blob: b1a6e8cba3979e630b5a7b5dfa8f224a459315f2 [file] [log] [blame]
// sigslot.h: Signal/Slot classes
//
// Written by Sarah Thompson (sarah@telergy.com) 2002.
//
// License: Public domain. You are free to use this code however you like, with the proviso that
// the author takes on no responsibility or liability for any use.
//
// QUICK DOCUMENTATION
//
// (see also the full documentation at http://sigslot.sourceforge.net/)
//
// #define switches
// SIGSLOT_PURE_ISO - Define this to force ISO C++ compliance. This also disables
// all of the thread safety support on platforms where it is
// available.
//
// SIGSLOT_USE_POSIX_THREADS - Force use of Posix threads when using a C++ compiler other than
// gcc on a platform that supports Posix threads. (When using gcc,
// this is the default - use SIGSLOT_PURE_ISO to disable this if
// necessary)
//
// SIGSLOT_DEFAULT_MT_POLICY - Where thread support is enabled, this defaults to multi_threaded_global.
// Otherwise, the default is single_threaded. #define this yourself to
// override the default. In pure ISO mode, anything other than
// single_threaded will cause a compiler error.
//
// PLATFORM NOTES
//
// Win32 - On Win32, the WEBRTC_WIN symbol must be #defined. Most mainstream
// compilers do this by default, but you may need to define it
// yourself if your build environment is less standard. This causes
// the Win32 thread support to be compiled in and used automatically.
//
// Unix/Linux/BSD, etc. - If you're using gcc, it is assumed that you have Posix threads
// available, so they are used automatically. You can override this
// (as under Windows) with the SIGSLOT_PURE_ISO switch. If you're using
// something other than gcc but still want to use Posix threads, you
// need to #define SIGSLOT_USE_POSIX_THREADS.
//
// ISO C++ - If none of the supported platforms are detected, or if
// SIGSLOT_PURE_ISO is defined, all multithreading support is turned off,
// along with any code that might cause a pure ISO C++ environment to
// complain. Before you ask, gcc -ansi -pedantic won't compile this
// library, but gcc -ansi is fine. Pedantic mode seems to throw a lot of
// errors that aren't really there. If you feel like investigating this,
// please contact the author.
//
//
// THREADING MODES
//
// single_threaded - Your program is assumed to be single threaded from the point of view
// of signal/slot usage (i.e. all objects using signals and slots are
// created and destroyed from a single thread). Behaviour if objects are
// destroyed concurrently is undefined (i.e. you'll get the occasional
// segmentation fault/memory exception).
//
// multi_threaded_global - Your program is assumed to be multi threaded. Objects using signals and
// slots can be safely created and destroyed from any thread, even when
// connections exist. In multi_threaded_global mode, this is achieved by a
// single global mutex (actually a critical section on Windows because they
// are faster). This option uses less OS resources, but results in more
// opportunities for contention, possibly resulting in more context switches
// than are strictly necessary.
//
// multi_threaded_local - Behaviour in this mode is essentially the same as multi_threaded_global,
// except that each signal, and each object that inherits has_slots, all
// have their own mutex/critical section. In practice, this means that
// mutex collisions (and hence context switches) only happen if they are
// absolutely essential. However, on some platforms, creating a lot of
// mutexes can slow down the whole OS, so use this option with care.
//
// USING THE LIBRARY
//
// See the full documentation at http://sigslot.sourceforge.net/
//
//
// Libjingle specific:
// This file has been modified such that has_slots and signalx do not have to be
// using the same threading requirements. E.g. it is possible to connect a
// has_slots<single_threaded> and signal0<multi_threaded_local> or
// has_slots<multi_threaded_local> and signal0<single_threaded>.
// If has_slots is single threaded the user must ensure that it is not trying
// to connect or disconnect to signalx concurrently or data race may occur.
// If signalx is single threaded the user must ensure that disconnect, connect
// or signal is not happening concurrently or data race may occur.
#ifndef WEBRTC_BASE_SIGSLOT_H__
#define WEBRTC_BASE_SIGSLOT_H__
#include <cstring>
#include <list>
#include <set>
#include <stdlib.h>
// On our copy of sigslot.h, we set single threading as default.
