blob: cbd2d26c99e48a755ede369bd742828fdc6bd8ab [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/runtime/runtime-utils.h"
#include "src/arguments.h"
#include "src/asmjs/asm-js.h"
#include "src/compiler-dispatcher/optimizing-compile-dispatcher.h"
#include "src/compiler.h"
#include "src/deoptimizer.h"
#include "src/frames-inl.h"
#include "src/full-codegen/full-codegen.h"
#include "src/isolate-inl.h"
#include "src/messages.h"
#include "src/v8threads.h"
#include "src/vm-state-inl.h"
namespace v8 {
namespace internal {
RUNTIME_FUNCTION(Runtime_CompileLazy) {
HandleScope scope(isolate);
DCHECK_EQ(1, args.length());
CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
#ifdef DEBUG
if (FLAG_trace_lazy && !function->shared()->is_compiled()) {
PrintF("[unoptimized: ");
function->PrintName();
PrintF("]\n");
}
#endif
StackLimitCheck check(isolate);
if (check.JsHasOverflowed(1 * KB)) return isolate->StackOverflow();
if (!Compiler::Compile(function, Compiler::KEEP_EXCEPTION)) {
return isolate->heap()->exception();
}
DCHECK(function->is_compiled());
return function->code();
}
RUNTIME_FUNCTION(Runtime_CompileOptimized_Concurrent) {
HandleScope scope(isolate);
DCHECK_EQ(1, args.length());
CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
StackLimitCheck check(isolate);
if (check.JsHasOverflowed(1 * KB)) return isolate->StackOverflow();
if (!Compiler::CompileOptimized(function, Compiler::CONCURRENT)) {
return isolate->heap()->exception();
}
DCHECK(function->is_compiled());
return function->code();
}
RUNTIME_FUNCTION(Runtime_CompileOptimized_NotConcurrent) {
HandleScope scope(isolate);
DCHECK_EQ(1, args.length());
CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
StackLimitCheck check(isolate);
if (check.JsHasOverflowed(1 * KB)) return isolate->StackOverflow();
if (!Compiler::CompileOptimized(function, Compiler::NOT_CONCURRENT)) {
return isolate->heap()->exception();
}
DCHECK(function->is_compiled());
return function->code();
}
RUNTIME_FUNCTION(Runtime_InstantiateAsmJs) {
HandleScope scope(isolate);
DCHECK_EQ(args.length(), 4);
CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
Handle<JSReceiver> stdlib;
if (args[1]->IsJSReceiver()) {
stdlib = args.at<JSReceiver>(1);
}
Handle<JSObject> foreign;
if (args[2]->IsJSObject()) {
foreign = args.at<JSObject>(2);
}
Handle<JSArrayBuffer> memory;
if (args[3]->IsJSArrayBuffer()) {
memory = args.at<JSArrayBuffer>(3);
}
if (function->shared()->HasAsmWasmData() &&
AsmJs::IsStdlibValid(isolate, handle(function->shared()->asm_wasm_data()),
stdlib)) {
MaybeHandle<Object> result;
result = AsmJs::InstantiateAsmWasm(
isolate, handle(function->shared()->asm_wasm_data()), memory, foreign);
if (!result.is_null()) {
return *result.ToHandleChecked();
}
}
// Remove wasm data, mark as broken for asm->wasm,
// replace code with CompileLazy, and return a smi 0 to indicate failure.
