blob: 61e79fee7c6e95a60a5ee23ae670c277adadb719 [file] [log] [blame]
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/raster/one_copy_raster_buffer_provider.h"
#include <stdint.h>
#include <algorithm>
#include <limits>
#include <utility>
#include "base/macros.h"
#include "base/metrics/histogram_macros.h"
#include "cc/base/histograms.h"
#include "cc/base/math_util.h"
#include "cc/resources/platform_color.h"
#include "cc/resources/resource_format.h"
#include "cc/resources/resource_util.h"
#include "cc/resources/scoped_resource.h"
#include "gpu/GLES2/gl2extchromium.h"
#include "gpu/command_buffer/client/gles2_interface.h"
#include "gpu/command_buffer/client/gpu_memory_buffer_manager.h"
#include "ui/gfx/buffer_format_util.h"
namespace cc {
namespace {
// 4MiB is the size of 4 512x512 tiles, which has proven to be a good
// default batch size for copy operations.
const int kMaxBytesPerCopyOperation = 1024 * 1024 * 4;
} // namespace
OneCopyRasterBufferProvider::RasterBufferImpl::RasterBufferImpl(
OneCopyRasterBufferProvider* client,
ResourceProvider* resource_provider,
const Resource* resource,
uint64_t previous_content_id,
bool async_worker_context_enabled)
: client_(client),
resource_(resource),
lock_(resource_provider, resource->id(), async_worker_context_enabled),
previous_content_id_(previous_content_id) {
client_->pending_raster_buffers_.insert(this);
}
OneCopyRasterBufferProvider::RasterBufferImpl::~RasterBufferImpl() {
client_->pending_raster_buffers_.erase(this);
}
void OneCopyRasterBufferProvider::RasterBufferImpl::Playback(
const RasterSource* raster_source,
const gfx::Rect& raster_full_rect,
const gfx::Rect& raster_dirty_rect,
uint64_t new_content_id,
float scale,
const RasterSource::PlaybackSettings& playback_settings) {
TRACE_EVENT0("cc", "OneCopyRasterBuffer::Playback");
client_->PlaybackAndCopyOnWorkerThread(
resource_, &lock_, sync_token_, raster_source, raster_full_rect,
raster_dirty_rect, scale, playback_settings, previous_content_id_,
new_content_id);
}
OneCopyRasterBufferProvider::OneCopyRasterBufferProvider(
base::SequencedTaskRunner* task_runner,
ContextProvider* compositor_context_provider,
ContextProvider* worker_context_provider,
ResourceProvider* resource_provider,
int max_copy_texture_chromium_size,
bool use_partial_raster,
int max_staging_buffer_usage_in_bytes,
ResourceFormat preferred_tile_format,
bool async_worker_context_enabled)
: compositor_context_provider_(compositor_context_provider),
worker_context_provider_(worker_context_provider),
resource_provider_(resource_provider),
max_bytes_per_copy_operation_(
max_copy_texture_chromium_size
? std::min(kMaxBytesPerCopyOperation,
max_copy_texture_chromium_size)
: kMaxBytesPerCopyOperation),
use_partial_raster_(use_partial_raster),
bytes_scheduled_since_last_flush_(0),
preferred_tile_format_(preferred_tile_format),
staging_pool_(task_runner,
worker_context_provider,
resource_provider,
use_partial_raster,
max_staging_buffer_usage_in_bytes),
async_worker_context_enabled_(async_worker_context_enabled) {
DCHECK(compositor_context_provider);
DCHECK(worker_context_provider);
}
OneCopyRasterBufferProvider::~OneCopyRasterBufferProvider() {
DCHECK(pending_raster_buffers_.empty());
}
std::unique_ptr<RasterBuffer>
OneCopyRasterBufferProvider::AcquireBufferForRaster(
const Resource* resource,
uint64_t resource_content_id,
uint64_t previous_content_id) {
// TODO(danakj): If resource_content_id != 0, we only need to copy/upload
// the dirty rect.
return base::MakeUnique<RasterBufferImpl>(this, resource_provider_, resource,
previous_content_id,
async_worker_context_enabled_);
}
void OneCopyRasterBufferProvider::ReleaseBufferForRaster(
std::unique_ptr<RasterBuffer> buffer) {
// Nothing to do here. RasterBufferImpl destructor cleans up after itself.
