDescendants))
return;
m_shouldIsolateCompositedDescendants = shouldIsolateCompositedDescendants;
if (hasCompositedLayerMapping())
compositedLayerMapping()->setNeedsGraphicsLayerUpdate(GraphicsLayerUpdateLocal);
}
bool PaintLayer::hasAncestorWithFilterThatMovesPixels() const
{
for (const PaintLayer* curr = this; curr; curr = curr->parent()) {
if (curr->hasFilterThatMovesPixels())
return true;
}
return false;
}
static void expandClipRectForDescendantsAndReflection(LayoutRect& clipRect, const PaintLayer* layer, const PaintLayer* rootLayer,
PaintLayer::TransparencyClipBoxBehavior transparencyBehavior, const LayoutSize& subPixelAccumulation, GlobalPaintFlags globalPaintFlags)
{
// If we have a mask, then the clip is limited to the border box area (and there is
// no need to examine child layers).
if (!layer->layoutObject()->hasMask()) {
// Note: we don't have to walk z-order lists since transparent elements always establish
// a stacking container. This means we can just walk the layer tree directly.
for (PaintLayer* curr = layer->firstChild(); curr; curr = curr->nextSibling()) {
if (!layer->reflectionInfo() || layer->reflectionInfo()->reflectionLayer() != curr)
clipRect.unite(PaintLayer::transparencyClipBox(curr, rootLayer, transparencyBehavior, PaintLayer::DescendantsOfTransparencyClipBox, subPixelAccumulation, globalPaintFlags));
}
}
// If we have a reflection, then we need to account for that when we push the clip. Reflect our entire
// current transparencyClipBox to catch all child layers.
// FIXME: Accelerated compositing will eventually want to do something smart here to avoid incorporating this
// size into the parent layer.
if (layer->layoutObject()->hasReflection()) {
LayoutPoint delta;
layer->convertToLayerCoords(rootLayer, delta);
clipRect.move(-delta.x(), -delta.y());
clipRect.unite(layer->layoutBox()->reflectedRect(clipRect));
clipRect.moveBy(delta);
}
}
LayoutRect PaintLayer::transparencyClipBox(const PaintLayer* layer, const PaintLayer* rootLayer, TransparencyClipBoxBehavior transparencyBehavior,
TransparencyClipBoxMode transparencyMode, const LayoutSize& subPixelAccumulation, GlobalPaintFlags globalPaintFlags)
{
// FIXME: Although this function completely ignores CSS-imposed clipping, we did already intersect with the
// paintDirtyRect, and that should cut down on the amount we have to paint. Still it
// would be better to respect clips.
if (rootLayer != layer && ((transparencyBehavior == PaintingTransparencyClipBox && layer->paintsWithTransform(globalPaintFlags))
|| (transparencyBehavior == HitTestingTransparencyClipBox && layer->hasTransformRelatedProperty()))) {
// The best we can do here is to use enclosed bounding boxes to establish a "fuzzy" enough clip to encompass
// the transformed layer and all of its children.
const PaintLayer* paginationLayer = transparencyMode == DescendantsOfTransparencyClipBox ? layer->enclosingPaginationLayer() : 0;
const PaintLayer* rootLayerForTransform = paginationLayer ? paginationLayer : rootLayer;
LayoutPoint delta;
layer->convertToLayerCoords(rootLayerForTransform, delta);
delta.move(subPixelAccumulation);
IntPoint pixelSnappedDelta = roundedIntPoint(delta);
TransformationMatrix transform;
transform.translate(pixelSnappedDelta.x(), pixelSnappedDelta.y());
if (layer->transform())
transform = transform * *layer->transform();
// We don't use fragment boxes when collecting a transformed layer's bounding box, since it always
// paints unfragmented.
LayoutRect clipRect = layer->physicalBoundingBox(LayoutPoint());
expandClipRectForDescendantsAndReflection(clipRect, layer, layer, transparencyBehavior, subPixelAccumulation, globalPaintFlags);
LayoutRect result = enclosingLayoutRect(transform.mapRect(layer->mapRectForFilter(FloatRect(clipRect))));
if (!paginationLayer)
return result;
// We have to break up the transformed extent across our columns.
// Split our box up into the actual fragment boxes that layout in the columns/pages and unite those together to
// get our true bounding box.
LayoutFlowThread* enclosingFlowThread = toLayoutFlowThread(paginationLayer->layoutObject());
result = enclosingFlowThread->fragmentsBoundingBox(result);
LayoutPoint rootLayerDelta;
paginationLayer->convertToLayerCoords(rootLayer, rootLayerDelta);
result.moveBy(rootLayerDelta);
return result;
}
LayoutRect clipRect = layer->fragmentsBoundingBox(rootLayer);
expandClipRectForDescendantsAndReflection(clipRect, layer, rootLayer, transparencyBehavior, subPixelAccumulation, globalPaintFlags);
clipRect = layer->mapLayoutRectForFilter(clipRect);
clipRect.move(subPixelAccumulation);
return clipRect;
}
LayoutRect PaintLayer::paintingExtent(const PaintLayer* rootLayer, const LayoutSize& subPixelAccumulation, GlobalPaintFlags globalPaintFlags)
{
return transparencyClipBox(this, rootLayer, PaintingTransparencyClipBox, RootOfTransparencyClipBox, subPixelAccumulation, globalPaintFlags);
}
void* PaintLayer::operator new(size_t sz)
{
return partitionAlloc(WTF::Partitions::layoutPartition(), sz, WTF_HEAP_PROFILER_TYPE_NAME(PaintLayer));
}
void PaintLayer::operator delete(void* ptr)
{
partitionFree(ptr);
}
void PaintLayer::addChild(PaintLayer* child, PaintLayer* beforeChild)
{
PaintLayer* prevSibling = beforeChild ? beforeChild->previousSibling() : lastChild();
if (prevSibling) {
child->setPreviousSibling(prevSibling);
prevSibling->setNextSibling(child);
ASSERT(prevSibling != child);
} else {
setFirstChild(child);
}
if (beforeChild) {
beforeChild->setPreviousSibling(child);
child->setNextSibling(beforeChild);
ASSERT(beforeChild != child);
} else {
setLastChild(child);
}
child->m_parent = this;
// The ancestor overflow layer is calculated during compositing inputs update and should not be set yet.
ASSERT(!child->ancestorOverflowLayer());
setNeedsCompositingInputsUpdate();
if (!child->stackingNode()->isStacked() && !layoutObject()->documentBeingDestroyed())
compositor()->setNeedsCompositingUpdate(CompositingUpdateRebuildTree);
if (child->stackingNode()->isStacked() || child->firstChild()) {
// Dirty the z-order list in which we are contained. The ancestorStackingContextNode() can be null in the
// case where we're building up generated content layers. This is ok, since the lists will start
// off dirty in that case anyway.
child->stackingNode()->dirtyStackingContextZOrderLists();
}
// Non-self-painting children paint into this layer, so the visible contents status of this layer is affected.
if (!child->isSelfPaintingLayer())
dirtyVisibleContentStatus();
dirtyAncestorChainVisibleDescendantStatus();
dirtyAncestorChainHasSelfPaintingLayerDescendantStatus();
child->setNeedsRepaint();
child->updateDescendantDependentFlags();
}
PaintLayer* PaintLayer::removeChild(PaintLayer* oldChild)
{
if (oldChild->previousSibling())
oldChild->previousSibling()->setNextSibling(oldChild->nextSibling());
if (oldChild->nextSibling())
oldChild->nextSibling()->setPreviousSibling(oldChild->previousSibling());
if (m_first == oldChild)
m_first = oldChild->nextSibling();
if (m_last == oldChild)
m_last = oldChild->previousSibling();
if (!oldChild->stackingNode()->isStacked() && !layoutObject()->documentBeingDestroyed())
compositor()->setNeedsCompositingUpdate(CompositingUpdateRebuildTree);
if (oldChild->stackingNode()->isStacked() || oldChild->firstChild()) {
// Dirty the z-order list in which we are contained. When called via the
// reattachment process in removeOnlyThisLayer, the layer may already be disconnected
// from the main layer tree, so we need to null-check the
// |stackingContext| value.
oldChild->stackingNode()->dirtyStackingContextZOrderLists();
}
if (layoutObject()->style()->visibility() != VISIBLE)
dirtyVisibleContentStatus();
oldChild->setPreviousSibling(0);
oldChild->setNextSibling(0);
oldChild->m_parent = 0;
// Remove any ancestor overflow layers which descended into the removed child.
if (oldChild->ancestorOverflowLayer())
oldChild->removeAncestorOverflowLayer(oldChild->ancestorOverflowLayer());
dirtyAncestorChainHasSelfPaintingLayerDescendantStatus();
oldChild->updateDescendantDependentFlags();
if (oldChild->m_hasVisibleContent || oldChild->m_hasVisibleDescendant)
dirtyAncestorChainVisibleDescendantStatus();
if (oldChild->enclosingPaginationLayer())
oldChild->clearPaginationRecursive();
setNeedsRepaint();
return oldChild;
}
void PaintLayer::removeOnlyThisLayerAfterStyleChange()
{
if (!m_parent)
return;
bool didSetPaintInvalidation = false;
if (!RuntimeEnabledFeatures::slimmingPaintV2Enabled()) {
DisableCompositingQueryAsserts disabler; // We need the current compositing status.
if (isPaintInvalidationContainer()) {
// Our children will be reparented and contained by a new paint invalidation container,
// so need paint invalidation. CompositingUpdate can't see this layer (which has been
// removed) so won't do this for us.
DisablePaintInvalidationStateAsserts disabler;
layoutObject()->invalidatePaintIncludingNonCompositingDescendants();
layoutObject()->setShouldDoFullPaintInvalidationIncludingNonCompositingDescendants();
didSetPaintInvalidation = true;
}
}
if (!didSetPaintInvalidation && isSelfPaintingLayer()) {
if (PaintLayer* enclosingSelfPaintingLayer = m_parent->enclosingSelfPaintingLayer())
enclosingSelfPaintingLayer->mergeNeedsPaintPhaseFlagsFrom(*this);
}
clipper().clearClipRectsIncludingDescendants();
PaintLayer* nextSib = nextSibling();
// Remove the child reflection layer before moving other child layers.
