blob: 016caf96544af8ab43b8f11896e56866e8330fc3 [file] [log] [blame]
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2012 the V8 project authors. All rights reserved.
#include "src/mips/assembler-mips.h"
#if V8_TARGET_ARCH_MIPS
#include "src/base/bits.h"
#include "src/base/cpu.h"
#include "src/deoptimizer.h"
#include "src/mips/assembler-mips-inl.h"
#include "src/objects/heap-number-inl.h"
#include "src/string-constants.h"
namespace v8 {
namespace internal {
// Get the CPU features enabled by the build. For cross compilation the
// preprocessor symbols CAN_USE_FPU_INSTRUCTIONS
// can be defined to enable FPU instructions when building the
// snapshot.
static unsigned CpuFeaturesImpliedByCompiler() {
unsigned answer = 0;
#ifdef CAN_USE_FPU_INSTRUCTIONS
answer |= 1u << FPU;
#endif // def CAN_USE_FPU_INSTRUCTIONS
// If the compiler is allowed to use FPU then we can use FPU too in our code
// generation even when generating snapshots. This won't work for cross
// compilation.
#if defined(__mips__) && defined(__mips_hard_float) && __mips_hard_float != 0
answer |= 1u << FPU;
#endif
return answer;
}
void CpuFeatures::ProbeImpl(bool cross_compile) {
supported_ |= CpuFeaturesImpliedByCompiler();
// Only use statically determined features for cross compile (snapshot).
if (cross_compile) return;
// If the compiler is allowed to use fpu then we can use fpu too in our
// code generation.
#ifndef __mips__
// For the simulator build, use FPU.
supported_ |= 1u << FPU;
#if defined(_MIPS_ARCH_MIPS32R6)
// FP64 mode is implied on r6.
supported_ |= 1u << FP64FPU;
#if defined(_MIPS_MSA)
supported_ |= 1u << MIPS_SIMD;
#endif
#endif
#if defined(FPU_MODE_FP64)
supported_ |= 1u << FP64FPU;
#endif
#else
// Probe for additional features at runtime.
base::CPU cpu;
if (cpu.has_fpu()) supported_ |= 1u << FPU;
#if defined(FPU_MODE_FPXX)
if (cpu.is_fp64_mode()) supported_ |= 1u << FP64FPU;
#elif defined(FPU_MODE_FP64)
supported_ |= 1u << FP64FPU;
#if defined(_MIPS_ARCH_MIPS32R6)
#if defined(_MIPS_MSA)
supported_ |= 1u << MIPS_SIMD;
#else
if (cpu.has_msa()) supported_ |= 1u << MIPS_SIMD;
#endif
#endif
#endif
#if defined(_MIPS_ARCH_MIPS32RX)
if (cpu.architecture() == 6) {
supported_ |= 1u << MIPSr6;
} else if (cpu.architecture() == 2) {
supported_ |= 1u << MIPSr1;
supported_ |= 1u << MIPSr2;
} else {
supported_ |= 1u << MIPSr1;
}
#endif
#endif
}
void CpuFeatures::PrintTarget() { }
void CpuFeatures::PrintFeatures() { }
int ToNumber(Register reg) {
DCHECK(reg.is_valid());
const int kNumbers[] = {
0, // zero_reg
1, // at
2, // v0
3, // v1
4, // a0
5, // a1
6, // a2
7, // a3
8, // t0
9, // t1
10, // t2
11, // t3
12, // t4
13, // t5
14, // t6
15, // t7
16, // s0
17, // s1
18, // s2
19, // s3
20, // s4
21, // s5
22, // s6
23, // s7
24, // t8
25, // t9
26, // k0
27, // k1
28, // gp
29, // sp
30, // fp
31, // ra
};
return kNumbers[reg.code()];
}
Register ToRegister(int num) {
DCHECK(num >= 0 && num < kNumRegisters);
const Register kRegisters[] = {
zero_reg,
at,
v0, v1,
a0, a1, a2, a3,
t0, t1, t2, t3, t4, t5, t6, t7,
s0, s1, s2, s3, s4, s5, s6, s7,
t8, t9,
k0, k1,
gp,
sp,
fp,
ra
};
return kRegisters[num];
}
// -----------------------------------------------------------------------------
// Implementation of RelocInfo.
const int RelocInfo::kApplyMask =
RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) |
RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE_ENCODED) |
RelocInfo::ModeMask(RelocInfo::RELATIVE_CODE_TARGET);
bool RelocInfo::IsCodedSpecially() {
// The deserializer needs to know whether a pointer is specially coded. Being
// specially coded on MIPS means that it is a lui/ori instruction, and that is
// always the case inside code objects.
return true;
}
bool RelocInfo::IsInConstantPool() {
return false;
}
int RelocInfo::GetDeoptimizationId(Isolate* isolate, DeoptimizeKind kind) {
DCHECK(IsRuntimeEntry(rmode_));
return Deoptimizer::GetDeoptimizationId(isolate, target_address(), kind);
}
uint32_t RelocInfo::wasm_call_tag() const {
DCHECK(rmode_ == WASM_CALL || rmode_ == WASM_STUB_CALL);
return static_cast<uint32_t>(
Assembler::target_address_at(pc_, constant_pool_));
}
// -----------------------------------------------------------------------------
// Implementation of Operand and MemOperand.
// See assembler-mips-inl.h for inlined constructors.
Operand::Operand(Handle<HeapObject> handle)
: rm_(no_reg), rmode_(RelocInfo::EMBEDDED_OBJECT) {
value_.immediate = static_cast<intptr_t>(handle.address());
}
Operand Operand::EmbeddedNumber(double value) {
int32_t smi;
if (DoubleToSmiInteger(value, &smi)) return Operand(Smi::FromInt(smi));
Operand result(0, RelocInfo::EMBEDDED_OBJECT);
result.is_heap_object_request_ = true;
result.value_.heap_object_request = HeapObjectRequest(value);
return result;
}
Operand Operand::EmbeddedStringConstant(const StringConstantBase* str) {
Operand result(0, RelocInfo::EMBEDDED_OBJECT);
result.is_heap_object_request_ = true;
result.value_.heap_object_request = HeapObjectRequest(str);
return result;
}
MemOperand::MemOperand(Register rm, int32_t offset) : Operand(rm) {
offset_ = offset;
}
MemOperand::MemOperand(Register rm, int32_t unit, int32_t multiplier,
OffsetAddend offset_addend) : Operand(rm) {
offset_ = unit * multiplier + offset_addend;
}
void Assembler::AllocateAndInstallRequestedHeapObjects(Isolate* isolate) {
DCHECK_IMPLIES(isolate == nullptr, heap_object_requests_.empty());
for (auto& request : heap_object_requests_) {
Handle<HeapObject> object;
switch (request.kind()) {
case HeapObjectRequest::kHeapNumber:
object =
isolate->factory()->NewHeapNumber(request.heap_number(), TENURED);
break;
case HeapObjectRequest::kStringConstant:
const StringConstantBase* str = request.string();
CHECK_NOT_NULL(str);
object = str->AllocateStringConstant(isolate);
break;
}
Address pc = reinterpret_cast<Address>(buffer_) + request.offset();
set_target_value_at(pc, reinterpret_cast<uint32_t>(object.location()));
}
}
// -----------------------------------------------------------------------------
// Specific instructions, constants, and masks.
static const int kNegOffset = 0x00008000;
// addiu(sp, sp, 4) aka Pop() operation or part of Pop(r)
// operations as post-increment of sp.
const Instr kPopInstruction = ADDIU | (sp.code() << kRsShift) |
(sp.code() << kRtShift) |
(kPointerSize & kImm16Mask); // NOLINT
// addiu(sp, sp, -4) part of Push(r) operation as pre-decrement of sp.
const Instr kPushInstruction = ADDIU | (sp.code() << kRsShift) |
(sp.code() << kRtShift) |
(-kPointerSize & kImm16Mask); // NOLINT
// sw(r, MemOperand(sp, 0))
const Instr kPushRegPattern =
SW | (sp.code() << kRsShift) | (0 & kImm16Mask); // NOLINT
// lw(r, MemOperand(sp, 0))
const Instr kPopRegPattern =
LW | (sp.code() << kRsShift) | (0 & kImm16Mask); // NOLINT
const Instr kLwRegFpOffsetPattern =
LW | (fp.code() << kRsShift) | (0 & kImm16Mask); // NOLINT
const Instr kSwRegFpOffsetPattern =
SW | (fp.code() << kRsShift) | (0 & kImm16Mask); // NOLINT
const Instr kLwRegFpNegOffsetPattern =
LW | (fp.code() << kRsShift) | (kNegOffset & kImm16Mask); // NOLINT
const Instr kSwRegFpNegOffsetPattern =
SW | (fp.code() << kRsShift) | (kNegOffset & kImm16Mask); // NOLINT
// A mask for the Rt register for push, pop, lw, sw instructions.
const Instr kRtMask = kRtFieldMask;
const Instr kLwSwInstrTypeMask = 0xFFE00000;
const Instr kLwSwInstrArgumentMask = ~kLwSwInstrTypeMask;
const Instr kLwSwOffsetMask = kImm16Mask;
Assembler::Assembler(const AssemblerOptions& options, void* buffer,
int buffer_size)
: AssemblerBase(options, buffer, buffer_size),
scratch_register_list_(at.bit()) {
reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_);
last_trampoline_pool_end_ = 0;
no_trampoline_pool_before_ = 0;
trampoline_pool_blocked_nesting_ = 0;
// We leave space (16 * kTrampolineSlotsSize)
// for BlockTrampolinePoolScope buffer.
next_buffer_check_ = FLAG_force_long_branches
? kMaxInt : kMaxBranchOffset - kTrampolineSlotsSize * 16;
internal_trampoline_exception_ = false;
last_bound_pos_ = 0;
trampoline_emitted_ = FLAG_force_long_branches;
unbound_labels_count_ = 0;
block_buffer_growth_ = false;
}
void Assembler::GetCode(Isolate* isolate, CodeDesc* desc) {
EmitForbiddenSlotInstruction();
int code_comments_size = WriteCodeComments();
DCHECK(pc_ <= reloc_info_writer.pos()); // No overlap.
AllocateAndInstallRequestedHeapObjects(isolate);
// Set up code descriptor.
desc->buffer = buffer_;
desc->buffer_size = buffer_size_;
desc->instr_size = pc_offset();
desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
desc->origin = this;
desc->constant_pool_size = 0;
desc->unwinding_info_size = 0;
desc->unwinding_info = nullptr;
desc->code_comments_size = code_comments_size;
}
void Assembler::Align(int m) {
DCHECK(m >= 4 && base::bits::IsPowerOfTwo(m));
EmitForbiddenSlotInstruction();
while ((pc_offset() & (m - 1)) != 0) {
nop();
}
}
void Assembler::CodeTargetAlign() {
// No advantage to aligning branch/call targets to more than
// single instruction, that I am aware of.
Align(4);
}
Register Assembler::GetRtReg(Instr instr) {
return Register::from_code((instr & kRtFieldMask) >> kRtShift);
}
Register Assembler::GetRsReg(Instr instr) {
return Register::from_code((instr & kRsFieldMask) >> kRsShift);
}
Register Assembler::GetRdReg(Instr instr) {
return Register::from_code((instr & kRdFieldMask) >> kRdShift);
}
uint32_t Assembler::GetRt(Instr instr) {
return (instr & kRtFieldMask) >> kRtShift;
}
uint32_t Assembler::GetRtField(Instr instr) {
return instr & kRtFieldMask;
}
uint32_t Assembler::GetRs(Instr instr) {
return (instr & kRsFieldMask) >> kRsShift;
}
uint32_t Assembler::GetRsField(Instr instr) {
return instr & kRsFieldMask;
}
uint32_t Assembler::GetRd(Instr instr) {
return (instr & kRdFieldMask) >> kRdShift;
}
uint32_t Assembler::GetRdField(Instr instr) {
return instr & kRdFieldMask;
}
uint32_t Assembler::GetSa(Instr instr) {
return (instr & kSaFieldMask) >> kSaShift;
}
uint32_t Assembler::GetSaField(Instr instr) {
return instr & kSaFieldMask;
}
uint32_t Assembler::GetOpcodeField(Instr instr) {
return instr & kOpcodeMask;
}
uint32_t Assembler::GetFunction(Instr instr) {
return (instr & kFunctionFieldMask) >> kFunctionShift;
}
uint32_t Assembler::GetFunctionField(Instr instr) {
return instr & kFunctionFieldMask;
}
uint32_t Assembler::GetImmediate16(Instr instr) {
return instr & kImm16Mask;
}
uint32_t Assembler::GetLabelConst(Instr instr) {
return instr & ~kImm16Mask;
}
bool Assembler::IsPop(Instr instr) {
return (instr & ~kRtMask) == kPopRegPattern;
}
bool Assembler::IsPush(Instr instr) {
return (instr & ~kRtMask) == kPushRegPattern;
}
bool Assembler::IsSwRegFpOffset(Instr instr) {
return ((instr & kLwSwInstrTypeMask) == kSwRegFpOffsetPattern);
}
bool Assembler::IsLwRegFpOffset(Instr instr) {
return ((instr & kLwSwInstrTypeMask) == kLwRegFpOffsetPattern);
}
bool Assembler::IsSwRegFpNegOffset(Instr instr) {
return ((instr & (kLwSwInstrTypeMask | kNegOffset)) ==
kSwRegFpNegOffsetPattern);
}
bool Assembler::IsLwRegFpNegOffset(Instr instr) {
return ((instr & (kLwSwInstrTypeMask | kNegOffset)) ==
kLwRegFpNegOffsetPattern);
}
// Labels refer to positions in the (to be) generated code.
// There are bound, linked, and unused labels.
//
// Bound labels refer to known positions in the already
// generated code. pos() is the position the label refers to.
//
// Linked labels refer to unknown positions in the code
// to be generated; pos() is the position of the last
// instruction using the label.
// The link chain is terminated by a value in the instruction of -1,
// which is an otherwise illegal value (branch -1 is inf loop).
// The instruction 16-bit offset field addresses 32-bit words, but in
// code is conv to an 18-bit value addressing bytes, hence the -4 value.
const int kEndOfChain = -4;
// Determines the end of the Jump chain (a subset of the label link chain).
const int kEndOfJumpChain = 0;
bool Assembler::IsMsaBranch(Instr instr) {
uint32_t opcode = GetOpcodeField(instr);
uint32_t rs_field = GetRsField(instr);
if (opcode == COP1) {
switch (rs_field) {
case BZ_V:
case BZ_B:
case BZ_H:
case BZ_W:
case BZ_D:
case BNZ_V:
case BNZ_B:
case BNZ_H:
case BNZ_W:
case BNZ_D:
return true;
default:
return false;
}
} else {
return false;
}
}
bool Assembler::IsBranch(Instr instr) {
uint32_t opcode = GetOpcodeField(instr);
uint32_t rt_field = GetRtField(instr);
uint32_t rs_field = GetRsField(instr);
// Checks if the instruction is a branch.
bool isBranch =
opcode == BEQ || opcode == BNE || opcode == BLEZ || opcode == BGTZ ||
opcode == BEQL || opcode == BNEL || opcode == BLEZL || opcode == BGTZL ||
(opcode == REGIMM && (rt_field == BLTZ || rt_field == BGEZ ||
rt_field == BLTZAL || rt_field == BGEZAL)) ||
(opcode == COP1 && rs_field == BC1) || // Coprocessor branch.
(opcode == COP1 && rs_field == BC1EQZ) ||
(opcode == COP1 && rs_field == BC1NEZ) || IsMsaBranch(instr);
if (!isBranch && IsMipsArchVariant(kMips32r6)) {
// All the 3 variants of POP10 (BOVC, BEQC, BEQZALC) and
// POP30 (BNVC, BNEC, BNEZALC) are branch ops.
isBranch |= opcode == POP10 || opcode == POP30 || opcode == BC ||
opcode == BALC ||
(opcode == POP66 && rs_field != 0) || // BEQZC
(opcode == POP76 && rs_field != 0); // BNEZC
}
return isBranch;
}
bool Assembler::IsBc(Instr instr) {
uint32_t opcode = GetOpcodeField(instr);
// Checks if the instruction is a BC or BALC.
return opcode == BC || opcode == BALC;
}
bool Assembler::IsNal(Instr instr) {
uint32_t opcode = GetOpcodeField(instr);
uint32_t rt_field = GetRtField(instr);
uint32_t rs_field = GetRsField(instr);
return opcode == REGIMM && rt_field == BLTZAL && rs_field == 0;
}
bool Assembler::IsBzc(Instr instr) {
uint32_t opcode = GetOpcodeField(instr);
// Checks if the instruction is BEQZC or BNEZC.
return (opcode == POP66 && GetRsField(instr) != 0) ||
(opcode == POP76 && GetRsField(instr) != 0);
}
bool Assembler::IsEmittedConstant(Instr instr) {
uint32_t label_constant = GetLabelConst(instr);
return label_constant == 0; // Emitted label const in reg-exp engine.
