blob: f8d01e9b9b7e7a18a233e5ce9f1903d7f1ed3e06 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_ARM
#include "src/codegen.h"
#include "src/debug/debug.h"
#include "src/deoptimizer.h"
#include "src/full-codegen/full-codegen.h"
#include "src/runtime/runtime.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address,
ExitFrameType exit_frame_type) {
// ----------- S t a t e -------------
// -- r0 : number of arguments excluding receiver
// -- r1 : target
// -- r3 : new.target
// -- sp[0] : last argument
// -- ...
// -- sp[4 * (argc - 1)] : first argument
// -- sp[4 * argc] : receiver
// -----------------------------------
__ AssertFunction(r1);
// Make sure we operate in the context of the called function (for example
// ConstructStubs implemented in C++ will be run in the context of the caller
// instead of the callee, due to the way that [[Construct]] is defined for
// ordinary functions).
__ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
// JumpToExternalReference expects r0 to contain the number of arguments
// including the receiver and the extra arguments.
const int num_extra_args = 3;
__ add(r0, r0, Operand(num_extra_args + 1));
// Insert extra arguments.
__ SmiTag(r0);
__ Push(r0, r1, r3);
__ SmiUntag(r0);
__ JumpToExternalReference(ExternalReference(address, masm->isolate()),
exit_frame_type == BUILTIN_EXIT);
}
// Load the built-in InternalArray function from the current context.
static void GenerateLoadInternalArrayFunction(MacroAssembler* masm,
Register result) {
// Load the InternalArray function from the current native context.
__ LoadNativeContextSlot(Context::INTERNAL_ARRAY_FUNCTION_INDEX, result);
}
// Load the built-in Array function from the current context.
static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) {
// Load the Array function from the current native context.
__ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, result);
}
void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : number of arguments
// -- lr : return address
// -- sp[...]: constructor arguments
// -----------------------------------
Label generic_array_code, one_or_more_arguments, two_or_more_arguments;
// Get the InternalArray function.
GenerateLoadInternalArrayFunction(masm, r1);
if (FLAG_debug_code) {
// Initial map for the builtin InternalArray functions should be maps.
__ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
__ SmiTst(r2);
__ Assert(ne, kUnexpectedInitialMapForInternalArrayFunction);
__ CompareObjectType(r2, r3, r4, MAP_TYPE);
__ Assert(eq, kUnexpectedInitialMapForInternalArrayFunction);
}
// Run the native code for the InternalArray function called as a normal
// function.
// tail call a stub
InternalArrayConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
}
void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : number of arguments
// -- lr : return address
// -- sp[...]: constructor arguments
// -----------------------------------
Label generic_array_code, one_or_more_arguments, two_or_more_arguments;
// Get the Array function.
GenerateLoadArrayFunction(masm, r1);
if (FLAG_debug_code) {
// Initial map for the builtin Array functions should be maps.
__ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
__ SmiTst(r2);
__ Assert(ne, kUnexpectedInitialMapForArrayFunction);
__ CompareObjectType(r2, r3, r4, MAP_TYPE);
__ Assert(eq, kUnexpectedInitialMapForArrayFunction);
}
__ mov(r3, r1);
// Run the native code for the Array function called as a normal function.
// tail call a stub
__ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
ArrayConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
}
// static
void Builtins::Generate_MathMaxMin(MacroAssembler* masm, MathMaxMinKind kind) {
// ----------- S t a t e -------------
// -- r0 : number of arguments
// -- r1 : function
// -- cp : context
// -- lr : return address
// -- sp[(argc - n - 1) * 4] : arg[n] (zero based)
// -- sp[argc * 4] : receiver
// -----------------------------------
Condition const cc_done = (kind == MathMaxMinKind::kMin) ? mi : gt;
Condition const cc_swap = (kind == MathMaxMinKind::kMin) ? gt : mi;
Heap::RootListIndex const root_index =
(kind == MathMaxMinKind::kMin) ? Heap::kInfinityValueRootIndex
: Heap::kMinusInfinityValueRootIndex;
DoubleRegister const reg = (kind == MathMaxMinKind::kMin) ? d2 : d1;
// Load the accumulator with the default return value (either -Infinity or
// +Infinity), with the tagged value in r5 and the double value in d1.
__ LoadRoot(r5, root_index);
__ vldr(d1, FieldMemOperand(r5, HeapNumber::kValueOffset));
Label done_loop, loop;
__ mov(r4, r0);
__ bind(&loop);
{
// Check if all parameters done.
__ sub(r4, r4, Operand(1), SetCC);
__ b(lt, &done_loop);
// Load the next parameter tagged value into r2.
__ ldr(r2, MemOperand(sp, r4, LSL, kPointerSizeLog2));
// Load the double value of the parameter into d2, maybe converting the
// parameter to a number first using the ToNumber builtin if necessary.
Label convert, convert_smi, convert_number, done_convert;
__ bind(&convert);
__ JumpIfSmi(r2, &convert_smi);
__ ldr(r3, FieldMemOperand(r2, HeapObject::kMapOffset));
__ JumpIfRoot(r3, Heap::kHeapNumberMapRootIndex, &convert_number);
{
// Parameter is not a Number, use the ToNumber builtin to convert it.
DCHECK(!FLAG_enable_embedded_constant_pool);
FrameScope scope(masm, StackFrame::MANUAL);
__ SmiTag(r0);
__ SmiTag(r4);
__ EnterBuiltinFrame(cp, r1, r0);
__ Push(r4, r5);
__ mov(r0, r2);
__ Call(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET);
__ mov(r2, r0);
__ Pop(r4, r5);
__ LeaveBuiltinFrame(cp, r1, r0);
__ SmiUntag(r4);
__ SmiUntag(r0);
{
// Restore the double accumulator value (d1).
Label done_restore;
__ SmiToDouble(d1, r5);
__ JumpIfSmi(r5, &done_restore);
__ vldr(d1, FieldMemOperand(r5, HeapNumber::kValueOffset));
__ bind(&done_restore);
}
}
__ b(&convert);
__ bind(&convert_number);
__ vldr(d2, FieldMemOperand(r2, HeapNumber::kValueOffset));
__ b(&done_convert);
__ bind(&convert_smi);
__ SmiToDouble(d2, r2);
__ bind(&done_convert);
// Perform the actual comparison with the accumulator value on the left hand
// side (d1) and the next parameter value on the right hand side (d2).
Label compare_nan, compare_swap;
__ VFPCompareAndSetFlags(d1, d2);
__ b(cc_done, &loop);
__ b(cc_swap, &compare_swap);
__ b(vs, &compare_nan);
// Left and right hand side are equal, check for -0 vs. +0.
__ VmovHigh(ip, reg);
__ cmp(ip, Operand(0x80000000));
__ b(ne, &loop);
// Result is on the right hand side.
__ bind(&compare_swap);
__ vmov(d1, d2);
__ mov(r5, r2);
__ b(&loop);
// At least one side is NaN, which means that the result will be NaN too.
__ bind(&compare_nan);
__ LoadRoot(r5, Heap::kNanValueRootIndex);
__ vldr(d1, FieldMemOperand(r5, HeapNumber::kValueOffset));
__ b(&loop);
}
__ bind(&done_loop);
// Drop all slots, including the receiver.
__ add(r0, r0, Operand(1));
__ Drop(r0);
__ mov(r0, r5);
__ Ret();
}
// static
void Builtins::Generate_NumberConstructor(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : number of arguments
// -- r1 : constructor function
// -- cp : context
// -- lr : return address
// -- sp[(argc - n - 1) * 4] : arg[n] (zero based)
// -- sp[argc * 4] : receiver
// -----------------------------------
// 1. Load the first argument into r0.
Label no_arguments;
{
__ mov(r2, r0); // Store argc in r2.
__ sub(r0, r0, Operand(1), SetCC);
__ b(lo, &no_arguments);
__ ldr(r0, MemOperand(sp, r0, LSL, kPointerSizeLog2));
}
// 2a. Convert the first argument to a number.
{
FrameScope scope(masm, StackFrame::MANUAL);
__ SmiTag(r2);
__ EnterBuiltinFrame(cp, r1, r2);
__ Call(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET);
__ LeaveBuiltinFrame(cp, r1, r2);
__ SmiUntag(r2);
}
{
// Drop all arguments including the receiver.
__ Drop(r2);
__ Ret(1);
}
// 2b. No arguments, return +0.
__ bind(&no_arguments);
__ Move(r0, Smi::kZero);
__ Ret(1);
}
// static
void Builtins::Generate_NumberConstructor_ConstructStub(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : number of arguments
// -- r1 : constructor function
// -- r3 : new target
// -- cp : context
// -- lr : return address
// -- sp[(argc - n - 1) * 4] : arg[n] (zero based)
// -- sp[argc * 4] : receiver
// -----------------------------------
// 1. Make sure we operate in the context of the called function.
__ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
// 2. Load the first argument into r2.
{
Label no_arguments, done;
__ mov(r6, r0); // Store argc in r6.
__ sub(r0, r0, Operand(1), SetCC);
__ b(lo, &no_arguments);
__ ldr(r2, MemOperand(sp, r0, LSL, kPointerSizeLog2));
__ b(&done);
__ bind(&no_arguments);
__ Move(r2, Smi::kZero);
__ bind(&done);
}
// 3. Make sure r2 is a number.
{
Label done_convert;
__ JumpIfSmi(r2, &done_convert);
__ CompareObjectType(r2, r4, r4, HEAP_NUMBER_TYPE);
__ b(eq, &done_convert);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ SmiTag(r6);
__ EnterBuiltinFrame(cp, r1, r6);
__ Push(r3);
__ Move(r0, r2);
__ Call(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET);
__ Move(r2, r0);
__ Pop(r3);
__ LeaveBuiltinFrame(cp, r1, r6);
__ SmiUntag(r6);
}
__ bind(&done_convert);
}
// 4. Check if new target and constructor differ.
Label drop_frame_and_ret, new_object;
__ cmp(r1, r3);
__ b(ne, &new_object);
// 5. Allocate a JSValue wrapper for the number.
__ AllocateJSValue(r0, r1, r2, r4, r5, &new_object);
__ b(&drop_frame_and_ret);
// 6. Fallback to the runtime to create new object.
__ bind(&new_object);
{
FrameScope scope(masm, StackFrame::MANUAL);
FastNewObjectStub stub(masm->isolate());
__ SmiTag(r6);
__ EnterBuiltinFrame(cp, r1, r6);
__ Push(r2); // first argument
__ CallStub(&stub);
__ Pop(r2);
__ LeaveBuiltinFrame(cp, r1, r6);
__ SmiUntag(r6);
}
__ str(r2, FieldMemOperand(r0, JSValue::kValueOffset));
__ bind(&drop_frame_and_ret);
{
__ Drop(r6);
__ Ret(1);
}
}
// static
void Builtins::Generate_StringConstructor(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : number of arguments
// -- r1 : constructor function
// -- cp : context
// -- lr : return address
// -- sp[(argc - n - 1) * 4] : arg[n] (zero based)
// -- sp[argc * 4] : receiver
// -----------------------------------
// 1. Load the first argument into r0.
Label no_arguments;
{
__ mov(r2, r0); // Store argc in r2.
__ sub(r0, r0, Operand(1), SetCC);
__ b(lo, &no_arguments);
__ ldr(r0, MemOperand(sp, r0, LSL, kPointerSizeLog2));
}
// 2a. At least one argument, return r0 if it's a string, otherwise
// dispatch to appropriate conversion.
Label drop_frame_and_ret, to_string, symbol_descriptive_string;
{
__ JumpIfSmi(r0, &to_string);
STATIC_ASSERT(FIRST_NONSTRING_TYPE == SYMBOL_TYPE);
__ CompareObjectType(r0, r3, r3, FIRST_NONSTRING_TYPE);
__ b(hi, &to_string);
__ b(eq, &symbol_descriptive_string);
__ b(&drop_frame_and_ret);
}
// 2b. No arguments, return the empty string (and pop the receiver).
__ bind(&no_arguments);
{
__ LoadRoot(r0, Heap::kempty_stringRootIndex);
__ Ret(1);
}
// 3a. Convert r0 to a string.