// The reflection layer should not be moved to the parent.
if (PaintLayerReflectionInfo* reflectionInfo = this->reflectionInfo())
removeChild(reflectionInfo->reflectionLayer());
// Now walk our kids and reattach them to our parent.
PaintLayer* current = m_first;
while (current) {
PaintLayer* next = current->nextSibling();
removeChild(current);
m_parent->addChild(current, nextSib);
// FIXME: We should call a specialized version of this function.
current->updateLayerPositionsAfterLayout();
current = next;
}
// Remove us from the parent.
m_parent->removeChild(this);
m_layoutObject->destroyLayer();
}
void PaintLayer::insertOnlyThisLayerAfterStyleChange()
{
if (!m_parent && layoutObject()->parent()) {
// We need to connect ourselves when our layoutObject() has a parent.
// Find our enclosingLayer and add ourselves.
PaintLayer* parentLayer = layoutObject()->parent()->enclosingLayer();
ASSERT(parentLayer);
PaintLayer* beforeChild = !parentLayer->reflectionInfo() || parentLayer->reflectionInfo()->reflectionLayer() != this ? layoutObject()->parent()->findNextLayer(parentLayer, layoutObject()) : 0;
parentLayer->addChild(this, beforeChild);
}
// Remove all descendant layers from the hierarchy and add them to the new position.
for (LayoutObject* curr = layoutObject()->slowFirstChild(); curr; curr = curr->nextSibling())
curr->moveLayers(m_parent, this);
// If the previous paint invalidation container is not a stacking context and this object is
// stacked content, creating this layer may cause this object and its descendants to change
// paint invalidation container.
bool didSetPaintInvalidation = false;
if (!RuntimeEnabledFeatures::slimmingPaintV2Enabled() && !layoutObject()->isLayoutView() && layoutObject()->isRooted() && layoutObject()->styleRef().isStacked()) {
const LayoutBoxModelObject& previousPaintInvalidationContainer = layoutObject()->parent()->containerForPaintInvalidation();
if (!previousPaintInvalidationContainer.styleRef().isStackingContext()) {
layoutObject()->invalidatePaintIncludingNonSelfPaintingLayerDescendants(previousPaintInvalidationContainer);
didSetPaintInvalidation = true;
}
}
if (!didSetPaintInvalidation && isSelfPaintingLayer()) {
if (PaintLayer* enclosingSelfPaintingLayer = m_parent->enclosingSelfPaintingLayer())
mergeNeedsPaintPhaseFlagsFrom(*enclosingSelfPaintingLayer);
}
// Clear out all the clip rects.
clipper().clearClipRectsIncludingDescendants();
}
// Returns the layer reached on the walk up towards the ancestor.
static inline const PaintLayer* accumulateOffsetTowardsAncestor(const PaintLayer* layer, const PaintLayer* ancestorLayer, LayoutPoint& location)
{
ASSERT(ancestorLayer != layer);
const LayoutBoxModelObject* layoutObject = layer->layoutObject();
EPosition position = layoutObject->style()->position();
if (position == FixedPosition && (!ancestorLayer || ancestorLayer == layoutObject->view()->layer())) {
// If the fixed layer's container is the root, just add in the offset of the view. We can obtain this by calling
// localToAbsolute() on the LayoutView.
FloatPoint absPos = layoutObject->localToAbsolute();
location += LayoutSize(absPos.x(), absPos.y());
return ancestorLayer;
}
PaintLayer* parentLayer;
if (position == AbsolutePosition || position == FixedPosition) {
bool foundAncestorFirst;
parentLayer = layer->containingLayerForOutOfFlowPositioned(ancestorLayer, &foundAncestorFirst);
if (foundAncestorFirst) {
// Found ancestorLayer before the container of the out-of-flow object, so compute offset
// of both relative to the container and subtract.
LayoutPoint thisCoords;
layer->convertToLayerCoords(parentLayer, thisCoords);
LayoutPoint ancestorCoords;
ancestorLayer->convertToLayerCoords(parentLayer, ancestorCoords);
location += (thisCoords - ancestorCoords);
return ancestorLayer;
}
} else if (layoutObject->isColumnSpanAll()) {
LayoutBlock* multicolContainer = layoutObject->containingBlock();
ASSERT(toLayoutBlockFlow(multicolContainer)->multiColumnFlowThread());
parentLayer = multicolContainer->layer();
ASSERT(parentLayer);
} else {
parentLayer = layer->parent();
}
if (!parentLayer)
return nullptr;
location += layer->location();
return parentLayer;
}
void PaintLayer::convertToLayerCoords(const PaintLayer* ancestorLayer, LayoutPoint& location) const
{
if (ancestorLayer == this)
return;
const PaintLayer* currLayer = this;
while (currLayer && currLayer != ancestorLayer)
currLayer = accumulateOffsetTowardsAncestor(currLayer, ancestorLayer, location);
}
void PaintLayer::convertToLayerCoords(const PaintLayer* ancestorLayer, LayoutRect& rect) const
{
LayoutPoint delta;
convertToLayerCoords(ancestorLayer, delta);
rect.moveBy(delta);
}
LayoutPoint PaintLayer::visualOffsetFromAncestor(const PaintLayer* ancestorLayer) const
{
LayoutPoint offset;
if (ancestorLayer == this)
return offset;
PaintLayer* paginationLayer = enclosingPaginationLayer();
if (paginationLayer == this)
paginationLayer = parent()->enclosingPaginationLayer();
if (!paginationLayer) {
convertToLayerCoords(ancestorLayer, offset);
return offset;
}
LayoutFlowThread* flowThread = toLayoutFlowThread(paginationLayer->layoutObject());
convertToLayerCoords(paginationLayer, offset);
offset = flowThread->flowThreadPointToVisualPoint(offset);
if (ancestorLayer == paginationLayer)
return offset;
if (ancestorLayer->enclosingPaginationLayer() != paginationLayer) {
offset.moveBy(paginationLayer->visualOffsetFromAncestor(ancestorLayer));
} else {
// The ancestor layer is also inside the pagination layer, so we need to subtract the visual
// distance from the ancestor layer to the pagination layer.
offset.moveBy(-ancestorLayer->visualOffsetFromAncestor(paginationLayer));
}
return offset;
}
void PaintLayer::didUpdateNeedsCompositedScrolling()
{
bool wasSelfPaintingLayer = isSelfPaintingLayer();
updateSelfPaintingLayer();
// If the floating object becomes non-self-painting, so some ancestor should paint it;
// if it becomes self-painting, it should paint itself and no ancestor should paint it.
if (wasSelfPaintingLayer != isSelfPaintingLayer() && m_layoutObject->isFloating())
LayoutBlockFlow::setAncestorShouldPaintFloatingObject(*layoutBox(), wasSelfPaintingLayer);
}
void PaintLayer::updateReflectionInfo(const ComputedStyle* oldStyle)
{
ASSERT(!oldStyle || !layoutObject()->style()->reflectionDataEquivalent(oldStyle));
if (layoutObject()->hasReflection()) {
if (!ensureRareData().reflectionInfo)
m_rareData->reflectionInfo = adoptPtr(new PaintLayerReflectionInfo(*layoutBox()));
m_rareData->reflectionInfo->updateAfterStyleChange(oldStyle);
} else if (m_rareData && m_rareData->reflectionInfo) {
m_rareData->reflectionInfo = nullptr;
}
}
void PaintLayer::updateStackingNode()
{
ASSERT(!m_stackingNode);
if (requiresStackingNode())
m_stackingNode = adoptPtr(new PaintLayerStackingNode(this));
else
m_stackingNode = nullptr;
}
void PaintLayer::updateScrollableArea()
{
ASSERT(!m_scrollableArea);
if (requiresScrollableArea())
m_scrollableArea = PaintLayerScrollableArea::create(*this);
}
bool PaintLayer::hasOverflowControls() const
{
return m_scrollableArea && (m_scrollableArea->hasScrollbar() || m_scrollableArea->scrollCorner() || layoutObject()->style()->resize() != RESIZE_NONE);
}
void PaintLayer::appendSingleFragmentIgnoringPagination(PaintLayerFragments& fragments, const PaintLayer* rootLayer, const LayoutRect& dirtyRect, ClipRectsCacheSlot clipRectsCacheSlot, OverlayScrollbarSizeRelevancy inOverlayScrollbarSizeRelevancy, ShouldRespectOverflowClipType respectOverflowClip, const LayoutPoint* offsetFromRoot, const LayoutSize& subPixelAccumulation)
{
PaintLayerFragment fragment;
ClipRectsContext clipRectsContext(rootLayer, clipRectsCacheSlot, inOverlayScrollbarSizeRelevancy, subPixelAccumulation);
if (respectOverflowClip == IgnoreOverflowClip)
clipRectsContext.setIgnoreOverflowClip();
clipper().calculateRects(clipRectsContext, dirtyRect, fragment.layerBounds, fragment.backgroundRect, fragment.foregroundRect, offsetFromRoot);
fragments.append(fragment);
}
void PaintLayer::collectFragments(PaintLayerFragments& fragments, const PaintLayer* rootLayer, const LayoutRect& dirtyRect,
ClipRectsCacheSlot clipRectsCacheSlot, OverlayScrollbarSizeRelevancy inOverlayScrollbarSizeRelevancy, ShouldRespectOverflowClipType respectOverflowClip, const LayoutPoint* offsetFromRoot,
const LayoutSize& subPixelAccumulation, const LayoutRect* layerBoundingBox)
{
if (!enclosingPaginationLayer()) {
// For unpaginated layers, there is only one fragment.
appendSingleFragmentIgnoringPagination(fragments, rootLayer, dirtyRect, clipRectsCacheSlot, inOverlayScrollbarSizeRelevancy, respectOverflowClip, offsetFromRoot, subPixelAccumulation);
return;
}
// Compute our offset within the enclosing pagination layer.