}
void OneCopyRasterBufferProvider::OrderingBarrier() {
TRACE_EVENT0("cc", "OneCopyRasterBufferProvider::OrderingBarrier");
gpu::gles2::GLES2Interface* gl = compositor_context_provider_->ContextGL();
if (async_worker_context_enabled_) {
GLuint64 fence = gl->InsertFenceSyncCHROMIUM();
gl->OrderingBarrierCHROMIUM();
gpu::SyncToken sync_token;
gl->GenUnverifiedSyncTokenCHROMIUM(fence, sync_token.GetData());
DCHECK(sync_token.HasData() ||
gl->GetGraphicsResetStatusKHR() != GL_NO_ERROR);
for (RasterBufferImpl* buffer : pending_raster_buffers_)
buffer->set_sync_token(sync_token);
} else {
gl->OrderingBarrierCHROMIUM();
}
pending_raster_buffers_.clear();
}
ResourceFormat OneCopyRasterBufferProvider::GetResourceFormat(
bool must_support_alpha) const {
if (resource_provider_->IsResourceFormatSupported(preferred_tile_format_) &&
(DoesResourceFormatSupportAlpha(preferred_tile_format_) ||
!must_support_alpha)) {
return preferred_tile_format_;
}
return resource_provider_->best_texture_format();
}
bool OneCopyRasterBufferProvider::IsResourceSwizzleRequired(
bool must_support_alpha) const {
return ResourceFormatRequiresSwizzle(GetResourceFormat(must_support_alpha));
}
bool OneCopyRasterBufferProvider::CanPartialRasterIntoProvidedResource() const {
// While OneCopyRasterBufferProvider has an internal partial raster
// implementation, it cannot directly partial raster into the externally
// owned resource provided in AcquireBufferForRaster.
return false;
}
void OneCopyRasterBufferProvider::Shutdown() {
staging_pool_.Shutdown();
pending_raster_buffers_.clear();
}
void OneCopyRasterBufferProvider::PlaybackAndCopyOnWorkerThread(
const Resource* resource,
ResourceProvider::ScopedWriteLockGL* resource_lock,
const gpu::SyncToken& sync_token,
const RasterSource* raster_source,
const gfx::Rect& raster_full_rect,
const gfx::Rect& raster_dirty_rect,
float scale,
const RasterSource::PlaybackSettings& playback_settings,
uint64_t previous_content_id,
uint64_t new_content_id) {
if (async_worker_context_enabled_) {
// Early out if sync token is invalid. This happens if the compositor
// context was lost before ScheduleTasks was called.
if (!sync_token.HasData())
return;
ContextProvider::ScopedContextLock scoped_context(worker_context_provider_);
gpu::gles2::GLES2Interface* gl = scoped_context.ContextGL();
DCHECK(gl);
// Synchronize with compositor.
gl->WaitSyncTokenCHROMIUM(sync_token.GetConstData());
}
std::unique_ptr<StagingBuffer> staging_buffer =
staging_pool_.AcquireStagingBuffer(resource, previous_content_id);
PlaybackToStagingBuffer(staging_buffer.get(), resource, raster_source,
raster_full_rect, raster_dirty_rect, scale,
resource_lock->sk_color_space(), playback_settings,
previous_content_id, new_content_id);
CopyOnWorkerThread(staging_buffer.get(), resource_lock, sync_token,
raster_source, previous_content_id, new_content_id);
staging_pool_.ReleaseStagingBuffer(std::move(staging_buffer));
}
void OneCopyRasterBufferProvider::PlaybackToStagingBuffer(
StagingBuffer* staging_buffer,
const Resource* resource,
const RasterSource* raster_source,
const gfx::Rect& raster_full_rect,
const gfx::Rect& raster_dirty_rect,
float scale,
sk_sp<SkColorSpace> dst_color_space,
const RasterSource::PlaybackSettings& playback_settings,
uint64_t previous_content_id,
uint64_t new_content_id) {
// Allocate GpuMemoryBuffer if necessary. If using partial raster, we
// must allocate a buffer with BufferUsage CPU_READ_WRITE_PERSISTENT.