__ bind(&to_string);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ SmiTag(r2);
__ EnterBuiltinFrame(cp, r1, r2);
__ Call(masm->isolate()->builtins()->ToString(), RelocInfo::CODE_TARGET);
__ LeaveBuiltinFrame(cp, r1, r2);
__ SmiUntag(r2);
}
__ b(&drop_frame_and_ret);
// 3b. Convert symbol in r0 to a string.
__ bind(&symbol_descriptive_string);
{
__ Drop(r2);
__ Drop(1);
__ Push(r0);
__ TailCallRuntime(Runtime::kSymbolDescriptiveString);
}
__ bind(&drop_frame_and_ret);
{
__ Drop(r2);
__ Ret(1);
}
}
// static
void Builtins::Generate_StringConstructor_ConstructStub(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : number of arguments
// -- r1 : constructor function
// -- r3 : new target
// -- cp : context
// -- lr : return address
// -- sp[(argc - n - 1) * 4] : arg[n] (zero based)
// -- sp[argc * 4] : receiver
// -----------------------------------
// 1. Make sure we operate in the context of the called function.
__ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
// 2. Load the first argument into r2.
{
Label no_arguments, done;
__ mov(r6, r0); // Store argc in r6.
__ sub(r0, r0, Operand(1), SetCC);
__ b(lo, &no_arguments);
__ ldr(r2, MemOperand(sp, r0, LSL, kPointerSizeLog2));
__ b(&done);
__ bind(&no_arguments);
__ LoadRoot(r2, Heap::kempty_stringRootIndex);
__ bind(&done);
}
// 3. Make sure r2 is a string.
{
Label convert, done_convert;
__ JumpIfSmi(r2, &convert);
__ CompareObjectType(r2, r4, r4, FIRST_NONSTRING_TYPE);
__ b(lo, &done_convert);
__ bind(&convert);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ SmiTag(r6);
__ EnterBuiltinFrame(cp, r1, r6);
__ Push(r3);
__ Move(r0, r2);
__ Call(masm->isolate()->builtins()->ToString(), RelocInfo::CODE_TARGET);
__ Move(r2, r0);
__ Pop(r3);
__ LeaveBuiltinFrame(cp, r1, r6);
__ SmiUntag(r6);
}
__ bind(&done_convert);
}
// 4. Check if new target and constructor differ.
Label drop_frame_and_ret, new_object;
__ cmp(r1, r3);
__ b(ne, &new_object);
// 5. Allocate a JSValue wrapper for the string.
__ AllocateJSValue(r0, r1, r2, r4, r5, &new_object);
__ b(&drop_frame_and_ret);
// 6. Fallback to the runtime to create new object.
__ bind(&new_object);
{
FrameScope scope(masm, StackFrame::MANUAL);
FastNewObjectStub stub(masm->isolate());
__ SmiTag(r6);
__ EnterBuiltinFrame(cp, r1, r6);
__ Push(r2); // first argument
__ CallStub(&stub);
__ Pop(r2);
__ LeaveBuiltinFrame(cp, r1, r6);
__ SmiUntag(r6);
}
__ str(r2, FieldMemOperand(r0, JSValue::kValueOffset));
__ bind(&drop_frame_and_ret);
{
__ Drop(r6);
__ Ret(1);
}
}
static void GenerateTailCallToSharedCode(MacroAssembler* masm) {
__ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
__ ldr(r2, FieldMemOperand(r2, SharedFunctionInfo::kCodeOffset));
__ add(r2, r2, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(r2);
}
static void GenerateTailCallToReturnedCode(MacroAssembler* masm,
Runtime::FunctionId function_id) {
// ----------- S t a t e -------------
// -- r0 : argument count (preserved for callee)
// -- r1 : target function (preserved for callee)
// -- r3 : new target (preserved for callee)
// -----------------------------------
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
// Push the number of arguments to the callee.
__ SmiTag(r0);
__ push(r0);
// Push a copy of the target function and the new target.
__ push(r1);
__ push(r3);
// Push function as parameter to the runtime call.
__ Push(r1);
__ CallRuntime(function_id, 1);
__ mov(r2, r0);
// Restore target function and new target.
__ pop(r3);
__ pop(r1);
__ pop(r0);
__ SmiUntag(r0, r0);
}
__ add(r2, r2, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(r2);
}
void Builtins::Generate_InOptimizationQueue(MacroAssembler* masm) {
// Checking whether the queued function is ready for install is optional,
// since we come across interrupts and stack checks elsewhere. However,
// not checking may delay installing ready functions, and always checking
// would be quite expensive. A good compromise is to first check against
// stack limit as a cue for an interrupt signal.
Label ok;
__ LoadRoot(ip, Heap::kStackLimitRootIndex);
__ cmp(sp, Operand(ip));
__ b(hs, &ok);
GenerateTailCallToReturnedCode(masm, Runtime::kTryInstallOptimizedCode);
__ bind(&ok);
GenerateTailCallToSharedCode(masm);
}
namespace {
void Generate_JSConstructStubHelper(MacroAssembler* masm, bool is_api_function,
bool create_implicit_receiver,
bool check_derived_construct) {
// ----------- S t a t e -------------
// -- r0 : number of arguments
// -- r1 : constructor function
// -- r3 : new target
// -- cp : context
// -- lr : return address
// -- sp[...]: constructor arguments
// -----------------------------------
Isolate* isolate = masm->isolate();
// Enter a construct frame.
{
FrameAndConstantPoolScope scope(masm, StackFrame::CONSTRUCT);
// Preserve the incoming parameters on the stack.
__ SmiTag(r0);
__ Push(cp, r0);
if (create_implicit_receiver) {
// Allocate the new receiver object.
__ Push(r1, r3);
FastNewObjectStub stub(masm->isolate());
__ CallStub(&stub);
__ mov(r4, r0);
__ Pop(r1, r3);
// ----------- S t a t e -------------
// -- r1: constructor function
// -- r3: new target
// -- r4: newly allocated object
// -----------------------------------
// Retrieve smi-tagged arguments count from the stack.
__ ldr(r0, MemOperand(sp));
}
__ SmiUntag(r0);
if (create_implicit_receiver) {
// Push the allocated receiver to the stack. We need two copies
// because we may have to return the original one and the calling
// conventions dictate that the called function pops the receiver.
__ push(r4);
__ push(r4);
} else {
__ PushRoot(Heap::kTheHoleValueRootIndex);
}
// Set up pointer to last argument.
__ add(r2, fp, Operand(StandardFrameConstants::kCallerSPOffset));
// Copy arguments and receiver to the expression stack.
// r0: number of arguments
// r1: constructor function
// r2: address of last argument (caller sp)
// r3: new target
// r4: number of arguments (smi-tagged)
// sp[0]: receiver
// sp[1]: receiver
// sp[2]: number of arguments (smi-tagged)
Label loop, entry;
__ SmiTag(r4, r0);
__ b(&entry);
__ bind(&loop);
__ ldr(ip, MemOperand(r2, r4, LSL, kPointerSizeLog2 - 1));
__ push(ip);
__ bind(&entry);
__ sub(r4, r4, Operand(2), SetCC);
__ b(ge, &loop);
// Call the function.
// r0: number of arguments
// r1: constructor function
// r3: new target
ParameterCount actual(r0);
__ InvokeFunction(r1, r3, actual, CALL_FUNCTION,
CheckDebugStepCallWrapper());
// Store offset of return address for deoptimizer.
if (create_implicit_receiver && !is_api_function) {
masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset());
}
// Restore context from the frame.
// r0: result
// sp[0]: receiver
// sp[1]: number of arguments (smi-tagged)
__ ldr(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
if (create_implicit_receiver) {
// If the result is an object (in the ECMA sense), we should get rid
// of the receiver and use the result; see ECMA-262 section 13.2.2-7
// on page 74.
Label use_receiver, exit;
// If the result is a smi, it is *not* an object in the ECMA sense.
// r0: result
// sp[0]: receiver
// sp[1]: number of arguments (smi-tagged)
__ JumpIfSmi(r0, &use_receiver);
// If the type of the result (stored in its map) is less than
// FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense.
__ CompareObjectType(r0, r1, r3, FIRST_JS_RECEIVER_TYPE);
__ b(ge, &exit);
// Throw away the result of the constructor invocation and use the
// on-stack receiver as the result.
__ bind(&use_receiver);
__ ldr(r0, MemOperand(sp));
// Remove receiver from the stack, remove caller arguments, and
// return.
__ bind(&exit);
// r0: result
// sp[0]: receiver (newly allocated object)
// sp[1]: number of arguments (smi-tagged)
__ ldr(r1, MemOperand(sp, 1 * kPointerSize));
} else {
__ ldr(r1, MemOperand(sp));
}
// Leave construct frame.
}
// ES6 9.2.2. Step 13+
// Check that the result is not a Smi, indicating that the constructor result
// from a derived class is neither undefined nor an Object.
if (check_derived_construct) {
Label dont_throw;
__ JumpIfNotSmi(r0, &dont_throw);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowDerivedConstructorReturnedNonObject);
}
__ bind(&dont_throw);
}
__ add(sp, sp, Operand(r1, LSL, kPointerSizeLog2 - 1));
__ add(sp, sp, Operand(kPointerSize));
if (create_implicit_receiver) {
__ IncrementCounter(isolate->counters()->constructed_objects(), 1, r1, r2);
}
__ Jump(lr);
}
} // namespace
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, false, true, false);
}
void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, true, false, false);
}
void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, false, false, false);
}
void Builtins::Generate_JSBuiltinsConstructStubForDerived(
MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, false, false, true);
}
// static
void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : the value to pass to the generator
// -- r1 : the JSGeneratorObject to resume
// -- r2 : the resume mode (tagged)
// -- lr : return address
// -----------------------------------
__ AssertGeneratorObject(r1);
// Store input value into generator object.
__ str(r0, FieldMemOperand(r1, JSGeneratorObject::kInputOrDebugPosOffset));
__ RecordWriteField(r1, JSGeneratorObject::kInputOrDebugPosOffset, r0, r3,
kLRHasNotBeenSaved, kDontSaveFPRegs);
// Store resume mode into generator object.
__ str(r2, FieldMemOperand(r1, JSGeneratorObject::kResumeModeOffset));
// Load suspended function and context.
__ ldr(cp, FieldMemOperand(r1, JSGeneratorObject::kContextOffset));
__ ldr(r4, FieldMemOperand(r1, JSGeneratorObject::kFunctionOffset));
// Flood function if we are stepping.
Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator;
Label stepping_prepared;
ExternalReference last_step_action =
ExternalReference::debug_last_step_action_address(masm->isolate());
STATIC_ASSERT(StepFrame > StepIn);
__ mov(ip, Operand(last_step_action));
__ ldrsb(ip, MemOperand(ip));
__ cmp(ip, Operand(StepIn));
__ b(ge, &prepare_step_in_if_stepping);
// Flood function if we need to continue stepping in the suspended generator.
ExternalReference debug_suspended_generator =
ExternalReference::debug_suspended_generator_address(masm->isolate());
__ mov(ip, Operand(debug_suspended_generator));
__ ldr(ip, MemOperand(ip));
__ cmp(ip, Operand(r1));
__ b(eq, &prepare_step_in_suspended_generator);
__ bind(&stepping_prepared);
// Push receiver.
__ ldr(ip, FieldMemOperand(r1, JSGeneratorObject::kReceiverOffset));
__ Push(ip);
// ----------- S t a t e -------------
// -- r1 : the JSGeneratorObject to resume
// -- r2 : the resume mode (tagged)
// -- r4 : generator function
// -- cp : generator context
// -- lr : return address
// -- sp[0] : generator receiver
// -----------------------------------
// Push holes for arguments to generator function. Since the parser forced
// context allocation for any variables in generators, the actual argument
// values have already been copied into the context and these dummy values
// will never be used.