LayoutPoint offsetWithinPaginatedLayer;
convertToLayerCoords(enclosingPaginationLayer(), offsetWithinPaginatedLayer);
// Calculate clip rects relative to the enclosingPaginationLayer. The purpose of this call is to determine our bounds clipped to intermediate
// layers between us and the pagination context. It's important to minimize the number of fragments we need to create and this helps with that.
ClipRectsContext paginationClipRectsContext(enclosingPaginationLayer(), clipRectsCacheSlot, inOverlayScrollbarSizeRelevancy);
if (respectOverflowClip == IgnoreOverflowClip)
paginationClipRectsContext.setIgnoreOverflowClip();
LayoutRect layerBoundsInFlowThread;
ClipRect backgroundRectInFlowThread;
ClipRect foregroundRectInFlowThread;
clipper().calculateRects(paginationClipRectsContext, LayoutRect(LayoutRect::infiniteIntRect()), layerBoundsInFlowThread,
backgroundRectInFlowThread, foregroundRectInFlowThread, &offsetWithinPaginatedLayer);
// Take our bounding box within the flow thread and clip it.
LayoutRect layerBoundingBoxInFlowThread = layerBoundingBox ? *layerBoundingBox : physicalBoundingBox(offsetWithinPaginatedLayer);
layerBoundingBoxInFlowThread.intersect(backgroundRectInFlowThread.rect());
// Make the dirty rect relative to the fragmentation context (multicol container, etc.).
LayoutFlowThread* enclosingFlowThread = toLayoutFlowThread(enclosingPaginationLayer()->layoutObject());
LayoutPoint offsetOfPaginationLayerFromRoot; // Visual offset from the root layer to the nearest fragmentation context.
bool rootLayerIsInsidePaginationLayer = rootLayer->enclosingPaginationLayer() == enclosingPaginationLayer();
if (rootLayerIsInsidePaginationLayer) {
// The root layer is in the same fragmentation context as this layer, so we need to look
// inside it and subtract the offset between the fragmentation context and the root layer.
offsetOfPaginationLayerFromRoot = -rootLayer->visualOffsetFromAncestor(enclosingPaginationLayer());
} else {
offsetOfPaginationLayerFromRoot = enclosingPaginationLayer()->visualOffsetFromAncestor(rootLayer);
}
LayoutRect dirtyRectInFlowThread(dirtyRect);
dirtyRectInFlowThread.moveBy(-offsetOfPaginationLayerFromRoot);
// Tell the flow thread to collect the fragments. We pass enough information to create a minimal number of fragments based off the pages/columns
// that intersect the actual dirtyRect as well as the pages/columns that intersect our layer's bounding box.
enclosingFlowThread->collectLayerFragments(fragments, layerBoundingBoxInFlowThread, dirtyRectInFlowThread);
if (fragments.isEmpty())
return;
// Get the parent clip rects of the pagination layer, since we need to intersect with that when painting column contents.
ClipRect ancestorClipRect = dirtyRect;
if (const PaintLayer* paginationParentLayer = enclosingPaginationLayer()->parent()) {
const PaintLayer* ancestorLayer = rootLayerIsInsidePaginationLayer ? paginationParentLayer : rootLayer;
ClipRectsContext clipRectsContext(ancestorLayer, clipRectsCacheSlot, inOverlayScrollbarSizeRelevancy);
if (respectOverflowClip == IgnoreOverflowClip)
clipRectsContext.setIgnoreOverflowClip();
ancestorClipRect = enclosingPaginationLayer()->clipper().backgroundClipRect(clipRectsContext);
if (rootLayerIsInsidePaginationLayer)
ancestorClipRect.moveBy(-rootLayer->visualOffsetFromAncestor(ancestorLayer));
ancestorClipRect.intersect(dirtyRect);
}
const LayoutSize subPixelAccumulationIfNeeded = offsetFromRoot ? subPixelAccumulation : LayoutSize();
for (size_t i = 0; i < fragments.size(); ++i) {
PaintLayerFragment& fragment = fragments.at(i);
// Set our four rects with all clipping applied that was internal to the flow thread.
fragment.setRects(layerBoundsInFlowThread, backgroundRectInFlowThread, foregroundRectInFlowThread);
// Shift to the root-relative physical position used when painting the flow thread in this fragment.
fragment.moveBy(fragment.paginationOffset + offsetOfPaginationLayerFromRoot + subPixelAccumulationIfNeeded);
// Intersect the fragment with our ancestor's background clip so that e.g., columns in an overflow:hidden block are
// properly clipped by the overflow.
fragment.intersect(ancestorClipRect.rect());
// Now intersect with our pagination clip. This will typically mean we're just intersecting the dirty rect with the column
// clip, so the column clip ends up being all we apply.
fragment.intersect(fragment.paginationClip);
}
}
static inline LayoutRect frameVisibleRect(LayoutObject* layoutObject)
{
FrameView* frameView = layoutObject->document().view();
if (!frameView)
return LayoutRect();
return LayoutRect(frameView->visibleContentRect());
}
bool PaintLayer::hitTest(HitTestResult& result)
{
ASSERT(isSelfPaintingLayer() || hasSelfPaintingLayerDescendant());
// LayoutView should make sure to update layout before entering hit testing
ASSERT(!layoutObject()->frame()->view()->layoutPending());
ASSERT(!layoutObject()->document().layoutView()->needsLayout());
const HitTestRequest& request = result.hitTestRequest();
const HitTestLocation& hitTestLocation = result.hitTestLocation();
// Start with frameVisibleRect to ensure we include the scrollbars.
LayoutRect hitTestArea = frameVisibleRect(layoutObject());
if (request.ignoreClipping())
hitTestArea.unite(LayoutRect(layoutObject()->view()->documentRect()));
PaintLayer* insideLayer = hitTestLayer(this, 0, result, hitTestArea, hitTestLocation, false);
if (!insideLayer && isRootLayer()) {
IntRect hitRect = hitTestLocation.boundingBox();
bool fallback = false;
// If we didn't hit any layers but are still inside the document
// bounds, then we should fallback to hitting the document.
// For rect-based hit test, we do the fallback only when the hit-rect
// is totally within the document bounds.
if (hitTestArea.contains(LayoutRect(hitRect))) {
fallback = true;
// Mouse dragging outside the main document should also be
// delivered to the document.
// TODO(miletus): Capture behavior inconsistent with iframes
// crbug.com/522109.
// TODO(majidvp): This should apply more consistently across different event types and we
// should not use RequestType for it. Perhaps best for it to be done at a higher level. See
// http://crbug.com/505825
} else if ((request.active() || request.release()) && !request.isChildFrameHitTest()) {
fallback = true;
}
if (fallback) {
layoutObject()->updateHitTestResult(result, toLayoutView(layoutObject())->flipForWritingMode(hitTestLocation.point()));
insideLayer = this;
// Don't cache this result since it really wasn't a true hit.
result.setCacheable(false);
}
}
// Now determine if the result is inside an anchor - if the urlElement isn't already set.
Node* node = result.innerNode();
if (node && !result.URLElement())
result.setURLElement(node->enclosingLinkEventParentOrSelf());
// Now return whether we were inside this layer (this will always be true for the root
// layer).
return insideLayer;
}
Node* PaintLayer::enclosingNode() const
{
for (LayoutObject* r = layoutObject(); r; r = r->parent()) {
if (Node* e = r->node())
return e;
}
ASSERT_NOT_REACHED();
return 0;
}
bool PaintLayer::isInTopLayer() const
{
Node* node = layoutObject()->node();
return node && node->isElementNode() && toElement(node)->isInTopLayer();
}
// Compute the z-offset of the point in the transformState.
// This is effectively projecting a ray normal to the plane of ancestor, finding where that
// ray intersects target, and computing the z delta between those two points.
static double computeZOffset(const HitTestingTransformState& transformState)
{
// We got an affine transform, so no z-offset
if (transformState.m_accumulatedTransform.isAffine())
return 0;
// Flatten the point into the target plane
FloatPoint targetPoint = transformState.mappedPoint();
// Now map the point back through the transform, which computes Z.
FloatPoint3D backmappedPoint = transformState.m_accumulatedTransform.mapPoint(FloatPoint3D(targetPoint));
return backmappedPoint.z();
}
PassRefPtr<HitTestingTransformState> PaintLayer::createLocalTransformState(PaintLayer* rootLayer, PaintLayer* containerLayer,
const LayoutRect& hitTestRect, const HitTestLocation& hitTestLocation,
const HitTestingTransformState* containerTransformState,
const LayoutPoint& translationOffset) const
{
RefPtr<HitTestingTransformState> transformState;
LayoutPoint offset;
if (containerTransformState) {
// If we're already computing transform state, then it's relative to the container (which we know is non-null).
transformState = HitTestingTransformState::create(*containerTransformState);
convertToLayerCoords(containerLayer, offset);
} else {
// If this is the first time we need to make transform state, then base it off of hitTestLocation,
// which is relative to rootLayer.
transformState = HitTestingTransformState::create(hitTestLocation.transformedPoint(), hitTestLocation.transformedRect(), FloatQuad(FloatRect(hitTestRect)));
convertToLayerCoords(rootLayer, offset);
}
offset.moveBy(translationOffset);
LayoutObject* containerLayoutObject = containerLayer ? containerLayer->layoutObject() : 0;
if (layoutObject()->shouldUseTransformFromContainer(containerLayoutObject)) {
TransformationMatrix containerTransform;
layoutObject()->getTransformFromContainer(containerLayoutObject, toLayoutSize(offset), containerTransform);
transformState->applyTransform(containerTransform, HitTestingTransformState::AccumulateTransform);
} else {
transformState->translate(offset.x(), offset.y(), HitTestingTransformState::AccumulateTransform);
}
return transformState;
}
static bool isHitCandidate(const PaintLayer* hitLayer, bool canDepthSort, double* zOffset, const HitTestingTransformState* transformState)
{
if (!hitLayer)
return false;
// The hit layer is depth-sorting with other layers, so just say that it was hit.
if (canDepthSort)
return true;
// We need to look at z-depth to decide if this layer was hit.
if (zOffset) {
ASSERT(transformState);
// This is actually computing our z, but that's OK because the hitLayer is coplanar with us.
double childZOffset = computeZOffset(*transformState);
if (childZOffset > *zOffset) {
*zOffset = childZOffset;
return true;
}
return false;
}
return true;
}
// hitTestLocation and hitTestRect are relative to rootLayer.