}
bool Assembler::IsBeq(Instr instr) {
return GetOpcodeField(instr) == BEQ;
}
bool Assembler::IsBne(Instr instr) {
return GetOpcodeField(instr) == BNE;
}
bool Assembler::IsBeqzc(Instr instr) {
uint32_t opcode = GetOpcodeField(instr);
return opcode == POP66 && GetRsField(instr) != 0;
}
bool Assembler::IsBnezc(Instr instr) {
uint32_t opcode = GetOpcodeField(instr);
return opcode == POP76 && GetRsField(instr) != 0;
}
bool Assembler::IsBeqc(Instr instr) {
uint32_t opcode = GetOpcodeField(instr);
uint32_t rs = GetRsField(instr);
uint32_t rt = GetRtField(instr);
return opcode == POP10 && rs != 0 && rs < rt; // && rt != 0
}
bool Assembler::IsBnec(Instr instr) {
uint32_t opcode = GetOpcodeField(instr);
uint32_t rs = GetRsField(instr);
uint32_t rt = GetRtField(instr);
return opcode == POP30 && rs != 0 && rs < rt; // && rt != 0
}
bool Assembler::IsJicOrJialc(Instr instr) {
uint32_t opcode = GetOpcodeField(instr);
uint32_t rs = GetRsField(instr);
return (opcode == POP66 || opcode == POP76) && rs == 0;
}
bool Assembler::IsJump(Instr instr) {
uint32_t opcode = GetOpcodeField(instr);
uint32_t rt_field = GetRtField(instr);
uint32_t rd_field = GetRdField(instr);
uint32_t function_field = GetFunctionField(instr);
// Checks if the instruction is a jump.
return opcode == J || opcode == JAL ||
(opcode == SPECIAL && rt_field == 0 &&
((function_field == JALR) || (rd_field == 0 && (function_field == JR))));
}
bool Assembler::IsJ(Instr instr) {
uint32_t opcode = GetOpcodeField(instr);
// Checks if the instruction is a jump.
return opcode == J;
}
bool Assembler::IsJal(Instr instr) {
return GetOpcodeField(instr) == JAL;
}
bool Assembler::IsJr(Instr instr) {
if (!IsMipsArchVariant(kMips32r6)) {
return GetOpcodeField(instr) == SPECIAL && GetFunctionField(instr) == JR;
} else {
return GetOpcodeField(instr) == SPECIAL &&
GetRdField(instr) == 0 && GetFunctionField(instr) == JALR;
}
}
bool Assembler::IsJalr(Instr instr) {
return GetOpcodeField(instr) == SPECIAL &&
GetRdField(instr) != 0 && GetFunctionField(instr) == JALR;
}
bool Assembler::IsLui(Instr instr) {
uint32_t opcode = GetOpcodeField(instr);
// Checks if the instruction is a load upper immediate.
return opcode == LUI;
}
bool Assembler::IsOri(Instr instr) {
uint32_t opcode = GetOpcodeField(instr);
// Checks if the instruction is a load upper immediate.
return opcode == ORI;
}
bool Assembler::IsAddu(Instr instr, Register rd, Register rs, Register rt) {
uint32_t opcode = GetOpcodeField(instr);
uint32_t rd_field = GetRd(instr);
uint32_t rs_field = GetRs(instr);
uint32_t rt_field = GetRt(instr);
uint32_t sa_field = GetSaField(instr);
uint32_t rd_reg = static_cast<uint32_t>(rd.code());
uint32_t rs_reg = static_cast<uint32_t>(rs.code());
uint32_t rt_reg = static_cast<uint32_t>(rt.code());
uint32_t function_field = GetFunction(instr);
return opcode == SPECIAL && sa_field == 0 && function_field == ADDU &&
rd_reg == rd_field && rs_reg == rs_field && rt_reg == rt_field;
}
bool Assembler::IsMov(Instr instr, Register rd, Register rs) {
uint32_t opcode = GetOpcodeField(instr);
uint32_t rd_field = GetRd(instr);
uint32_t rs_field = GetRs(instr);
uint32_t rt_field = GetRt(instr);
uint32_t rd_reg = static_cast<uint32_t>(rd.code());
uint32_t rs_reg = static_cast<uint32_t>(rs.code());
uint32_t function_field = GetFunctionField(instr);
// Checks if the instruction is a OR with zero_reg argument (aka MOV).
bool res = opcode == SPECIAL && function_field == OR && rd_field == rd_reg &&
rs_field == rs_reg && rt_field == 0;
return res;
}
bool Assembler::IsNop(Instr instr, unsigned int type) {
// See Assembler::nop(type).
DCHECK_LT(type, 32);
uint32_t opcode = GetOpcodeField(instr);
uint32_t function = GetFunctionField(instr);
uint32_t rt = GetRt(instr);
uint32_t rd = GetRd(instr);
uint32_t sa = GetSa(instr);
// Traditional mips nop == sll(zero_reg, zero_reg, 0)
// When marking non-zero type, use sll(zero_reg, at, type)
// to avoid use of mips ssnop and ehb special encodings
// of the sll instruction.
Register nop_rt_reg = (type == 0) ? zero_reg : at;
bool ret = (opcode == SPECIAL && function == SLL &&
rd == static_cast<uint32_t>(ToNumber(zero_reg)) &&
rt == static_cast<uint32_t>(ToNumber(nop_rt_reg)) &&
sa == type);
return ret;
}
int32_t Assembler::GetBranchOffset(Instr instr) {
DCHECK(IsBranch(instr));
return (static_cast<int16_t>(instr & kImm16Mask)) << 2;
}
bool Assembler::IsLw(Instr instr) {
return (static_cast<uint32_t>(instr & kOpcodeMask) == LW);
}
int16_t Assembler::GetLwOffset(Instr instr) {
DCHECK(IsLw(instr));
return ((instr & kImm16Mask));
}
Instr Assembler::SetLwOffset(Instr instr, int16_t offset) {
DCHECK(IsLw(instr));
// We actually create a new lw instruction based on the original one.
Instr temp_instr = LW | (instr & kRsFieldMask) | (instr & kRtFieldMask)
| (offset & kImm16Mask);
return temp_instr;
}
bool Assembler::IsSw(Instr instr) {
return (static_cast<uint32_t>(instr & kOpcodeMask) == SW);
}
Instr Assembler::SetSwOffset(Instr instr, int16_t offset) {
DCHECK(IsSw(instr));
return ((instr & ~kImm16Mask) | (offset & kImm16Mask));
}
bool Assembler::IsAddImmediate(Instr instr) {
return ((instr & kOpcodeMask) == ADDIU);
}
Instr Assembler::SetAddImmediateOffset(Instr instr, int16_t offset) {
DCHECK(IsAddImmediate(instr));
return ((instr & ~kImm16Mask) | (offset & kImm16Mask));
}
bool Assembler::IsAndImmediate(Instr instr) {
return GetOpcodeField(instr) == ANDI;
}
static Assembler::OffsetSize OffsetSizeInBits(Instr instr) {
if (IsMipsArchVariant(kMips32r6)) {
if (Assembler::IsBc(instr)) {
return Assembler::OffsetSize::kOffset26;
} else if (Assembler::IsBzc(instr)) {
return Assembler::OffsetSize::kOffset21;
}
}
return Assembler::OffsetSize::kOffset16;
}
static inline int32_t AddBranchOffset(int pos, Instr instr) {
int bits = OffsetSizeInBits(instr);
const int32_t mask = (1 << bits) - 1;
bits = 32 - bits;
// Do NOT change this to <<2. We rely on arithmetic shifts here, assuming
// the compiler uses arithmetic shifts for signed integers.
int32_t imm = ((instr & mask) << bits) >> (bits - 2);
if (imm == kEndOfChain) {
// EndOfChain sentinel is returned directly, not relative to pc or pos.
return kEndOfChain;
} else {
return pos + Assembler::kBranchPCOffset + imm;
}
}
uint32_t Assembler::CreateTargetAddress(Instr instr_lui, Instr instr_jic) {
DCHECK(IsLui(instr_lui) && IsJicOrJialc(instr_jic));
int16_t jic_offset = GetImmediate16(instr_jic);
int16_t lui_offset = GetImmediate16(instr_lui);
if (jic_offset < 0) {
lui_offset += kImm16Mask;
}
uint32_t lui_offset_u = (static_cast<uint32_t>(lui_offset)) << kLuiShift;
uint32_t jic_offset_u = static_cast<uint32_t>(jic_offset) & kImm16Mask;
return lui_offset_u | jic_offset_u;
}
// Use just lui and jic instructions. Insert lower part of the target address in
// jic offset part. Since jic sign-extends offset and then add it with register,
// before that addition, difference between upper part of the target address and
// upper part of the sign-extended offset (0xFFFF or 0x0000), will be inserted
// in jic register with lui instruction.
void Assembler::UnpackTargetAddress(uint32_t address, int16_t& lui_offset,
int16_t& jic_offset) {
lui_offset = (address & kHiMask) >> kLuiShift;
jic_offset = address & kLoMask;
if (jic_offset < 0) {
lui_offset -= kImm16Mask;
}
}
void Assembler::UnpackTargetAddressUnsigned(uint32_t address,
uint32_t& lui_offset,
uint32_t& jic_offset) {
int16_t lui_offset16 = (address & kHiMask) >> kLuiShift;
int16_t jic_offset16 = address & kLoMask;
if (jic_offset16 < 0) {
lui_offset16 -= kImm16Mask;
}
lui_offset = static_cast<uint32_t>(lui_offset16) & kImm16Mask;
jic_offset = static_cast<uint32_t>(jic_offset16) & kImm16Mask;
}
void Assembler::PatchLuiOriImmediate(int pc, int32_t imm, Instr instr_lui,
Address offset_lui, Instr instr_ori,
Address offset_ori) {
DCHECK(IsLui(instr_lui));
DCHECK(IsOri(instr_ori));
instr_at_put(static_cast<int>(pc + offset_lui),
instr_lui | ((imm >> kLuiShift) & kImm16Mask));
instr_at_put(static_cast<int>(pc + offset_ori),
instr_ori | (imm & kImm16Mask));
}
void Assembler::PatchLuiOriImmediate(Address pc, int32_t imm, Instr instr_lui,
Address offset_lui, Instr instr_ori,
Address offset_ori) {
DCHECK(IsLui(instr_lui));
DCHECK(IsOri(instr_ori));
instr_at_put(pc + offset_lui, instr_lui | ((imm >> kLuiShift) & kImm16Mask));
instr_at_put(pc + offset_ori, instr_ori | (imm & kImm16Mask));
}
int32_t Assembler::GetLuiOriImmediate(Instr instr_lui, Instr instr_ori) {
DCHECK(IsLui(instr_lui));
DCHECK(IsOri(instr_ori));
int32_t imm;
imm = (instr_lui & static_cast<int32_t>(kImm16Mask)) << kLuiShift;
imm |= (instr_ori & static_cast<int32_t>(kImm16Mask));
return imm;
}
int Assembler::target_at(int pos, bool is_internal) {
Instr instr = instr_at(pos);
if (is_internal) {
if (instr == 0) {
return kEndOfChain;
} else {
int32_t instr_address = reinterpret_cast<int32_t>(buffer_ + pos);
int delta = static_cast<int>(instr_address - instr);
DCHECK(pos > delta);
return pos - delta;
}
}
if ((instr & ~kImm16Mask) == 0) {
// Emitted label constant, not part of a branch.
if (instr == 0) {
return kEndOfChain;
} else {
int32_t imm18 =((instr & static_cast<int32_t>(kImm16Mask)) << 16) >> 14;
return (imm18 + pos);
}
}
// Check we have a branch or jump instruction.
DCHECK(IsBranch(instr) || IsLui(instr) || IsMov(instr, t8, ra));
if (IsBranch(instr)) {
return AddBranchOffset(pos, instr);
} else if (IsMov(instr, t8, ra)) {
int32_t imm32;
Instr instr_lui = instr_at(pos + 2 * kInstrSize);
Instr instr_ori = instr_at(pos + 3 * kInstrSize);
imm32 = GetLuiOriImmediate(instr_lui, instr_ori);
if (imm32 == kEndOfJumpChain) {
// EndOfChain sentinel is returned directly, not relative to pc or pos.
return kEndOfChain;
}
return pos + Assembler::kLongBranchPCOffset + imm32;
} else {
DCHECK(IsLui(instr));
if (IsNal(instr_at(pos + kInstrSize))) {
int32_t imm32;
Instr instr_lui = instr_at(pos + 0 * kInstrSize);
Instr instr_ori = instr_at(pos + 2 * kInstrSize);
imm32 = GetLuiOriImmediate(instr_lui, instr_ori);
if (imm32 == kEndOfJumpChain) {
// EndOfChain sentinel is returned directly, not relative to pc or pos.
return kEndOfChain;
}
return pos + Assembler::kLongBranchPCOffset + imm32;
} else {
Instr instr1 = instr_at(pos + 0 * kInstrSize);
Instr instr2 = instr_at(pos + 1 * kInstrSize);
DCHECK(IsOri(instr2) || IsJicOrJialc(instr2));
int32_t imm;
if (IsJicOrJialc(instr2)) {
imm = CreateTargetAddress(instr1, instr2);
} else {
imm = GetLuiOriImmediate(instr1, instr2);
}
if (imm == kEndOfJumpChain) {
// EndOfChain sentinel is returned directly, not relative to pc or pos.
return kEndOfChain;
} else {
uint32_t instr_address = reinterpret_cast<int32_t>(buffer_ + pos);
int32_t delta = instr_address - imm;
DCHECK(pos > delta);
return pos - delta;
}
}
}
return 0;
}
static inline Instr SetBranchOffset(int32_t pos, int32_t target_pos,
Instr instr) {
int32_t bits = OffsetSizeInBits(instr);
int32_t imm = target_pos - (pos + Assembler::kBranchPCOffset);
DCHECK_EQ(imm & 3, 0);
imm >>= 2;
const int32_t mask = (1 << bits) - 1;
instr &= ~mask;
DCHECK(is_intn(imm, bits));
return instr | (imm & mask);
}
void Assembler::target_at_put(int32_t pos, int32_t target_pos,
bool is_internal) {
Instr instr = instr_at(pos);
if (is_internal) {
uint32_t imm = reinterpret_cast<uint32_t>(buffer_) + target_pos;
instr_at_put(pos, imm);
return;
}
if ((instr & ~kImm16Mask) == 0) {
DCHECK(target_pos == kEndOfChain || target_pos >= 0);
// Emitted label constant, not part of a branch.
// Make label relative to Code pointer of generated Code object.
instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag));
return;
}
DCHECK(IsBranch(instr) || IsLui(instr) || IsMov(instr, t8, ra));
if (IsBranch(instr)) {
instr = SetBranchOffset(pos, target_pos, instr);
instr_at_put(pos, instr);
} else if (IsMov(instr, t8, ra)) {
Instr instr_lui = instr_at(pos + 2 * kInstrSize);
Instr instr_ori = instr_at(pos + 3 * kInstrSize);
DCHECK(IsLui(instr_lui));
DCHECK(IsOri(instr_ori));
int32_t imm_short = target_pos - (pos + Assembler::kBranchPCOffset);
if (is_int16(imm_short)) {
// Optimize by converting to regular branch with 16-bit
// offset
Instr instr_b = BEQ;
instr_b = SetBranchOffset(pos, target_pos, instr_b);
Instr instr_j = instr_at(pos + 5 * kInstrSize);
Instr instr_branch_delay;
if (IsJump(instr_j)) {
// Case when branch delay slot is protected.
instr_branch_delay = nopInstr;
} else {
// Case when branch delay slot is used.
instr_branch_delay = instr_at(pos + 7 * kInstrSize);
}
instr_at_put(pos + 0 * kInstrSize, instr_b);
instr_at_put(pos + 1 * kInstrSize, instr_branch_delay);
} else {
int32_t imm = target_pos - (pos + Assembler::kLongBranchPCOffset);
DCHECK_EQ(imm & 3, 0);
instr_lui &= ~kImm16Mask;
instr_ori &= ~kImm16Mask;
PatchLuiOriImmediate(pos, imm, instr_lui, 2 * kInstrSize, instr_ori,
3 * kInstrSize);
}
} else {
DCHECK(IsLui(instr));
if (IsNal(instr_at(pos + kInstrSize))) {
Instr instr_lui = instr_at(pos + 0 * kInstrSize);
Instr instr_ori = instr_at(pos + 2 * kInstrSize);
DCHECK(IsLui(instr_lui));
DCHECK(IsOri(instr_ori));
int32_t imm = target_pos - (pos + Assembler::kLongBranchPCOffset);
DCHECK_EQ(imm & 3, 0);
if (is_int16(imm + Assembler::kLongBranchPCOffset -
Assembler::kBranchPCOffset)) {
// Optimize by converting to regular branch and link with 16-bit
// offset.
Instr instr_b = REGIMM | BGEZAL; // Branch and link.
instr_b = SetBranchOffset(pos, target_pos, instr_b);
// Correct ra register to point to one instruction after jalr from
// TurboAssembler::BranchAndLinkLong.