__ ldr(r3, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
__ ldr(r3,
FieldMemOperand(r3, SharedFunctionInfo::kFormalParameterCountOffset));
{
Label done_loop, loop;
__ bind(&loop);
__ sub(r3, r3, Operand(Smi::FromInt(1)), SetCC);
__ b(mi, &done_loop);
__ PushRoot(Heap::kTheHoleValueRootIndex);
__ b(&loop);
__ bind(&done_loop);
}
// Underlying function needs to have bytecode available.
if (FLAG_debug_code) {
__ ldr(r3, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
__ ldr(r3, FieldMemOperand(r3, SharedFunctionInfo::kFunctionDataOffset));
__ CompareObjectType(r3, r3, r3, BYTECODE_ARRAY_TYPE);
__ Assert(eq, kMissingBytecodeArray);
}
// Resume (Ignition/TurboFan) generator object.
{
__ ldr(r0, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
__ ldr(r0, FieldMemOperand(
r0, SharedFunctionInfo::kFormalParameterCountOffset));
__ SmiUntag(r0);
// We abuse new.target both to indicate that this is a resume call and to
// pass in the generator object. In ordinary calls, new.target is always
// undefined because generator functions are non-constructable.
__ Move(r3, r1);
__ Move(r1, r4);
__ ldr(r5, FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
__ Jump(r5);
}
__ bind(&prepare_step_in_if_stepping);
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
__ Push(r1, r2, r4);
__ CallRuntime(Runtime::kDebugPrepareStepInIfStepping);
__ Pop(r1, r2);
__ ldr(r4, FieldMemOperand(r1, JSGeneratorObject::kFunctionOffset));
}
__ b(&stepping_prepared);
__ bind(&prepare_step_in_suspended_generator);
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
__ Push(r1, r2);
__ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator);
__ Pop(r1, r2);
__ ldr(r4, FieldMemOperand(r1, JSGeneratorObject::kFunctionOffset));
}
__ b(&stepping_prepared);
}
void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) {
FrameScope scope(masm, StackFrame::INTERNAL);
__ push(r1);
__ CallRuntime(Runtime::kThrowConstructedNonConstructable);
}
enum IsTagged { kArgcIsSmiTagged, kArgcIsUntaggedInt };
// Clobbers r2; preserves all other registers.
static void Generate_CheckStackOverflow(MacroAssembler* masm, Register argc,
IsTagged argc_is_tagged) {
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
Label okay;
__ LoadRoot(r2, Heap::kRealStackLimitRootIndex);
// Make r2 the space we have left. The stack might already be overflowed
// here which will cause r2 to become negative.
__ sub(r2, sp, r2);
// Check if the arguments will overflow the stack.
if (argc_is_tagged == kArgcIsSmiTagged) {
__ cmp(r2, Operand::PointerOffsetFromSmiKey(argc));
} else {
DCHECK(argc_is_tagged == kArgcIsUntaggedInt);
__ cmp(r2, Operand(argc, LSL, kPointerSizeLog2));
}
__ b(gt, &okay); // Signed comparison.
// Out of stack space.
__ CallRuntime(Runtime::kThrowStackOverflow);
__ bind(&okay);
}
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
bool is_construct) {
// Called from Generate_JS_Entry
// r0: new.target
// r1: function
// r2: receiver
// r3: argc
// r4: argv
// r5-r6, r8 (if !FLAG_enable_embedded_constant_pool) and cp may be clobbered
ProfileEntryHookStub::MaybeCallEntryHook(masm);
// Enter an internal frame.
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Setup the context (we need to use the caller context from the isolate).
ExternalReference context_address(Isolate::kContextAddress,
masm->isolate());
__ mov(cp, Operand(context_address));
__ ldr(cp, MemOperand(cp));
__ InitializeRootRegister();
// Push the function and the receiver onto the stack.
__ Push(r1, r2);
// Check if we have enough stack space to push all arguments.
// Clobbers r2.
Generate_CheckStackOverflow(masm, r3, kArgcIsUntaggedInt);
// Remember new.target.
__ mov(r5, r0);
// Copy arguments to the stack in a loop.
// r1: function
// r3: argc
// r4: argv, i.e. points to first arg
Label loop, entry;
__ add(r2, r4, Operand(r3, LSL, kPointerSizeLog2));
// r2 points past last arg.
__ b(&entry);
__ bind(&loop);
__ ldr(r0, MemOperand(r4, kPointerSize, PostIndex)); // read next parameter
__ ldr(r0, MemOperand(r0)); // dereference handle
__ push(r0); // push parameter
__ bind(&entry);
__ cmp(r4, r2);
__ b(ne, &loop);
// Setup new.target and argc.
__ mov(r0, Operand(r3));
__ mov(r3, Operand(r5));
// Initialize all JavaScript callee-saved registers, since they will be seen
// by the garbage collector as part of handlers.
__ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
__ mov(r5, Operand(r4));
__ mov(r6, Operand(r4));
if (!FLAG_enable_embedded_constant_pool) {
__ mov(r8, Operand(r4));
}
if (kR9Available == 1) {
__ mov(r9, Operand(r4));
}
// Invoke the code.
Handle<Code> builtin = is_construct
? masm->isolate()->builtins()->Construct()
: masm->isolate()->builtins()->Call();
__ Call(builtin, RelocInfo::CODE_TARGET);
// Exit the JS frame and remove the parameters (except function), and
// return.
// Respect ABI stack constraint.
}
__ Jump(lr);
// r0: result
}
void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, false);
}
void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, true);
}
static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch) {
Register args_count = scratch;
// Get the arguments + receiver count.
__ ldr(args_count,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ ldr(args_count,
FieldMemOperand(args_count, BytecodeArray::kParameterSizeOffset));
// Leave the frame (also dropping the register file).
__ LeaveFrame(StackFrame::JAVA_SCRIPT);
// Drop receiver + arguments.
__ add(sp, sp, args_count, LeaveCC);
}
// Generate code for entering a JS function with the interpreter.
// On entry to the function the receiver and arguments have been pushed on the
// stack left to right. The actual argument count matches the formal parameter
// count expected by the function.
//
// The live registers are:
// o r1: the JS function object being called.
// o r3: the new target
// o cp: our context
// o pp: the caller's constant pool pointer (if enabled)
// o fp: the caller's frame pointer
// o sp: stack pointer
// o lr: return address
//
// The function builds an interpreter frame. See InterpreterFrameConstants in
// frames.h for its layout.
void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
ProfileEntryHookStub::MaybeCallEntryHook(masm);
// Open a frame scope to indicate that there is a frame on the stack. The
// MANUAL indicates that the scope shouldn't actually generate code to set up
// the frame (that is done below).
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ PushStandardFrame(r1);
// Get the bytecode array from the function object (or from the DebugInfo if
// it is present) and load it into kInterpreterBytecodeArrayRegister.
__ ldr(r0, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
Register debug_info = kInterpreterBytecodeArrayRegister;
DCHECK(!debug_info.is(r0));
__ ldr(debug_info, FieldMemOperand(r0, SharedFunctionInfo::kDebugInfoOffset));
__ cmp(debug_info, Operand(DebugInfo::uninitialized()));
// Load original bytecode array or the debug copy.
__ ldr(kInterpreterBytecodeArrayRegister,
FieldMemOperand(r0, SharedFunctionInfo::kFunctionDataOffset), eq);
__ ldr(kInterpreterBytecodeArrayRegister,
FieldMemOperand(debug_info, DebugInfo::kDebugBytecodeArrayIndex), ne);
// Check whether we should continue to use the interpreter.
Label switch_to_different_code_kind;
__ ldr(r0, FieldMemOperand(r0, SharedFunctionInfo::kCodeOffset));
__ cmp(r0, Operand(masm->CodeObject())); // Self-reference to this code.
__ b(ne, &switch_to_different_code_kind);
// Increment invocation count for the function.
__ ldr(r2, FieldMemOperand(r1, JSFunction::kLiteralsOffset));
__ ldr(r2, FieldMemOperand(r2, LiteralsArray::kFeedbackVectorOffset));
__ ldr(r9, FieldMemOperand(
r2, TypeFeedbackVector::kInvocationCountIndex * kPointerSize +
TypeFeedbackVector::kHeaderSize));
__ add(r9, r9, Operand(Smi::FromInt(1)));
__ str(r9, FieldMemOperand(
r2, TypeFeedbackVector::kInvocationCountIndex * kPointerSize +
TypeFeedbackVector::kHeaderSize));
// Check function data field is actually a BytecodeArray object.
if (FLAG_debug_code) {
__ SmiTst(kInterpreterBytecodeArrayRegister);
__ Assert(ne, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
__ CompareObjectType(kInterpreterBytecodeArrayRegister, r0, no_reg,
BYTECODE_ARRAY_TYPE);
__ Assert(eq, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
}
// Reset code age.
__ mov(r9, Operand(BytecodeArray::kNoAgeBytecodeAge));
__ strb(r9, FieldMemOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kBytecodeAgeOffset));
// Load the initial bytecode offset.
__ mov(kInterpreterBytecodeOffsetRegister,
Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
// Push new.target, bytecode array and Smi tagged bytecode array offset.
__ SmiTag(r0, kInterpreterBytecodeOffsetRegister);
__ Push(r3, kInterpreterBytecodeArrayRegister, r0);
// Allocate the local and temporary register file on the stack.
{
// Load frame size from the BytecodeArray object.
__ ldr(r4, FieldMemOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kFrameSizeOffset));
// Do a stack check to ensure we don't go over the limit.
Label ok;
__ sub(r9, sp, Operand(r4));
__ LoadRoot(r2, Heap::kRealStackLimitRootIndex);
__ cmp(r9, Operand(r2));
__ b(hs, &ok);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ bind(&ok);
// If ok, push undefined as the initial value for all register file entries.
Label loop_header;
Label loop_check;
__ LoadRoot(r9, Heap::kUndefinedValueRootIndex);
__ b(&loop_check, al);
__ bind(&loop_header);
// TODO(rmcilroy): Consider doing more than one push per loop iteration.
__ push(r9);
// Continue loop if not done.
__ bind(&loop_check);
__ sub(r4, r4, Operand(kPointerSize), SetCC);
__ b(&loop_header, ge);
}
// Load accumulator and dispatch table into registers.
__ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex);
__ mov(kInterpreterDispatchTableRegister,
Operand(ExternalReference::interpreter_dispatch_table_address(
masm->isolate())));
// Dispatch to the first bytecode handler for the function.
__ ldrb(r1, MemOperand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister));
__ ldr(ip, MemOperand(kInterpreterDispatchTableRegister, r1, LSL,
kPointerSizeLog2));
__ Call(ip);
masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset());
// The return value is in r0.
LeaveInterpreterFrame(masm, r2);
__ Jump(lr);
// If the shared code is no longer this entry trampoline, then the underlying
// function has been switched to a different kind of code and we heal the
// closure by switching the code entry field over to the new code as well.
__ bind(&switch_to_different_code_kind);
__ LeaveFrame(StackFrame::JAVA_SCRIPT);
__ ldr(r4, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
__ ldr(r4, FieldMemOperand(r4, SharedFunctionInfo::kCodeOffset));
__ add(r4, r4, Operand(Code::kHeaderSize - kHeapObjectTag));
__ str(r4, FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
__ RecordWriteCodeEntryField(r1, r4, r5);
__ Jump(r4);
}
static void Generate_StackOverflowCheck(MacroAssembler* masm, Register num_args,
Register scratch,
Label* stack_overflow) {
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
__ LoadRoot(scratch, Heap::kRealStackLimitRootIndex);
// Make scratch the space we have left. The stack might already be overflowed
// here which will cause scratch to become negative.
__ sub(scratch, sp, scratch);
// Check if the arguments will overflow the stack.
__ cmp(scratch, Operand(num_args, LSL, kPointerSizeLog2));
__ b(le, stack_overflow); // Signed comparison.
}
static void Generate_InterpreterPushArgs(MacroAssembler* masm,
Register num_args, Register index,
Register limit, Register scratch,
Label* stack_overflow) {
// Add a stack check before pushing arguments.
Generate_StackOverflowCheck(masm, num_args, scratch, stack_overflow);
// Find the address of the last argument.