// A 'flattening' layer is one preserves3D() == false.
// transformState.m_accumulatedTransform holds the transform from the containing flattening layer.
// transformState.m_lastPlanarPoint is the hitTestLocation in the plane of the containing flattening layer.
// transformState.m_lastPlanarQuad is the hitTestRect as a quad in the plane of the containing flattening layer.
//
// If zOffset is non-null (which indicates that the caller wants z offset information),
// *zOffset on return is the z offset of the hit point relative to the containing flattening layer.
PaintLayer* PaintLayer::hitTestLayer(PaintLayer* rootLayer, PaintLayer* containerLayer, HitTestResult& result,
const LayoutRect& hitTestRect, const HitTestLocation& hitTestLocation, bool appliedTransform,
const HitTestingTransformState* transformState, double* zOffset)
{
ASSERT(layoutObject()->document().lifecycle().state() >= DocumentLifecycle::CompositingClean);
if (!isSelfPaintingLayer() && !hasSelfPaintingLayerDescendant())
return nullptr;
ClipRectsCacheSlot clipRectsCacheSlot = result.hitTestRequest().ignoreClipping() ? RootRelativeClipRectsIgnoringViewportClip : RootRelativeClipRects;
// Apply a transform if we have one.
if (transform() && !appliedTransform) {
if (enclosingPaginationLayer())
return hitTestTransformedLayerInFragments(rootLayer, containerLayer, result, hitTestRect, hitTestLocation, transformState, zOffset, clipRectsCacheSlot);
// Make sure the parent's clip rects have been calculated.
if (parent()) {
ClipRect clipRect = clipper().backgroundClipRect(ClipRectsContext(rootLayer, clipRectsCacheSlot, IncludeOverlayScrollbarSize));
// Go ahead and test the enclosing clip now.
if (!clipRect.intersects(hitTestLocation))
return nullptr;
}
return hitTestLayerByApplyingTransform(rootLayer, containerLayer, result, hitTestRect, hitTestLocation, transformState, zOffset);
}
if (hitTestClippedOutByClipPath(rootLayer, hitTestLocation))
return nullptr;
// Ensure our lists and 3d status are up-to-date.
m_stackingNode->updateLayerListsIfNeeded();
update3DTransformedDescendantStatus();
// The natural thing would be to keep HitTestingTransformState on the stack, but it's big, so we heap-allocate.
RefPtr<HitTestingTransformState> localTransformState;
if (appliedTransform) {
// We computed the correct state in the caller (above code), so just reference it.
ASSERT(transformState);
localTransformState = const_cast<HitTestingTransformState*>(transformState);
} else if (transformState || m_has3DTransformedDescendant || preserves3D()) {
// We need transform state for the first time, or to offset the container state, so create it here.
localTransformState = createLocalTransformState(rootLayer, containerLayer, hitTestRect, hitTestLocation, transformState);
}
// Check for hit test on backface if backface-visibility is 'hidden'
if (localTransformState && layoutObject()->style()->backfaceVisibility() == BackfaceVisibilityHidden) {
TransformationMatrix invertedMatrix = localTransformState->m_accumulatedTransform.inverse();
// If the z-vector of the matrix is negative, the back is facing towards the viewer.
if (invertedMatrix.m33() < 0)
return nullptr;
}
RefPtr<HitTestingTransformState> unflattenedTransformState = localTransformState;
if (localTransformState && !preserves3D()) {
// Keep a copy of the pre-flattening state, for computing z-offsets for the container
unflattenedTransformState = HitTestingTransformState::create(*localTransformState);
// This layer is flattening, so flatten the state passed to descendants.
localTransformState->flatten();
}
// The following are used for keeping track of the z-depth of the hit point of 3d-transformed
// descendants.
double localZOffset = -std::numeric_limits<double>::infinity();
double* zOffsetForDescendantsPtr = 0;
double* zOffsetForContentsPtr = 0;
bool depthSortDescendants = false;
if (preserves3D()) {
depthSortDescendants = true;
// Our layers can depth-test with our container, so share the z depth pointer with the container, if it passed one down.
zOffsetForDescendantsPtr = zOffset ? zOffset : &localZOffset;
zOffsetForContentsPtr = zOffset ? zOffset : &localZOffset;
} else if (zOffset) {
zOffsetForDescendantsPtr = 0;
// Container needs us to give back a z offset for the hit layer.
zOffsetForContentsPtr = zOffset;
}
// This variable tracks which layer the mouse ends up being inside.
PaintLayer* candidateLayer = 0;
// Begin by walking our list of positive layers from highest z-index down to the lowest z-index.
PaintLayer* hitLayer = hitTestChildren(PositiveZOrderChildren, rootLayer, result, hitTestRect, hitTestLocation,
localTransformState.get(), zOffsetForDescendantsPtr, zOffset, unflattenedTransformState.get(), depthSortDescendants);
if (hitLayer) {
if (!depthSortDescendants)
return hitLayer;
candidateLayer = hitLayer;
}
// Now check our overflow objects.
hitLayer = hitTestChildren(NormalFlowChildren, rootLayer, result, hitTestRect, hitTestLocation,
localTransformState.get(), zOffsetForDescendantsPtr, zOffset, unflattenedTransformState.get(), depthSortDescendants);
if (hitLayer) {
if (!depthSortDescendants)
return hitLayer;
candidateLayer = hitLayer;
}
// Collect the fragments. This will compute the clip rectangles for each layer fragment.
PaintLayerFragments layerFragments;
if (appliedTransform)
appendSingleFragmentIgnoringPagination(layerFragments, rootLayer, hitTestRect, clipRectsCacheSlot, IncludeOverlayScrollbarSize);
else
collectFragments(layerFragments, rootLayer, hitTestRect, clipRectsCacheSlot, IncludeOverlayScrollbarSize);
if (m_scrollableArea && m_scrollableArea->hitTestResizerInFragments(layerFragments, hitTestLocation)) {
layoutObject()->updateHitTestResult(result, hitTestLocation.point());
return this;
}
// Next we want to see if the mouse pos is inside the child LayoutObjects of the layer. Check
// every fragment in reverse order.
if (isSelfPaintingLayer()) {
// Hit test with a temporary HitTestResult, because we only want to commit to 'result' if we know we're frontmost.
HitTestResult tempResult(result.hitTestRequest(), result.hitTestLocation());
bool insideFragmentForegroundRect = false;
if (hitTestContentsForFragments(layerFragments, tempResult, hitTestLocation, HitTestDescendants, insideFragmentForegroundRect)
&& isHitCandidate(this, false, zOffsetForContentsPtr, unflattenedTransformState.get())) {
if (result.hitTestRequest().listBased())
result.append(tempResult);
else
result = tempResult;
if (!depthSortDescendants)
return this;
// Foreground can depth-sort with descendant layers, so keep this as a candidate.
candidateLayer = this;
} else if (insideFragmentForegroundRect && result.hitTestRequest().listBased()) {
result.append(tempResult);
}
}
// Now check our negative z-index children.
hitLayer = hitTestChildren(NegativeZOrderChildren, rootLayer, result, hitTestRect, hitTestLocation,
localTransformState.get(), zOffsetForDescendantsPtr, zOffset, unflattenedTransformState.get(), depthSortDescendants);
if (hitLayer) {
if (!depthSortDescendants)
return hitLayer;
candidateLayer = hitLayer;
}
// If we found a layer, return. Child layers, and foreground always render in front of background.
if (candidateLayer)
return candidateLayer;
if (isSelfPaintingLayer()) {
HitTestResult tempResult(result.hitTestRequest(), result.hitTestLocation());
bool insideFragmentBackgroundRect = false;
if (hitTestContentsForFragments(layerFragments, tempResult, hitTestLocation, HitTestSelf, insideFragmentBackgroundRect)
&& isHitCandidate(this, false, zOffsetForContentsPtr, unflattenedTransformState.get())) {
if (result.isRectBasedTest())
result.append(tempResult);
else
result = tempResult;
return this;
}
if (insideFragmentBackgroundRect && result.hitTestRequest().listBased())
result.append(tempResult);
}
return nullptr;
}
bool PaintLayer::hitTestContentsForFragments(const PaintLayerFragments& layerFragments, HitTestResult& result,
const HitTestLocation& hitTestLocation, HitTestFilter hitTestFilter, bool& insideClipRect) const
{
if (layerFragments.isEmpty())
return false;
for (int i = layerFragments.size() - 1; i >= 0; --i) {
const PaintLayerFragment& fragment = layerFragments.at(i);
if ((hitTestFilter == HitTestSelf && !fragment.backgroundRect.intersects(hitTestLocation))
|| (hitTestFilter == HitTestDescendants && !fragment.foregroundRect.intersects(hitTestLocation)))
continue;
insideClipRect = true;
if (hitTestContents(result, fragment.layerBounds, hitTestLocation, hitTestFilter))
return true;
}
return false;
}
PaintLayer* PaintLayer::hitTestTransformedLayerInFragments(PaintLayer* rootLayer, PaintLayer* containerLayer, HitTestResult& result,
const LayoutRect& hitTestRect, const HitTestLocation& hitTestLocation, const HitTestingTransformState* transformState, double* zOffset, ClipRectsCacheSlot clipRectsCacheSlot)
{
PaintLayerFragments enclosingPaginationFragments;
LayoutPoint offsetOfPaginationLayerFromRoot;
// FIXME: We're missing a sub-pixel offset here crbug.com/348728
LayoutRect transformedExtent = transparencyClipBox(this, enclosingPaginationLayer(), HitTestingTransparencyClipBox, PaintLayer::RootOfTransparencyClipBox, LayoutSize());
enclosingPaginationLayer()->collectFragments(enclosingPaginationFragments, rootLayer, hitTestRect,
clipRectsCacheSlot, IncludeOverlayScrollbarSize, RespectOverflowClip, &offsetOfPaginationLayerFromRoot, LayoutSize(), &transformedExtent);
for (int i = enclosingPaginationFragments.size() - 1; i >= 0; --i) {
const PaintLayerFragment& fragment = enclosingPaginationFragments.at(i);
// Apply the page/column clip for this fragment, as well as any clips established by layers in between us and
// the enclosing pagination layer.