Instr instr_a = ADDIU | ra.code() << kRsShift | ra.code() << kRtShift |
kOptimizedBranchAndLinkLongReturnOffset;
instr_at_put(pos, instr_b);
instr_at_put(pos + 1 * kInstrSize, instr_a);
} else {
instr_lui &= ~kImm16Mask;
instr_ori &= ~kImm16Mask;
PatchLuiOriImmediate(pos, imm, instr_lui, 0 * kInstrSize, instr_ori,
2 * kInstrSize);
}
} else {
Instr instr1 = instr_at(pos + 0 * kInstrSize);
Instr instr2 = instr_at(pos + 1 * kInstrSize);
DCHECK(IsOri(instr2) || IsJicOrJialc(instr2));
uint32_t imm = reinterpret_cast<uint32_t>(buffer_) + target_pos;
DCHECK_EQ(imm & 3, 0);
DCHECK(IsLui(instr1) && (IsJicOrJialc(instr2) || IsOri(instr2)));
instr1 &= ~kImm16Mask;
instr2 &= ~kImm16Mask;
if (IsJicOrJialc(instr2)) {
uint32_t lui_offset_u, jic_offset_u;
UnpackTargetAddressUnsigned(imm, lui_offset_u, jic_offset_u);
instr_at_put(pos + 0 * kInstrSize, instr1 | lui_offset_u);
instr_at_put(pos + 1 * kInstrSize, instr2 | jic_offset_u);
} else {
PatchLuiOriImmediate(pos, imm, instr1, 0 * kInstrSize, instr2,
1 * kInstrSize);
}
}
}
}
void Assembler::print(const Label* L) {
if (L->is_unused()) {
PrintF("unused label\n");
} else if (L->is_bound()) {
PrintF("bound label to %d\n", L->pos());
} else if (L->is_linked()) {
Label l;
l.link_to(L->pos());
PrintF("unbound label");
while (l.is_linked()) {
PrintF("@ %d ", l.pos());
Instr instr = instr_at(l.pos());
if ((instr & ~kImm16Mask) == 0) {
PrintF("value\n");
} else {
PrintF("%d\n", instr);
}
next(&l, is_internal_reference(&l));
}
} else {
PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
}
}
void Assembler::bind_to(Label* L, int pos) {
DCHECK(0 <= pos && pos <= pc_offset()); // Must have valid binding position.
int32_t trampoline_pos = kInvalidSlotPos;
bool is_internal = false;
if (L->is_linked() && !trampoline_emitted_) {
unbound_labels_count_--;
if (!is_internal_reference(L)) {
next_buffer_check_ += kTrampolineSlotsSize;
}
}
while (L->is_linked()) {
int32_t fixup_pos = L->pos();
int32_t dist = pos - fixup_pos;
is_internal = is_internal_reference(L);
next(L, is_internal); // Call next before overwriting link with target at
// fixup_pos.
Instr instr = instr_at(fixup_pos);
if (is_internal) {
target_at_put(fixup_pos, pos, is_internal);
} else {
if (IsBranch(instr)) {
int branch_offset = BranchOffset(instr);
if (dist > branch_offset) {
if (trampoline_pos == kInvalidSlotPos) {
trampoline_pos = get_trampoline_entry(fixup_pos);
CHECK_NE(trampoline_pos, kInvalidSlotPos);
}
CHECK((trampoline_pos - fixup_pos) <= branch_offset);
target_at_put(fixup_pos, trampoline_pos, false);
fixup_pos = trampoline_pos;
}
target_at_put(fixup_pos, pos, false);
} else {
target_at_put(fixup_pos, pos, false);
}
}
}
L->bind_to(pos);
// Keep track of the last bound label so we don't eliminate any instructions
// before a bound label.
if (pos > last_bound_pos_)
last_bound_pos_ = pos;
}
void Assembler::bind(Label* L) {
DCHECK(!L->is_bound()); // Label can only be bound once.
bind_to(L, pc_offset());
}
void Assembler::next(Label* L, bool is_internal) {
DCHECK(L->is_linked());
int link = target_at(L->pos(), is_internal);
if (link == kEndOfChain) {
L->Unuse();
} else {
DCHECK_GE(link, 0);
L->link_to(link);
}
}
bool Assembler::is_near(Label* L) {
DCHECK(L->is_bound());
return pc_offset() - L->pos() < kMaxBranchOffset - 4 * kInstrSize;
}
bool Assembler::is_near(Label* L, OffsetSize bits) {
if (L == nullptr || !L->is_bound()) return true;
return pc_offset() - L->pos() < (1 << (bits + 2 - 1)) - 1 - 5 * kInstrSize;
}
bool Assembler::is_near_branch(Label* L) {
DCHECK(L->is_bound());
return IsMipsArchVariant(kMips32r6) ? is_near_r6(L) : is_near_pre_r6(L);
}
int Assembler::BranchOffset(Instr instr) {
// At pre-R6 and for other R6 branches the offset is 16 bits.
int bits = OffsetSize::kOffset16;
if (IsMipsArchVariant(kMips32r6)) {
uint32_t opcode = GetOpcodeField(instr);
switch (opcode) {
// Checks BC or BALC.
case BC:
case BALC:
bits = OffsetSize::kOffset26;
break;
// Checks BEQZC or BNEZC.
case POP66:
case POP76:
if (GetRsField(instr) != 0) bits = OffsetSize::kOffset21;
break;
default:
break;
}
}
return (1 << (bits + 2 - 1)) - 1;
}
// We have to use a temporary register for things that can be relocated even
// if they can be encoded in the MIPS's 16 bits of immediate-offset instruction
// space. There is no guarantee that the relocated location can be similarly
// encoded.
bool Assembler::MustUseReg(RelocInfo::Mode rmode) {
return !RelocInfo::IsNone(rmode);
}
void Assembler::GenInstrRegister(Opcode opcode,
Register rs,
Register rt,
Register rd,
uint16_t sa,
SecondaryField func) {
DCHECK(rd.is_valid() && rs.is_valid() && rt.is_valid() && is_uint5(sa));
Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift)
| (rd.code() << kRdShift) | (sa << kSaShift) | func;
emit(instr);
}
void Assembler::GenInstrRegister(Opcode opcode,
Register rs,
Register rt,
uint16_t msb,
uint16_t lsb,
SecondaryField func) {
DCHECK(rs.is_valid() && rt.is_valid() && is_uint5(msb) && is_uint5(lsb));
Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift)
| (msb << kRdShift) | (lsb << kSaShift) | func;
emit(instr);
}
void Assembler::GenInstrRegister(Opcode opcode,
SecondaryField fmt,
FPURegister ft,
FPURegister fs,
FPURegister fd,
SecondaryField func) {
DCHECK(fd.is_valid() && fs.is_valid() && ft.is_valid());
Instr instr = opcode | fmt | (ft.code() << kFtShift) | (fs.code() << kFsShift)
| (fd.code() << kFdShift) | func;
emit(instr);
}
void Assembler::GenInstrRegister(Opcode opcode,
FPURegister fr,
FPURegister ft,
FPURegister fs,
FPURegister fd,
SecondaryField func) {
DCHECK(fd.is_valid() && fr.is_valid() && fs.is_valid() && ft.is_valid());
Instr instr = opcode | (fr.code() << kFrShift) | (ft.code() << kFtShift)
| (fs.code() << kFsShift) | (fd.code() << kFdShift) | func;
emit(instr);
}
void Assembler::GenInstrRegister(Opcode opcode,
SecondaryField fmt,
Register rt,
FPURegister fs,
FPURegister fd,
SecondaryField func) {
DCHECK(fd.is_valid() && fs.is_valid() && rt.is_valid());
Instr instr = opcode | fmt | (rt.code() << kRtShift)
| (fs.code() << kFsShift) | (fd.code() << kFdShift) | func;
emit(instr);
}
void Assembler::GenInstrRegister(Opcode opcode,
SecondaryField fmt,
Register rt,
FPUControlRegister fs,
SecondaryField func) {
DCHECK(fs.is_valid() && rt.is_valid());
Instr instr =
opcode | fmt | (rt.code() << kRtShift) | (fs.code() << kFsShift) | func;
emit(instr);
}
// Instructions with immediate value.
// Registers are in the order of the instruction encoding, from left to right.
void Assembler::GenInstrImmediate(Opcode opcode, Register rs, Register rt,
int32_t j,
CompactBranchType is_compact_branch) {
DCHECK(rs.is_valid() && rt.is_valid() && (is_int16(j) || is_uint16(j)));
Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift)
| (j & kImm16Mask);
emit(instr, is_compact_branch);
}
void Assembler::GenInstrImmediate(Opcode opcode, Register base, Register rt,
int32_t offset9, int bit6,
SecondaryField func) {
DCHECK(base.is_valid() && rt.is_valid() && is_int9(offset9) &&
is_uint1(bit6));
Instr instr = opcode | (base.code() << kBaseShift) | (rt.code() << kRtShift) |
((offset9 << kImm9Shift) & kImm9Mask) | bit6 << kBit6Shift |
func;
emit(instr);
}
void Assembler::GenInstrImmediate(Opcode opcode, Register rs, SecondaryField SF,
int32_t j,
CompactBranchType is_compact_branch) {
DCHECK(rs.is_valid() && (is_int16(j) || is_uint16(j)));
Instr instr = opcode | (rs.code() << kRsShift) | SF | (j & kImm16Mask);
emit(instr, is_compact_branch);
}
void Assembler::GenInstrImmediate(Opcode opcode, Register rs, FPURegister ft,
int32_t j,
CompactBranchType is_compact_branch) {
DCHECK(rs.is_valid() && ft.is_valid() && (is_int16(j) || is_uint16(j)));
Instr instr = opcode | (rs.code() << kRsShift) | (ft.code() << kFtShift)
| (j & kImm16Mask);
emit(instr, is_compact_branch);
}
void Assembler::GenInstrImmediate(Opcode opcode, Register rs, int32_t offset21,
CompactBranchType is_compact_branch) {
DCHECK(rs.is_valid() && (is_int21(offset21)));
Instr instr = opcode | (rs.code() << kRsShift) | (offset21 & kImm21Mask);
emit(instr, is_compact_branch);
}
void Assembler::GenInstrImmediate(Opcode opcode, Register rs,
uint32_t offset21) {
DCHECK(rs.is_valid() && (is_uint21(offset21)));
Instr instr = opcode | (rs.code() << kRsShift) | (offset21 & kImm21Mask);
emit(instr);
}
void Assembler::GenInstrImmediate(Opcode opcode, int32_t offset26,
CompactBranchType is_compact_branch) {
DCHECK(is_int26(offset26));
Instr instr = opcode | (offset26 & kImm26Mask);
emit(instr, is_compact_branch);
}
void Assembler::GenInstrJump(Opcode opcode,
uint32_t address) {
BlockTrampolinePoolScope block_trampoline_pool(this);
DCHECK(is_uint26(address));
Instr instr = opcode | address;
emit(instr);
BlockTrampolinePoolFor(1); // For associated delay slot.
}
// MSA instructions
void Assembler::GenInstrMsaI8(SecondaryField operation, uint32_t imm8,
MSARegister ws, MSARegister wd) {
DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
DCHECK(ws.is_valid() && wd.is_valid() && is_uint8(imm8));
Instr instr = MSA | operation | ((imm8 & kImm8Mask) << kWtShift) |
(ws.code() << kWsShift) | (wd.code() << kWdShift);
emit(instr);
}
void Assembler::GenInstrMsaI5(SecondaryField operation, SecondaryField df,
int32_t imm5, MSARegister ws, MSARegister wd) {
DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
DCHECK(ws.is_valid() && wd.is_valid());
DCHECK((operation == MAXI_S) || (operation == MINI_S) ||
(operation == CEQI) || (operation == CLTI_S) ||
(operation == CLEI_S)
? is_int5(imm5)
: is_uint5(imm5));
Instr instr = MSA | operation | df | ((imm5 & kImm5Mask) << kWtShift) |
(ws.code() << kWsShift) | (wd.code() << kWdShift);
emit(instr);
}
void Assembler::GenInstrMsaBit(SecondaryField operation, SecondaryField df,
uint32_t m, MSARegister ws, MSARegister wd) {
DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
DCHECK(ws.is_valid() && wd.is_valid() && is_valid_msa_df_m(df, m));
Instr instr = MSA | operation | df | (m << kWtShift) |
(ws.code() << kWsShift) | (wd.code() << kWdShift);
emit(instr);
}
void Assembler::GenInstrMsaI10(SecondaryField operation, SecondaryField df,
int32_t imm10, MSARegister wd) {
DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
DCHECK(wd.is_valid() && is_int10(imm10));
Instr instr = MSA | operation | df | ((imm10 & kImm10Mask) << kWsShift) |
(wd.code() << kWdShift);
emit(instr);
}
template <typename RegType>
void Assembler::GenInstrMsa3R(SecondaryField operation, SecondaryField df,
RegType t, MSARegister ws, MSARegister wd) {
DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
DCHECK(t.is_valid() && ws.is_valid() && wd.is_valid());
Instr instr = MSA | operation | df | (t.code() << kWtShift) |
(ws.code() << kWsShift) | (wd.code() << kWdShift);
emit(instr);
}
template <typename DstType, typename SrcType>
void Assembler::GenInstrMsaElm(SecondaryField operation, SecondaryField df,
uint32_t n, SrcType src, DstType dst) {
DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
DCHECK(src.is_valid() && dst.is_valid() && is_valid_msa_df_n(df, n));
Instr instr = MSA | operation | df | (n << kWtShift) |
(src.code() << kWsShift) | (dst.code() << kWdShift) |
MSA_ELM_MINOR;
emit(instr);
}
void Assembler::GenInstrMsa3RF(SecondaryField operation, uint32_t df,
MSARegister wt, MSARegister ws, MSARegister wd) {
DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
DCHECK(wt.is_valid() && ws.is_valid() && wd.is_valid());
DCHECK_LT(df, 2);
Instr instr = MSA | operation | (df << 21) | (wt.code() << kWtShift) |
(ws.code() << kWsShift) | (wd.code() << kWdShift);
emit(instr);
}
void Assembler::GenInstrMsaVec(SecondaryField operation, MSARegister wt,
MSARegister ws, MSARegister wd) {
DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
DCHECK(wt.is_valid() && ws.is_valid() && wd.is_valid());
Instr instr = MSA | operation | (wt.code() << kWtShift) |
(ws.code() << kWsShift) | (wd.code() << kWdShift) |
MSA_VEC_2R_2RF_MINOR;
emit(instr);
}
void Assembler::GenInstrMsaMI10(SecondaryField operation, int32_t s10,
Register rs, MSARegister wd) {
DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
DCHECK(rs.is_valid() && wd.is_valid() && is_int10(s10));
Instr instr = MSA | operation | ((s10 & kImm10Mask) << kWtShift) |
(rs.code() << kWsShift) | (wd.code() << kWdShift);
emit(instr);
}
void Assembler::GenInstrMsa2R(SecondaryField operation, SecondaryField df,
MSARegister ws, MSARegister wd) {
DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
DCHECK(ws.is_valid() && wd.is_valid());
Instr instr = MSA | MSA_2R_FORMAT | operation | df | (ws.code() << kWsShift) |
(wd.code() << kWdShift) | MSA_VEC_2R_2RF_MINOR;
emit(instr);
}
void Assembler::GenInstrMsa2RF(SecondaryField operation, SecondaryField df,
MSARegister ws, MSARegister wd) {
DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
DCHECK(ws.is_valid() && wd.is_valid());
Instr instr = MSA | MSA_2RF_FORMAT | operation | df |
(ws.code() << kWsShift) | (wd.code() << kWdShift) |
MSA_VEC_2R_2RF_MINOR;
emit(instr);
}
void Assembler::GenInstrMsaBranch(SecondaryField operation, MSARegister wt,
int32_t offset16) {
DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
DCHECK(wt.is_valid() && is_int16(offset16));
BlockTrampolinePoolScope block_trampoline_pool(this);
Instr instr =
COP1 | operation | (wt.code() << kWtShift) | (offset16 & kImm16Mask);
emit(instr);
BlockTrampolinePoolFor(1); // For associated delay slot.
}
// Returns the next free trampoline entry.
int32_t Assembler::get_trampoline_entry(int32_t pos) {
int32_t trampoline_entry = kInvalidSlotPos;
if (!internal_trampoline_exception_) {
if (trampoline_.start() > pos) {
trampoline_entry = trampoline_.take_slot();
}
if (kInvalidSlotPos == trampoline_entry) {
internal_trampoline_exception_ = true;
}
}
return trampoline_entry;
}
uint32_t Assembler::jump_address(Label* L) {
int32_t target_pos;
if (L->is_bound()) {
target_pos = L->pos();
} else {
if (L->is_linked()) {
target_pos = L->pos(); // L's link.
L->link_to(pc_offset());
} else {
L->link_to(pc_offset());
return kEndOfJumpChain;
}
}
uint32_t imm = reinterpret_cast<uint32_t>(buffer_) + target_pos;
DCHECK_EQ(imm & 3, 0);
return imm;
}
uint32_t Assembler::branch_long_offset(Label* L) {
int32_t target_pos;
if (L->is_bound()) {
target_pos = L->pos();
} else {
if (L->is_linked()) {
target_pos = L->pos(); // L's link.