__ mov(limit, num_args);
__ mov(limit, Operand(limit, LSL, kPointerSizeLog2));
__ sub(limit, index, limit);
Label loop_header, loop_check;
__ b(al, &loop_check);
__ bind(&loop_header);
__ ldr(scratch, MemOperand(index, -kPointerSize, PostIndex));
__ push(scratch);
__ bind(&loop_check);
__ cmp(index, limit);
__ b(gt, &loop_header);
}
// static
void Builtins::Generate_InterpreterPushArgsAndCallImpl(
MacroAssembler* masm, TailCallMode tail_call_mode,
CallableType function_type) {
// ----------- S t a t e -------------
// -- r0 : the number of arguments (not including the receiver)
// -- r2 : the address of the first argument to be pushed. Subsequent
// arguments should be consecutive above this, in the same order as
// they are to be pushed onto the stack.
// -- r1 : the target to call (can be any Object).
// -----------------------------------
Label stack_overflow;
__ add(r3, r0, Operand(1)); // Add one for receiver.
// Push the arguments. r2, r4, r5 will be modified.
Generate_InterpreterPushArgs(masm, r3, r2, r4, r5, &stack_overflow);
// Call the target.
if (function_type == CallableType::kJSFunction) {
__ Jump(masm->isolate()->builtins()->CallFunction(ConvertReceiverMode::kAny,
tail_call_mode),
RelocInfo::CODE_TARGET);
} else {
DCHECK_EQ(function_type, CallableType::kAny);
__ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny,
tail_call_mode),
RelocInfo::CODE_TARGET);
}
__ bind(&stack_overflow);
{
__ TailCallRuntime(Runtime::kThrowStackOverflow);
// Unreachable code.
__ bkpt(0);
}
}
// static
void Builtins::Generate_InterpreterPushArgsAndConstructImpl(
MacroAssembler* masm, CallableType construct_type) {
// ----------- S t a t e -------------
// -- r0 : argument count (not including receiver)
// -- r3 : new target
// -- r1 : constructor to call
// -- r2 : allocation site feedback if available, undefined otherwise.
// -- r4 : address of the first argument
// -----------------------------------
Label stack_overflow;
// Push a slot for the receiver to be constructed.
__ mov(ip, Operand::Zero());
__ push(ip);
// Push the arguments. r5, r4, r6 will be modified.
Generate_InterpreterPushArgs(masm, r0, r4, r5, r6, &stack_overflow);
__ AssertUndefinedOrAllocationSite(r2, r5);
if (construct_type == CallableType::kJSFunction) {
__ AssertFunction(r1);
// Tail call to the function-specific construct stub (still in the caller
// context at this point).
__ ldr(r4, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
__ ldr(r4, FieldMemOperand(r4, SharedFunctionInfo::kConstructStubOffset));
// Jump to the construct function.
__ add(pc, r4, Operand(Code::kHeaderSize - kHeapObjectTag));
} else {
DCHECK_EQ(construct_type, CallableType::kAny);
// Call the constructor with r0, r1, and r3 unmodified.
__ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
}
__ bind(&stack_overflow);
{
__ TailCallRuntime(Runtime::kThrowStackOverflow);
// Unreachable code.
__ bkpt(0);
}
}
// static
void Builtins::Generate_InterpreterPushArgsAndConstructArray(
MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : argument count (not including receiver)
// -- r1 : target to call verified to be Array function
// -- r2 : allocation site feedback if available, undefined otherwise.
// -- r3 : address of the first argument
// -----------------------------------
Label stack_overflow;
__ add(r4, r0, Operand(1)); // Add one for receiver.
// TODO(mythria): Add a stack check before pushing arguments.
// Push the arguments. r3, r5, r6 will be modified.
Generate_InterpreterPushArgs(masm, r4, r3, r5, r6, &stack_overflow);
// Array constructor expects constructor in r3. It is same as r1 here.
__ mov(r3, r1);
ArrayConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
__ bind(&stack_overflow);
{
__ TailCallRuntime(Runtime::kThrowStackOverflow);
// Unreachable code.
__ bkpt(0);
}
}
static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) {
// Set the return address to the correct point in the interpreter entry
// trampoline.
Smi* interpreter_entry_return_pc_offset(
masm->isolate()->heap()->interpreter_entry_return_pc_offset());
DCHECK_NE(interpreter_entry_return_pc_offset, Smi::kZero);
__ Move(r2, masm->isolate()->builtins()->InterpreterEntryTrampoline());
__ add(lr, r2, Operand(interpreter_entry_return_pc_offset->value() +
Code::kHeaderSize - kHeapObjectTag));
// Initialize the dispatch table register.
__ mov(kInterpreterDispatchTableRegister,
Operand(ExternalReference::interpreter_dispatch_table_address(
masm->isolate())));
// Get the bytecode array pointer from the frame.
__ ldr(kInterpreterBytecodeArrayRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
if (FLAG_debug_code) {
// Check function data field is actually a BytecodeArray object.
__ SmiTst(kInterpreterBytecodeArrayRegister);
__ Assert(ne, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
__ CompareObjectType(kInterpreterBytecodeArrayRegister, r1, no_reg,
BYTECODE_ARRAY_TYPE);
__ Assert(eq, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
}
// Get the target bytecode offset from the frame.
__ ldr(kInterpreterBytecodeOffsetRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ SmiUntag(kInterpreterBytecodeOffsetRegister);
// Dispatch to the target bytecode.
__ ldrb(r1, MemOperand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister));
__ ldr(ip, MemOperand(kInterpreterDispatchTableRegister, r1, LSL,
kPointerSizeLog2));
__ mov(pc, ip);
}
void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) {
// Advance the current bytecode offset stored within the given interpreter
// stack frame. This simulates what all bytecode handlers do upon completion
// of the underlying operation.
__ ldr(r1, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ ldr(r2, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(kInterpreterAccumulatorRegister, r1, r2);
__ CallRuntime(Runtime::kInterpreterAdvanceBytecodeOffset);
__ mov(r2, r0); // Result is the new bytecode offset.
__ Pop(kInterpreterAccumulatorRegister);
}
__ str(r2, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
Generate_InterpreterEnterBytecode(masm);
}
void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) {
Generate_InterpreterEnterBytecode(masm);
}
void Builtins::Generate_CompileLazy(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : argument count (preserved for callee)
// -- r3 : new target (preserved for callee)
// -- r1 : target function (preserved for callee)
// -----------------------------------
// First lookup code, maybe we don't need to compile!
Label gotta_call_runtime, gotta_call_runtime_no_stack;
Label try_shared;
Label loop_top, loop_bottom;
Register argument_count = r0;
Register closure = r1;
Register new_target = r3;
__ push(argument_count);
__ push(new_target);
__ push(closure);
Register map = argument_count;
Register index = r2;
__ ldr(map, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset));
__ ldr(map,
FieldMemOperand(map, SharedFunctionInfo::kOptimizedCodeMapOffset));
__ ldr(index, FieldMemOperand(map, FixedArray::kLengthOffset));
__ cmp(index, Operand(Smi::FromInt(2)));
__ b(lt, &gotta_call_runtime);
// r3 : native context
// r2 : length / index
// r0 : optimized code map
// stack[0] : new target
// stack[4] : closure
Register native_context = r3;
__ ldr(native_context, NativeContextMemOperand());
__ bind(&loop_top);
Register temp = r1;
Register array_pointer = r5;
// Does the native context match?
__ add(array_pointer, map, Operand::PointerOffsetFromSmiKey(index));
__ ldr(temp, FieldMemOperand(array_pointer,
SharedFunctionInfo::kOffsetToPreviousContext));
__ ldr(temp, FieldMemOperand(temp, WeakCell::kValueOffset));
__ cmp(temp, native_context);
__ b(ne, &loop_bottom);
// Code available?
Register entry = r4;
__ ldr(entry,
FieldMemOperand(array_pointer,
SharedFunctionInfo::kOffsetToPreviousCachedCode));
__ ldr(entry, FieldMemOperand(entry, WeakCell::kValueOffset));
__ JumpIfSmi(entry, &try_shared);
// Found code. Get it into the closure and return.
__ pop(closure);
// Store code entry in the closure.
__ add(entry, entry, Operand(Code::kHeaderSize - kHeapObjectTag));
__ str(entry, FieldMemOperand(closure, JSFunction::kCodeEntryOffset));
__ RecordWriteCodeEntryField(closure, entry, r5);
// Link the closure into the optimized function list.
// r4 : code entry
// r3 : native context
// r1 : closure
__ ldr(r5,
ContextMemOperand(native_context, Context::OPTIMIZED_FUNCTIONS_LIST));
__ str(r5, FieldMemOperand(closure, JSFunction::kNextFunctionLinkOffset));
__ RecordWriteField(closure, JSFunction::kNextFunctionLinkOffset, r5, r0,
kLRHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
const int function_list_offset =
Context::SlotOffset(Context::OPTIMIZED_FUNCTIONS_LIST);
__ str(closure,
ContextMemOperand(native_context, Context::OPTIMIZED_FUNCTIONS_LIST));
// Save closure before the write barrier.
__ mov(r5, closure);
__ RecordWriteContextSlot(native_context, function_list_offset, closure, r0,
kLRHasNotBeenSaved, kDontSaveFPRegs);
__ mov(closure, r5);
__ pop(new_target);
__ pop(argument_count);
__ Jump(entry);
__ bind(&loop_bottom);
__ sub(index, index, Operand(Smi::FromInt(SharedFunctionInfo::kEntryLength)));
__ cmp(index, Operand(Smi::FromInt(1)));
__ b(gt, &loop_top);
// We found no code.
__ jmp(&gotta_call_runtime);
__ bind(&try_shared);
__ pop(closure);
__ pop(new_target);
__ pop(argument_count);
__ ldr(entry,
FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset));
// Is the shared function marked for tier up?
__ ldrb(r5, FieldMemOperand(entry,
SharedFunctionInfo::kMarkedForTierUpByteOffset));
__ tst(r5, Operand(1 << SharedFunctionInfo::kMarkedForTierUpBitWithinByte));
__ b(ne, &gotta_call_runtime_no_stack);
// Is the full code valid?
__ ldr(entry, FieldMemOperand(entry, SharedFunctionInfo::kCodeOffset));
__ ldr(r5, FieldMemOperand(entry, Code::kFlagsOffset));
__ and_(r5, r5, Operand(Code::KindField::kMask));
__ mov(r5, Operand(r5, LSR, Code::KindField::kShift));
__ cmp(r5, Operand(Code::BUILTIN));
__ b(eq, &gotta_call_runtime_no_stack);
// Yes, install the full code.
__ add(entry, entry, Operand(Code::kHeaderSize - kHeapObjectTag));
__ str(entry, FieldMemOperand(closure, JSFunction::kCodeEntryOffset));
__ RecordWriteCodeEntryField(closure, entry, r5);
__ Jump(entry);
__ bind(&gotta_call_runtime);
__ pop(closure);
__ pop(new_target);
__ pop(argument_count);
__ bind(&gotta_call_runtime_no_stack);
GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy);
}
void Builtins::Generate_CompileBaseline(MacroAssembler* masm) {
GenerateTailCallToReturnedCode(masm, Runtime::kCompileBaseline);
}
void Builtins::Generate_CompileOptimized(MacroAssembler* masm) {
GenerateTailCallToReturnedCode(masm,
Runtime::kCompileOptimized_NotConcurrent);
}
void Builtins::Generate_CompileOptimizedConcurrent(MacroAssembler* masm) {
GenerateTailCallToReturnedCode(masm, Runtime::kCompileOptimized_Concurrent);
}
void Builtins::Generate_InstantiateAsmJs(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : argument count (preserved for callee)
// -- r1 : new target (preserved for callee)
// -- r3 : target function (preserved for callee)
// -----------------------------------
Label failed;
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Preserve argument count for later compare.
__ Move(r4, r0);
// Push the number of arguments to the callee.
__ SmiTag(r0);
__ push(r0);
// Push a copy of the target function and the new target.
__ push(r1);
__ push(r3);
// The function.
__ push(r1);
// Copy arguments from caller (stdlib, foreign, heap).