if (!staging_buffer->gpu_memory_buffer) {
staging_buffer->gpu_memory_buffer =
resource_provider_->gpu_memory_buffer_manager()
->AllocateGpuMemoryBuffer(
staging_buffer->size, BufferFormat(resource->format()),
StagingBufferUsage(), gpu::kNullSurfaceHandle);
}
gfx::Rect playback_rect = raster_full_rect;
if (use_partial_raster_ && previous_content_id) {
// Reduce playback rect to dirty region if the content id of the staging
// buffer matches the prevous content id.
if (previous_content_id == staging_buffer->content_id)
playback_rect.Intersect(raster_dirty_rect);
}
// Log a histogram of the percentage of pixels that were saved due to
// partial raster.
const char* client_name = GetClientNameForMetrics();
float full_rect_size = raster_full_rect.size().GetArea();
if (full_rect_size > 0 && client_name) {
float fraction_partial_rastered =
static_cast<float>(playback_rect.size().GetArea()) / full_rect_size;
float fraction_saved = 1.0f - fraction_partial_rastered;
UMA_HISTOGRAM_PERCENTAGE(
base::StringPrintf("Renderer4.%s.PartialRasterPercentageSaved.OneCopy",
client_name),
100.0f * fraction_saved);
}
if (staging_buffer->gpu_memory_buffer) {
gfx::GpuMemoryBuffer* buffer = staging_buffer->gpu_memory_buffer.get();
DCHECK_EQ(1u, gfx::NumberOfPlanesForBufferFormat(buffer->GetFormat()));
bool rv = buffer->Map();
DCHECK(rv);
DCHECK(buffer->memory(0));
// RasterBufferProvider::PlaybackToMemory only supports unsigned strides.
DCHECK_GE(buffer->stride(0), 0);
DCHECK(!playback_rect.IsEmpty())
<< "Why are we rastering a tile that's not dirty?";
RasterBufferProvider::PlaybackToMemory(
buffer->memory(0), resource->format(), staging_buffer->size,
buffer->stride(0), raster_source, raster_full_rect, playback_rect,
scale, dst_color_space, playback_settings);
buffer->Unmap();
staging_buffer->content_id = new_content_id;
}
}
void OneCopyRasterBufferProvider::CopyOnWorkerThread(
StagingBuffer* staging_buffer,
ResourceProvider::ScopedWriteLockGL* resource_lock,
const gpu::SyncToken& sync_token,
const RasterSource* raster_source,
uint64_t previous_content_id,
uint64_t new_content_id) {
ContextProvider::ScopedContextLock scoped_context(worker_context_provider_);
gpu::gles2::GLES2Interface* gl = scoped_context.ContextGL();
DCHECK(gl);
// Create texture after synchronizing with compositor.
ResourceProvider::ScopedTextureProvider scoped_texture(
gl, resource_lock, async_worker_context_enabled_);
unsigned resource_texture_id = scoped_texture.texture_id();
unsigned image_target = resource_provider_->GetImageTextureTarget(
StagingBufferUsage(), staging_buffer->format);
// Create and bind staging texture.
if (!staging_buffer->texture_id) {
gl->GenTextures(1, &staging_buffer->texture_id);
gl->BindTexture(image_target, staging_buffer->texture_id);
gl->TexParameteri(image_target, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
gl->TexParameteri(image_target, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
gl->TexParameteri(image_target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
gl->TexParameteri(image_target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
} else {
gl->BindTexture(image_target, staging_buffer->texture_id);
}
// Create and bind image.