L->link_to(pc_offset());
} else {
L->link_to(pc_offset());
return kEndOfJumpChain;
}
}
DCHECK(is_int32(static_cast<int64_t>(target_pos) -
static_cast<int64_t>(pc_offset() + kLongBranchPCOffset)));
int32_t offset = target_pos - (pc_offset() + kLongBranchPCOffset);
DCHECK_EQ(offset & 3, 0);
return offset;
}
int32_t Assembler::branch_offset_helper(Label* L, OffsetSize bits) {
int32_t target_pos;
int32_t pad = IsPrevInstrCompactBranch() ? kInstrSize : 0;
if (L->is_bound()) {
target_pos = L->pos();
} else {
if (L->is_linked()) {
target_pos = L->pos();
L->link_to(pc_offset() + pad);
} else {
L->link_to(pc_offset() + pad);
if (!trampoline_emitted_) {
unbound_labels_count_++;
next_buffer_check_ -= kTrampolineSlotsSize;
}
return kEndOfChain;
}
}
int32_t offset = target_pos - (pc_offset() + kBranchPCOffset + pad);
DCHECK(is_intn(offset, bits + 2));
DCHECK_EQ(offset & 3, 0);
return offset;
}
void Assembler::label_at_put(Label* L, int at_offset) {
int target_pos;
if (L->is_bound()) {
target_pos = L->pos();
instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag));
} else {
if (L->is_linked()) {
target_pos = L->pos(); // L's link.
int32_t imm18 = target_pos - at_offset;
DCHECK_EQ(imm18 & 3, 0);
int32_t imm16 = imm18 >> 2;
DCHECK(is_int16(imm16));
instr_at_put(at_offset, (imm16 & kImm16Mask));
} else {
target_pos = kEndOfChain;
instr_at_put(at_offset, 0);
if (!trampoline_emitted_) {
unbound_labels_count_++;
next_buffer_check_ -= kTrampolineSlotsSize;
}
}
L->link_to(at_offset);
}
}
//------- Branch and jump instructions --------
void Assembler::b(int16_t offset) {
beq(zero_reg, zero_reg, offset);
}
void Assembler::bal(int16_t offset) {
bgezal(zero_reg, offset);
}
void Assembler::bc(int32_t offset) {
DCHECK(IsMipsArchVariant(kMips32r6));
GenInstrImmediate(BC, offset, CompactBranchType::COMPACT_BRANCH);
}
void Assembler::balc(int32_t offset) {
DCHECK(IsMipsArchVariant(kMips32r6));
GenInstrImmediate(BALC, offset, CompactBranchType::COMPACT_BRANCH);
}
void Assembler::beq(Register rs, Register rt, int16_t offset) {
BlockTrampolinePoolScope block_trampoline_pool(this);
GenInstrImmediate(BEQ, rs, rt, offset);
BlockTrampolinePoolFor(1); // For associated delay slot.
}
void Assembler::bgez(Register rs, int16_t offset) {
BlockTrampolinePoolScope block_trampoline_pool(this);
GenInstrImmediate(REGIMM, rs, BGEZ, offset);
BlockTrampolinePoolFor(1); // For associated delay slot.
}
void Assembler::bgezc(Register rt, int16_t offset) {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK(rt != zero_reg);
GenInstrImmediate(BLEZL, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
}
void Assembler::bgeuc(Register rs, Register rt, int16_t offset) {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK(rs != zero_reg);
DCHECK(rt != zero_reg);
DCHECK(rs.code() != rt.code());
GenInstrImmediate(BLEZ, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
}
void Assembler::bgec(Register rs, Register rt, int16_t offset) {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK(rs != zero_reg);
DCHECK(rt != zero_reg);
DCHECK(rs.code() != rt.code());
GenInstrImmediate(BLEZL, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
}
void Assembler::bgezal(Register rs, int16_t offset) {
DCHECK(!IsMipsArchVariant(kMips32r6) || rs == zero_reg);
DCHECK(rs != ra);
BlockTrampolinePoolScope block_trampoline_pool(this);
GenInstrImmediate(REGIMM, rs, BGEZAL, offset);
BlockTrampolinePoolFor(1); // For associated delay slot.
}
void Assembler::bgtz(Register rs, int16_t offset) {
BlockTrampolinePoolScope block_trampoline_pool(this);
GenInstrImmediate(BGTZ, rs, zero_reg, offset);
BlockTrampolinePoolFor(1); // For associated delay slot.
}
void Assembler::bgtzc(Register rt, int16_t offset) {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK(rt != zero_reg);
GenInstrImmediate(BGTZL, zero_reg, rt, offset,
CompactBranchType::COMPACT_BRANCH);
}
void Assembler::blez(Register rs, int16_t offset) {
BlockTrampolinePoolScope block_trampoline_pool(this);
GenInstrImmediate(BLEZ, rs, zero_reg, offset);
BlockTrampolinePoolFor(1); // For associated delay slot.
}
void Assembler::blezc(Register rt, int16_t offset) {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK(rt != zero_reg);
GenInstrImmediate(BLEZL, zero_reg, rt, offset,
CompactBranchType::COMPACT_BRANCH);
}
void Assembler::bltzc(Register rt, int16_t offset) {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK(rt != zero_reg);
GenInstrImmediate(BGTZL, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
}
void Assembler::bltuc(Register rs, Register rt, int16_t offset) {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK(rs != zero_reg);
DCHECK(rt != zero_reg);
DCHECK(rs.code() != rt.code());
GenInstrImmediate(BGTZ, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
}
void Assembler::bltc(Register rs, Register rt, int16_t offset) {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK(rs != zero_reg);
DCHECK(rt != zero_reg);
DCHECK(rs.code() != rt.code());
GenInstrImmediate(BGTZL, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
}
void Assembler::bltz(Register rs, int16_t offset) {
BlockTrampolinePoolScope block_trampoline_pool(this);
GenInstrImmediate(REGIMM, rs, BLTZ, offset);
BlockTrampolinePoolFor(1); // For associated delay slot.
}
void Assembler::bltzal(Register rs, int16_t offset) {
DCHECK(!IsMipsArchVariant(kMips32r6) || rs == zero_reg);
DCHECK(rs != ra);
BlockTrampolinePoolScope block_trampoline_pool(this);
GenInstrImmediate(REGIMM, rs, BLTZAL, offset);
BlockTrampolinePoolFor(1); // For associated delay slot.
}
void Assembler::bne(Register rs, Register rt, int16_t offset) {
BlockTrampolinePoolScope block_trampoline_pool(this);
GenInstrImmediate(BNE, rs, rt, offset);
BlockTrampolinePoolFor(1); // For associated delay slot.
}
void Assembler::bovc(Register rs, Register rt, int16_t offset) {
DCHECK(IsMipsArchVariant(kMips32r6));
if (rs.code() >= rt.code()) {
GenInstrImmediate(ADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
} else {
GenInstrImmediate(ADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
}
}
void Assembler::bnvc(Register rs, Register rt, int16_t offset) {
DCHECK(IsMipsArchVariant(kMips32r6));
if (rs.code() >= rt.code()) {
GenInstrImmediate(DADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
} else {
GenInstrImmediate(DADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
}
}
void Assembler::blezalc(Register rt, int16_t offset) {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK(rt != zero_reg);
DCHECK(rt != ra);
GenInstrImmediate(BLEZ, zero_reg, rt, offset,
CompactBranchType::COMPACT_BRANCH);
}
void Assembler::bgezalc(Register rt, int16_t offset) {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK(rt != zero_reg);
DCHECK(rt != ra);
GenInstrImmediate(BLEZ, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
}
void Assembler::bgezall(Register rs, int16_t offset) {
DCHECK(!IsMipsArchVariant(kMips32r6));
DCHECK(rs != zero_reg);
DCHECK(rs != ra);
BlockTrampolinePoolScope block_trampoline_pool(this);
GenInstrImmediate(REGIMM, rs, BGEZALL, offset);
BlockTrampolinePoolFor(1); // For associated delay slot.
}
void Assembler::bltzalc(Register rt, int16_t offset) {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK(rt != zero_reg);
DCHECK(rt != ra);
GenInstrImmediate(BGTZ, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
}
void Assembler::bgtzalc(Register rt, int16_t offset) {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK(rt != zero_reg);
DCHECK(rt != ra);
GenInstrImmediate(BGTZ, zero_reg, rt, offset,
CompactBranchType::COMPACT_BRANCH);
}
void Assembler::beqzalc(Register rt, int16_t offset) {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK(rt != zero_reg);
DCHECK(rt != ra);
GenInstrImmediate(ADDI, zero_reg, rt, offset,
CompactBranchType::COMPACT_BRANCH);
}
void Assembler::bnezalc(Register rt, int16_t offset) {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK(rt != zero_reg);
DCHECK(rt != ra);
GenInstrImmediate(DADDI, zero_reg, rt, offset,
CompactBranchType::COMPACT_BRANCH);
}
void Assembler::beqc(Register rs, Register rt, int16_t offset) {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK(rs.code() != rt.code() && rs.code() != 0 && rt.code() != 0);
if (rs.code() < rt.code()) {
GenInstrImmediate(ADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
} else {
GenInstrImmediate(ADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
}
}
void Assembler::beqzc(Register rs, int32_t offset) {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK(rs != zero_reg);
GenInstrImmediate(POP66, rs, offset, CompactBranchType::COMPACT_BRANCH);
}
void Assembler::bnec(Register rs, Register rt, int16_t offset) {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK(rs.code() != rt.code() && rs.code() != 0 && rt.code() != 0);
if (rs.code() < rt.code()) {
GenInstrImmediate(DADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
} else {
GenInstrImmediate(DADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
}
}
void Assembler::bnezc(Register rs, int32_t offset) {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK(rs != zero_reg);
GenInstrImmediate(POP76, rs, offset, CompactBranchType::COMPACT_BRANCH);
}
void Assembler::j(int32_t target) {
#if DEBUG
// Get pc of delay slot.
uint32_t ipc = reinterpret_cast<uint32_t>(pc_ + 1 * kInstrSize);
bool in_range = ((ipc ^ static_cast<uint32_t>(target)) >>
(kImm26Bits + kImmFieldShift)) == 0;
DCHECK(in_range && ((target & 3) == 0));
#endif
BlockTrampolinePoolScope block_trampoline_pool(this);
GenInstrJump(J, (target >> 2) & kImm26Mask);
BlockTrampolinePoolFor(1); // For associated delay slot.
}
void Assembler::jr(Register rs) {
if (!IsMipsArchVariant(kMips32r6)) {
BlockTrampolinePoolScope block_trampoline_pool(this);
GenInstrRegister(SPECIAL, rs, zero_reg, zero_reg, 0, JR);
BlockTrampolinePoolFor(1); // For associated delay slot.
} else {
jalr(rs, zero_reg);
}
}
void Assembler::jal(int32_t target) {
#ifdef DEBUG
// Get pc of delay slot.
uint32_t ipc = reinterpret_cast<uint32_t>(pc_ + 1 * kInstrSize);
bool in_range = ((ipc ^ static_cast<uint32_t>(target)) >>
(kImm26Bits + kImmFieldShift)) == 0;
DCHECK(in_range && ((target & 3) == 0));
#endif
BlockTrampolinePoolScope block_trampoline_pool(this);
GenInstrJump(JAL, (target >> 2) & kImm26Mask);
BlockTrampolinePoolFor(1); // For associated delay slot.
}
void Assembler::jalr(Register rs, Register rd) {
DCHECK(rs.code() != rd.code());
BlockTrampolinePoolScope block_trampoline_pool(this);
GenInstrRegister(SPECIAL, rs, zero_reg, rd, 0, JALR);
BlockTrampolinePoolFor(1); // For associated delay slot.
}
void Assembler::jic(Register rt, int16_t offset) {
DCHECK(IsMipsArchVariant(kMips32r6));
GenInstrImmediate(POP66, zero_reg, rt, offset);
}
void Assembler::jialc(Register rt, int16_t offset) {
DCHECK(IsMipsArchVariant(kMips32r6));
GenInstrImmediate(POP76, zero_reg, rt, offset);
}
// -------Data-processing-instructions---------
// Arithmetic.
void Assembler::addu(Register rd, Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, ADDU);
}
void Assembler::addiu(Register rd, Register rs, int32_t j) {
GenInstrImmediate(ADDIU, rs, rd, j);
}
void Assembler::subu(Register rd, Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, SUBU);
}
void Assembler::mul(Register rd, Register rs, Register rt) {
if (!IsMipsArchVariant(kMips32r6)) {
GenInstrRegister(SPECIAL2, rs, rt, rd, 0, MUL);
} else {
GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, MUL_MUH);
}
}
void Assembler::mulu(Register rd, Register rs, Register rt) {
DCHECK(IsMipsArchVariant(kMips32r6));
GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, MUL_MUH_U);
}
void Assembler::muh(Register rd, Register rs, Register rt) {
DCHECK(IsMipsArchVariant(kMips32r6));
GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, MUL_MUH);
}
void Assembler::muhu(Register rd, Register rs, Register rt) {
DCHECK(IsMipsArchVariant(kMips32r6));
GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, MUL_MUH_U);
}
void Assembler::mod(Register rd, Register rs, Register rt) {
DCHECK(IsMipsArchVariant(kMips32r6));
GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, DIV_MOD);
}
void Assembler::modu(Register rd, Register rs, Register rt) {
DCHECK(IsMipsArchVariant(kMips32r6));
GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, DIV_MOD_U);
}
void Assembler::mult(Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULT);
}
void Assembler::multu(Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULTU);
}
void Assembler::div(Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIV);
}
void Assembler::div(Register rd, Register rs, Register rt) {
DCHECK(IsMipsArchVariant(kMips32r6));
GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, DIV_MOD);
}
void Assembler::divu(Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIVU);
}
void Assembler::divu(Register rd, Register rs, Register rt) {
DCHECK(IsMipsArchVariant(kMips32r6));
GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, DIV_MOD_U);
}
// Logical.
void Assembler::and_(Register rd, Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, AND);
}
void Assembler::andi(Register rt, Register rs, int32_t j) {
DCHECK(is_uint16(j));
GenInstrImmediate(ANDI, rs, rt, j);
}
void Assembler::or_(Register rd, Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, OR);
}
void Assembler::ori(Register rt, Register rs, int32_t j) {
DCHECK(is_uint16(j));
GenInstrImmediate(ORI, rs, rt, j);
}
void Assembler::xor_(Register rd, Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, XOR);
}
void Assembler::xori(Register rt, Register rs, int32_t j) {
DCHECK(is_uint16(j));
GenInstrImmediate(XORI, rs, rt, j);
}
void Assembler::nor(Register rd, Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, NOR);
}
// Shifts.
void Assembler::sll(Register rd,
Register rt,
uint16_t sa,
bool coming_from_nop) {
// Don't allow nop instructions in the form sll zero_reg, zero_reg to be
// generated using the sll instruction. They must be generated using
// nop(int/NopMarkerTypes).
DCHECK(coming_from_nop || !(rd == zero_reg && rt == zero_reg));
GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SLL);
}
void Assembler::sllv(Register rd, Register rt, Register rs) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLLV);
}
void Assembler::srl(Register rd, Register rt, uint16_t sa) {
GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SRL);
}
void Assembler::srlv(Register rd, Register rt, Register rs) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRLV);
}
void Assembler::sra(Register rd, Register rt, uint16_t sa) {
GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SRA);
}
void Assembler::srav(Register rd, Register rt, Register rs) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRAV);
}
void Assembler::rotr(Register rd, Register rt, uint16_t sa) {
// Should be called via MacroAssembler::Ror.
DCHECK(rd.is_valid() && rt.is_valid() && is_uint5(sa));
DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
Instr instr = SPECIAL | (1 << kRsShift) | (rt.code() << kRtShift)
| (rd.code() << kRdShift) | (sa << kSaShift) | SRL;
emit(instr);
}
void Assembler::rotrv(Register rd, Register rt, Register rs) {
// Should be called via MacroAssembler::Ror.
DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid());
DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
Instr instr = SPECIAL | (rs.code() << kRsShift) | (rt.code() << kRtShift)
| (rd.code() << kRdShift) | (1 << kSaShift) | SRLV;
emit(instr);
}
void Assembler::lsa(Register rd, Register rt, Register rs, uint8_t sa) {
DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid());
DCHECK_LE(sa, 3);
DCHECK(IsMipsArchVariant(kMips32r6));
Instr instr = SPECIAL | rs.code() << kRsShift | rt.code() << kRtShift |
rd.code() << kRdShift | sa << kSaShift | LSA;
emit(instr);
}
// ------------Memory-instructions-------------
void Assembler::AdjustBaseAndOffset(MemOperand& src,
OffsetAccessType access_type,
int second_access_add_to_offset) {
// This method is used to adjust the base register and offset pair
// for a load/store when the offset doesn't fit into int16_t.
// It is assumed that 'base + offset' is sufficiently aligned for memory
// operands that are machine word in size or smaller. For doubleword-sized
// operands it's assumed that 'base' is a multiple of 8, while 'offset'
// may be a multiple of 4 (e.g. 4-byte-aligned long and double arguments
// and spilled variables on the stack accessed relative to the stack
// pointer register).
// We preserve the "alignment" of 'offset' by adjusting it by a multiple of 8.
bool doubleword_aligned = (src.offset() & (kDoubleSize - 1)) == 0;
bool two_accesses = static_cast<bool>(access_type) || !doubleword_aligned;
DCHECK_LE(second_access_add_to_offset, 7); // Must be <= 7.
// is_int16 must be passed a signed value, hence the static cast below.
if (is_int16(src.offset()) &&
(!two_accesses || is_int16(static_cast<int32_t>(
src.offset() + second_access_add_to_offset)))) {
// Nothing to do: 'offset' (and, if needed, 'offset + 4', or other specified
// value) fits into int16_t.
return;
}
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
DCHECK(src.rm() != scratch); // Must not overwrite the register 'base'
// while loading 'offset'.