#define SIGSLOT_DEFAULT_MT_POLICY single_threaded
#if defined(SIGSLOT_PURE_ISO) || (!defined(WEBRTC_WIN) && !defined(__GNUG__) && !defined(SIGSLOT_USE_POSIX_THREADS))
# define _SIGSLOT_SINGLE_THREADED
#elif defined(WEBRTC_WIN)
# define _SIGSLOT_HAS_WIN32_THREADS
# if !defined(WIN32_LEAN_AND_MEAN)
# define WIN32_LEAN_AND_MEAN
# endif
# include "webrtc/base/win32.h"
#elif defined(__GNUG__) || defined(SIGSLOT_USE_POSIX_THREADS)
# define _SIGSLOT_HAS_POSIX_THREADS
# include <pthread.h>
#else
# define _SIGSLOT_SINGLE_THREADED
#endif
#ifndef SIGSLOT_DEFAULT_MT_POLICY
# ifdef _SIGSLOT_SINGLE_THREADED
# define SIGSLOT_DEFAULT_MT_POLICY single_threaded
# else
# define SIGSLOT_DEFAULT_MT_POLICY multi_threaded_local
# endif
#endif
// TODO: change this namespace to rtc?
namespace sigslot {
class single_threaded
{
public:
void lock() {}
void unlock() {}
};
#ifdef _SIGSLOT_HAS_WIN32_THREADS
// The multi threading policies only get compiled in if they are enabled.
class multi_threaded_global
{
public:
multi_threaded_global()
{
static bool isinitialised = false;
if(!isinitialised)
{
InitializeCriticalSection(get_critsec());
isinitialised = true;
}
}
void lock()
{
EnterCriticalSection(get_critsec());
}
void unlock()
{
LeaveCriticalSection(get_critsec());
}
private:
CRITICAL_SECTION* get_critsec()
{
static CRITICAL_SECTION g_critsec;
return &g_critsec;
}
};
class multi_threaded_local
{
public:
multi_threaded_local()
{
InitializeCriticalSection(&m_critsec);
}
multi_threaded_local(const multi_threaded_local&)
{
InitializeCriticalSection(&m_critsec);
}
~multi_threaded_local()
{
DeleteCriticalSection(&m_critsec);
}
void lock()
{
EnterCriticalSection(&m_critsec);
}
void unlock()
{
LeaveCriticalSection(&m_critsec);
}
private:
CRITICAL_SECTION m_critsec;
};
#endif // _SIGSLOT_HAS_WIN32_THREADS
#ifdef _SIGSLOT_HAS_POSIX_THREADS
// The multi threading policies only get compiled in if they are enabled.
class multi_threaded_global
{
public:
void lock()
{
pthread_mutex_lock(get_mutex());
}
void unlock()
{
pthread_mutex_unlock(get_mutex());
}
private:
static pthread_mutex_t* get_mutex();
};
class multi_threaded_local
{
public:
multi_threaded_local()
{
pthread_mutex_init(&m_mutex, NULL);
}
multi_threaded_local(const multi_threaded_local&)
{
pthread_mutex_init(&m_mutex, NULL);
}
~multi_threaded_local()
{
pthread_mutex_destroy(&m_mutex);
}
void lock()
{
pthread_mutex_lock(&m_mutex);
}
void unlock()
{
pthread_mutex_unlock(&m_mutex);
}
private:
pthread_mutex_t m_mutex;
};
#endif // _SIGSLOT_HAS_POSIX_THREADS
template<class mt_policy>
class lock_block
{
public:
mt_policy *m_mutex;
lock_block(mt_policy *mtx)
: m_mutex(mtx)
{
m_mutex->lock();
}
~lock_block()
{
m_mutex->unlock();
}
};
class _signal_base_interface;
class has_slots_interface
{
private:
typedef void (*signal_connect_t)(has_slots_interface* self, _signal_base_interface* sender);
typedef void (*signal_disconnect_t)(has_slots_interface* self, _signal_base_interface* sender);
typedef void (*disconnect_all_t)(has_slots_interface* self);
const signal_connect_t m_signal_connect;
const signal_disconnect_t m_signal_disconnect;
const disconnect_all_t m_disconnect_all;
protected:
has_slots_interface(signal_connect_t conn, signal_disconnect_t disc, disconnect_all_t disc_all) :
m_signal_connect(conn), m_signal_disconnect(disc), m_disconnect_all(disc_all)
{
}
// Doesn't really need to be virtual, but is for backwards compatibility
// (it was virtual in a previous version of sigslot).
virtual ~has_slots_interface() {}
public:
void signal_connect(_signal_base_interface* sender)
{
m_signal_connect(this, sender);
}
void signal_disconnect(_signal_base_interface* sender)
{
m_signal_disconnect(this, sender);
}
void disconnect_all()
{
m_disconnect_all(this);
}
};
class _signal_base_interface
{
private:
typedef void (*slot_disconnect_t)(_signal_base_interface* self, has_slots_interface* pslot);
typedef void (*slot_duplicate_t)(_signal_base_interface* self, const has_slots_interface* poldslot, has_slots_interface* pnewslot);
const slot_disconnect_t m_slot_disconnect;
const slot_duplicate_t m_slot_duplicate;
protected:
_signal_base_interface(slot_disconnect_t disc, slot_duplicate_t dupl) :
m_slot_disconnect(disc), m_slot_duplicate(dupl)
{
}
~_signal_base_interface() {}
public:
void slot_disconnect(has_slots_interface* pslot)
{
m_slot_disconnect(this, pslot);
}
void slot_duplicate(const has_slots_interface* poldslot, has_slots_interface* pnewslot)
{
m_slot_duplicate(this, poldslot, pnewslot);
}
};
class _opaque_connection
{
private:
typedef void (*emit_t)(const _opaque_connection*);
template< typename FromT, typename ToT >
union union_caster
{
FromT from;
ToT to;
};
emit_t pemit;
has_slots_interface* pdest;
// Pointers to member functions may be up to 16 bytes for virtual classes,
// so make sure we have enough space to store it.