Label args_done;
for (int j = 0; j < 4; ++j) {
Label over;
if (j < 3) {
__ cmp(r4, Operand(j));
__ b(ne, &over);
}
for (int i = j - 1; i >= 0; --i) {
__ ldr(r4, MemOperand(fp, StandardFrameConstants::kCallerSPOffset +
i * kPointerSize));
__ push(r4);
}
for (int i = 0; i < 3 - j; ++i) {
__ PushRoot(Heap::kUndefinedValueRootIndex);
}
if (j < 3) {
__ jmp(&args_done);
__ bind(&over);
}
}
__ bind(&args_done);
// Call runtime, on success unwind frame, and parent frame.
__ CallRuntime(Runtime::kInstantiateAsmJs, 4);
// A smi 0 is returned on failure, an object on success.
__ JumpIfSmi(r0, &failed);
__ Drop(2);
__ pop(r4);
__ SmiUntag(r4);
scope.GenerateLeaveFrame();
__ add(r4, r4, Operand(1));
__ Drop(r4);
__ Ret();
__ bind(&failed);
// Restore target function and new target.
__ pop(r3);
__ pop(r1);
__ pop(r0);
__ SmiUntag(r0);
}
// On failure, tail call back to regular js.
GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy);
}
static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) {
// For now, we are relying on the fact that make_code_young doesn't do any
// garbage collection which allows us to save/restore the registers without
// worrying about which of them contain pointers. We also don't build an
// internal frame to make the code faster, since we shouldn't have to do stack
// crawls in MakeCodeYoung. This seems a bit fragile.
// The following registers must be saved and restored when calling through to
// the runtime:
// r0 - contains return address (beginning of patch sequence)
// r1 - isolate
// r3 - new target
FrameScope scope(masm, StackFrame::MANUAL);
__ stm(db_w, sp, r0.bit() | r1.bit() | r3.bit() | fp.bit() | lr.bit());
__ PrepareCallCFunction(2, 0, r2);
__ mov(r1, Operand(ExternalReference::isolate_address(masm->isolate())));
__ CallCFunction(
ExternalReference::get_make_code_young_function(masm->isolate()), 2);
__ ldm(ia_w, sp, r0.bit() | r1.bit() | r3.bit() | fp.bit() | lr.bit());
__ mov(pc, r0);
}
#define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C) \
void Builtins::Generate_Make##C##CodeYoungAgain(MacroAssembler* masm) { \
GenerateMakeCodeYoungAgainCommon(masm); \
}
CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR)
#undef DEFINE_CODE_AGE_BUILTIN_GENERATOR
void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) {
// For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact
// that make_code_young doesn't do any garbage collection which allows us to
// save/restore the registers without worrying about which of them contain
// pointers.
// The following registers must be saved and restored when calling through to
// the runtime:
// r0 - contains return address (beginning of patch sequence)
// r1 - isolate
// r3 - new target
FrameScope scope(masm, StackFrame::MANUAL);
__ stm(db_w, sp, r0.bit() | r1.bit() | r3.bit() | fp.bit() | lr.bit());
__ PrepareCallCFunction(2, 0, r2);
__ mov(r1, Operand(ExternalReference::isolate_address(masm->isolate())));
__ CallCFunction(
ExternalReference::get_mark_code_as_executed_function(masm->isolate()),
2);
__ ldm(ia_w, sp, r0.bit() | r1.bit() | r3.bit() | fp.bit() | lr.bit());
// Perform prologue operations usually performed by the young code stub.
__ PushStandardFrame(r1);
// Jump to point after the code-age stub.
__ add(r0, r0, Operand(kNoCodeAgeSequenceLength));
__ mov(pc, r0);
}
void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) {
GenerateMakeCodeYoungAgainCommon(masm);
}
void Builtins::Generate_MarkCodeAsToBeExecutedOnce(MacroAssembler* masm) {
Generate_MarkCodeAsExecutedOnce(masm);
}
static void Generate_NotifyStubFailureHelper(MacroAssembler* masm,
SaveFPRegsMode save_doubles) {
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
// Preserve registers across notification, this is important for compiled
// stubs that tail call the runtime on deopts passing their parameters in
// registers.
__ stm(db_w, sp, kJSCallerSaved | kCalleeSaved);
// Pass the function and deoptimization type to the runtime system.
__ CallRuntime(Runtime::kNotifyStubFailure, save_doubles);
__ ldm(ia_w, sp, kJSCallerSaved | kCalleeSaved);
}
__ add(sp, sp, Operand(kPointerSize)); // Ignore state
__ mov(pc, lr); // Jump to miss handler
}
void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) {
Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs);
}
void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) {
Generate_NotifyStubFailureHelper(masm, kSaveFPRegs);
}
static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
Deoptimizer::BailoutType type) {
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
// Pass the function and deoptimization type to the runtime system.
__ mov(r0, Operand(Smi::FromInt(static_cast<int>(type))));
__ push(r0);
__ CallRuntime(Runtime::kNotifyDeoptimized);
}
// Get the full codegen state from the stack and untag it -> r6.
__ ldr(r6, MemOperand(sp, 0 * kPointerSize));
__ SmiUntag(r6);
// Switch on the state.
Label with_tos_register, unknown_state;
__ cmp(r6,
Operand(static_cast<int>(Deoptimizer::BailoutState::NO_REGISTERS)));
__ b(ne, &with_tos_register);
__ add(sp, sp, Operand(1 * kPointerSize)); // Remove state.
__ Ret();
__ bind(&with_tos_register);
DCHECK_EQ(kInterpreterAccumulatorRegister.code(), r0.code());
__ ldr(r0, MemOperand(sp, 1 * kPointerSize));
__ cmp(r6,
Operand(static_cast<int>(Deoptimizer::BailoutState::TOS_REGISTER)));
__ b(ne, &unknown_state);
__ add(sp, sp, Operand(2 * kPointerSize)); // Remove state.
__ Ret();
__ bind(&unknown_state);
__ stop("no cases left");
}
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
}
void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT);
}
void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
}
static void CompatibleReceiverCheck(MacroAssembler* masm, Register receiver,
Register function_template_info,
Register scratch0, Register scratch1,
Register scratch2,
Label* receiver_check_failed) {
Register signature = scratch0;
Register map = scratch1;
Register constructor = scratch2;
// If there is no signature, return the holder.
__ ldr(signature, FieldMemOperand(function_template_info,
FunctionTemplateInfo::kSignatureOffset));
__ CompareRoot(signature, Heap::kUndefinedValueRootIndex);
Label receiver_check_passed;
__ b(eq, &receiver_check_passed);
// Walk the prototype chain.
__ ldr(map, FieldMemOperand(receiver, HeapObject::kMapOffset));
Label prototype_loop_start;
__ bind(&prototype_loop_start);
// Get the constructor, if any.
__ GetMapConstructor(constructor, map, ip, ip);
__ cmp(ip, Operand(JS_FUNCTION_TYPE));
Label next_prototype;
__ b(ne, &next_prototype);
Register type = constructor;
__ ldr(type,
FieldMemOperand(constructor, JSFunction::kSharedFunctionInfoOffset));
__ ldr(type, FieldMemOperand(type, SharedFunctionInfo::kFunctionDataOffset));
// Loop through the chain of inheriting function templates.
Label function_template_loop;
__ bind(&function_template_loop);
// If the signatures match, we have a compatible receiver.
__ cmp(signature, type);
__ b(eq, &receiver_check_passed);
// If the current type is not a FunctionTemplateInfo, load the next prototype
// in the chain.
__ JumpIfSmi(type, &next_prototype);
__ CompareObjectType(type, ip, ip, FUNCTION_TEMPLATE_INFO_TYPE);
// Otherwise load the parent function template and iterate.
__ ldr(type,
FieldMemOperand(type, FunctionTemplateInfo::kParentTemplateOffset),
eq);
__ b(&function_template_loop, eq);
// Load the next prototype.
__ bind(&next_prototype);
__ ldr(ip, FieldMemOperand(map, Map::kBitField3Offset));
__ tst(ip, Operand(Map::HasHiddenPrototype::kMask));
__ b(eq, receiver_check_failed);
__ ldr(receiver, FieldMemOperand(map, Map::kPrototypeOffset));
__ ldr(map, FieldMemOperand(receiver, HeapObject::kMapOffset));
// Iterate.
__ b(&prototype_loop_start);
__ bind(&receiver_check_passed);
}
void Builtins::Generate_HandleFastApiCall(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : number of arguments excluding receiver
// -- r1 : callee
// -- lr : return address
// -- sp[0] : last argument
// -- ...
// -- sp[4 * (argc - 1)] : first argument
// -- sp[4 * argc] : receiver
// -----------------------------------
// Load the FunctionTemplateInfo.
__ ldr(r3, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
__ ldr(r3, FieldMemOperand(r3, SharedFunctionInfo::kFunctionDataOffset));
// Do the compatible receiver check.
Label receiver_check_failed;
__ ldr(r2, MemOperand(sp, r0, LSL, kPointerSizeLog2));
CompatibleReceiverCheck(masm, r2, r3, r4, r5, r6, &receiver_check_failed);
// Get the callback offset from the FunctionTemplateInfo, and jump to the
// beginning of the code.
__ ldr(r4, FieldMemOperand(r3, FunctionTemplateInfo::kCallCodeOffset));
__ ldr(r4, FieldMemOperand(r4, CallHandlerInfo::kFastHandlerOffset));
__ add(r4, r4, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(r4);
// Compatible receiver check failed: throw an Illegal Invocation exception.
__ bind(&receiver_check_failed);
// Drop the arguments (including the receiver)
__ add(r0, r0, Operand(1));
__ add(sp, sp, Operand(r0, LSL, kPointerSizeLog2));
__ TailCallRuntime(Runtime::kThrowIllegalInvocation);
}
static void Generate_OnStackReplacementHelper(MacroAssembler* masm,
bool has_handler_frame) {
// Lookup the function in the JavaScript frame.
if (has_handler_frame) {
__ ldr(r0, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ ldr(r0, MemOperand(r0, JavaScriptFrameConstants::kFunctionOffset));
} else {
__ ldr(r0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
}
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
// Pass function as argument.
__ push(r0);
__ CallRuntime(Runtime::kCompileForOnStackReplacement);
}
// If the code object is null, just return to the caller.
Label skip;
__ cmp(r0, Operand(Smi::kZero));
__ b(ne, &skip);
__ Ret();
__ bind(&skip);
// Drop any potential handler frame that is be sitting on top of the actual
// JavaScript frame. This is the case then OSR is triggered from bytecode.
if (has_handler_frame) {
__ LeaveFrame(StackFrame::STUB);
}
// Load deoptimization data from the code object.
// <deopt_data> = <code>[#deoptimization_data_offset]
__ ldr(r1, FieldMemOperand(r0, Code::kDeoptimizationDataOffset));
{
ConstantPoolUnavailableScope constant_pool_unavailable(masm);
__ add(r0, r0, Operand(Code::kHeaderSize - kHeapObjectTag)); // Code start
if (FLAG_enable_embedded_constant_pool) {
__ LoadConstantPoolPointerRegisterFromCodeTargetAddress(r0);
}
// Load the OSR entrypoint offset from the deoptimization data.
// <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset]
__ ldr(r1, FieldMemOperand(
r1, FixedArray::OffsetOfElementAt(
DeoptimizationInputData::kOsrPcOffsetIndex)));
// Compute the target address = code start + osr_offset
__ add(lr, r0, Operand::SmiUntag(r1));
// And "return" to the OSR entry point of the function.
__ Ret();
}
}
void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
Generate_OnStackReplacementHelper(masm, false);
}
void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) {
Generate_OnStackReplacementHelper(masm, true);
}
// static
void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : argc
// -- sp[0] : argArray
// -- sp[4] : thisArg
// -- sp[8] : receiver
// -----------------------------------
// 1. Load receiver into r1, argArray into r0 (if present), remove all
// arguments from the stack (including the receiver), and push thisArg (if
// present) instead.