LayoutRect clipRect = fragment.backgroundRect.rect();
// Now compute the clips within a given fragment
if (parent() != enclosingPaginationLayer()) {
enclosingPaginationLayer()->convertToLayerCoords(rootLayer, offsetOfPaginationLayerFromRoot);
LayoutRect parentClipRect = clipper().backgroundClipRect(ClipRectsContext(enclosingPaginationLayer(), clipRectsCacheSlot, IncludeOverlayScrollbarSize)).rect();
parentClipRect.moveBy(fragment.paginationOffset + offsetOfPaginationLayerFromRoot);
clipRect.intersect(parentClipRect);
}
if (!hitTestLocation.intersects(clipRect))
continue;
PaintLayer* hitLayer = hitTestLayerByApplyingTransform(rootLayer, containerLayer, result, hitTestRect, hitTestLocation,
transformState, zOffset, fragment.paginationOffset);
if (hitLayer)
return hitLayer;
}
return 0;
}
PaintLayer* PaintLayer::hitTestLayerByApplyingTransform(PaintLayer* rootLayer, PaintLayer* containerLayer, HitTestResult& result,
const LayoutRect& hitTestRect, const HitTestLocation& hitTestLocation, const HitTestingTransformState* transformState, double* zOffset,
const LayoutPoint& translationOffset)
{
// Create a transform state to accumulate this transform.
RefPtr<HitTestingTransformState> newTransformState = createLocalTransformState(rootLayer, containerLayer, hitTestRect, hitTestLocation, transformState, translationOffset);
// If the transform can't be inverted, then don't hit test this layer at all.
if (!newTransformState->m_accumulatedTransform.isInvertible())
return 0;
// Compute the point and the hit test rect in the coords of this layer by using the values
// from the transformState, which store the point and quad in the coords of the last flattened
// layer, and the accumulated transform which lets up map through preserve-3d layers.
//
// We can't just map hitTestLocation and hitTestRect because they may have been flattened (losing z)
// by our container.
FloatPoint localPoint = newTransformState->mappedPoint();
FloatQuad localPointQuad = newTransformState->mappedQuad();
LayoutRect localHitTestRect = newTransformState->boundsOfMappedArea();
HitTestLocation newHitTestLocation;
if (hitTestLocation.isRectBasedTest())
newHitTestLocation = HitTestLocation(localPoint, localPointQuad);
else
newHitTestLocation = HitTestLocation(localPoint);
// Now do a hit test with the root layer shifted to be us.
return hitTestLayer(this, containerLayer, result, localHitTestRect, newHitTestLocation, true, newTransformState.get(), zOffset);
}
bool PaintLayer::hitTestContents(HitTestResult& result, const LayoutRect& layerBounds, const HitTestLocation& hitTestLocation, HitTestFilter hitTestFilter) const
{
ASSERT(isSelfPaintingLayer() || hasSelfPaintingLayerDescendant());
if (!layoutObject()->hitTest(result, hitTestLocation, toLayoutPoint(layerBounds.location() - layoutBoxLocation()), hitTestFilter)) {
// It's wrong to set innerNode, but then claim that you didn't hit anything, unless it is
// a rect-based test.
ASSERT(!result.innerNode() || (result.hitTestRequest().listBased() && result.listBasedTestResult().size()));
return false;
}
if (!result.innerNode()) {
// We hit something anonymous, and we didn't find a DOM node ancestor in this layer.
if (layoutObject()->isLayoutFlowThread()) {
// For a flow thread it's safe to just say that we didn't hit anything. That means that
// we'll continue as normally, and eventually hit a column set sibling instead. Column
// sets are also anonymous, but, unlike flow threads, they don't establish layers, so
// we'll fall back and hit the multicol container parent (which should have a DOM node).
return false;
}
Node* e = enclosingNode();
// FIXME: should be a call to result.setNodeAndPosition. What we would really want to do here is to
// return and look for the nearest non-anonymous ancestor, and ignore aunts and uncles on
// our way. It's bad to look for it manually like we do here, and give up on setting a local
// point in the result, because that has bad implications for text selection and
// caretRangeFromPoint(). See crbug.com/461791
if (!result.innerNode())
result.setInnerNode(e);
}
return true;
}
PaintLayer* PaintLayer::hitTestChildren(ChildrenIteration childrentoVisit, PaintLayer* rootLayer,
HitTestResult& result,
const LayoutRect& hitTestRect, const HitTestLocation& hitTestLocation,
const HitTestingTransformState* transformState,
double* zOffsetForDescendants, double* zOffset,
const HitTestingTransformState* unflattenedTransformState,
bool depthSortDescendants)
{
if (!hasSelfPaintingLayerDescendant())
return 0;
PaintLayer* resultLayer = 0;
PaintLayerStackingNodeReverseIterator iterator(*m_stackingNode, childrentoVisit);
while (PaintLayerStackingNode* child = iterator.next()) {
PaintLayer* childLayer = child->layer();
PaintLayer* hitLayer = 0;
HitTestResult tempResult(result.hitTestRequest(), result.hitTestLocation());
hitLayer = childLayer->hitTestLayer(rootLayer, this, tempResult, hitTestRect, hitTestLocation, false, transformState, zOffsetForDescendants);
// If it is a list-based test, we can safely append the temporary result since it might had hit
// nodes but not necesserily had hitLayer set.
ASSERT(!result.isRectBasedTest() || result.hitTestRequest().listBased());
if (result.hitTestRequest().listBased())
result.append(tempResult);
if (isHitCandidate(hitLayer, depthSortDescendants, zOffset, unflattenedTransformState)) {
resultLayer = hitLayer;
if (!result.hitTestRequest().listBased())
result = tempResult;
if (!depthSortDescendants)
break;
}
}
return resultLayer;
}
bool PaintLayer::hitTestClippedOutByClipPath(PaintLayer* rootLayer, const HitTestLocation& hitTestLocation) const
{
if (!layoutObject()->hasClipPath())
return false;
ASSERT(isSelfPaintingLayer());
LayoutPoint offsetToRootLayer;
if (rootLayer)
convertToLayerCoords(rootLayer, offsetToRootLayer);
LayoutRect rootRelativeBounds = physicalBoundingBoxIncludingReflectionAndStackingChildren(offsetToRootLayer);
ClipPathOperation* clipPathOperation = layoutObject()->style()->clipPath();
ASSERT(clipPathOperation);
if (clipPathOperation->type() == ClipPathOperation::SHAPE) {
ShapeClipPathOperation* clipPath = toShapeClipPathOperation(clipPathOperation);
if (!clipPath->path(FloatRect(rootRelativeBounds)).contains(FloatPoint(hitTestLocation.point())))
return true;
} else {
ASSERT(clipPathOperation->type() == ClipPathOperation::REFERENCE);
ReferenceClipPathOperation* referenceClipPathOperation = toReferenceClipPathOperation(clipPathOperation);
Element* element = layoutObject()->document().getElementById(referenceClipPathOperation->fragment());
if (isSVGClipPathElement(element) && element->layoutObject()) {
LayoutSVGResourceClipper* clipper = toLayoutSVGResourceClipper(toLayoutSVGResourceContainer(element->layoutObject()));
if (!clipper->hitTestClipContent(FloatRect(rootRelativeBounds), FloatPoint(hitTestLocation.point())))
return true;
}
}
return false;
}
bool PaintLayer::intersectsDamageRect(const LayoutRect& layerBounds, const LayoutRect& damageRect, const LayoutPoint& offsetFromRoot) const
{
// Always examine the canvas and the root.
// FIXME: Could eliminate the isDocumentElement() check if we fix background painting so that the LayoutView
// paints the root's background.
if (isRootLayer() || layoutObject()->isDocumentElement())
return true;
// If we aren't an inline flow, and our layer bounds do intersect the damage rect, then we
// can go ahead and return true.
LayoutView* view = layoutObject()->view();
ASSERT(view);
if (view && !layoutObject()->isLayoutInline()) {
if (layerBounds.intersects(damageRect))
return true;
}
// Otherwise we need to compute the bounding box of this single layer and see if it intersects
// the damage rect.
return physicalBoundingBox(offsetFromRoot).intersects(damageRect);
}
LayoutRect PaintLayer::logicalBoundingBox() const
{
return layoutObject()->visualOverflowRect();
}
static inline LayoutRect flippedLogicalBoundingBox(LayoutRect boundingBox, LayoutObject* layoutObjects)
{
LayoutRect result = boundingBox;
if (layoutObjects->isBox())
toLayoutBox(layoutObjects)->flipForWritingMode(result);
else
layoutObjects->containingBlock()->flipForWritingMode(result);
return result;
}
LayoutRect PaintLayer::physicalBoundingBox(const PaintLayer* ancestorLayer) const
{
LayoutPoint offsetFromRoot;
convertToLayerCoords(ancestorLayer, offsetFromRoot);
return physicalBoundingBox(offsetFromRoot);
}
LayoutRect PaintLayer::physicalBoundingBox(const LayoutPoint& offsetFromRoot) const
{
LayoutRect result = flippedLogicalBoundingBox(logicalBoundingBox(), layoutObject());
result.moveBy(offsetFromRoot);
return result;
}
LayoutRect PaintLayer::fragmentsBoundingBox(const PaintLayer* ancestorLayer) const
{
if (!enclosingPaginationLayer())
return physicalBoundingBox(ancestorLayer);
LayoutRect result = flippedLogicalBoundingBox(logicalBoundingBox(), layoutObject());
convertFromFlowThreadToVisualBoundingBoxInAncestor(ancestorLayer, result);
return result;
}
LayoutRect PaintLayer::boundingBoxForCompositingOverlapTest() const
{
// Apply NeverIncludeTransformForAncestorLayer, because the geometry map in CompositingInputsUpdater will take care of applying the
// transform of |this| (== the ancestorLayer argument to boundingBoxForCompositing).