unsigned char pmethod[16];
public:
template< typename DestT, typename ... Args >
_opaque_connection(DestT* pd, void (DestT::*pm)(Args...)) : pdest(pd)
{
typedef void (DestT::*pm_t)(Args...);
static_assert(sizeof(pm_t) <= sizeof(pmethod), "Size of slot function pointer too large.");
std::memcpy(pmethod, &pm, sizeof(pm_t));
typedef void (*em_t)(const _opaque_connection* self, Args...);
union_caster< em_t, emit_t > caster2;
caster2.from = &_opaque_connection::emitter< DestT, Args... >;
pemit = caster2.to;
}
has_slots_interface* getdest() const { return pdest; }
_opaque_connection duplicate(has_slots_interface* newtarget) const
{
_opaque_connection res = *this;
res.pdest = newtarget;
return res;
}
// Just calls the stored "emitter" function pointer stored at construction
// time.
template< typename ... Args >
void emit(Args... args) const
{
typedef void (*em_t)(const _opaque_connection*, Args...);
union_caster< emit_t, em_t > caster;
caster.from = pemit;
(caster.to)(this, args...);
}
private:
template< typename DestT, typename ... Args >
static void emitter(const _opaque_connection* self, Args... args)
{
typedef void (DestT::*pm_t)(Args...);
pm_t pm;
std::memcpy(&pm, self->pmethod, sizeof(pm_t));
(static_cast< DestT* >(self->pdest)->*(pm))(args...);
}
};
template<class mt_policy>
class _signal_base : public _signal_base_interface, public mt_policy
{
protected:
typedef std::list< _opaque_connection > connections_list;
_signal_base() : _signal_base_interface(&_signal_base::do_slot_disconnect, &_signal_base::do_slot_duplicate)
{
}
~_signal_base()
{
disconnect_all();
}
private:
_signal_base& operator= (_signal_base const& that);
public:
_signal_base(const _signal_base& s) : _signal_base_interface(&_signal_base::do_slot_disconnect, &_signal_base::do_slot_duplicate) {
lock_block<mt_policy> lock(this);
connections_list::const_iterator it = m_connected_slots.begin();
connections_list::const_iterator itEnd = m_connected_slots.end();
while(it != itEnd)
{
it->getdest()->signal_connect(this);
m_connected_slots.push_back(*it);
++it;
}
}
bool is_empty()
{
lock_block<mt_policy> lock(this);
return m_connected_slots.empty();
}
void disconnect_all()
{
lock_block<mt_policy> lock(this);
while(!m_connected_slots.empty())
{
has_slots_interface* pdest = m_connected_slots.front().getdest();
m_connected_slots.pop_front();
pdest->signal_disconnect(static_cast< _signal_base_interface* >(this));
}
}
#if !defined(NDEBUG)
bool connected(has_slots_interface* pclass)
{
lock_block<mt_policy> lock(this);
connections_list::const_iterator it = m_connected_slots.begin();
connections_list::const_iterator itEnd = m_connected_slots.end();
while(it != itEnd)
{
if (it->getdest() == pclass)
return true;
++it;
}
return false;
}
#endif
void disconnect(has_slots_interface* pclass)
{
lock_block<mt_policy> lock(this);
connections_list::iterator it = m_connected_slots.begin();
connections_list::iterator itEnd = m_connected_slots.end();
while(it != itEnd)
{
if(it->getdest() == pclass)
{
m_connected_slots.erase(it);
pclass->signal_disconnect(static_cast< _signal_base_interface* >(this));
return;
}
++it;
}
}
private:
static void do_slot_disconnect(_signal_base_interface* p, has_slots_interface* pslot)
{
_signal_base* const self = static_cast< _signal_base* >(p);
lock_block<mt_policy> lock(self);
connections_list::iterator it = self->m_connected_slots.begin();
connections_list::iterator itEnd = self->m_connected_slots.end();
while(it != itEnd)
{
connections_list::iterator itNext = it;
++itNext;
if(it->getdest() == pslot)
{
self->m_connected_slots.erase(it);
}
it = itNext;
}
}
static void do_slot_duplicate(_signal_base_interface* p, const has_slots_interface* oldtarget, has_slots_interface* newtarget)
{
_signal_base* const self = static_cast< _signal_base* >(p);
lock_block<mt_policy> lock(self);
connections_list::iterator it = self->m_connected_slots.begin();
connections_list::iterator itEnd = self->m_connected_slots.end();
while(it != itEnd)
{
if(it->getdest() == oldtarget)
{
self->m_connected_slots.push_back(it->duplicate(newtarget));
}
++it;
}
}
protected:
connections_list m_connected_slots;
};
template<class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
class has_slots : public has_slots_interface, public mt_policy
{
private:
typedef std::set< _signal_base_interface* > sender_set;
typedef sender_set::const_iterator const_iterator;
public:
has_slots() : has_slots_interface(&has_slots::do_signal_connect, &has_slots::do_signal_disconnect, &has_slots::do_disconnect_all)
{
}
~has_slots()
{
this->disconnect_all();
}
private:
has_slots(has_slots const&);
has_slots& operator= (has_slots const&);
static void do_signal_connect(has_slots_interface* p, _signal_base_interface* sender)
{
has_slots* const self = static_cast< has_slots* >(p);
lock_block<mt_policy> lock(self);
self->m_senders.insert(sender);
}
static void do_signal_disconnect(has_slots_interface* p, _signal_base_interface* sender)
{
has_slots* const self = static_cast< has_slots* >(p);
lock_block<mt_policy> lock(self);
self->m_senders.erase(sender);
}
static void do_disconnect_all(has_slots_interface* p)
{
has_slots* const self = static_cast< has_slots* >(p);
lock_block<mt_policy> lock(self);
while (!self->m_senders.empty())
{
std::set< _signal_base_interface* > senders;
senders.swap(self->m_senders);
const_iterator it = senders.begin();
const_iterator itEnd = senders.end();
while(it != itEnd)
{
_signal_base_interface* s = *it;
++it;
s->slot_disconnect(p);
}
}
}
private:
sender_set m_senders;
};
template<class mt_policy, typename ... Args>
class signal_with_thread_policy : public _signal_base<mt_policy>
{
private:
typedef _signal_base<mt_policy> base;
protected:
typedef typename base::connections_list connections_list;
public:
signal_with_thread_policy()
{
}
template<class desttype>
void connect(desttype* pclass, void (desttype::*pmemfun)(Args...))
{
lock_block<mt_policy> lock(this);
this->m_connected_slots.push_back(_opaque_connection(pclass, pmemfun));
pclass->signal_connect(static_cast< _signal_base_interface* >(this));
}
void emit(Args... args)
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator it = this->m_connected_slots.begin();
typename connections_list::const_iterator itEnd = this->m_connected_slots.end();
while(it != itEnd)
{
_opaque_connection const& conn = *it;
++it;
conn.emit<Args...>(args...);
}
}
void operator()(Args... args)
{
emit(args...);
}
};
// Alias with default thread policy. Needed because both default arguments
// and variadic template arguments must go at the end of the list, so we
// can't have both at once.
template<typename ... Args>
using signal = signal_with_thread_policy<SIGSLOT_DEFAULT_MT_POLICY, Args...>;
// The previous verion of sigslot didn't use variadic templates, so you would
// need to write "sigslot::signal2<Arg1, Arg2>", for example.
// Now you can just write "sigslot::signal<Arg1, Arg2>", but these aliases
// exist for backwards compatibility.
template<typename mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
using signal0 = signal_with_thread_policy<mt_policy>;
template<typename A1, typename mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
using signal1 = signal_with_thread_policy<mt_policy, A1>;
template<typename A1, typename A2, typename mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
using signal2 = signal_with_thread_policy<mt_policy, A1, A2>;
template<typename A1, typename A2, typename A3, typename mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
using signal3 = signal_with_thread_policy<mt_policy, A1, A2, A3>;
template<typename A1, typename A2, typename A3, typename A4, typename mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
using signal4 = signal_with_thread_policy<mt_policy, A1, A2, A3, A4>;
template<typename A1, typename A2, typename A3, typename A4, typename A5, typename mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
using signal5 = signal_with_thread_policy<mt_policy, A1, A2, A3, A4, A5>;
template<typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
using signal6 = signal_with_thread_policy<mt_policy, A1, A2, A3, A4, A5, A6>;
template<typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
using signal7 = signal_with_thread_policy<mt_policy, A1, A2, A3, A4, A5, A6, A7>;
template<typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8, typename mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
using signal8 = signal_with_thread_policy<mt_policy, A1, A2, A3, A4, A5, A6, A7, A8>;
} // namespace sigslot
#endif // WEBRTC_BASE_SIGSLOT_H__