#ifdef DEBUG
// Remember the "(mis)alignment" of 'offset', it will be checked at the end.
uint32_t misalignment = src.offset() & (kDoubleSize - 1);
#endif
// Do not load the whole 32-bit 'offset' if it can be represented as
// a sum of two 16-bit signed offsets. This can save an instruction or two.
// To simplify matters, only do this for a symmetric range of offsets from
// about -64KB to about +64KB, allowing further addition of 4 when accessing
// 64-bit variables with two 32-bit accesses.
constexpr int32_t kMinOffsetForSimpleAdjustment =
0x7FF8; // Max int16_t that's a multiple of 8.
constexpr int32_t kMaxOffsetForSimpleAdjustment =
2 * kMinOffsetForSimpleAdjustment;
if (0 <= src.offset() && src.offset() <= kMaxOffsetForSimpleAdjustment) {
addiu(at, src.rm(), kMinOffsetForSimpleAdjustment);
src.offset_ -= kMinOffsetForSimpleAdjustment;
} else if (-kMaxOffsetForSimpleAdjustment <= src.offset() &&
src.offset() < 0) {
addiu(at, src.rm(), -kMinOffsetForSimpleAdjustment);
src.offset_ += kMinOffsetForSimpleAdjustment;
} else if (IsMipsArchVariant(kMips32r6)) {
// On r6 take advantage of the aui instruction, e.g.:
// aui at, base, offset_high
// lw reg_lo, offset_low(at)
// lw reg_hi, (offset_low+4)(at)
// or when offset_low+4 overflows int16_t:
// aui at, base, offset_high
// addiu at, at, 8
// lw reg_lo, (offset_low-8)(at)
// lw reg_hi, (offset_low-4)(at)
int16_t offset_high = static_cast<uint16_t>(src.offset() >> 16);
int16_t offset_low = static_cast<uint16_t>(src.offset());
offset_high += (offset_low < 0)
? 1
: 0; // Account for offset sign extension in load/store.
aui(scratch, src.rm(), static_cast<uint16_t>(offset_high));
if (two_accesses && !is_int16(static_cast<int32_t>(
offset_low + second_access_add_to_offset))) {
// Avoid overflow in the 16-bit offset of the load/store instruction when
// adding 4.
addiu(scratch, scratch, kDoubleSize);
offset_low -= kDoubleSize;
}
src.offset_ = offset_low;
} else {
// Do not load the whole 32-bit 'offset' if it can be represented as
// a sum of three 16-bit signed offsets. This can save an instruction.
// To simplify matters, only do this for a symmetric range of offsets from
// about -96KB to about +96KB, allowing further addition of 4 when accessing
// 64-bit variables with two 32-bit accesses.
constexpr int32_t kMinOffsetForMediumAdjustment =
2 * kMinOffsetForSimpleAdjustment;
constexpr int32_t kMaxOffsetForMediumAdjustment =
3 * kMinOffsetForSimpleAdjustment;
if (0 <= src.offset() && src.offset() <= kMaxOffsetForMediumAdjustment) {
addiu(scratch, src.rm(), kMinOffsetForMediumAdjustment / 2);
addiu(scratch, scratch, kMinOffsetForMediumAdjustment / 2);
src.offset_ -= kMinOffsetForMediumAdjustment;
} else if (-kMaxOffsetForMediumAdjustment <= src.offset() &&
src.offset() < 0) {
addiu(scratch, src.rm(), -kMinOffsetForMediumAdjustment / 2);
addiu(scratch, scratch, -kMinOffsetForMediumAdjustment / 2);
src.offset_ += kMinOffsetForMediumAdjustment;
} else {
// Now that all shorter options have been exhausted, load the full 32-bit
// offset.
int32_t loaded_offset = RoundDown(src.offset(), kDoubleSize);
lui(scratch, (loaded_offset >> kLuiShift) & kImm16Mask);
ori(scratch, scratch, loaded_offset & kImm16Mask); // Load 32-bit offset.
addu(scratch, scratch, src.rm());
src.offset_ -= loaded_offset;
}
}
src.rm_ = scratch;
DCHECK(is_int16(src.offset()));
if (two_accesses) {
DCHECK(is_int16(
static_cast<int32_t>(src.offset() + second_access_add_to_offset)));
}
DCHECK(misalignment == (src.offset() & (kDoubleSize - 1)));
}
void Assembler::lb(Register rd, const MemOperand& rs) {
MemOperand source = rs;
AdjustBaseAndOffset(source);
GenInstrImmediate(LB, source.rm(), rd, source.offset());
}
void Assembler::lbu(Register rd, const MemOperand& rs) {
MemOperand source = rs;
AdjustBaseAndOffset(source);
GenInstrImmediate(LBU, source.rm(), rd, source.offset());
}
void Assembler::lh(Register rd, const MemOperand& rs) {
MemOperand source = rs;
AdjustBaseAndOffset(source);
GenInstrImmediate(LH, source.rm(), rd, source.offset());
}
void Assembler::lhu(Register rd, const MemOperand& rs) {
MemOperand source = rs;
AdjustBaseAndOffset(source);
GenInstrImmediate(LHU, source.rm(), rd, source.offset());
}
void Assembler::lw(Register rd, const MemOperand& rs) {
MemOperand source = rs;
AdjustBaseAndOffset(source);
GenInstrImmediate(LW, source.rm(), rd, source.offset());
}
void Assembler::lwl(Register rd, const MemOperand& rs) {
DCHECK(is_int16(rs.offset_));
DCHECK(IsMipsArchVariant(kLoongson) || IsMipsArchVariant(kMips32r1) ||
IsMipsArchVariant(kMips32r2));
GenInstrImmediate(LWL, rs.rm(), rd, rs.offset_);
}
void Assembler::lwr(Register rd, const MemOperand& rs) {
DCHECK(is_int16(rs.offset_));
DCHECK(IsMipsArchVariant(kLoongson) || IsMipsArchVariant(kMips32r1) ||
IsMipsArchVariant(kMips32r2));
GenInstrImmediate(LWR, rs.rm(), rd, rs.offset_);
}
void Assembler::sb(Register rd, const MemOperand& rs) {
MemOperand source = rs;
AdjustBaseAndOffset(source);
GenInstrImmediate(SB, source.rm(), rd, source.offset());
}
void Assembler::sh(Register rd, const MemOperand& rs) {
MemOperand source = rs;
AdjustBaseAndOffset(source);
GenInstrImmediate(SH, source.rm(), rd, source.offset());
}
void Assembler::sw(Register rd, const MemOperand& rs) {
MemOperand source = rs;
AdjustBaseAndOffset(source);
GenInstrImmediate(SW, source.rm(), rd, source.offset());
}
void Assembler::swl(Register rd, const MemOperand& rs) {
DCHECK(is_int16(rs.offset_));
DCHECK(IsMipsArchVariant(kLoongson) || IsMipsArchVariant(kMips32r1) ||
IsMipsArchVariant(kMips32r2));
GenInstrImmediate(SWL, rs.rm(), rd, rs.offset_);
}
void Assembler::swr(Register rd, const MemOperand& rs) {
DCHECK(is_int16(rs.offset_));
DCHECK(IsMipsArchVariant(kLoongson) || IsMipsArchVariant(kMips32r1) ||
IsMipsArchVariant(kMips32r2));
GenInstrImmediate(SWR, rs.rm(), rd, rs.offset_);
}
void Assembler::ll(Register rd, const MemOperand& rs) {
if (IsMipsArchVariant(kMips32r6)) {
DCHECK(is_int9(rs.offset_));
GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 0, LL_R6);
} else {
DCHECK(IsMipsArchVariant(kLoongson) || IsMipsArchVariant(kMips32r1) ||
IsMipsArchVariant(kMips32r2));
DCHECK(is_int16(rs.offset_));
GenInstrImmediate(LL, rs.rm(), rd, rs.offset_);
}
}
void Assembler::sc(Register rd, const MemOperand& rs) {
if (IsMipsArchVariant(kMips32r6)) {
DCHECK(is_int9(rs.offset_));
GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 0, SC_R6);
} else {
DCHECK(IsMipsArchVariant(kLoongson) || IsMipsArchVariant(kMips32r1) ||
IsMipsArchVariant(kMips32r2));
GenInstrImmediate(SC, rs.rm(), rd, rs.offset_);
}
}
void Assembler::llx(Register rd, const MemOperand& rs) {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK(is_int9(rs.offset_));
GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 1, LL_R6);
}
void Assembler::scx(Register rd, const MemOperand& rs) {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK(is_int9(rs.offset_));
GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 1, SC_R6);
}
void Assembler::lui(Register rd, int32_t j) {
DCHECK(is_uint16(j) || is_int16(j));
GenInstrImmediate(LUI, zero_reg, rd, j);
}
void Assembler::aui(Register rt, Register rs, int32_t j) {
// This instruction uses same opcode as 'lui'. The difference in encoding is
// 'lui' has zero reg. for rs field.
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK(rs != zero_reg);
DCHECK(is_uint16(j));
GenInstrImmediate(LUI, rs, rt, j);
}
// ---------PC-Relative instructions-----------
void Assembler::addiupc(Register rs, int32_t imm19) {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK(rs.is_valid() && is_int19(imm19));
uint32_t imm21 = ADDIUPC << kImm19Bits | (imm19 & kImm19Mask);
GenInstrImmediate(PCREL, rs, imm21);
}
void Assembler::lwpc(Register rs, int32_t offset19) {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK(rs.is_valid() && is_int19(offset19));
uint32_t imm21 = LWPC << kImm19Bits | (offset19 & kImm19Mask);
GenInstrImmediate(PCREL, rs, imm21);
}
void Assembler::auipc(Register rs, int16_t imm16) {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK(rs.is_valid());
uint32_t imm21 = AUIPC << kImm16Bits | (imm16 & kImm16Mask);
GenInstrImmediate(PCREL, rs, imm21);
}
void Assembler::aluipc(Register rs, int16_t imm16) {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK(rs.is_valid());
uint32_t imm21 = ALUIPC << kImm16Bits | (imm16 & kImm16Mask);
GenInstrImmediate(PCREL, rs, imm21);
}
// -------------Misc-instructions--------------
// Break / Trap instructions.
void Assembler::break_(uint32_t code, bool break_as_stop) {
DCHECK_EQ(code & ~0xFFFFF, 0);
// We need to invalidate breaks that could be stops as well because the
// simulator expects a char pointer after the stop instruction.
// See constants-mips.h for explanation.
DCHECK((break_as_stop &&
code <= kMaxStopCode &&
code > kMaxWatchpointCode) ||
(!break_as_stop &&
(code > kMaxStopCode ||
code <= kMaxWatchpointCode)));
Instr break_instr = SPECIAL | BREAK | (code << 6);
emit(break_instr);
}
void Assembler::stop(const char* msg, uint32_t code) {
DCHECK_GT(code, kMaxWatchpointCode);
DCHECK_LE(code, kMaxStopCode);
#if V8_HOST_ARCH_MIPS
break_(0x54321);
#else // V8_HOST_ARCH_MIPS
break_(code, true);
#endif
}
void Assembler::tge(Register rs, Register rt, uint16_t code) {
DCHECK(is_uint10(code));
Instr instr = SPECIAL | TGE | rs.code() << kRsShift
| rt.code() << kRtShift | code << 6;
emit(instr);
}
void Assembler::tgeu(Register rs, Register rt, uint16_t code) {
DCHECK(is_uint10(code));
Instr instr = SPECIAL | TGEU | rs.code() << kRsShift
| rt.code() << kRtShift | code << 6;
emit(instr);
}
void Assembler::tlt(Register rs, Register rt, uint16_t code) {
DCHECK(is_uint10(code));
Instr instr =
SPECIAL | TLT | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
emit(instr);
}
void Assembler::tltu(Register rs, Register rt, uint16_t code) {
DCHECK(is_uint10(code));
Instr instr =
SPECIAL | TLTU | rs.code() << kRsShift
| rt.code() << kRtShift | code << 6;
emit(instr);
}
void Assembler::teq(Register rs, Register rt, uint16_t code) {
DCHECK(is_uint10(code));
Instr instr =
SPECIAL | TEQ | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
emit(instr);
}
void Assembler::tne(Register rs, Register rt, uint16_t code) {
DCHECK(is_uint10(code));
Instr instr =
SPECIAL | TNE | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
emit(instr);
}
void Assembler::sync() {
Instr sync_instr = SPECIAL | SYNC;
emit(sync_instr);
}
// Move from HI/LO register.
void Assembler::mfhi(Register rd) {
GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFHI);
}
void Assembler::mflo(Register rd) {
GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFLO);
}
// Set on less than instructions.
void Assembler::slt(Register rd, Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLT);
}
void Assembler::sltu(Register rd, Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLTU);
}
void Assembler::slti(Register rt, Register rs, int32_t j) {
GenInstrImmediate(SLTI, rs, rt, j);
}
void Assembler::sltiu(Register rt, Register rs, int32_t j) {
GenInstrImmediate(SLTIU, rs, rt, j);
}
// Conditional move.
void Assembler::movz(Register rd, Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVZ);
}
void Assembler::movn(Register rd, Register rs, Register rt) {
GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVN);
}
void Assembler::movt(Register rd, Register rs, uint16_t cc) {
Register rt = Register::from_code((cc & 0x0007) << 2 | 1);
GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI);
}
void Assembler::movf(Register rd, Register rs, uint16_t cc) {
Register rt = Register::from_code((cc & 0x0007) << 2 | 0);
GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI);
}
void Assembler::seleqz(Register rd, Register rs, Register rt) {
DCHECK(IsMipsArchVariant(kMips32r6));
GenInstrRegister(SPECIAL, rs, rt, rd, 0, SELEQZ_S);
}
// Bit twiddling.
void Assembler::clz(Register rd, Register rs) {
if (!IsMipsArchVariant(kMips32r6)) {
// Clz instr requires same GPR number in 'rd' and 'rt' fields.
GenInstrRegister(SPECIAL2, rs, rd, rd, 0, CLZ);
} else {
GenInstrRegister(SPECIAL, rs, zero_reg, rd, 1, CLZ_R6);
}
}
void Assembler::ins_(Register rt, Register rs, uint16_t pos, uint16_t size) {
// Should be called via MacroAssembler::Ins.
// Ins instr has 'rt' field as dest, and two uint5: msb, lsb.
DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1, pos, INS);
}
void Assembler::ext_(Register rt, Register rs, uint16_t pos, uint16_t size) {
// Should be called via MacroAssembler::Ext.
// Ext instr has 'rt' field as dest, and two uint5: msb, lsb.
DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
GenInstrRegister(SPECIAL3, rs, rt, size - 1, pos, EXT);
}
void Assembler::bitswap(Register rd, Register rt) {
DCHECK(IsMipsArchVariant(kMips32r6));
GenInstrRegister(SPECIAL3, zero_reg, rt, rd, 0, BSHFL);
}
void Assembler::pref(int32_t hint, const MemOperand& rs) {
DCHECK(!IsMipsArchVariant(kLoongson));
DCHECK(is_uint5(hint) && is_uint16(rs.offset_));
Instr instr = PREF | (rs.rm().code() << kRsShift) | (hint << kRtShift)
| (rs.offset_);
emit(instr);
}
void Assembler::align(Register rd, Register rs, Register rt, uint8_t bp) {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK(is_uint3(bp));
uint16_t sa = (ALIGN << kBp2Bits) | bp;
GenInstrRegister(SPECIAL3, rs, rt, rd, sa, BSHFL);
}
// Byte swap.
void Assembler::wsbh(Register rd, Register rt) {
DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
GenInstrRegister(SPECIAL3, zero_reg, rt, rd, WSBH, BSHFL);
}
void Assembler::seh(Register rd, Register rt) {
DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
GenInstrRegister(SPECIAL3, zero_reg, rt, rd, SEH, BSHFL);
}
void Assembler::seb(Register rd, Register rt) {
DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
GenInstrRegister(SPECIAL3, zero_reg, rt, rd, SEB, BSHFL);
}
// --------Coprocessor-instructions----------------
// Load, store, move.