{
__ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
__ mov(r3, r2);
__ ldr(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2)); // receiver
__ sub(r4, r0, Operand(1), SetCC);
__ ldr(r2, MemOperand(sp, r4, LSL, kPointerSizeLog2), ge); // thisArg
__ sub(r4, r4, Operand(1), SetCC, ge);
__ ldr(r3, MemOperand(sp, r4, LSL, kPointerSizeLog2), ge); // argArray
__ add(sp, sp, Operand(r0, LSL, kPointerSizeLog2));
__ str(r2, MemOperand(sp, 0));
__ mov(r0, r3);
}
// ----------- S t a t e -------------
// -- r0 : argArray
// -- r1 : receiver
// -- sp[0] : thisArg
// -----------------------------------
// 2. Make sure the receiver is actually callable.
Label receiver_not_callable;
__ JumpIfSmi(r1, &receiver_not_callable);
__ ldr(r4, FieldMemOperand(r1, HeapObject::kMapOffset));
__ ldrb(r4, FieldMemOperand(r4, Map::kBitFieldOffset));
__ tst(r4, Operand(1 << Map::kIsCallable));
__ b(eq, &receiver_not_callable);
// 3. Tail call with no arguments if argArray is null or undefined.
Label no_arguments;
__ JumpIfRoot(r0, Heap::kNullValueRootIndex, &no_arguments);
__ JumpIfRoot(r0, Heap::kUndefinedValueRootIndex, &no_arguments);
// 4a. Apply the receiver to the given argArray (passing undefined for
// new.target).
__ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
__ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET);
// 4b. The argArray is either null or undefined, so we tail call without any
// arguments to the receiver.
__ bind(&no_arguments);
{
__ mov(r0, Operand(0));
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
// 4c. The receiver is not callable, throw an appropriate TypeError.
__ bind(&receiver_not_callable);
{
__ str(r1, MemOperand(sp, 0));
__ TailCallRuntime(Runtime::kThrowApplyNonFunction);
}
}
// static
void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) {
// 1. Make sure we have at least one argument.
// r0: actual number of arguments
{
Label done;
__ cmp(r0, Operand::Zero());
__ b(ne, &done);
__ PushRoot(Heap::kUndefinedValueRootIndex);
__ add(r0, r0, Operand(1));
__ bind(&done);
}
// 2. Get the callable to call (passed as receiver) from the stack.
// r0: actual number of arguments
__ ldr(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2));
// 3. Shift arguments and return address one slot down on the stack
// (overwriting the original receiver). Adjust argument count to make
// the original first argument the new receiver.
// r0: actual number of arguments
// r1: callable
{
Label loop;
// Calculate the copy start address (destination). Copy end address is sp.
__ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2));
__ bind(&loop);
__ ldr(ip, MemOperand(r2, -kPointerSize));
__ str(ip, MemOperand(r2));
__ sub(r2, r2, Operand(kPointerSize));
__ cmp(r2, sp);
__ b(ne, &loop);
// Adjust the actual number of arguments and remove the top element
// (which is a copy of the last argument).
__ sub(r0, r0, Operand(1));
__ pop();
}
// 4. Call the callable.
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : argc
// -- sp[0] : argumentsList
// -- sp[4] : thisArgument
// -- sp[8] : target
// -- sp[12] : receiver
// -----------------------------------
// 1. Load target into r1 (if present), argumentsList into r0 (if present),
// remove all arguments from the stack (including the receiver), and push
// thisArgument (if present) instead.
{
__ LoadRoot(r1, Heap::kUndefinedValueRootIndex);
__ mov(r2, r1);
__ mov(r3, r1);
__ sub(r4, r0, Operand(1), SetCC);
__ ldr(r1, MemOperand(sp, r4, LSL, kPointerSizeLog2), ge); // target
__ sub(r4, r4, Operand(1), SetCC, ge);
__ ldr(r2, MemOperand(sp, r4, LSL, kPointerSizeLog2), ge); // thisArgument
__ sub(r4, r4, Operand(1), SetCC, ge);
__ ldr(r3, MemOperand(sp, r4, LSL, kPointerSizeLog2), ge); // argumentsList
__ add(sp, sp, Operand(r0, LSL, kPointerSizeLog2));
__ str(r2, MemOperand(sp, 0));
__ mov(r0, r3);
}
// ----------- S t a t e -------------
// -- r0 : argumentsList
// -- r1 : target
// -- sp[0] : thisArgument
// -----------------------------------
// 2. Make sure the target is actually callable.
Label target_not_callable;
__ JumpIfSmi(r1, &target_not_callable);
__ ldr(r4, FieldMemOperand(r1, HeapObject::kMapOffset));
__ ldrb(r4, FieldMemOperand(r4, Map::kBitFieldOffset));
__ tst(r4, Operand(1 << Map::kIsCallable));
__ b(eq, &target_not_callable);
// 3a. Apply the target to the given argumentsList (passing undefined for
// new.target).
__ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
__ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET);
// 3b. The target is not callable, throw an appropriate TypeError.
__ bind(&target_not_callable);
{
__ str(r1, MemOperand(sp, 0));
__ TailCallRuntime(Runtime::kThrowApplyNonFunction);
}
}
void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : argc
// -- sp[0] : new.target (optional)
// -- sp[4] : argumentsList
// -- sp[8] : target
// -- sp[12] : receiver
// -----------------------------------
// 1. Load target into r1 (if present), argumentsList into r0 (if present),
// new.target into r3 (if present, otherwise use target), remove all
// arguments from the stack (including the receiver), and push thisArgument
// (if present) instead.
{
__ LoadRoot(r1, Heap::kUndefinedValueRootIndex);
__ mov(r2, r1);
__ str(r2, MemOperand(sp, r0, LSL, kPointerSizeLog2)); // receiver
__ sub(r4, r0, Operand(1), SetCC);
__ ldr(r1, MemOperand(sp, r4, LSL, kPointerSizeLog2), ge); // target
__ mov(r3, r1); // new.target defaults to target
__ sub(r4, r4, Operand(1), SetCC, ge);
__ ldr(r2, MemOperand(sp, r4, LSL, kPointerSizeLog2), ge); // argumentsList
__ sub(r4, r4, Operand(1), SetCC, ge);
__ ldr(r3, MemOperand(sp, r4, LSL, kPointerSizeLog2), ge); // new.target
__ add(sp, sp, Operand(r0, LSL, kPointerSizeLog2));
__ mov(r0, r2);
}
// ----------- S t a t e -------------
// -- r0 : argumentsList
// -- r3 : new.target
// -- r1 : target
// -- sp[0] : receiver (undefined)
// -----------------------------------
// 2. Make sure the target is actually a constructor.
Label target_not_constructor;
__ JumpIfSmi(r1, &target_not_constructor);
__ ldr(r4, FieldMemOperand(r1, HeapObject::kMapOffset));
__ ldrb(r4, FieldMemOperand(r4, Map::kBitFieldOffset));
__ tst(r4, Operand(1 << Map::kIsConstructor));
__ b(eq, &target_not_constructor);
// 3. Make sure the target is actually a constructor.
Label new_target_not_constructor;
__ JumpIfSmi(r3, &new_target_not_constructor);
__ ldr(r4, FieldMemOperand(r3, HeapObject::kMapOffset));
__ ldrb(r4, FieldMemOperand(r4, Map::kBitFieldOffset));
__ tst(r4, Operand(1 << Map::kIsConstructor));
__ b(eq, &new_target_not_constructor);
// 4a. Construct the target with the given new.target and argumentsList.
__ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET);
// 4b. The target is not a constructor, throw an appropriate TypeError.
__ bind(&target_not_constructor);
{
__ str(r1, MemOperand(sp, 0));
__ TailCallRuntime(Runtime::kThrowCalledNonCallable);
}
// 4c. The new.target is not a constructor, throw an appropriate TypeError.
__ bind(&new_target_not_constructor);
{
__ str(r3, MemOperand(sp, 0));
__ TailCallRuntime(Runtime::kThrowCalledNonCallable);
}
}
static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
__ SmiTag(r0);
__ mov(r4, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
__ stm(db_w, sp, r0.bit() | r1.bit() | r4.bit() |
(FLAG_enable_embedded_constant_pool ? pp.bit() : 0) |
fp.bit() | lr.bit());
__ add(fp, sp,
Operand(StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize));
}
static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : result being passed through
// -----------------------------------
// Get the number of arguments passed (as a smi), tear down the frame and
// then tear down the parameters.
__ ldr(r1, MemOperand(fp, -(StandardFrameConstants::kFixedFrameSizeFromFp +
kPointerSize)));
__ LeaveFrame(StackFrame::ARGUMENTS_ADAPTOR);
__ add(sp, sp, Operand::PointerOffsetFromSmiKey(r1));
__ add(sp, sp, Operand(kPointerSize)); // adjust for receiver
}
// static
void Builtins::Generate_Apply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : argumentsList
// -- r1 : target
// -- r3 : new.target (checked to be constructor or undefined)
// -- sp[0] : thisArgument
// -----------------------------------
// Create the list of arguments from the array-like argumentsList.
{
Label create_arguments, create_array, create_holey_array, create_runtime,
done_create;
__ JumpIfSmi(r0, &create_runtime);
// Load the map of argumentsList into r2.
__ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
// Load native context into r4.
__ ldr(r4, NativeContextMemOperand());
// Check if argumentsList is an (unmodified) arguments object.
__ ldr(ip, ContextMemOperand(r4, Context::SLOPPY_ARGUMENTS_MAP_INDEX));
__ cmp(ip, r2);
__ b(eq, &create_arguments);
__ ldr(ip, ContextMemOperand(r4, Context::STRICT_ARGUMENTS_MAP_INDEX));
__ cmp(ip, r2);
__ b(eq, &create_arguments);
// Check if argumentsList is a fast JSArray.
__ CompareInstanceType(r2, ip, JS_ARRAY_TYPE);
__ b(eq, &create_array);
// Ask the runtime to create the list (actually a FixedArray).
__ bind(&create_runtime);
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
__ Push(r1, r3, r0);
__ CallRuntime(Runtime::kCreateListFromArrayLike);
__ Pop(r1, r3);
__ ldr(r2, FieldMemOperand(r0, FixedArray::kLengthOffset));
__ SmiUntag(r2);
}
__ jmp(&done_create);
// Try to create the list from an arguments object.
__ bind(&create_arguments);
__ ldr(r2, FieldMemOperand(r0, JSArgumentsObject::kLengthOffset));
__ ldr(r4, FieldMemOperand(r0, JSObject::kElementsOffset));
__ ldr(ip, FieldMemOperand(r4, FixedArray::kLengthOffset));
__ cmp(r2, ip);
__ b(ne, &create_runtime);
__ SmiUntag(r2);
__ mov(r0, r4);
__ b(&done_create);
// For holey JSArrays we need to check that the array prototype chain
// protector is intact and our prototype is the Array.prototype actually.
__ bind(&create_holey_array);
__ ldr(r2, FieldMemOperand(r2, Map::kPrototypeOffset));
__ ldr(r4, ContextMemOperand(r4, Context::INITIAL_ARRAY_PROTOTYPE_INDEX));
__ cmp(r2, r4);
__ b(ne, &create_runtime);
__ LoadRoot(r4, Heap::kArrayProtectorRootIndex);
__ ldr(r2, FieldMemOperand(r4, PropertyCell::kValueOffset));
__ cmp(r2, Operand(Smi::FromInt(Isolate::kProtectorValid)));
__ b(ne, &create_runtime);
__ ldr(r2, FieldMemOperand(r0, JSArray::kLengthOffset));
__ ldr(r0, FieldMemOperand(r0, JSArray::kElementsOffset));
__ SmiUntag(r2);
__ b(&done_create);
// Try to create the list from a JSArray object.
// -- r2 and r4 must be preserved till bne create_holey_array.
__ bind(&create_array);
__ ldr(r5, FieldMemOperand(r2, Map::kBitField2Offset));
__ DecodeField<Map::ElementsKindBits>(r5);
STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
STATIC_ASSERT(FAST_ELEMENTS == 2);
STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
__ cmp(r5, Operand(FAST_HOLEY_ELEMENTS));
__ b(hi, &create_runtime);
// Only FAST_XXX after this point, FAST_HOLEY_XXX are odd values.