if (function->shared()->HasAsmWasmData()) {
function->shared()->ClearAsmWasmData();
}
function->shared()->set_is_asm_wasm_broken(true);
DCHECK(function->code() ==
isolate->builtins()->builtin(Builtins::kInstantiateAsmJs));
function->ReplaceCode(isolate->builtins()->builtin(Builtins::kCompileLazy));
if (function->shared()->code() ==
isolate->builtins()->builtin(Builtins::kInstantiateAsmJs)) {
function->shared()->ReplaceCode(
isolate->builtins()->builtin(Builtins::kCompileLazy));
}
return Smi::kZero;
}
RUNTIME_FUNCTION(Runtime_NotifyStubFailure) {
HandleScope scope(isolate);
DCHECK_EQ(0, args.length());
Deoptimizer* deoptimizer = Deoptimizer::Grab(isolate);
DCHECK(AllowHeapAllocation::IsAllowed());
delete deoptimizer;
return isolate->heap()->undefined_value();
}
class ActivationsFinder : public ThreadVisitor {
public:
Code* code_;
bool has_code_activations_;
explicit ActivationsFinder(Code* code)
: code_(code), has_code_activations_(false) {}
void VisitThread(Isolate* isolate, ThreadLocalTop* top) {
JavaScriptFrameIterator it(isolate, top);
VisitFrames(&it);
}
void VisitFrames(JavaScriptFrameIterator* it) {
for (; !it->done(); it->Advance()) {
JavaScriptFrame* frame = it->frame();
if (code_->contains(frame->pc())) has_code_activations_ = true;
}
}
};
RUNTIME_FUNCTION(Runtime_NotifyDeoptimized) {
HandleScope scope(isolate);
DCHECK_EQ(1, args.length());
CONVERT_SMI_ARG_CHECKED(type_arg, 0);
Deoptimizer::BailoutType type =
static_cast<Deoptimizer::BailoutType>(type_arg);
Deoptimizer* deoptimizer = Deoptimizer::Grab(isolate);
DCHECK(AllowHeapAllocation::IsAllowed());
TimerEventScope<TimerEventDeoptimizeCode> timer(isolate);
TRACE_EVENT0("v8", "V8.DeoptimizeCode");
Handle<JSFunction> function = deoptimizer->function();
Handle<Code> optimized_code = deoptimizer->compiled_code();
DCHECK(optimized_code->kind() == Code::OPTIMIZED_FUNCTION);
DCHECK(type == deoptimizer->bailout_type());
DCHECK_NULL(isolate->context());
// TODO(turbofan): For Crankshaft we restore the context before objects are
// being materialized, because it never de-materializes the context but it
// requires a context to materialize arguments objects. This is specific to
// Crankshaft and can be removed once only TurboFan goes through here.
if (!optimized_code->is_turbofanned()) {
JavaScriptFrameIterator top_it(isolate);
JavaScriptFrame* top_frame = top_it.frame();
isolate->set_context(Context::cast(top_frame->context()));
} else {
// TODO(turbofan): We currently need the native context to materialize
// the arguments object, but only to get to its map.
isolate->set_context(function->native_context());
}
// Make sure to materialize objects before causing any allocation.
JavaScriptFrameIterator it(isolate);
deoptimizer->MaterializeHeapObjects(&it);
delete deoptimizer;
// Ensure the context register is updated for materialized objects.
if (optimized_code->is_turbofanned()) {
JavaScriptFrameIterator top_it(isolate);
JavaScriptFrame* top_frame = top_it.frame();
isolate->set_context(Context::cast(top_frame->context()));
}
if (type == Deoptimizer::LAZY) {
return isolate->heap()->undefined_value();
}
// Search for other activations of the same optimized code.
// At this point {it} is at the topmost frame of all the frames materialized
// by the deoptimizer. Note that this frame does not necessarily represent
// an activation of {function} because of potential inlined tail-calls.
ActivationsFinder activations_finder(*optimized_code);
activations_finder.VisitFrames(&it);
isolate->thread_manager()->IterateArchivedThreads(&activations_finder);
if (!activations_finder.has_code_activations_) {
Deoptimizer::UnlinkOptimizedCode(*optimized_code,
function->context()->native_context());
// Evict optimized code for this function from the cache so that it
// doesn't get used for new closures.
function->shared()->EvictFromOptimizedCodeMap(*optimized_code,
"notify deoptimized");
} else {
// TODO(titzer): we should probably do DeoptimizeCodeList(code)
// unconditionally if the code is not already marked for deoptimization.
// If there is an index by shared function info, all the better.
Deoptimizer::DeoptimizeFunction(*function);
}
return isolate->heap()->undefined_value();
}
static bool IsSuitableForOnStackReplacement(Isolate* isolate,
Handle<JSFunction> function) {
// Keep track of whether we've succeeded in optimizing.
if (function->shared()->optimization_disabled()) return false;
// If we are trying to do OSR when there are already optimized
// activations of the function, it means (a) the function is directly or
// indirectly recursive and (b) an optimized invocation has been
// deoptimized so that we are currently in an unoptimized activation.