if (!staging_buffer->image_id) {
if (staging_buffer->gpu_memory_buffer) {
staging_buffer->image_id = gl->CreateImageCHROMIUM(
staging_buffer->gpu_memory_buffer->AsClientBuffer(),
staging_buffer->size.width(), staging_buffer->size.height(),
GLInternalFormat(resource_lock->format()));
gl->BindTexImage2DCHROMIUM(image_target, staging_buffer->image_id);
}
} else {
gl->ReleaseTexImage2DCHROMIUM(image_target, staging_buffer->image_id);
gl->BindTexImage2DCHROMIUM(image_target, staging_buffer->image_id);
}
// Unbind staging texture.
gl->BindTexture(image_target, 0);
if (resource_provider_->use_sync_query()) {
if (!staging_buffer->query_id)
gl->GenQueriesEXT(1, &staging_buffer->query_id);
#if defined(OS_CHROMEOS) && defined(ARCH_CPU_ARM_FAMILY)
// TODO(reveman): This avoids a performance problem on ARM ChromeOS
// devices. crbug.com/580166
gl->BeginQueryEXT(GL_COMMANDS_ISSUED_CHROMIUM, staging_buffer->query_id);
#else
gl->BeginQueryEXT(GL_COMMANDS_COMPLETED_CHROMIUM, staging_buffer->query_id);
#endif
}
// Since compressed texture's cannot be pre-allocated we might have an
// unallocated resource in which case we need to perform a full size copy.
if (IsResourceFormatCompressed(resource_lock->format())) {
gl->CompressedCopyTextureCHROMIUM(staging_buffer->texture_id,
resource_texture_id);
} else {
int bytes_per_row = ResourceUtil::UncheckedWidthInBytes<int>(
resource_lock->size().width(), resource_lock->format());
int chunk_size_in_rows =
std::max(1, max_bytes_per_copy_operation_ / bytes_per_row);
// Align chunk size to 4. Required to support compressed texture formats.
chunk_size_in_rows = MathUtil::UncheckedRoundUp(chunk_size_in_rows, 4);
int y = 0;
int height = resource_lock->size().height();
while (y < height) {
// Copy at most |chunk_size_in_rows|.
int rows_to_copy = std::min(chunk_size_in_rows, height - y);
DCHECK_GT(rows_to_copy, 0);
gl->CopySubTextureCHROMIUM(
staging_buffer->texture_id, resource_texture_id, 0, y, 0, y,
resource_lock->size().width(), rows_to_copy, false, false, false);
y += rows_to_copy;
// Increment |bytes_scheduled_since_last_flush_| by the amount of memory
// used for this copy operation.
bytes_scheduled_since_last_flush_ += rows_to_copy * bytes_per_row;
if (bytes_scheduled_since_last_flush_ >= max_bytes_per_copy_operation_) {
gl->ShallowFlushCHROMIUM();
bytes_scheduled_since_last_flush_ = 0;
}
}
}
if (resource_provider_->use_sync_query()) {
#if defined(OS_CHROMEOS) && defined(ARCH_CPU_ARM_FAMILY)
gl->EndQueryEXT(GL_COMMANDS_ISSUED_CHROMIUM);
#else
gl->EndQueryEXT(GL_COMMANDS_COMPLETED_CHROMIUM);
#endif
}
const uint64_t fence_sync = gl->InsertFenceSyncCHROMIUM();
// Barrier to sync worker context output to cc context.
gl->OrderingBarrierCHROMIUM();
// Generate sync token after the barrier for cross context synchronization.
gpu::SyncToken resource_sync_token;
gl->GenUnverifiedSyncTokenCHROMIUM(fence_sync, resource_sync_token.GetData());
resource_lock->set_sync_token(resource_sync_token);
resource_lock->set_synchronized(!async_worker_context_enabled_);
}
gfx::BufferUsage OneCopyRasterBufferProvider::StagingBufferUsage() const {
return use_partial_raster_
? gfx::BufferUsage::GPU_READ_CPU_READ_WRITE_PERSISTENT
: gfx::BufferUsage::GPU_READ_CPU_READ_WRITE;
}
} // namespace cc