return overlapBoundsIncludeChildren() ? boundingBoxForCompositing(this, NeverIncludeTransformForAncestorLayer) : fragmentsBoundingBox(this);
}
bool PaintLayer::overlapBoundsIncludeChildren() const
{
const auto* style = layoutObject()->style();
if (style && style->filter().hasFilterThatMovesPixels())
return true;
if (RuntimeEnabledFeatures::cssBoxReflectFilterEnabled() && layoutObject()->hasReflection())
return true;
return false;
}
static void expandRectForReflectionAndStackingChildren(const PaintLayer* ancestorLayer, LayoutRect& result)
{
if (ancestorLayer->reflectionInfo() && !ancestorLayer->reflectionInfo()->reflectionLayer()->hasCompositedLayerMapping() && !RuntimeEnabledFeatures::cssBoxReflectFilterEnabled())
result.unite(ancestorLayer->reflectionInfo()->reflectionLayer()->boundingBoxForCompositing(ancestorLayer));
ASSERT(ancestorLayer->stackingNode()->isStackingContext() || !ancestorLayer->stackingNode()->hasPositiveZOrderList());
#if ENABLE(ASSERT)
LayerListMutationDetector mutationChecker(const_cast<PaintLayer*>(ancestorLayer)->stackingNode());
#endif
PaintLayerStackingNodeIterator iterator(*ancestorLayer->stackingNode(), AllChildren);
while (PaintLayerStackingNode* node = iterator.next()) {
// Here we exclude both directly composited layers and squashing layers
// because those Layers don't paint into the graphics layer
// for this Layer. For example, the bounds of squashed Layers
// will be included in the computation of the appropriate squashing
// GraphicsLayer.
if (node->layer()->compositingState() != NotComposited)
continue;
result.unite(node->layer()->boundingBoxForCompositing(ancestorLayer));
}
}
LayoutRect PaintLayer::physicalBoundingBoxIncludingReflectionAndStackingChildren(const LayoutPoint& offsetFromRoot) const
{
LayoutRect result = physicalBoundingBox(LayoutPoint());
const_cast<PaintLayer*>(this)->stackingNode()->updateLayerListsIfNeeded();
expandRectForReflectionAndStackingChildren(this, result);
result.moveBy(offsetFromRoot);
return result;
}
LayoutRect PaintLayer::boundingBoxForCompositing(const PaintLayer* ancestorLayer, CalculateBoundsOptions options) const
{
if (!isSelfPaintingLayer())
return LayoutRect();
if (!ancestorLayer)
ancestorLayer = this;
// FIXME: This could be improved to do a check like hasVisibleNonCompositingDescendantLayers() (bug 92580).
if (this != ancestorLayer && !hasVisibleContent() && !hasVisibleDescendant())
return LayoutRect();
// Without composited scrolling, the root layer is the size of the document.
if (isRootLayer() && !needsCompositedScrolling())
return LayoutRect(m_layoutObject->view()->documentRect());
// The layer created for the LayoutFlowThread is just a helper for painting and hit-testing,
// and should not contribute to the bounding box. The LayoutMultiColumnSets will contribute
// the correct size for the layout content of the multicol container.
if (layoutObject()->isLayoutFlowThread())
return LayoutRect();
// If there is a clip applied by an ancestor to this PaintLayer but below or equal to |ancestorLayer|,
// use that clip as the bounds rather than the recursive bounding boxes, since the latter may be larger than the
// actual size. See https://bugs.webkit.org/show_bug.cgi?id=80372 for examples.
LayoutRect result = clipper().localClipRect(ancestorLayer);
// TODO(chrishtr): avoid converting to IntRect and back.
if (result == LayoutRect(LayoutRect::infiniteIntRect())) {
result = physicalBoundingBox(LayoutPoint());
const_cast<PaintLayer*>(this)->stackingNode()->updateLayerListsIfNeeded();
// Reflections are implemented with Layers that hang off of the reflected layer. However,
// the reflection layer subtree does not include the subtree of the parent Layer, so
// a recursive computation of stacking children yields no results. This breaks cases when there are stacking
// children of the parent, that need to be included in reflected composited bounds.
// Fix this by including composited bounds of stacking children of the reflected Layer.
if (hasCompositedLayerMapping() && parent() && parent()->reflectionInfo() && parent()->reflectionInfo()->reflectionLayer() == this)
expandRectForReflectionAndStackingChildren(parent(), result);
else
expandRectForReflectionAndStackingChildren(this, result);
// Only enlarge by the filter outsets if we know the filter is going to be rendered in software.
// Accelerated filters will handle their own outsets.
if (paintsWithFilters())
result = mapLayoutRectForFilter(result);
}
if (transform() && paintsWithTransform(GlobalPaintNormalPhase) && (this != ancestorLayer || options == MaybeIncludeTransformForAncestorLayer))
result = transform()->mapRect(result);
if (enclosingPaginationLayer()) {
convertFromFlowThreadToVisualBoundingBoxInAncestor(ancestorLayer, result);
return result;
}
LayoutPoint delta;
convertToLayerCoords(ancestorLayer, delta);
result.moveBy(delta);
return result;
}
CompositingState PaintLayer::compositingState() const
{
ASSERT(isAllowedToQueryCompositingState());
// This is computed procedurally so there is no redundant state variable that
// can get out of sync from the real actual compositing state.
if (groupedMapping()) {
ASSERT(!compositedLayerMapping());
return PaintsIntoGroupedBacking;
}
if (!compositedLayerMapping())
return NotComposited;
return PaintsIntoOwnBacking;
}
bool PaintLayer::isAllowedToQueryCompositingState() const
{
if (gCompositingQueryMode == CompositingQueriesAreAllowed || RuntimeEnabledFeatures::slimmingPaintV2Enabled())
return true;
return layoutObject()->document().lifecycle().state() >= DocumentLifecycle::InCompositingUpdate;
}
CompositedLayerMapping* PaintLayer::compositedLayerMapping() const
{
ASSERT(isAllowedToQueryCompositingState());
return m_rareData ? m_rareData->compositedLayerMapping.get() : nullptr;
}
GraphicsLayer* PaintLayer::graphicsLayerBacking() const
{
switch (compositingState()) {
case NotComposited:
return 0;
case PaintsIntoGroupedBacking:
return groupedMapping()->squashingLayer();
default:
return compositedLayerMapping()->mainGraphicsLayer();
}
}
GraphicsLayer* PaintLayer::graphicsLayerBackingForScrolling() const
{
switch (compositingState()) {
case NotComposited:
return 0;
case PaintsIntoGroupedBacking:
return groupedMapping()->squashingLayer();
default:
return compositedLayerMapping()->scrollingContentsLayer() ? compositedLayerMapping()->scrollingContentsLayer() : compositedLayerMapping()->mainGraphicsLayer();
}
}
void PaintLayer::ensureCompositedLayerMapping()
{
if (m_rareData && m_rareData->compositedLayerMapping)
return;
ensureRareData().compositedLayerMapping = adoptPtr(new CompositedLayerMapping(*this));
m_rareData->compositedLayerMapping->setNeedsGraphicsLayerUpdate(GraphicsLayerUpdateSubtree);
updateOrRemoveFilterEffectBuilder();
}
void PaintLayer::clearCompositedLayerMapping(bool layerBeingDestroyed)
{
if (!layerBeingDestroyed) {
// We need to make sure our decendants get a geometry update. In principle,
// we could call setNeedsGraphicsLayerUpdate on our children, but that would
// require walking the z-order lists to find them. Instead, we over-invalidate
// by marking our parent as needing a geometry update.
if (PaintLayer* compositingParent = enclosingLayerWithCompositedLayerMapping(ExcludeSelf))
compositingParent->compositedLayerMapping()->setNeedsGraphicsLayerUpdate(GraphicsLayerUpdateSubtree);
}
if (m_rareData)
m_rareData->compositedLayerMapping.clear();
if (!layerBeingDestroyed)
updateOrRemoveFilterEffectBuilder();
}
void PaintLayer::setGroupedMapping(CompositedLayerMapping* groupedMapping, SetGroupMappingOptions options)
{
CompositedLayerMapping* oldGroupedMapping = this->groupedMapping();
if (groupedMapping == oldGroupedMapping)
return;
if (options == InvalidateLayerAndRemoveFromMapping && oldGroupedMapping) {
oldGroupedMapping->setNeedsGraphicsLayerUpdate(GraphicsLayerUpdateSubtree);
oldGroupedMapping->removeLayerFromSquashingGraphicsLayer(this);
}
if (m_rareData || groupedMapping)
ensureRareData().groupedMapping = groupedMapping;
ASSERT(!groupedMapping || groupedMapping->verifyLayerInSquashingVector(this));
if (options == InvalidateLayerAndRemoveFromMapping && groupedMapping)
groupedMapping->setNeedsGraphicsLayerUpdate(GraphicsLayerUpdateSubtree);
}
bool PaintLayer::hasCompositedMask() const
{
return m_rareData && m_rareData->compositedLayerMapping && m_rareData->compositedLayerMapping->hasMaskLayer();
}
bool PaintLayer::hasCompositedClippingMask() const
{
return m_rareData && m_rareData->compositedLayerMapping && m_rareData->compositedLayerMapping->hasChildClippingMaskLayer();
}
bool PaintLayer::paintsWithTransform(GlobalPaintFlags globalPaintFlags) const
{
return (transform() || layoutObject()->style()->position() == FixedPosition) && ((globalPaintFlags & GlobalPaintFlattenCompositingLayers) || compositingState() != PaintsIntoOwnBacking);
}
bool PaintLayer::backgroundIsKnownToBeOpaqueInRect(const LayoutRect& localRect) const
{
if (!isSelfPaintingLayer() && !hasSelfPaintingLayerDescendant())
return false;
if (paintsWithTransparency(GlobalPaintNormalPhase))
return false;
// We can't use hasVisibleContent(), because that will be true if our layoutObject is hidden, but some child
// is visible and that child doesn't cover the entire rect.
if (layoutObject()->style()->visibility() != VISIBLE)
return false;
if (paintsWithFilters() && layoutObject()->style()->filter().hasFilterThatAffectsOpacity())
return false;
// FIXME: Handle simple transforms.
if (paintsWithTransform(GlobalPaintNormalPhase))
return false;
// FIXME: Remove this check.