void Assembler::lwc1(FPURegister fd, const MemOperand& src) {
MemOperand tmp = src;
AdjustBaseAndOffset(tmp);
GenInstrImmediate(LWC1, tmp.rm(), fd, tmp.offset());
}
void Assembler::swc1(FPURegister fd, const MemOperand& src) {
MemOperand tmp = src;
AdjustBaseAndOffset(tmp);
GenInstrImmediate(SWC1, tmp.rm(), fd, tmp.offset());
}
void Assembler::mtc1(Register rt, FPURegister fs) {
GenInstrRegister(COP1, MTC1, rt, fs, f0);
}
void Assembler::mthc1(Register rt, FPURegister fs) {
GenInstrRegister(COP1, MTHC1, rt, fs, f0);
}
void Assembler::mfc1(Register rt, FPURegister fs) {
GenInstrRegister(COP1, MFC1, rt, fs, f0);
}
void Assembler::mfhc1(Register rt, FPURegister fs) {
GenInstrRegister(COP1, MFHC1, rt, fs, f0);
}
void Assembler::ctc1(Register rt, FPUControlRegister fs) {
GenInstrRegister(COP1, CTC1, rt, fs);
}
void Assembler::cfc1(Register rt, FPUControlRegister fs) {
GenInstrRegister(COP1, CFC1, rt, fs);
}
void Assembler::movn_s(FPURegister fd, FPURegister fs, Register rt) {
DCHECK(!IsMipsArchVariant(kMips32r6));
GenInstrRegister(COP1, S, rt, fs, fd, MOVN_C);
}
void Assembler::movn_d(FPURegister fd, FPURegister fs, Register rt) {
DCHECK(!IsMipsArchVariant(kMips32r6));
GenInstrRegister(COP1, D, rt, fs, fd, MOVN_C);
}
void Assembler::sel(SecondaryField fmt, FPURegister fd, FPURegister fs,
FPURegister ft) {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK((fmt == D) || (fmt == S));
GenInstrRegister(COP1, fmt, ft, fs, fd, SEL);
}
void Assembler::sel_s(FPURegister fd, FPURegister fs, FPURegister ft) {
sel(S, fd, fs, ft);
}
void Assembler::sel_d(FPURegister fd, FPURegister fs, FPURegister ft) {
sel(D, fd, fs, ft);
}
void Assembler::seleqz(SecondaryField fmt, FPURegister fd, FPURegister fs,
FPURegister ft) {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK((fmt == D) || (fmt == S));
GenInstrRegister(COP1, fmt, ft, fs, fd, SELEQZ_C);
}
void Assembler::selnez(Register rd, Register rs, Register rt) {
DCHECK(IsMipsArchVariant(kMips32r6));
GenInstrRegister(SPECIAL, rs, rt, rd, 0, SELNEZ_S);
}
void Assembler::selnez(SecondaryField fmt, FPURegister fd, FPURegister fs,
FPURegister ft) {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK((fmt == D) || (fmt == S));
GenInstrRegister(COP1, fmt, ft, fs, fd, SELNEZ_C);
}
void Assembler::seleqz_d(FPURegister fd, FPURegister fs, FPURegister ft) {
seleqz(D, fd, fs, ft);
}
void Assembler::seleqz_s(FPURegister fd, FPURegister fs, FPURegister ft) {
seleqz(S, fd, fs, ft);
}
void Assembler::selnez_d(FPURegister fd, FPURegister fs, FPURegister ft) {
selnez(D, fd, fs, ft);
}
void Assembler::selnez_s(FPURegister fd, FPURegister fs, FPURegister ft) {
selnez(S, fd, fs, ft);
}
void Assembler::movz_s(FPURegister fd, FPURegister fs, Register rt) {
DCHECK(!IsMipsArchVariant(kMips32r6));
GenInstrRegister(COP1, S, rt, fs, fd, MOVZ_C);
}
void Assembler::movz_d(FPURegister fd, FPURegister fs, Register rt) {
DCHECK(!IsMipsArchVariant(kMips32r6));
GenInstrRegister(COP1, D, rt, fs, fd, MOVZ_C);
}
void Assembler::movt_s(FPURegister fd, FPURegister fs, uint16_t cc) {
DCHECK(!IsMipsArchVariant(kMips32r6));
FPURegister ft = FPURegister::from_code((cc & 0x0007) << 2 | 1);
GenInstrRegister(COP1, S, ft, fs, fd, MOVF);
}
void Assembler::movt_d(FPURegister fd, FPURegister fs, uint16_t cc) {
DCHECK(!IsMipsArchVariant(kMips32r6));
FPURegister ft = FPURegister::from_code((cc & 0x0007) << 2 | 1);
GenInstrRegister(COP1, D, ft, fs, fd, MOVF);
}
void Assembler::movf_s(FPURegister fd, FPURegister fs, uint16_t cc) {
DCHECK(!IsMipsArchVariant(kMips32r6));
FPURegister ft = FPURegister::from_code((cc & 0x0007) << 2 | 0);
GenInstrRegister(COP1, S, ft, fs, fd, MOVF);
}
void Assembler::movf_d(FPURegister fd, FPURegister fs, uint16_t cc) {
DCHECK(!IsMipsArchVariant(kMips32r6));
FPURegister ft = FPURegister::from_code((cc & 0x0007) << 2 | 0);
GenInstrRegister(COP1, D, ft, fs, fd, MOVF);
}
// Arithmetic.
void Assembler::add_s(FPURegister fd, FPURegister fs, FPURegister ft) {
GenInstrRegister(COP1, S, ft, fs, fd, ADD_S);
}
void Assembler::add_d(FPURegister fd, FPURegister fs, FPURegister ft) {
GenInstrRegister(COP1, D, ft, fs, fd, ADD_D);
}
void Assembler::sub_s(FPURegister fd, FPURegister fs, FPURegister ft) {
GenInstrRegister(COP1, S, ft, fs, fd, SUB_S);
}
void Assembler::sub_d(FPURegister fd, FPURegister fs, FPURegister ft) {
GenInstrRegister(COP1, D, ft, fs, fd, SUB_D);
}
void Assembler::mul_s(FPURegister fd, FPURegister fs, FPURegister ft) {
GenInstrRegister(COP1, S, ft, fs, fd, MUL_S);
}
void Assembler::mul_d(FPURegister fd, FPURegister fs, FPURegister ft) {
GenInstrRegister(COP1, D, ft, fs, fd, MUL_D);
}
void Assembler::madd_s(FPURegister fd, FPURegister fr, FPURegister fs,
FPURegister ft) {
DCHECK(IsMipsArchVariant(kMips32r2));
GenInstrRegister(COP1X, fr, ft, fs, fd, MADD_S);
}
void Assembler::madd_d(FPURegister fd, FPURegister fr, FPURegister fs,
FPURegister ft) {
DCHECK(IsMipsArchVariant(kMips32r2));
GenInstrRegister(COP1X, fr, ft, fs, fd, MADD_D);
}
void Assembler::msub_s(FPURegister fd, FPURegister fr, FPURegister fs,
FPURegister ft) {
DCHECK(IsMipsArchVariant(kMips32r2));
GenInstrRegister(COP1X, fr, ft, fs, fd, MSUB_S);
}
void Assembler::msub_d(FPURegister fd, FPURegister fr, FPURegister fs,
FPURegister ft) {
DCHECK(IsMipsArchVariant(kMips32r2));
GenInstrRegister(COP1X, fr, ft, fs, fd, MSUB_D);
}
void Assembler::maddf_s(FPURegister fd, FPURegister fs, FPURegister ft) {
DCHECK(IsMipsArchVariant(kMips32r6));
GenInstrRegister(COP1, S, ft, fs, fd, MADDF_S);
}
void Assembler::maddf_d(FPURegister fd, FPURegister fs, FPURegister ft) {
DCHECK(IsMipsArchVariant(kMips32r6));
GenInstrRegister(COP1, D, ft, fs, fd, MADDF_D);
}
void Assembler::msubf_s(FPURegister fd, FPURegister fs, FPURegister ft) {
DCHECK(IsMipsArchVariant(kMips32r6));
GenInstrRegister(COP1, S, ft, fs, fd, MSUBF_S);
}
void Assembler::msubf_d(FPURegister fd, FPURegister fs, FPURegister ft) {
DCHECK(IsMipsArchVariant(kMips32r6));
GenInstrRegister(COP1, D, ft, fs, fd, MSUBF_D);
}
void Assembler::div_s(FPURegister fd, FPURegister fs, FPURegister ft) {
GenInstrRegister(COP1, S, ft, fs, fd, DIV_S);
}
void Assembler::div_d(FPURegister fd, FPURegister fs, FPURegister ft) {
GenInstrRegister(COP1, D, ft, fs, fd, DIV_D);
}
void Assembler::abs_s(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, S, f0, fs, fd, ABS_S);
}
void Assembler::abs_d(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, D, f0, fs, fd, ABS_D);
}
void Assembler::mov_d(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, D, f0, fs, fd, MOV_D);
}
void Assembler::mov_s(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, S, f0, fs, fd, MOV_S);
}
void Assembler::neg_s(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, S, f0, fs, fd, NEG_S);
}
void Assembler::neg_d(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, D, f0, fs, fd, NEG_D);
}
void Assembler::sqrt_s(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, S, f0, fs, fd, SQRT_S);
}
void Assembler::sqrt_d(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, D, f0, fs, fd, SQRT_D);
}
void Assembler::rsqrt_s(FPURegister fd, FPURegister fs) {
DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
GenInstrRegister(COP1, S, f0, fs, fd, RSQRT_S);
}
void Assembler::rsqrt_d(FPURegister fd, FPURegister fs) {
DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
GenInstrRegister(COP1, D, f0, fs, fd, RSQRT_D);
}
void Assembler::recip_d(FPURegister fd, FPURegister fs) {
DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
GenInstrRegister(COP1, D, f0, fs, fd, RECIP_D);
}
void Assembler::recip_s(FPURegister fd, FPURegister fs) {
DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
GenInstrRegister(COP1, S, f0, fs, fd, RECIP_S);
}
// Conversions.
void Assembler::cvt_w_s(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, S, f0, fs, fd, CVT_W_S);
}
void Assembler::cvt_w_d(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, D, f0, fs, fd, CVT_W_D);
}
void Assembler::trunc_w_s(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_W_S);
}
void Assembler::trunc_w_d(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_W_D);
}
void Assembler::round_w_s(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, S, f0, fs, fd, ROUND_W_S);
}
void Assembler::round_w_d(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, D, f0, fs, fd, ROUND_W_D);
}
void Assembler::floor_w_s(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_W_S);
}
void Assembler::floor_w_d(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_W_D);
}
void Assembler::ceil_w_s(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, S, f0, fs, fd, CEIL_W_S);
}
void Assembler::ceil_w_d(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, D, f0, fs, fd, CEIL_W_D);
}
void Assembler::rint_s(FPURegister fd, FPURegister fs) { rint(S, fd, fs); }
void Assembler::rint(SecondaryField fmt, FPURegister fd, FPURegister fs) {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK((fmt == D) || (fmt == S));
GenInstrRegister(COP1, fmt, f0, fs, fd, RINT);
}
void Assembler::rint_d(FPURegister fd, FPURegister fs) { rint(D, fd, fs); }
void Assembler::cvt_l_s(FPURegister fd, FPURegister fs) {
DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
IsFp64Mode());
GenInstrRegister(COP1, S, f0, fs, fd, CVT_L_S);
}
void Assembler::cvt_l_d(FPURegister fd, FPURegister fs) {
DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
IsFp64Mode());
GenInstrRegister(COP1, D, f0, fs, fd, CVT_L_D);
}
void Assembler::trunc_l_s(FPURegister fd, FPURegister fs) {
DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
IsFp64Mode());
GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_L_S);
}
void Assembler::trunc_l_d(FPURegister fd, FPURegister fs) {
DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
IsFp64Mode());
GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_L_D);
}
void Assembler::round_l_s(FPURegister fd, FPURegister fs) {
DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
IsFp64Mode());
GenInstrRegister(COP1, S, f0, fs, fd, ROUND_L_S);
}
void Assembler::round_l_d(FPURegister fd, FPURegister fs) {
DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
IsFp64Mode());
GenInstrRegister(COP1, D, f0, fs, fd, ROUND_L_D);
}
void Assembler::floor_l_s(FPURegister fd, FPURegister fs) {
DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
IsFp64Mode());
GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_L_S);
}
void Assembler::floor_l_d(FPURegister fd, FPURegister fs) {
DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
IsFp64Mode());
GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_L_D);
}
void Assembler::ceil_l_s(FPURegister fd, FPURegister fs) {
DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
IsFp64Mode());
GenInstrRegister(COP1, S, f0, fs, fd, CEIL_L_S);
}
void Assembler::ceil_l_d(FPURegister fd, FPURegister fs) {
DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
IsFp64Mode());
GenInstrRegister(COP1, D, f0, fs, fd, CEIL_L_D);
}
void Assembler::class_s(FPURegister fd, FPURegister fs) {
DCHECK(IsMipsArchVariant(kMips32r6));
GenInstrRegister(COP1, S, f0, fs, fd, CLASS_S);
}
void Assembler::class_d(FPURegister fd, FPURegister fs) {
DCHECK(IsMipsArchVariant(kMips32r6));
GenInstrRegister(COP1, D, f0, fs, fd, CLASS_D);
}
void Assembler::min(SecondaryField fmt, FPURegister fd, FPURegister fs,
FPURegister ft) {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK((fmt == D) || (fmt == S));
GenInstrRegister(COP1, fmt, ft, fs, fd, MIN);
}
void Assembler::mina(SecondaryField fmt, FPURegister fd, FPURegister fs,
FPURegister ft) {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK((fmt == D) || (fmt == S));
GenInstrRegister(COP1, fmt, ft, fs, fd, MINA);
}
void Assembler::max(SecondaryField fmt, FPURegister fd, FPURegister fs,
FPURegister ft) {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK((fmt == D) || (fmt == S));
GenInstrRegister(COP1, fmt, ft, fs, fd, MAX);
}
void Assembler::maxa(SecondaryField fmt, FPURegister fd, FPURegister fs,
FPURegister ft) {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK((fmt == D) || (fmt == S));
GenInstrRegister(COP1, fmt, ft, fs, fd, MAXA);
}
void Assembler::min_s(FPURegister fd, FPURegister fs, FPURegister ft) {
min(S, fd, fs, ft);
}
void Assembler::min_d(FPURegister fd, FPURegister fs, FPURegister ft) {
min(D, fd, fs, ft);
}
void Assembler::max_s(FPURegister fd, FPURegister fs, FPURegister ft) {
max(S, fd, fs, ft);
}
void Assembler::max_d(FPURegister fd, FPURegister fs, FPURegister ft) {
max(D, fd, fs, ft);
}
void Assembler::mina_s(FPURegister fd, FPURegister fs, FPURegister ft) {
mina(S, fd, fs, ft);
}
void Assembler::mina_d(FPURegister fd, FPURegister fs, FPURegister ft) {
mina(D, fd, fs, ft);
}
void Assembler::maxa_s(FPURegister fd, FPURegister fs, FPURegister ft) {
maxa(S, fd, fs, ft);
}
void Assembler::maxa_d(FPURegister fd, FPURegister fs, FPURegister ft) {
maxa(D, fd, fs, ft);
}
void Assembler::cvt_s_w(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, W, f0, fs, fd, CVT_S_W);
}
void Assembler::cvt_s_l(FPURegister fd, FPURegister fs) {
DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
IsFp64Mode());
GenInstrRegister(COP1, L, f0, fs, fd, CVT_S_L);
}
void Assembler::cvt_s_d(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, D, f0, fs, fd, CVT_S_D);
}
void Assembler::cvt_d_w(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, W, f0, fs, fd, CVT_D_W);
}
void Assembler::cvt_d_l(FPURegister fd, FPURegister fs) {
DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
IsFp64Mode());
GenInstrRegister(COP1, L, f0, fs, fd, CVT_D_L);
}
void Assembler::cvt_d_s(FPURegister fd, FPURegister fs) {
GenInstrRegister(COP1, S, f0, fs, fd, CVT_D_S);
}
// Conditions for >= MIPSr6.
void Assembler::cmp(FPUCondition cond, SecondaryField fmt,
FPURegister fd, FPURegister fs, FPURegister ft) {
DCHECK(IsMipsArchVariant(kMips32r6));
DCHECK_EQ(fmt & ~(31 << kRsShift), 0);
Instr instr = COP1 | fmt | ft.code() << kFtShift |
fs.code() << kFsShift | fd.code() << kFdShift | (0 << 5) | cond;
emit(instr);
}
void Assembler::cmp_s(FPUCondition cond, FPURegister fd, FPURegister fs,
FPURegister ft) {
cmp(cond, W, fd, fs, ft);
}
void Assembler::cmp_d(FPUCondition cond, FPURegister fd, FPURegister fs,
FPURegister ft) {
cmp(cond, L, fd, fs, ft);
}
void Assembler::bc1eqz(int16_t offset, FPURegister ft) {
DCHECK(IsMipsArchVariant(kMips32r6));
BlockTrampolinePoolScope block_trampoline_pool(this);
Instr instr = COP1 | BC1EQZ | ft.code() << kFtShift | (offset & kImm16Mask);
emit(instr);
BlockTrampolinePoolFor(1); // For associated delay slot.
}
void Assembler::bc1nez(int16_t offset, FPURegister ft) {
DCHECK(IsMipsArchVariant(kMips32r6));
BlockTrampolinePoolScope block_trampoline_pool(this);
Instr instr = COP1 | BC1NEZ | ft.code() << kFtShift | (offset & kImm16Mask);
emit(instr);
BlockTrampolinePoolFor(1); // For associated delay slot.
}
// Conditions for < MIPSr6.
void Assembler::c(FPUCondition cond, SecondaryField fmt,
FPURegister fs, FPURegister ft, uint16_t cc) {
DCHECK(is_uint3(cc));
DCHECK(fmt == S || fmt == D);
DCHECK_EQ(fmt & ~(31 << kRsShift), 0);
Instr instr = COP1 | fmt | ft.code() << 16 | fs.code() << kFsShift
| cc << 8 | 3 << 4 | cond;
emit(instr);
}
void Assembler::c_s(FPUCondition cond, FPURegister fs, FPURegister ft,
uint16_t cc) {
c(cond, S, fs, ft, cc);
}
void Assembler::c_d(FPUCondition cond, FPURegister fs, FPURegister ft,
uint16_t cc) {
c(cond, D, fs, ft, cc);
}
void Assembler::fcmp(FPURegister src1, const double src2,
FPUCondition cond) {
DCHECK_EQ(src2, 0.0);
mtc1(zero_reg, f14);
cvt_d_w(f14, f14);
c(cond, D, src1, f14, 0);
}
void Assembler::bc1f(int16_t offset, uint16_t cc) {
BlockTrampolinePoolScope block_trampoline_pool(this);
DCHECK(is_uint3(cc));
Instr instr = COP1 | BC1 | cc << 18 | 0 << 16 | (offset & kImm16Mask);
emit(instr);
BlockTrampolinePoolFor(1); // For associated delay slot.