__ tst(r5, Operand(1));
__ b(ne, &create_holey_array);
// FAST_SMI_ELEMENTS or FAST_ELEMENTS after this point.
__ ldr(r2, FieldMemOperand(r0, JSArray::kLengthOffset));
__ ldr(r0, FieldMemOperand(r0, JSArray::kElementsOffset));
__ SmiUntag(r2);
__ bind(&done_create);
}
// Check for stack overflow.
{
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack limit".
Label done;
__ LoadRoot(ip, Heap::kRealStackLimitRootIndex);
// Make ip the space we have left. The stack might already be overflowed
// here which will cause ip to become negative.
__ sub(ip, sp, ip);
// Check if the arguments will overflow the stack.
__ cmp(ip, Operand(r2, LSL, kPointerSizeLog2));
__ b(gt, &done); // Signed comparison.
__ TailCallRuntime(Runtime::kThrowStackOverflow);
__ bind(&done);
}
// ----------- S t a t e -------------
// -- r1 : target
// -- r0 : args (a FixedArray built from argumentsList)
// -- r2 : len (number of elements to push from args)
// -- r3 : new.target (checked to be constructor or undefined)
// -- sp[0] : thisArgument
// -----------------------------------
// Push arguments onto the stack (thisArgument is already on the stack).
{
__ mov(r4, Operand(0));
__ LoadRoot(r5, Heap::kTheHoleValueRootIndex);
__ LoadRoot(r6, Heap::kUndefinedValueRootIndex);
Label done, loop;
__ bind(&loop);
__ cmp(r4, r2);
__ b(eq, &done);
__ add(ip, r0, Operand(r4, LSL, kPointerSizeLog2));
__ ldr(ip, FieldMemOperand(ip, FixedArray::kHeaderSize));
__ cmp(r5, ip);
__ mov(ip, r6, LeaveCC, eq);
__ Push(ip);
__ add(r4, r4, Operand(1));
__ b(&loop);
__ bind(&done);
__ Move(r0, r4);
}
// Dispatch to Call or Construct depending on whether new.target is undefined.
{
__ CompareRoot(r3, Heap::kUndefinedValueRootIndex);
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET, eq);
__ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
}
}
namespace {
// Drops top JavaScript frame and an arguments adaptor frame below it (if
// present) preserving all the arguments prepared for current call.
// Does nothing if debugger is currently active.
// ES6 14.6.3. PrepareForTailCall
//
// Stack structure for the function g() tail calling f():
//
// ------- Caller frame: -------
// | ...
// | g()'s arg M
// | ...
// | g()'s arg 1
// | g()'s receiver arg
// | g()'s caller pc
// ------- g()'s frame: -------
// | g()'s caller fp <- fp
// | g()'s context
// | function pointer: g
// | -------------------------
// | ...
// | ...
// | f()'s arg N
// | ...
// | f()'s arg 1
// | f()'s receiver arg <- sp (f()'s caller pc is not on the stack yet!)
// ----------------------
//
void PrepareForTailCall(MacroAssembler* masm, Register args_reg,
Register scratch1, Register scratch2,
Register scratch3) {
DCHECK(!AreAliased(args_reg, scratch1, scratch2, scratch3));
Comment cmnt(masm, "[ PrepareForTailCall");
// Prepare for tail call only if ES2015 tail call elimination is enabled.
Label done;
ExternalReference is_tail_call_elimination_enabled =
ExternalReference::is_tail_call_elimination_enabled_address(
masm->isolate());
__ mov(scratch1, Operand(is_tail_call_elimination_enabled));
__ ldrb(scratch1, MemOperand(scratch1));
__ cmp(scratch1, Operand(0));
__ b(eq, &done);
// Drop possible interpreter handler/stub frame.
{
Label no_interpreter_frame;
__ ldr(scratch3,
MemOperand(fp, CommonFrameConstants::kContextOrFrameTypeOffset));
__ cmp(scratch3, Operand(Smi::FromInt(StackFrame::STUB)));
__ b(ne, &no_interpreter_frame);
__ ldr(fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ bind(&no_interpreter_frame);
}
// Check if next frame is an arguments adaptor frame.
Register caller_args_count_reg = scratch1;
Label no_arguments_adaptor, formal_parameter_count_loaded;
__ ldr(scratch2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ ldr(scratch3,
MemOperand(scratch2, CommonFrameConstants::kContextOrFrameTypeOffset));
__ cmp(scratch3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
__ b(ne, &no_arguments_adaptor);
// Drop current frame and load arguments count from arguments adaptor frame.
__ mov(fp, scratch2);
__ ldr(caller_args_count_reg,
MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ SmiUntag(caller_args_count_reg);
__ b(&formal_parameter_count_loaded);
__ bind(&no_arguments_adaptor);
// Load caller's formal parameter count
__ ldr(scratch1,
MemOperand(fp, ArgumentsAdaptorFrameConstants::kFunctionOffset));
__ ldr(scratch1,
FieldMemOperand(scratch1, JSFunction::kSharedFunctionInfoOffset));
__ ldr(caller_args_count_reg,
FieldMemOperand(scratch1,
SharedFunctionInfo::kFormalParameterCountOffset));
__ SmiUntag(caller_args_count_reg);
__ bind(&formal_parameter_count_loaded);
ParameterCount callee_args_count(args_reg);
__ PrepareForTailCall(callee_args_count, caller_args_count_reg, scratch2,
scratch3);
__ bind(&done);
}
} // namespace
// static
void Builtins::Generate_CallFunction(MacroAssembler* masm,
ConvertReceiverMode mode,
TailCallMode tail_call_mode) {
// ----------- S t a t e -------------
// -- r0 : the number of arguments (not including the receiver)
// -- r1 : the function to call (checked to be a JSFunction)
// -----------------------------------
__ AssertFunction(r1);
// See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
// Check that the function is not a "classConstructor".
Label class_constructor;
__ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
__ ldrb(r3, FieldMemOperand(r2, SharedFunctionInfo::kFunctionKindByteOffset));
__ tst(r3, Operand(SharedFunctionInfo::kClassConstructorBitsWithinByte));
__ b(ne, &class_constructor);
// Enter the context of the function; ToObject has to run in the function
// context, and we also need to take the global proxy from the function
// context in case of conversion.
STATIC_ASSERT(SharedFunctionInfo::kNativeByteOffset ==
SharedFunctionInfo::kStrictModeByteOffset);
__ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
// We need to convert the receiver for non-native sloppy mode functions.
Label done_convert;
__ ldrb(r3, FieldMemOperand(r2, SharedFunctionInfo::kNativeByteOffset));
__ tst(r3, Operand((1 << SharedFunctionInfo::kNativeBitWithinByte) |
(1 << SharedFunctionInfo::kStrictModeBitWithinByte)));
__ b(ne, &done_convert);
{
// ----------- S t a t e -------------
// -- r0 : the number of arguments (not including the receiver)
// -- r1 : the function to call (checked to be a JSFunction)
// -- r2 : the shared function info.
// -- cp : the function context.
// -----------------------------------
if (mode == ConvertReceiverMode::kNullOrUndefined) {
// Patch receiver to global proxy.
__ LoadGlobalProxy(r3);
} else {
Label convert_to_object, convert_receiver;
__ ldr(r3, MemOperand(sp, r0, LSL, kPointerSizeLog2));
__ JumpIfSmi(r3, &convert_to_object);
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ CompareObjectType(r3, r4, r4, FIRST_JS_RECEIVER_TYPE);
__ b(hs, &done_convert);
if (mode != ConvertReceiverMode::kNotNullOrUndefined) {
Label convert_global_proxy;
__ JumpIfRoot(r3, Heap::kUndefinedValueRootIndex,
&convert_global_proxy);
__ JumpIfNotRoot(r3, Heap::kNullValueRootIndex, &convert_to_object);
__ bind(&convert_global_proxy);
{
// Patch receiver to global proxy.
__ LoadGlobalProxy(r3);
}
__ b(&convert_receiver);
}
__ bind(&convert_to_object);
{
// Convert receiver using ToObject.
// TODO(bmeurer): Inline the allocation here to avoid building the frame
// in the fast case? (fall back to AllocateInNewSpace?)
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
__ SmiTag(r0);
__ Push(r0, r1);
__ mov(r0, r3);
__ Push(cp);
__ Call(masm->isolate()->builtins()->ToObject(),
RelocInfo::CODE_TARGET);
__ Pop(cp);
__ mov(r3, r0);
__ Pop(r0, r1);
__ SmiUntag(r0);
}
__ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
__ bind(&convert_receiver);
}
__ str(r3, MemOperand(sp, r0, LSL, kPointerSizeLog2));
}
__ bind(&done_convert);
// ----------- S t a t e -------------
// -- r0 : the number of arguments (not including the receiver)
// -- r1 : the function to call (checked to be a JSFunction)
// -- r2 : the shared function info.
// -- cp : the function context.
// -----------------------------------
if (tail_call_mode == TailCallMode::kAllow) {
PrepareForTailCall(masm, r0, r3, r4, r5);
}
__ ldr(r2,
FieldMemOperand(r2, SharedFunctionInfo::kFormalParameterCountOffset));
__ SmiUntag(r2);
ParameterCount actual(r0);
ParameterCount expected(r2);
__ InvokeFunctionCode(r1, no_reg, expected, actual, JUMP_FUNCTION,
CheckDebugStepCallWrapper());
// The function is a "classConstructor", need to raise an exception.
__ bind(&class_constructor);
{
FrameScope frame(masm, StackFrame::INTERNAL);
__ push(r1);
__ CallRuntime(Runtime::kThrowConstructorNonCallableError);
}
}
namespace {
void Generate_PushBoundArguments(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : the number of arguments (not including the receiver)
// -- r1 : target (checked to be a JSBoundFunction)
// -- r3 : new.target (only in case of [[Construct]])
// -----------------------------------
// Load [[BoundArguments]] into r2 and length of that into r4.
Label no_bound_arguments;
__ ldr(r2, FieldMemOperand(r1, JSBoundFunction::kBoundArgumentsOffset));
__ ldr(r4, FieldMemOperand(r2, FixedArray::kLengthOffset));
__ SmiUntag(r4);
__ cmp(r4, Operand(0));
__ b(eq, &no_bound_arguments);
{
// ----------- S t a t e -------------
// -- r0 : the number of arguments (not including the receiver)
// -- r1 : target (checked to be a JSBoundFunction)
// -- r2 : the [[BoundArguments]] (implemented as FixedArray)
// -- r3 : new.target (only in case of [[Construct]])
// -- r4 : the number of [[BoundArguments]]
// -----------------------------------
// Reserve stack space for the [[BoundArguments]].
{
Label done;
__ sub(sp, sp, Operand(r4, LSL, kPointerSizeLog2));
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack
// limit".
__ CompareRoot(sp, Heap::kRealStackLimitRootIndex);
__ b(gt, &done); // Signed comparison.
// Restore the stack pointer.
__ add(sp, sp, Operand(r4, LSL, kPointerSizeLog2));
{
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterFrame(StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
}
__ bind(&done);
}
// Relocate arguments down the stack.
{
Label loop, done_loop;
__ mov(r5, Operand(0));
__ bind(&loop);
__ cmp(r5, r0);
__ b(gt, &done_loop);
__ ldr(ip, MemOperand(sp, r4, LSL, kPointerSizeLog2));
__ str(ip, MemOperand(sp, r5, LSL, kPointerSizeLog2));
__ add(r4, r4, Operand(1));
__ add(r5, r5, Operand(1));
__ b(&loop);
__ bind(&done_loop);
}
// Copy [[BoundArguments]] to the stack (below the arguments).