// This function should not be called when layer-lists are dirty.
// It is somehow getting triggered during style update.
if (m_stackingNode->zOrderListsDirty())
return false;
// FIXME: We currently only check the immediate layoutObject,
// which will miss many cases.
if (layoutObject()->backgroundIsKnownToBeOpaqueInRect(localRect))
return true;
// We can't consult child layers if we clip, since they might cover
// parts of the rect that are clipped out.
if (layoutObject()->hasOverflowClip() || layoutObject()->style()->containsPaint())
return false;
return childBackgroundIsKnownToBeOpaqueInRect(localRect);
}
bool PaintLayer::childBackgroundIsKnownToBeOpaqueInRect(const LayoutRect& localRect) const
{
PaintLayerStackingNodeReverseIterator revertseIterator(*m_stackingNode, PositiveZOrderChildren | NormalFlowChildren | NegativeZOrderChildren);
while (PaintLayerStackingNode* child = revertseIterator.next()) {
const PaintLayer* childLayer = child->layer();
// Stop at composited paint boundaries.
if (childLayer->isPaintInvalidationContainer())
continue;
if (!childLayer->canUseConvertToLayerCoords())
continue;
LayoutPoint childOffset;
LayoutRect childLocalRect(localRect);
childLayer->convertToLayerCoords(this, childOffset);
childLocalRect.moveBy(-childOffset);
if (childLayer->backgroundIsKnownToBeOpaqueInRect(childLocalRect))
return true;
}
return false;
}
bool PaintLayer::shouldBeSelfPaintingLayer() const
{
if (layoutObject()->isLayoutPart() && toLayoutPart(layoutObject())->requiresAcceleratedCompositing())
return true;
return m_layerType == NormalPaintLayer
|| (m_scrollableArea && m_scrollableArea->hasOverlayScrollbars())
|| needsCompositedScrolling();
}
void PaintLayer::updateSelfPaintingLayer()
{
bool isSelfPaintingLayer = shouldBeSelfPaintingLayer();
if (this->isSelfPaintingLayer() == isSelfPaintingLayer)
return;
m_isSelfPaintingLayer = isSelfPaintingLayer;
if (parent())
parent()->dirtyAncestorChainHasSelfPaintingLayerDescendantStatus();
}
PaintLayer* PaintLayer::enclosingSelfPaintingLayer()
{
PaintLayer* layer = this;
while (layer && !layer->isSelfPaintingLayer())
layer = layer->parent();
return layer;
}
bool PaintLayer::hasNonEmptyChildLayoutObjects() const
{
// Some HTML can cause whitespace text nodes to have layoutObjects, like:
// <div>
// <img src=...>
// </div>
// so test for 0x0 LayoutTexts here
for (LayoutObject* child = layoutObject()->slowFirstChild(); child; child = child->nextSibling()) {
if (!child->hasLayer()) {
if (child->isLayoutInline() || !child->isBox())
return true;
if (toLayoutBox(child)->size().width() > 0 || toLayoutBox(child)->size().height() > 0)
return true;
}
}
return false;
}
bool PaintLayer::hasBoxDecorationsOrBackground() const
{
return layoutObject()->style()->hasBoxDecorations() || layoutObject()->style()->hasBackground();
}
bool PaintLayer::hasVisibleBoxDecorations() const
{
if (!hasVisibleContent())
return false;
return hasBoxDecorationsOrBackground() || hasOverflowControls();
}
void PaintLayer::updateFilters(const ComputedStyle* oldStyle, const ComputedStyle& newStyle)
{
if (!newStyle.hasFilterInducingProperty() && (!oldStyle || !oldStyle->hasFilterInducingProperty()))
return;
updateOrRemoveFilterClients();
updateOrRemoveFilterEffectBuilder();
}
bool PaintLayer::attemptDirectCompositingUpdate(StyleDifference diff, const ComputedStyle* oldStyle)
{
CompositingReasons oldPotentialCompositingReasonsFromStyle = potentialCompositingReasonsFromStyle();
compositor()->updatePotentialCompositingReasonsFromStyle(this);
// This function implements an optimization for transforms and opacity.
// A common pattern is for a touchmove handler to update the transform
// and/or an opacity of an element every frame while the user moves their
// finger across the screen. The conditions below recognize when the
// compositing state is set up to receive a direct transform or opacity
// update.
if (!diff.hasAtMostPropertySpecificDifferences(StyleDifference::TransformChanged | StyleDifference::OpacityChanged))
return false;
// The potentialCompositingReasonsFromStyle could have changed without
// a corresponding StyleDifference if an animation started or ended.
if (potentialCompositingReasonsFromStyle() != oldPotentialCompositingReasonsFromStyle)
return false;
// We could add support for reflections if we updated the transform on
// the reflection layers.
if (layoutObject()->hasReflection())
return false;
// If we're unwinding a scheduleSVGFilterLayerUpdateHack(), then we can't
// perform a direct compositing update because the filters code is going
// to produce different output this time around. We can remove this code
// once we fix the chicken/egg bugs in the filters code and delete the
// scheduleSVGFilterLayerUpdateHack().
if (layoutObject()->node() && layoutObject()->node()->svgFilterNeedsLayerUpdate())
return false;
if (!m_rareData || !m_rareData->compositedLayerMapping)
return false;
// To cut off almost all the work in the compositing update for
// this case, we treat inline transforms has having assumed overlap
// (similar to how we treat animated transforms). Notice that we read
// CompositingReasonInlineTransform from the m_compositingReasons, which
// means that the inline transform actually triggered assumed overlap in
// the overlap map.
if (diff.transformChanged() && (!m_rareData || !(m_rareData->compositingReasons & CompositingReasonInlineTransform)))
return false;
// We composite transparent Layers differently from non-transparent
// Layers even when the non-transparent Layers are already a
// stacking context.
if (diff.opacityChanged() && m_layoutObject->style()->hasOpacity() != oldStyle->hasOpacity())
return false;
// Changes in pointer-events affect hit test visibility of the scrollable
// area and its |m_scrollsOverflow| value which determines if the layer
// requires composited scrolling or not.
if (m_scrollableArea && m_layoutObject->style()->pointerEvents() != oldStyle->pointerEvents())
return false;
updateTransform(oldStyle, layoutObject()->styleRef());
// FIXME: Consider introducing a smaller graphics layer update scope
// that just handles transforms and opacity. GraphicsLayerUpdateLocal
// will also program bounds, clips, and many other properties that could
// not possibly have changed.
m_rareData->compositedLayerMapping->setNeedsGraphicsLayerUpdate(GraphicsLayerUpdateLocal);
compositor()->setNeedsCompositingUpdate(CompositingUpdateAfterGeometryChange);
if (m_scrollableArea)
m_scrollableArea->updateAfterStyleChange(oldStyle);
return true;
}
void PaintLayer::styleDidChange(StyleDifference diff, const ComputedStyle* oldStyle)
{
if (attemptDirectCompositingUpdate(diff, oldStyle))
return;
m_stackingNode->styleDidChange(oldStyle);
if (m_scrollableArea)
m_scrollableArea->updateAfterStyleChange(oldStyle);
// Overlay scrollbars can make this layer self-painting so we need
// to recompute the bit once scrollbars have been updated.
updateSelfPaintingLayer();
if (!oldStyle || !layoutObject()->style()->reflectionDataEquivalent(oldStyle)) {
ASSERT(!oldStyle || diff.needsFullLayout());
updateReflectionInfo(oldStyle);
}
updateDescendantDependentFlags();
updateTransform(oldStyle, layoutObject()->styleRef());
updateFilters(oldStyle, layoutObject()->styleRef());
setNeedsCompositingInputsUpdate();
}
bool PaintLayer::scrollsOverflow() const
{
if (PaintLayerScrollableArea* scrollableArea = this->getScrollableArea())
return scrollableArea->scrollsOverflow();
return false;
}
namespace {
FilterOperations computeFilterOperationsHandleReferenceFilters(const FilterOperations& filters, float effectiveZoom, Node* enclosingNode)
{
if (filters.hasReferenceFilter()) {
for (size_t i = 0; i < filters.size(); ++i) {
FilterOperation* filterOperation = filters.operations().at(i).get();
if (filterOperation->type() != FilterOperation::REFERENCE)
continue;
ReferenceFilterOperation& referenceOperation = toReferenceFilterOperation(*filterOperation);
// FIXME: Cache the Filter if it didn't change.
Filter* referenceFilter = ReferenceFilterBuilder::build(effectiveZoom, toElement(enclosingNode), nullptr, referenceOperation);
referenceOperation.setFilter(referenceFilter);
}
}
return filters;
}
} // unnamed namespace
FilterOperations PaintLayer::computeFilterOperations(const ComputedStyle& style) const
{
FilterOperations filterOperations = style.filter();
if (RuntimeEnabledFeatures::cssBoxReflectFilterEnabled() && layoutObject()->hasReflection() && layoutObject()->isBox()) {
// TODO(jbroman): Incorporate the mask image.
const auto* reflectStyle = style.boxReflect();
FloatRect frameRect(toLayoutBox(layoutObject())->frameRect());
ReflectionDirection direction = VerticalReflection;
float offset = 0;
switch (reflectStyle->direction()) {
case ReflectionAbove:
direction = VerticalReflection;
offset = -floatValueForLength(reflectStyle->offset(), frameRect.height());
break;
case ReflectionBelow:
direction = VerticalReflection;
offset = 2 * frameRect.height() + floatValueForLength(reflectStyle->offset(), frameRect.height());
break;
case ReflectionLeft:
direction = HorizontalReflection;
offset = -floatValueForLength(reflectStyle->offset(), frameRect.width());
break;
case ReflectionRight:
direction = HorizontalReflection;
offset = 2 * frameRect.width() + floatValueForLength(reflectStyle->offset(), frameRect.width());
break;
}
// Since the filter origin is the corner of the input bounds, which may
// include visual overflow (e.g. due to box-shadow), we must adjust the
// offset to also account for this offset (this is equivalent to using
// SkLocalMatrixImageFilter, but simpler).