}
void Assembler::bc1t(int16_t offset, uint16_t cc) {
BlockTrampolinePoolScope block_trampoline_pool(this);
DCHECK(is_uint3(cc));
Instr instr = COP1 | BC1 | cc << 18 | 1 << 16 | (offset & kImm16Mask);
emit(instr);
BlockTrampolinePoolFor(1); // For associated delay slot.
}
// ---------- MSA instructions ------------
#define MSA_BRANCH_LIST(V) \
V(bz_v, BZ_V) \
V(bz_b, BZ_B) \
V(bz_h, BZ_H) \
V(bz_w, BZ_W) \
V(bz_d, BZ_D) \
V(bnz_v, BNZ_V) \
V(bnz_b, BNZ_B) \
V(bnz_h, BNZ_H) \
V(bnz_w, BNZ_W) \
V(bnz_d, BNZ_D)
#define MSA_BRANCH(name, opcode) \
void Assembler::name(MSARegister wt, int16_t offset) { \
GenInstrMsaBranch(opcode, wt, offset); \
}
MSA_BRANCH_LIST(MSA_BRANCH)
#undef MSA_BRANCH
#undef MSA_BRANCH_LIST
#define MSA_LD_ST_LIST(V) \
V(ld_b, LD_B) \
V(ld_h, LD_H) \
V(ld_w, LD_W) \
V(ld_d, LD_D) \
V(st_b, ST_B) \
V(st_h, ST_H) \
V(st_w, ST_W) \
V(st_d, ST_D)
#define MSA_LD_ST(name, opcode) \
void Assembler::name(MSARegister wd, const MemOperand& rs) { \
MemOperand source = rs; \
AdjustBaseAndOffset(source); \
if (is_int10(source.offset())) { \
GenInstrMsaMI10(opcode, source.offset(), source.rm(), wd); \
} else { \
UseScratchRegisterScope temps(this); \
Register scratch = temps.Acquire(); \
DCHECK(rs.rm() != scratch); \
addiu(scratch, source.rm(), source.offset()); \
GenInstrMsaMI10(opcode, 0, scratch, wd); \
} \
}
MSA_LD_ST_LIST(MSA_LD_ST)
#undef MSA_LD_ST
#undef MSA_BRANCH_LIST
#define MSA_I10_LIST(V) \
V(ldi_b, I5_DF_b) \
V(ldi_h, I5_DF_h) \
V(ldi_w, I5_DF_w) \
V(ldi_d, I5_DF_d)
#define MSA_I10(name, format) \
void Assembler::name(MSARegister wd, int32_t imm10) { \
GenInstrMsaI10(LDI, format, imm10, wd); \
}
MSA_I10_LIST(MSA_I10)
#undef MSA_I10
#undef MSA_I10_LIST
#define MSA_I5_LIST(V) \
V(addvi, ADDVI) \
V(subvi, SUBVI) \
V(maxi_s, MAXI_S) \
V(maxi_u, MAXI_U) \
V(mini_s, MINI_S) \
V(mini_u, MINI_U) \
V(ceqi, CEQI) \
V(clti_s, CLTI_S) \
V(clti_u, CLTI_U) \
V(clei_s, CLEI_S) \
V(clei_u, CLEI_U)
#define MSA_I5_FORMAT(name, opcode, format) \
void Assembler::name##_##format(MSARegister wd, MSARegister ws, \
uint32_t imm5) { \
GenInstrMsaI5(opcode, I5_DF_##format, imm5, ws, wd); \
}
#define MSA_I5(name, opcode) \
MSA_I5_FORMAT(name, opcode, b) \
MSA_I5_FORMAT(name, opcode, h) \
MSA_I5_FORMAT(name, opcode, w) \
MSA_I5_FORMAT(name, opcode, d)
MSA_I5_LIST(MSA_I5)
#undef MSA_I5
#undef MSA_I5_FORMAT
#undef MSA_I5_LIST
#define MSA_I8_LIST(V) \
V(andi_b, ANDI_B) \
V(ori_b, ORI_B) \
V(nori_b, NORI_B) \
V(xori_b, XORI_B) \
V(bmnzi_b, BMNZI_B) \
V(bmzi_b, BMZI_B) \
V(bseli_b, BSELI_B) \
V(shf_b, SHF_B) \
V(shf_h, SHF_H) \
V(shf_w, SHF_W)
#define MSA_I8(name, opcode) \
void Assembler::name(MSARegister wd, MSARegister ws, uint32_t imm8) { \
GenInstrMsaI8(opcode, imm8, ws, wd); \
}
MSA_I8_LIST(MSA_I8)
#undef MSA_I8
#undef MSA_I8_LIST
#define MSA_VEC_LIST(V) \
V(and_v, AND_V) \
V(or_v, OR_V) \
V(nor_v, NOR_V) \
V(xor_v, XOR_V) \
V(bmnz_v, BMNZ_V) \
V(bmz_v, BMZ_V) \
V(bsel_v, BSEL_V)
#define MSA_VEC(name, opcode) \
void Assembler::name(MSARegister wd, MSARegister ws, MSARegister wt) { \
GenInstrMsaVec(opcode, wt, ws, wd); \
}
MSA_VEC_LIST(MSA_VEC)
#undef MSA_VEC
#undef MSA_VEC_LIST
#define MSA_2R_LIST(V) \
V(pcnt, PCNT) \
V(nloc, NLOC) \
V(nlzc, NLZC)
#define MSA_2R_FORMAT(name, opcode, format) \
void Assembler::name##_##format(MSARegister wd, MSARegister ws) { \
GenInstrMsa2R(opcode, MSA_2R_DF_##format, ws, wd); \
}
#define MSA_2R(name, opcode) \
MSA_2R_FORMAT(name, opcode, b) \
MSA_2R_FORMAT(name, opcode, h) \
MSA_2R_FORMAT(name, opcode, w) \
MSA_2R_FORMAT(name, opcode, d)
MSA_2R_LIST(MSA_2R)
#undef MSA_2R
#undef MSA_2R_FORMAT
#undef MSA_2R_LIST
#define MSA_FILL(format) \
void Assembler::fill_##format(MSARegister wd, Register rs) { \
DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD)); \
DCHECK(rs.is_valid() && wd.is_valid()); \
Instr instr = MSA | MSA_2R_FORMAT | FILL | MSA_2R_DF_##format | \
(rs.code() << kWsShift) | (wd.code() << kWdShift) | \
MSA_VEC_2R_2RF_MINOR; \
emit(instr); \
}
MSA_FILL(b)
MSA_FILL(h)
MSA_FILL(w)
#undef MSA_FILL
#define MSA_2RF_LIST(V) \
V(fclass, FCLASS) \
V(ftrunc_s, FTRUNC_S) \
V(ftrunc_u, FTRUNC_U) \
V(fsqrt, FSQRT) \
V(frsqrt, FRSQRT) \
V(frcp, FRCP) \
V(frint, FRINT) \
V(flog2, FLOG2) \
V(fexupl, FEXUPL) \
V(fexupr, FEXUPR) \
V(ffql, FFQL) \
V(ffqr, FFQR) \
V(ftint_s, FTINT_S) \
V(ftint_u, FTINT_U) \
V(ffint_s, FFINT_S) \
V(ffint_u, FFINT_U)
#define MSA_2RF_FORMAT(name, opcode, format) \
void Assembler::name##_##format(MSARegister wd, MSARegister ws) { \
GenInstrMsa2RF(opcode, MSA_2RF_DF_##format, ws, wd); \
}
#define MSA_2RF(name, opcode) \
MSA_2RF_FORMAT(name, opcode, w) \
MSA_2RF_FORMAT(name, opcode, d)
MSA_2RF_LIST(MSA_2RF)
#undef MSA_2RF
#undef MSA_2RF_FORMAT
#undef MSA_2RF_LIST
#define MSA_3R_LIST(V) \
V(sll, SLL_MSA) \
V(sra, SRA_MSA) \
V(srl, SRL_MSA) \
V(bclr, BCLR) \
V(bset, BSET) \
V(bneg, BNEG) \
V(binsl, BINSL) \
V(binsr, BINSR) \
V(addv, ADDV) \
V(subv, SUBV) \
V(max_s, MAX_S) \
V(max_u, MAX_U) \
V(min_s, MIN_S) \
V(min_u, MIN_U) \
V(max_a, MAX_A) \
V(min_a, MIN_A) \
V(ceq, CEQ) \
V(clt_s, CLT_S) \
V(clt_u, CLT_U) \
V(cle_s, CLE_S) \
V(cle_u, CLE_U) \
V(add_a, ADD_A) \
V(adds_a, ADDS_A) \
V(adds_s, ADDS_S) \
V(adds_u, ADDS_U) \
V(ave_s, AVE_S) \
V(ave_u, AVE_U) \
V(aver_s, AVER_S) \
V(aver_u, AVER_U) \
V(subs_s, SUBS_S) \
V(subs_u, SUBS_U) \
V(subsus_u, SUBSUS_U) \
V(subsuu_s, SUBSUU_S) \
V(asub_s, ASUB_S) \
V(asub_u, ASUB_U) \
V(mulv, MULV) \
V(maddv, MADDV) \
V(msubv, MSUBV) \
V(div_s, DIV_S_MSA) \
V(div_u, DIV_U) \
V(mod_s, MOD_S) \
V(mod_u, MOD_U) \
V(dotp_s, DOTP_S) \
V(dotp_u, DOTP_U) \
V(dpadd_s, DPADD_S) \
V(dpadd_u, DPADD_U) \
V(dpsub_s, DPSUB_S) \
V(dpsub_u, DPSUB_U) \
V(pckev, PCKEV) \
V(pckod, PCKOD) \
V(ilvl, ILVL) \
V(ilvr, ILVR) \
V(ilvev, ILVEV) \
V(ilvod, ILVOD) \
V(vshf, VSHF) \
V(srar, SRAR) \
V(srlr, SRLR) \
V(hadd_s, HADD_S) \
V(hadd_u, HADD_U) \
V(hsub_s, HSUB_S) \
V(hsub_u, HSUB_U)
#define MSA_3R_FORMAT(name, opcode, format) \
void Assembler::name##_##format(MSARegister wd, MSARegister ws, \
MSARegister wt) { \
GenInstrMsa3R<MSARegister>(opcode, MSA_3R_DF_##format, wt, ws, wd); \
}
#define MSA_3R_FORMAT_SLD_SPLAT(name, opcode, format) \
void Assembler::name##_##format(MSARegister wd, MSARegister ws, \
Register rt) { \
GenInstrMsa3R<Register>(opcode, MSA_3R_DF_##format, rt, ws, wd); \
}
#define MSA_3R(name, opcode) \
MSA_3R_FORMAT(name, opcode, b) \
MSA_3R_FORMAT(name, opcode, h) \
MSA_3R_FORMAT(name, opcode, w) \
MSA_3R_FORMAT(name, opcode, d)
#define MSA_3R_SLD_SPLAT(name, opcode) \
MSA_3R_FORMAT_SLD_SPLAT(name, opcode, b) \
MSA_3R_FORMAT_SLD_SPLAT(name, opcode, h) \
MSA_3R_FORMAT_SLD_SPLAT(name, opcode, w) \
MSA_3R_FORMAT_SLD_SPLAT(name, opcode, d)
MSA_3R_LIST(MSA_3R)
MSA_3R_SLD_SPLAT(sld, SLD)
MSA_3R_SLD_SPLAT(splat, SPLAT)
#undef MSA_3R
#undef MSA_3R_FORMAT
#undef MSA_3R_FORMAT_SLD_SPLAT
#undef MSA_3R_SLD_SPLAT
#undef MSA_3R_LIST
#define MSA_3RF_LIST1(V) \
V(fcaf, FCAF) \
V(fcun, FCUN) \
V(fceq, FCEQ) \
V(fcueq, FCUEQ) \
V(fclt, FCLT) \
V(fcult, FCULT) \
V(fcle, FCLE) \
V(fcule, FCULE) \
V(fsaf, FSAF) \
V(fsun, FSUN) \
V(fseq, FSEQ) \
V(fsueq, FSUEQ) \
V(fslt, FSLT) \
V(fsult, FSULT) \
V(fsle, FSLE) \
V(fsule, FSULE) \
V(fadd, FADD) \
V(fsub, FSUB) \
V(fmul, FMUL) \
V(fdiv, FDIV) \
V(fmadd, FMADD) \
V(fmsub, FMSUB) \
V(fexp2, FEXP2) \
V(fmin, FMIN) \
V(fmin_a, FMIN_A) \
V(fmax, FMAX) \
V(fmax_a, FMAX_A) \
V(fcor, FCOR) \
V(fcune, FCUNE) \
V(fcne, FCNE) \
V(fsor, FSOR) \
V(fsune, FSUNE) \
V(fsne, FSNE)
#define MSA_3RF_LIST2(V) \
V(fexdo, FEXDO) \
V(ftq, FTQ) \
V(mul_q, MUL_Q) \
V(madd_q, MADD_Q) \
V(msub_q, MSUB_Q) \
V(mulr_q, MULR_Q) \
V(maddr_q, MADDR_Q) \
V(msubr_q, MSUBR_Q)
#define MSA_3RF_FORMAT(name, opcode, df, df_c) \
void Assembler::name##_##df(MSARegister wd, MSARegister ws, \
MSARegister wt) { \
GenInstrMsa3RF(opcode, df_c, wt, ws, wd); \
}
#define MSA_3RF_1(name, opcode) \
MSA_3RF_FORMAT(name, opcode, w, 0) \
MSA_3RF_FORMAT(name, opcode, d, 1)
#define MSA_3RF_2(name, opcode) \
MSA_3RF_FORMAT(name, opcode, h, 0) \
MSA_3RF_FORMAT(name, opcode, w, 1)
MSA_3RF_LIST1(MSA_3RF_1)
MSA_3RF_LIST2(MSA_3RF_2)
#undef MSA_3RF_1
#undef MSA_3RF_2
#undef MSA_3RF_FORMAT
#undef MSA_3RF_LIST1
#undef MSA_3RF_LIST2
void Assembler::sldi_b(MSARegister wd, MSARegister ws, uint32_t n) {
GenInstrMsaElm<MSARegister, MSARegister>(SLDI, ELM_DF_B, n, ws, wd);
}
void Assembler::sldi_h(MSARegister wd, MSARegister ws, uint32_t n) {
GenInstrMsaElm<MSARegister, MSARegister>(SLDI, ELM_DF_H, n, ws, wd);
}
void Assembler::sldi_w(MSARegister wd, MSARegister ws, uint32_t n) {
GenInstrMsaElm<MSARegister, MSARegister>(SLDI, ELM_DF_W, n, ws, wd);
}
void Assembler::sldi_d(MSARegister wd, MSARegister ws, uint32_t n) {
GenInstrMsaElm<MSARegister, MSARegister>(SLDI, ELM_DF_D, n, ws, wd);
}
void Assembler::splati_b(MSARegister wd, MSARegister ws, uint32_t n) {
GenInstrMsaElm<MSARegister, MSARegister>(SPLATI, ELM_DF_B, n, ws, wd);
}
void Assembler::splati_h(MSARegister wd, MSARegister ws, uint32_t n) {
GenInstrMsaElm<MSARegister, MSARegister>(SPLATI, ELM_DF_H, n, ws, wd);
}
void Assembler::splati_w(MSARegister wd, MSARegister ws, uint32_t n) {
GenInstrMsaElm<MSARegister, MSARegister>(SPLATI, ELM_DF_W, n, ws, wd);
}
void Assembler::splati_d(MSARegister wd, MSARegister ws, uint32_t n) {
GenInstrMsaElm<MSARegister, MSARegister>(SPLATI, ELM_DF_D, n, ws, wd);
}
void Assembler::copy_s_b(Register rd, MSARegister ws, uint32_t n) {
GenInstrMsaElm<Register, MSARegister>(COPY_S, ELM_DF_B, n, ws, rd);
}
void Assembler::copy_s_h(Register rd, MSARegister ws, uint32_t n) {
GenInstrMsaElm<Register, MSARegister>(COPY_S, ELM_DF_H, n, ws, rd);
}
void Assembler::copy_s_w(Register rd, MSARegister ws, uint32_t n) {
GenInstrMsaElm<Register, MSARegister>(COPY_S, ELM_DF_W, n, ws, rd);
}
void Assembler::copy_u_b(Register rd, MSARegister ws, uint32_t n) {
GenInstrMsaElm<Register, MSARegister>(COPY_U, ELM_DF_B, n, ws, rd);
}
void Assembler::copy_u_h(Register rd, MSARegister ws, uint32_t n) {
GenInstrMsaElm<Register, MSARegister>(COPY_U, ELM_DF_H, n, ws, rd);
}
void Assembler::copy_u_w(Register rd, MSARegister ws, uint32_t n) {
GenInstrMsaElm<Register, MSARegister>(COPY_U, ELM_DF_W, n, ws, rd);
}
void Assembler::insert_b(MSARegister wd, uint32_t n, Register rs) {
GenInstrMsaElm<MSARegister, Register>(INSERT, ELM_DF_B, n, rs, wd);
}
void Assembler::insert_h(MSARegister wd, uint32_t n, Register rs) {
GenInstrMsaElm<MSARegister, Register>(INSERT, ELM_DF_H, n, rs, wd);
}
void Assembler::insert_w(MSARegister wd, uint32_t n, Register rs) {
GenInstrMsaElm<MSARegister, Register>(INSERT, ELM_DF_W, n, rs, wd);
}
void Assembler::insve_b(MSARegister wd, uint32_t n, MSARegister ws) {
GenInstrMsaElm<MSARegister, MSARegister>(INSVE, ELM_DF_B, n, ws, wd);
}
void Assembler::insve_h(MSARegister wd, uint32_t n, MSARegister ws) {
GenInstrMsaElm<MSARegister, MSARegister>(INSVE, ELM_DF_H, n, ws, wd);
}
void Assembler::insve_w(MSARegister wd, uint32_t n, MSARegister ws) {
GenInstrMsaElm<MSARegister, MSARegister>(INSVE, ELM_DF_W, n, ws, wd);
}
void Assembler::insve_d(MSARegister wd, uint32_t n, MSARegister ws) {
GenInstrMsaElm<MSARegister, MSARegister>(INSVE, ELM_DF_D, n, ws, wd);
}
void Assembler::move_v(MSARegister wd, MSARegister ws) {
DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
DCHECK(ws.is_valid() && wd.is_valid());
Instr instr = MSA | MOVE_V | (ws.code() << kWsShift) |
(wd.code() << kWdShift) | MSA_ELM_MINOR;
emit(instr);
}
void Assembler::ctcmsa(MSAControlRegister cd, Register rs) {
DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
DCHECK(cd.is_valid() && rs.is_valid());
Instr instr = MSA | CTCMSA | (rs.code() << kWsShift) |
(cd.code() << kWdShift) | MSA_ELM_MINOR;
emit(instr);
}
void Assembler::cfcmsa(Register rd, MSAControlRegister cs) {
DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
DCHECK(rd.is_valid() && cs.is_valid());
Instr instr = MSA | CFCMSA | (cs.code() << kWsShift) |
(rd.code() << kWdShift) | MSA_ELM_MINOR;
emit(instr);
}
#define MSA_BIT_LIST(V) \
V(slli, SLLI) \
V(srai, SRAI) \
V(srli, SRLI) \
V(bclri, BCLRI) \
V(bseti, BSETI) \
V(bnegi, BNEGI) \
V(binsli, BINSLI) \
V(binsri, BINSRI) \
V(sat_s, SAT_S) \
V(sat_u, SAT_U) \
V(srari, SRARI) \
V(srlri, SRLRI)
#define MSA_BIT_FORMAT(name, opcode, format) \
void Assembler::name##_##format(MSARegister wd, MSARegister ws, \
uint32_t m) { \
GenInstrMsaBit(opcode, BIT_DF_##format, m, ws, wd); \
}
#define MSA_BIT(name, opcode) \
MSA_BIT_FORMAT(name, opcode, b) \
MSA_BIT_FORMAT(name, opcode, h) \
MSA_BIT_FORMAT(name, opcode, w) \
MSA_BIT_FORMAT(name, opcode, d)
MSA_BIT_LIST(MSA_BIT)
#undef MSA_BIT
#undef MSA_BIT_FORMAT
#undef MSA_BIT_LIST
int Assembler::RelocateInternalReference(RelocInfo::Mode rmode, Address pc,
intptr_t pc_delta) {
Instr instr = instr_at(pc);
if (RelocInfo::IsInternalReference(rmode)) {
int32_t* p = reinterpret_cast<int32_t*>(pc);
if (*p == 0) {
return 0; // Number of instructions patched.