{
Label loop;
__ ldr(r4, FieldMemOperand(r2, FixedArray::kLengthOffset));
__ SmiUntag(r4);
__ add(r2, r2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ bind(&loop);
__ sub(r4, r4, Operand(1), SetCC);
__ ldr(ip, MemOperand(r2, r4, LSL, kPointerSizeLog2));
__ str(ip, MemOperand(sp, r0, LSL, kPointerSizeLog2));
__ add(r0, r0, Operand(1));
__ b(gt, &loop);
}
}
__ bind(&no_bound_arguments);
}
} // namespace
// static
void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm,
TailCallMode tail_call_mode) {
// ----------- S t a t e -------------
// -- r0 : the number of arguments (not including the receiver)
// -- r1 : the function to call (checked to be a JSBoundFunction)
// -----------------------------------
__ AssertBoundFunction(r1);
if (tail_call_mode == TailCallMode::kAllow) {
PrepareForTailCall(masm, r0, r3, r4, r5);
}
// Patch the receiver to [[BoundThis]].
__ ldr(ip, FieldMemOperand(r1, JSBoundFunction::kBoundThisOffset));
__ str(ip, MemOperand(sp, r0, LSL, kPointerSizeLog2));
// Push the [[BoundArguments]] onto the stack.
Generate_PushBoundArguments(masm);
// Call the [[BoundTargetFunction]] via the Call builtin.
__ ldr(r1, FieldMemOperand(r1, JSBoundFunction::kBoundTargetFunctionOffset));
__ mov(ip, Operand(ExternalReference(Builtins::kCall_ReceiverIsAny,
masm->isolate())));
__ ldr(ip, MemOperand(ip));
__ add(pc, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
}
// static
void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode,
TailCallMode tail_call_mode) {
// ----------- S t a t e -------------
// -- r0 : the number of arguments (not including the receiver)
// -- r1 : the target to call (can be any Object).
// -----------------------------------
Label non_callable, non_function, non_smi;
__ JumpIfSmi(r1, &non_callable);
__ bind(&non_smi);
__ CompareObjectType(r1, r4, r5, JS_FUNCTION_TYPE);
__ Jump(masm->isolate()->builtins()->CallFunction(mode, tail_call_mode),
RelocInfo::CODE_TARGET, eq);
__ cmp(r5, Operand(JS_BOUND_FUNCTION_TYPE));
__ Jump(masm->isolate()->builtins()->CallBoundFunction(tail_call_mode),
RelocInfo::CODE_TARGET, eq);
// Check if target has a [[Call]] internal method.
__ ldrb(r4, FieldMemOperand(r4, Map::kBitFieldOffset));
__ tst(r4, Operand(1 << Map::kIsCallable));
__ b(eq, &non_callable);
__ cmp(r5, Operand(JS_PROXY_TYPE));
__ b(ne, &non_function);
// 0. Prepare for tail call if necessary.
if (tail_call_mode == TailCallMode::kAllow) {
PrepareForTailCall(masm, r0, r3, r4, r5);
}
// 1. Runtime fallback for Proxy [[Call]].
__ Push(r1);
// Increase the arguments size to include the pushed function and the
// existing receiver on the stack.
__ add(r0, r0, Operand(2));
// Tail-call to the runtime.
__ JumpToExternalReference(
ExternalReference(Runtime::kJSProxyCall, masm->isolate()));
// 2. Call to something else, which might have a [[Call]] internal method (if
// not we raise an exception).
__ bind(&non_function);
// Overwrite the original receiver the (original) target.
__ str(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2));
// Let the "call_as_function_delegate" take care of the rest.
__ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, r1);
__ Jump(masm->isolate()->builtins()->CallFunction(
ConvertReceiverMode::kNotNullOrUndefined, tail_call_mode),
RelocInfo::CODE_TARGET);
// 3. Call to something that is not callable.
__ bind(&non_callable);
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
__ Push(r1);
__ CallRuntime(Runtime::kThrowCalledNonCallable);
}
}
// static
void Builtins::Generate_ConstructFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : the number of arguments (not including the receiver)
// -- r1 : the constructor to call (checked to be a JSFunction)
// -- r3 : the new target (checked to be a constructor)
// -----------------------------------
__ AssertFunction(r1);
// Calling convention for function specific ConstructStubs require
// r2 to contain either an AllocationSite or undefined.
__ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
// Tail call to the function-specific construct stub (still in the caller
// context at this point).
__ ldr(r4, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
__ ldr(r4, FieldMemOperand(r4, SharedFunctionInfo::kConstructStubOffset));
__ add(pc, r4, Operand(Code::kHeaderSize - kHeapObjectTag));
}
// static
void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : the number of arguments (not including the receiver)
// -- r1 : the function to call (checked to be a JSBoundFunction)
// -- r3 : the new target (checked to be a constructor)
// -----------------------------------
__ AssertBoundFunction(r1);
// Push the [[BoundArguments]] onto the stack.
Generate_PushBoundArguments(masm);
// Patch new.target to [[BoundTargetFunction]] if new.target equals target.
__ cmp(r1, r3);
__ ldr(r3, FieldMemOperand(r1, JSBoundFunction::kBoundTargetFunctionOffset),
eq);
// Construct the [[BoundTargetFunction]] via the Construct builtin.
__ ldr(r1, FieldMemOperand(r1, JSBoundFunction::kBoundTargetFunctionOffset));
__ mov(ip, Operand(ExternalReference(Builtins::kConstruct, masm->isolate())));
__ ldr(ip, MemOperand(ip));
__ add(pc, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
}
// static
void Builtins::Generate_ConstructProxy(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : the number of arguments (not including the receiver)
// -- r1 : the constructor to call (checked to be a JSProxy)
// -- r3 : the new target (either the same as the constructor or
// the JSFunction on which new was invoked initially)
// -----------------------------------
// Call into the Runtime for Proxy [[Construct]].
__ Push(r1);
__ Push(r3);
// Include the pushed new_target, constructor and the receiver.
__ add(r0, r0, Operand(3));
// Tail-call to the runtime.
__ JumpToExternalReference(
ExternalReference(Runtime::kJSProxyConstruct, masm->isolate()));
}
// static
void Builtins::Generate_Construct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : the number of arguments (not including the receiver)
// -- r1 : the constructor to call (can be any Object)
// -- r3 : the new target (either the same as the constructor or
// the JSFunction on which new was invoked initially)
// -----------------------------------
// Check if target is a Smi.
Label non_constructor;
__ JumpIfSmi(r1, &non_constructor);
// Dispatch based on instance type.
__ CompareObjectType(r1, r4, r5, JS_FUNCTION_TYPE);
__ Jump(masm->isolate()->builtins()->ConstructFunction(),
RelocInfo::CODE_TARGET, eq);
// Check if target has a [[Construct]] internal method.
__ ldrb(r2, FieldMemOperand(r4, Map::kBitFieldOffset));
__ tst(r2, Operand(1 << Map::kIsConstructor));
__ b(eq, &non_constructor);
// Only dispatch to bound functions after checking whether they are
// constructors.
__ cmp(r5, Operand(JS_BOUND_FUNCTION_TYPE));
__ Jump(masm->isolate()->builtins()->ConstructBoundFunction(),
RelocInfo::CODE_TARGET, eq);
// Only dispatch to proxies after checking whether they are constructors.
__ cmp(r5, Operand(JS_PROXY_TYPE));
__ Jump(masm->isolate()->builtins()->ConstructProxy(), RelocInfo::CODE_TARGET,
eq);
// Called Construct on an exotic Object with a [[Construct]] internal method.
{
// Overwrite the original receiver with the (original) target.
__ str(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2));
// Let the "call_as_constructor_delegate" take care of the rest.
__ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, r1);
__ Jump(masm->isolate()->builtins()->CallFunction(),
RelocInfo::CODE_TARGET);
}
// Called Construct on an Object that doesn't have a [[Construct]] internal
// method.
__ bind(&non_constructor);
__ Jump(masm->isolate()->builtins()->ConstructedNonConstructable(),
RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_AllocateInNewSpace(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r1 : requested object size (untagged)
// -- lr : return address
// -----------------------------------
__ SmiTag(r1);
__ Push(r1);
__ Move(cp, Smi::kZero);
__ TailCallRuntime(Runtime::kAllocateInNewSpace);
}
// static
void Builtins::Generate_AllocateInOldSpace(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r1 : requested object size (untagged)
// -- lr : return address
// -----------------------------------
__ SmiTag(r1);
__ Move(r2, Smi::FromInt(AllocateTargetSpace::encode(OLD_SPACE)));
__ Push(r1, r2);
__ Move(cp, Smi::kZero);
__ TailCallRuntime(Runtime::kAllocateInTargetSpace);
}
// static
void Builtins::Generate_Abort(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r1 : message_id as Smi
// -- lr : return address
// -----------------------------------
__ Push(r1);
__ Move(cp, Smi::kZero);
__ TailCallRuntime(Runtime::kAbort);
}
void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : actual number of arguments
// -- r1 : function (passed through to callee)
// -- r2 : expected number of arguments
// -- r3 : new target (passed through to callee)
// -----------------------------------
Label invoke, dont_adapt_arguments, stack_overflow;
Label enough, too_few;
__ cmp(r0, r2);
__ b(lt, &too_few);
__ cmp(r2, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
__ b(eq, &dont_adapt_arguments);
{ // Enough parameters: actual >= expected
__ bind(&enough);
EnterArgumentsAdaptorFrame(masm);
Generate_StackOverflowCheck(masm, r2, r5, &stack_overflow);
// Calculate copy start address into r0 and copy end address into r4.
// r0: actual number of arguments as a smi
// r1: function
// r2: expected number of arguments
// r3: new target (passed through to callee)
__ add(r0, fp, Operand::PointerOffsetFromSmiKey(r0));
// adjust for return address and receiver
__ add(r0, r0, Operand(2 * kPointerSize));
__ sub(r4, r0, Operand(r2, LSL, kPointerSizeLog2));
// Copy the arguments (including the receiver) to the new stack frame.
// r0: copy start address
// r1: function
// r2: expected number of arguments
// r3: new target (passed through to callee)
// r4: copy end address
Label copy;
__ bind(&copy);
__ ldr(ip, MemOperand(r0, 0));
__ push(ip);
__ cmp(r0, r4); // Compare before moving to next argument.
__ sub(r0, r0, Operand(kPointerSize));
__ b(ne, &copy);
__ b(&invoke);
}
{ // Too few parameters: Actual < expected
__ bind(&too_few);
EnterArgumentsAdaptorFrame(masm);
Generate_StackOverflowCheck(masm, r2, r5, &stack_overflow);
// Calculate copy start address into r0 and copy end address is fp.
// r0: actual number of arguments as a smi
// r1: function
// r2: expected number of arguments
// r3: new target (passed through to callee)
__ add(r0, fp, Operand::PointerOffsetFromSmiKey(r0));
// Copy the arguments (including the receiver) to the new stack frame.
// r0: copy start address
// r1: function
// r2: expected number of arguments
// r3: new target (passed through to callee)
Label copy;
__ bind(&copy);
// Adjust load for return address and receiver.
__ ldr(ip, MemOperand(r0, 2 * kPointerSize));
__ push(ip);
__ cmp(r0, fp); // Compare before moving to next argument.
__ sub(r0, r0, Operand(kPointerSize));
__ b(ne, &copy);
// Fill the remaining expected arguments with undefined.
// r1: function
// r2: expected number of arguments
// r3: new target (passed through to callee)
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ sub(r4, fp, Operand(r2, LSL, kPointerSizeLog2));
// Adjust for frame.
__ sub(r4, r4, Operand(StandardFrameConstants::kFixedFrameSizeFromFp +
2 * kPointerSize));
Label fill;
__ bind(&fill);
__ push(ip);
__ cmp(sp, r4);
__ b(ne, &fill);
}
// Call the entry point.
__ bind(&invoke);
__ mov(r0, r2);
// r0 : expected number of arguments
// r1 : function (passed through to callee)
// r3 : new target (passed through to callee)
__ ldr(r4, FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
__ Call(r4);
// Store offset of return address for deoptimizer.
masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
// Exit frame and return.
LeaveArgumentsAdaptorFrame(masm);
__ Jump(lr);
// -------------------------------------------
// Dont adapt arguments.
// -------------------------------------------
__ bind(&dont_adapt_arguments);
__ ldr(r4, FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
__ Jump(r4);
__ bind(&stack_overflow);
{
FrameScope frame(masm, StackFrame::MANUAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ bkpt(0);
}
}
#undef __
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_ARM