// Check for optimized activations of this function.
for (JavaScriptFrameIterator it(isolate); !it.done(); it.Advance()) {
JavaScriptFrame* frame = it.frame();
if (frame->is_optimized() && frame->function() == *function) return false;
}
return true;
}
namespace {
BailoutId DetermineEntryAndDisarmOSRForBaseline(JavaScriptFrame* frame) {
Handle<Code> caller_code(frame->function()->shared()->code());
// Passing the PC in the JavaScript frame from the caller directly is
// not GC safe, so we walk the stack to get it.
if (!caller_code->contains(frame->pc())) {
// Code on the stack may not be the code object referenced by the shared
// function info. It may have been replaced to include deoptimization data.
caller_code = Handle<Code>(frame->LookupCode());
}
DCHECK_EQ(frame->LookupCode(), *caller_code);
DCHECK_EQ(Code::FUNCTION, caller_code->kind());
DCHECK(caller_code->contains(frame->pc()));
// Revert the patched back edge table, regardless of whether OSR succeeds.
BackEdgeTable::Revert(frame->isolate(), *caller_code);
// Return a BailoutId representing an AST id of the {IterationStatement}.
uint32_t pc_offset =
static_cast<uint32_t>(frame->pc() - caller_code->instruction_start());
return caller_code->TranslatePcOffsetToAstId(pc_offset);
}
BailoutId DetermineEntryAndDisarmOSRForInterpreter(JavaScriptFrame* frame) {
InterpretedFrame* iframe = reinterpret_cast<InterpretedFrame*>(frame);
// Note that the bytecode array active on the stack might be different from
// the one installed on the function (e.g. patched by debugger). This however
// is fine because we guarantee the layout to be in sync, hence any BailoutId
// representing the entry point will be valid for any copy of the bytecode.
Handle<BytecodeArray> bytecode(iframe->GetBytecodeArray());
DCHECK(frame->LookupCode()->is_interpreter_trampoline_builtin());
DCHECK(frame->function()->shared()->HasBytecodeArray());
DCHECK(frame->is_interpreted());
DCHECK(FLAG_ignition_osr);
// Reset the OSR loop nesting depth to disarm back edges.
bytecode->set_osr_loop_nesting_level(0);
// Return a BailoutId representing the bytecode offset of the back branch.
return BailoutId(iframe->GetBytecodeOffset());
}
} // namespace
RUNTIME_FUNCTION(Runtime_CompileForOnStackReplacement) {
HandleScope scope(isolate);
DCHECK_EQ(1, args.length());
CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
// We're not prepared to handle a function with arguments object.
DCHECK(!function->shared()->uses_arguments());
// Only reachable when OST is enabled.
CHECK(FLAG_use_osr);
// Determine frame triggering OSR request.
JavaScriptFrameIterator it(isolate);
JavaScriptFrame* frame = it.frame();
DCHECK_EQ(frame->function(), *function);
// Determine the entry point for which this OSR request has been fired and
// also disarm all back edges in the calling code to stop new requests.
BailoutId ast_id = frame->is_interpreted()
? DetermineEntryAndDisarmOSRForInterpreter(frame)
: DetermineEntryAndDisarmOSRForBaseline(frame);
DCHECK(!ast_id.IsNone());
MaybeHandle<Code> maybe_result;
if (IsSuitableForOnStackReplacement(isolate, function)) {
if (FLAG_trace_osr) {
PrintF("[OSR - Compiling: ");
function->PrintName();
PrintF(" at AST id %d]\n", ast_id.ToInt());
}
maybe_result = Compiler::GetOptimizedCodeForOSR(function, ast_id, frame);
}
// Check whether we ended up with usable optimized code.
Handle<Code> result;
if (maybe_result.ToHandle(&result) &&
result->kind() == Code::OPTIMIZED_FUNCTION) {
DeoptimizationInputData* data =
DeoptimizationInputData::cast(result->deoptimization_data());
if (data->OsrPcOffset()->value() >= 0) {
DCHECK(BailoutId(data->OsrAstId()->value()) == ast_id);
if (FLAG_trace_osr) {
PrintF("[OSR - Entry at AST id %d, offset %d in optimized code]\n",
ast_id.ToInt(), data->OsrPcOffset()->value());
}
// TODO(titzer): this is a massive hack to make the deopt counts
// match. Fix heuristics for reenabling optimizations!
function->shared()->increment_deopt_count();
if (result->is_turbofanned()) {
// When we're waiting for concurrent optimization, set to compile on
// the next call - otherwise we'd run unoptimized once more
// and potentially compile for OSR another time as well.