}
*p += pc_delta;
return 1; // Number of instructions patched.
} else {
DCHECK(RelocInfo::IsInternalReferenceEncoded(rmode));
if (IsLui(instr)) {
Instr instr1 = instr_at(pc + 0 * kInstrSize);
Instr instr2 = instr_at(pc + 1 * kInstrSize);
DCHECK(IsOri(instr2) || IsJicOrJialc(instr2));
int32_t imm;
if (IsJicOrJialc(instr2)) {
imm = CreateTargetAddress(instr1, instr2);
} else {
imm = GetLuiOriImmediate(instr1, instr2);
}
if (imm == kEndOfJumpChain) {
return 0; // Number of instructions patched.
}
imm += pc_delta;
DCHECK_EQ(imm & 3, 0);
instr1 &= ~kImm16Mask;
instr2 &= ~kImm16Mask;
if (IsJicOrJialc(instr2)) {
uint32_t lui_offset_u, jic_offset_u;
Assembler::UnpackTargetAddressUnsigned(imm, lui_offset_u, jic_offset_u);
instr_at_put(pc + 0 * kInstrSize, instr1 | lui_offset_u);
instr_at_put(pc + 1 * kInstrSize, instr2 | jic_offset_u);
} else {
PatchLuiOriImmediate(pc, imm, instr1, 0 * kInstrSize, instr2,
1 * kInstrSize);
}
return 2; // Number of instructions patched.
} else {
UNREACHABLE();
}
}
}
void Assembler::RelocateRelativeReference(RelocInfo::Mode rmode, Address pc,
intptr_t pc_delta) {
Instr instr = instr_at(pc);
DCHECK(RelocInfo::IsRelativeCodeTarget(rmode));
if (IsLui(instr)) {
Instr instr1 = instr_at(pc + 0 * kInstrSize);
Instr instr2 = instr_at(pc + 1 * kInstrSize);
Instr instr3 = instr_at(pc + 2 * kInstrSize);
int32_t imm;
Address ori_offset;
if (IsNal(instr2)) {
instr2 = instr3;
ori_offset = 2 * kInstrSize;
} else {
ori_offset = 1 * kInstrSize;
}
DCHECK(IsOri(instr2));
imm = GetLuiOriImmediate(instr1, instr2);
instr1 &= ~kImm16Mask;
instr2 &= ~kImm16Mask;
if (imm == kEndOfJumpChain) {
return;
}
imm += pc_delta;
DCHECK_EQ(imm & 3, 0);
PatchLuiOriImmediate(pc, imm, instr1, 0 * kInstrSize, instr2, ori_offset);
return;
} else {
UNREACHABLE();
}
}
void Assembler::GrowBuffer() {
if (!own_buffer_) FATAL("external code buffer is too small");
// Compute new buffer size.
CodeDesc desc; // the new buffer
if (buffer_size_ < 1 * MB) {
desc.buffer_size = 2*buffer_size_;
} else {
desc.buffer_size = buffer_size_ + 1*MB;
}
// Some internal data structures overflow for very large buffers,
// they must ensure that kMaximalBufferSize is not too large.
if (desc.buffer_size > kMaximalBufferSize) {
V8::FatalProcessOutOfMemory(nullptr, "Assembler::GrowBuffer");
}
// Set up new buffer.
desc.buffer = NewArray<byte>(desc.buffer_size);
desc.origin = this;
desc.instr_size = pc_offset();
desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
// Copy the data.
int pc_delta = desc.buffer - buffer_;
int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
MemMove(desc.buffer, buffer_, desc.instr_size);
MemMove(reloc_info_writer.pos() + rc_delta, reloc_info_writer.pos(),
desc.reloc_size);
// Switch buffers.
DeleteArray(buffer_);
buffer_ = desc.buffer;
buffer_size_ = desc.buffer_size;
pc_ += pc_delta;
reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
reloc_info_writer.last_pc() + pc_delta);
// Relocate runtime entries.
for (RelocIterator it(desc); !it.done(); it.next()) {
RelocInfo::Mode rmode = it.rinfo()->rmode();
if (rmode == RelocInfo::INTERNAL_REFERENCE_ENCODED ||
rmode == RelocInfo::INTERNAL_REFERENCE) {
RelocateInternalReference(rmode, it.rinfo()->pc(), pc_delta);
}
}
DCHECK(!overflow());
}
void Assembler::db(uint8_t data) {
CheckForEmitInForbiddenSlot();
EmitHelper(data);
}
void Assembler::dd(uint32_t data) {
CheckForEmitInForbiddenSlot();
EmitHelper(data);
}
void Assembler::dq(uint64_t data) {
CheckForEmitInForbiddenSlot();
EmitHelper(data);
}
void Assembler::dd(Label* label) {
uint32_t data;
CheckForEmitInForbiddenSlot();
if (label->is_bound()) {
data = reinterpret_cast<uint32_t>(buffer_ + label->pos());
} else {
data = jump_address(label);
unbound_labels_count_++;
internal_reference_positions_.insert(label->pos());
}
RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
EmitHelper(data);
}
void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
if (!ShouldRecordRelocInfo(rmode)) return;
// We do not try to reuse pool constants.
RelocInfo rinfo(reinterpret_cast<Address>(pc_), rmode, data, Code());
DCHECK_GE(buffer_space(), kMaxRelocSize); // Too late to grow buffer here.
reloc_info_writer.Write(&rinfo);
}
void Assembler::BlockTrampolinePoolFor(int instructions) {
CheckTrampolinePoolQuick(instructions);
BlockTrampolinePoolBefore(pc_offset() + instructions * kInstrSize);
}
void Assembler::CheckTrampolinePool() {
// Some small sequences of instructions must not be broken up by the
// insertion of a trampoline pool; such sequences are protected by setting
// either trampoline_pool_blocked_nesting_ or no_trampoline_pool_before_,
// which are both checked here. Also, recursive calls to CheckTrampolinePool
// are blocked by trampoline_pool_blocked_nesting_.
if ((trampoline_pool_blocked_nesting_ > 0) ||
(pc_offset() < no_trampoline_pool_before_)) {
// Emission is currently blocked; make sure we try again as soon as
// possible.
if (trampoline_pool_blocked_nesting_ > 0) {
next_buffer_check_ = pc_offset() + kInstrSize;
} else {
next_buffer_check_ = no_trampoline_pool_before_;
}
return;
}
DCHECK(!trampoline_emitted_);
DCHECK_GE(unbound_labels_count_, 0);
if (unbound_labels_count_ > 0) {
// First we emit jump (2 instructions), then we emit trampoline pool.
{ BlockTrampolinePoolScope block_trampoline_pool(this);
Label after_pool;
if (IsMipsArchVariant(kMips32r6)) {
bc(&after_pool);
} else {
b(&after_pool);
}
nop();
int pool_start = pc_offset();
for (int i = 0; i < unbound_labels_count_; i++) {
{
if (IsMipsArchVariant(kMips32r6)) {
bc(&after_pool);
nop();
} else {
GenPCRelativeJump(t8, t9, 0, RelocInfo::NONE,
BranchDelaySlot::PROTECT);
}
}
}
bind(&after_pool);
trampoline_ = Trampoline(pool_start, unbound_labels_count_);
trampoline_emitted_ = true;
// As we are only going to emit trampoline once, we need to prevent any
// further emission.
next_buffer_check_ = kMaxInt;
}
} else {
// Number of branches to unbound label at this point is zero, so we can
// move next buffer check to maximum.
next_buffer_check_ = pc_offset() +
kMaxBranchOffset - kTrampolineSlotsSize * 16;
}
return;
}
Address Assembler::target_address_at(Address pc) {
Instr instr1 = instr_at(pc);
Instr instr2 = instr_at(pc + kInstrSize);
Instr instr3 = instr_at(pc + 2 * kInstrSize);
// Interpret 2 instructions generated by li (lui/ori) or optimized pairs
// lui/jic, aui/jic or lui/jialc.
if (IsLui(instr1)) {
if (IsOri(instr2)) {
Address target_address;
// Assemble the 32 bit value.
target_address = GetLuiOriImmediate(instr1, instr2);
if (IsAddu(instr3, t9, ra, t9)) {
target_address += pc + kRelativeJumpForBuiltinsOffset;
}
return target_address;
} else if (IsJicOrJialc(instr2)) {
// Assemble the 32 bit value.
return static_cast<Address>(CreateTargetAddress(instr1, instr2));
} else if (IsNal(instr2)) {
DCHECK(IsOri(instr3));
Address target_address;
target_address = GetLuiOriImmediate(instr1, instr3);
return target_address + pc + kRelativeCallForBuiltinsOffset;
}
}
// We should never get here, force a bad address if we do.
UNREACHABLE();
}
// MIPS and ia32 use opposite encoding for qNaN and sNaN, such that ia32
// qNaN is a MIPS sNaN, and ia32 sNaN is MIPS qNaN. If running from a heap
// snapshot generated on ia32, the resulting MIPS sNaN must be quieted.
// OS::nan_value() returns a qNaN.
void Assembler::QuietNaN(HeapObject object) {
HeapNumber::cast(object)->set_value(std::numeric_limits<double>::quiet_NaN());
}
// On Mips, a target address is stored in a lui/ori instruction pair, each
// of which load 16 bits of the 32-bit address to a register.
// Patching the address must replace both instr, and flush the i-cache.
// On r6, target address is stored in a lui/jic pair, and both instr have to be
// patched.
void Assembler::set_target_value_at(Address pc, uint32_t target,
ICacheFlushMode icache_flush_mode) {
Instr instr1 = instr_at(pc);
Instr instr2 = instr_at(pc + kInstrSize);
#ifdef DEBUG
// Check we have the result from a li macro-instruction, using instr pair.
DCHECK(IsLui(instr1) &&
(IsOri(instr2) || IsJicOrJialc(instr2) || IsNal(instr2)));
#endif
if (IsJicOrJialc(instr2)) {
// Must use 2 instructions to insure patchable code => use lui and jic
uint32_t lui_offset, jic_offset;
Assembler::UnpackTargetAddressUnsigned(target, lui_offset, jic_offset);
instr1 &= ~kImm16Mask;
instr2 &= ~kImm16Mask;
instr1 |= lui_offset;
instr2 |= jic_offset;
instr_at_put(pc, instr1);
instr_at_put(pc + kInstrSize, instr2);
} else {
Instr instr3 = instr_at(pc + 2 * kInstrSize);
// If we are using relative calls/jumps for builtins.
if (IsNal(instr2)) {
target -= pc + kRelativeCallForBuiltinsOffset;
}
if (IsAddu(instr3, t9, ra, t9)) {
target -= pc + kRelativeJumpForBuiltinsOffset;
}
// Must use 2 instructions to insure patchable code => just use lui and ori.
// lui rt, upper-16.
// ori rt rt, lower-16.
if (IsNal(instr2)) {
instr1 &= ~kImm16Mask;
instr3 &= ~kImm16Mask;
PatchLuiOriImmediate(pc, target, instr1, 0 * kInstrSize, instr3,
2 * kInstrSize);
} else {
instr1 &= ~kImm16Mask;
instr2 &= ~kImm16Mask;
PatchLuiOriImmediate(pc, target, instr1, 0 * kInstrSize, instr2,
1 * kInstrSize);
}
}
if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
Assembler::FlushICache(pc, 2 * sizeof(int32_t));
}
}
void Assembler::GenPCRelativeJump(Register tf, Register ts, int32_t imm32,
RelocInfo::Mode rmode,
BranchDelaySlot bdslot) {
// Order of these instructions is relied upon when patching them
// or when changing imm32 that lui/ori pair loads.
or_(tf, ra, zero_reg);
nal(); // Relative place of nal instruction determines kLongBranchPCOffset.
if (!RelocInfo::IsNone(rmode)) {
RecordRelocInfo(rmode);
}
lui(ts, (imm32 & kHiMask) >> kLuiShift);
ori(ts, ts, (imm32 & kImm16Mask));
addu(ts, ra, ts);
if (bdslot == USE_DELAY_SLOT) {
or_(ra, tf, zero_reg);
}
jr(ts);
if (bdslot == PROTECT) {
or_(ra, tf, zero_reg);
}
}
void Assembler::GenPCRelativeJumpAndLink(Register t, int32_t imm32,
RelocInfo::Mode rmode,
BranchDelaySlot bdslot) {
if (!RelocInfo::IsNone(rmode)) {
RecordRelocInfo(rmode);
}
// Order of these instructions is relied upon when patching them
// or when changing imm32 that lui/ori pair loads.
lui(t, (imm32 & kHiMask) >> kLuiShift);
nal(); // Relative place of nal instruction determines kLongBranchPCOffset.
ori(t, t, (imm32 & kImm16Mask));
addu(t, ra, t);
jalr(t);
if (bdslot == PROTECT) nop();
}
UseScratchRegisterScope::UseScratchRegisterScope(Assembler* assembler)
: available_(assembler->GetScratchRegisterList()),
old_available_(*available_) {}
UseScratchRegisterScope::~UseScratchRegisterScope() {
*available_ = old_available_;
}
Register UseScratchRegisterScope::Acquire() {
DCHECK_NOT_NULL(available_);
DCHECK_NE(*available_, 0);
int index = static_cast<int>(base::bits::CountTrailingZeros32(*available_));
*available_ &= ~(1UL << index);
return Register::from_code(index);
}
bool UseScratchRegisterScope::hasAvailable() const { return *available_ != 0; }
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_MIPS