// The rect used here should match the one used in FilterPainter.
LayoutRect filterInputBounds = physicalBoundingBoxIncludingReflectionAndStackingChildren(LayoutPoint());
offset -= 2 * (direction == VerticalReflection ? filterInputBounds.y() : filterInputBounds.x()).toFloat();
filterOperations.operations().append(BoxReflectFilterOperation::create(direction, offset));
}
return computeFilterOperationsHandleReferenceFilters(filterOperations, style.effectiveZoom(), enclosingNode());
}
FilterOperations PaintLayer::computeBackdropFilterOperations(const ComputedStyle& style) const
{
return computeFilterOperationsHandleReferenceFilters(style.backdropFilter(), style.effectiveZoom(), enclosingNode());
}
PaintLayerFilterInfo& PaintLayer::ensureFilterInfo()
{
PaintLayerRareData& rareData = ensureRareData();
if (!rareData.filterInfo)
rareData.filterInfo = adoptPtr(new PaintLayerFilterInfo(this));
return *rareData.filterInfo;
}
void PaintLayer::removeAncestorOverflowLayer(const PaintLayer* removedLayer)
{
// If the current ancestor overflow layer does not match the removed layer
// the ancestor overflow layer has changed so we can stop searching.
if (ancestorOverflowLayer() && ancestorOverflowLayer() != removedLayer)
return;
if (ancestorOverflowLayer())
ancestorOverflowLayer()->getScrollableArea()->invalidateStickyConstraintsFor(this);
updateAncestorOverflowLayer(nullptr);
PaintLayer* current = m_first;
while (current) {
current->removeAncestorOverflowLayer(removedLayer);
current = current->nextSibling();
}
}
void PaintLayer::updateOrRemoveFilterClients()
{
const auto& filter = layoutObject()->style()->filter();
if (filter.isEmpty() && m_rareData) {
m_rareData->filterInfo = nullptr;
} else if (filter.hasReferenceFilter()) {
ensureFilterInfo().updateReferenceFilterClients(filter);
} else if (filterInfo()) {
filterInfo()->clearFilterReferences();
}
}
FilterEffectBuilder* PaintLayer::updateFilterEffectBuilder() const
{
// TODO(chrishtr): ensure (and assert) that compositing is clean here.
if (!paintsWithFilters())
return nullptr;
PaintLayerFilterInfo* filterInfo = this->filterInfo();
// Should have been added by updateOrRemoveFilterEffectBuilder().
ASSERT(filterInfo);
if (filterInfo->builder())
return filterInfo->builder();
filterInfo->setBuilder(FilterEffectBuilder::create());
float zoom = layoutObject()->style() ? layoutObject()->style()->effectiveZoom() : 1.0f;
if (!filterInfo->builder()->build(toElement(enclosingNode()), computeFilterOperations(layoutObject()->styleRef()), zoom))
filterInfo->setBuilder(nullptr);
return filterInfo->builder();
}
FilterEffect* PaintLayer::lastFilterEffect() const
{
FilterEffectBuilder* builder = updateFilterEffectBuilder();
if (!builder)
return nullptr;
return builder->lastEffect();
}
FloatRect PaintLayer::mapRectForFilter(const FloatRect& rect) const
{
if (!hasFilterThatMovesPixels())
return rect;
// Ensure the filter-chain is refreshed wrt reference filters.
updateFilterEffectBuilder();
FilterOperations filterOperations = computeFilterOperations(layoutObject()->styleRef());
return filterOperations.mapRect(rect);
}
LayoutRect PaintLayer::mapLayoutRectForFilter(const LayoutRect& rect) const
{
if (!hasFilterThatMovesPixels())
return rect;
return enclosingLayoutRect(mapRectForFilter(FloatRect(rect)));
}
bool PaintLayer::hasFilterThatMovesPixels() const
{
if (!hasFilterInducingProperty())
return false;
const ComputedStyle& style = layoutObject()->styleRef();
if (style.hasFilter() && style.filter().hasFilterThatMovesPixels())
return true;
if (RuntimeEnabledFeatures::cssBoxReflectFilterEnabled() && style.hasBoxReflect())
return true;
return false;
}
void PaintLayer::updateOrRemoveFilterEffectBuilder()
{
// FilterEffectBuilder is only used to render the filters in software mode,
// so we always need to run updateOrRemoveFilterEffectBuilder after the composited
// mode might have changed for this layer.
if (!paintsWithFilters()) {
// Don't delete the whole filter info here, because we might use it
// for loading CSS shader files.
if (PaintLayerFilterInfo* filterInfo = this->filterInfo())
filterInfo->setBuilder(nullptr);
return;
}
ensureFilterInfo().setBuilder(nullptr);
}
void PaintLayer::filterNeedsPaintInvalidation()
{
{
DeprecatedScheduleStyleRecalcDuringLayout marker(layoutObject()->document().lifecycle());
// It's possible for scheduleSVGFilterLayerUpdateHack to schedule a style recalc, which
// is a problem because this function can be called right before performing layout but
// after style recalc.
//
// See LayoutView::layout() and the call to
// invalidateSVGRootsWithRelativeLengthDescendents(). This violation is worked around
// in FrameView::updateStyleAndLayoutIfNeededRecursive() by doing an extra style recalc
// and layout in case it's needed.
toElement(layoutObject()->node())->scheduleSVGFilterLayerUpdateHack();
}
layoutObject()->setShouldDoFullPaintInvalidation();
}
void PaintLayer::addLayerHitTestRects(LayerHitTestRects& rects) const
{
computeSelfHitTestRects(rects);
for (PaintLayer* child = firstChild(); child; child = child->nextSibling())
child->addLayerHitTestRects(rects);
}
void PaintLayer::computeSelfHitTestRects(LayerHitTestRects& rects) const
{
if (!size().isEmpty()) {
Vector<LayoutRect> rect;
if (layoutBox() && layoutBox()->scrollsOverflow()) {
// For scrolling layers, rects are taken to be in the space of the contents.
// We need to include the bounding box of the layer in the space of its parent
// (eg. for border / scroll bars) and if it's composited then the entire contents
// as well as they may be on another composited layer. Skip reporting contents
// for non-composited layers as they'll get projected to the same layer as the
// bounding box.
if (compositingState() != NotComposited)
rect.append(m_scrollableArea->overflowRect());
rects.set(this, rect);
if (const PaintLayer* parentLayer = parent()) {
LayerHitTestRects::iterator iter = rects.find(parentLayer);
if (iter == rects.end()) {
rects.add(parentLayer, Vector<LayoutRect>()).storedValue->value.append(physicalBoundingBox(parentLayer));
} else {
iter->value.append(physicalBoundingBox(parentLayer));
}
}
} else {
rect.append(logicalBoundingBox());
rects.set(this, rect);
}
}
}
void PaintLayer::setNeedsRepaint()
{
m_needsRepaint = true;
// Do this unconditionally to ensure container chain is marked when compositing status of the layer changes.
markCompositingContainerChainForNeedsRepaint();
}
void PaintLayer::markCompositingContainerChainForNeedsRepaint()
{
// Need to access compositingState(). We've ensured correct flag setting when compositingState() changes.
DisableCompositingQueryAsserts disabler;
PaintLayer* layer = this;
while (true) {
if (layer->compositingState() == PaintsIntoOwnBacking)
return;
if (CompositedLayerMapping* groupedMapping = layer->groupedMapping()) {
// TODO(wkorman): As we clean up the CompositedLayerMapping needsRepaint logic to
// delegate to scrollbars, we may be able to remove the line below as well.
groupedMapping->owningLayer().setNeedsRepaint();
return;
}
PaintLayer* container = layer->compositingContainer();
if (!container) {
LayoutObject* owner = layer->layoutObject()->frame()->ownerLayoutObject();
if (!owner)
break;
container = owner->enclosingLayer();
}
if (container->m_needsRepaint)
break;
container->m_needsRepaint = true;
layer = container;
}
}
void PaintLayer::clearNeedsRepaintRecursively()
{
for (PaintLayer* child = firstChild(); child; child = child->nextSibling())
child->clearNeedsRepaintRecursively();
m_needsRepaint = false;
}
PaintTiming* PaintLayer::paintTiming()
{
if (Node* node = layoutObject()->node())
return &PaintTiming::from(node->document());
return nullptr;
}
DisableCompositingQueryAsserts::DisableCompositingQueryAsserts()
: m_disabler(gCompositingQueryMode, CompositingQueriesAreAllowed) { }
} // namespace blink
#ifndef NDEBUG
// FIXME: Rename?
void showLayerTree(const blink::PaintLayer* layer)
{
if (!layer) {
fprintf(stderr, "Cannot showLayerTree. Root is (nil)\n");
return;
}
if (blink::LocalFrame* frame = layer->layoutObject()->frame()) {
WTF::String output = externalRepresentation(frame, blink::LayoutAsTextShowAllLayers | blink::LayoutAsTextShowLayerNesting | blink::LayoutAsTextShowCompositedLayers | blink::LayoutAsTextShowAddresses | blink::LayoutAsTextShowIDAndClass | blink::LayoutAsTextDontUpdateLayout | blink::LayoutAsTextShowLayoutState, layer);
fprintf(stderr, "%s\n", output.utf8().data());
}
}
void showLayerTree(const blink::LayoutObject* layoutObject)
{
if (!layoutObject) {
fprintf(stderr, "Cannot showLayerTree. Root is (nil)\n");
return;
}
showLayerTree(layoutObject->enclosingLayer());
}
#endif