if (function->IsMarkedForConcurrentOptimization()) {
if (FLAG_trace_osr) {
PrintF("[OSR - Re-marking ");
function->PrintName();
PrintF(" for non-concurrent optimization]\n");
}
function->ReplaceCode(
isolate->builtins()->builtin(Builtins::kCompileOptimized));
}
} else {
// Crankshafted OSR code can be installed into the function.
function->ReplaceCode(*result);
}
return *result;
}
}
// Failed.
if (FLAG_trace_osr) {
PrintF("[OSR - Failed: ");
function->PrintName();
PrintF(" at AST id %d]\n", ast_id.ToInt());
}
if (!function->IsOptimized()) {
function->ReplaceCode(function->shared()->code());
}
return NULL;
}
RUNTIME_FUNCTION(Runtime_TryInstallOptimizedCode) {
HandleScope scope(isolate);
DCHECK_EQ(1, args.length());
CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
// First check if this is a real stack overflow.
StackLimitCheck check(isolate);
if (check.JsHasOverflowed()) {
SealHandleScope shs(isolate);
return isolate->StackOverflow();
}
isolate->optimizing_compile_dispatcher()->InstallOptimizedFunctions();
return (function->IsOptimized()) ? function->code()
: function->shared()->code();
}
bool CodeGenerationFromStringsAllowed(Isolate* isolate,
Handle<Context> context) {
DCHECK(context->allow_code_gen_from_strings()->IsFalse(isolate));
// Check with callback if set.
AllowCodeGenerationFromStringsCallback callback =
isolate->allow_code_gen_callback();
if (callback == NULL) {
// No callback set and code generation disallowed.
return false;
} else {
// Callback set. Let it decide if code generation is allowed.
VMState<EXTERNAL> state(isolate);
return callback(v8::Utils::ToLocal(context));
}
}
static Object* CompileGlobalEval(Isolate* isolate, Handle<String> source,
Handle<SharedFunctionInfo> outer_info,
LanguageMode language_mode,
int eval_scope_position, int eval_position) {
Handle<Context> context = Handle<Context>(isolate->context());
Handle<Context> native_context = Handle<Context>(context->native_context());
// Check if native context allows code generation from
// strings. Throw an exception if it doesn't.
if (native_context->allow_code_gen_from_strings()->IsFalse(isolate) &&
!CodeGenerationFromStringsAllowed(isolate, native_context)) {
Handle<Object> error_message =
native_context->ErrorMessageForCodeGenerationFromStrings();
Handle<Object> error;
MaybeHandle<Object> maybe_error = isolate->factory()->NewEvalError(
MessageTemplate::kCodeGenFromStrings, error_message);
if (maybe_error.ToHandle(&error)) isolate->Throw(*error);
return isolate->heap()->exception();
}
// Deal with a normal eval call with a string argument. Compile it
// and return the compiled function bound in the local context.
static const ParseRestriction restriction = NO_PARSE_RESTRICTION;
Handle<JSFunction> compiled;
ASSIGN_RETURN_ON_EXCEPTION_VALUE(
isolate, compiled,
Compiler::GetFunctionFromEval(source, outer_info, context, language_mode,
restriction, kNoSourcePosition,
eval_scope_position, eval_position),
isolate->heap()->exception());
return *compiled;
}
RUNTIME_FUNCTION(Runtime_ResolvePossiblyDirectEval) {
HandleScope scope(isolate);
DCHECK_EQ(6, args.length());
Handle<Object> callee = args.at(0);
// If "eval" didn't refer to the original GlobalEval, it's not a
// direct call to eval.
// (And even if it is, but the first argument isn't a string, just let
// execution default to an indirect call to eval, which will also return
// the first argument without doing anything).
if (*callee != isolate->native_context()->global_eval_fun() ||
!args[1]->IsString()) {
return *callee;
}
DCHECK(args[3]->IsSmi());
DCHECK(is_valid_language_mode(args.smi_at(3)));
LanguageMode language_mode = static_cast<LanguageMode>(args.smi_at(3));
DCHECK(args[4]->IsSmi());
Handle<SharedFunctionInfo> outer_info(args.at<JSFunction>(2)->shared(),
isolate);
return CompileGlobalEval(isolate, args.at<String>(1), outer_info,
language_mode, args.smi_at(4), args.smi_at(5));
}
} // namespace internal
} // namespace v8