blob: e591d3caeb132cfbec8d994710b5078dd8c695f7 [file] [log] [blame]
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/base/adapters.h"
#include "src/compiler/instruction-selector-impl.h"
#include "src/compiler/node-matchers.h"
#include "src/compiler/node-properties.h"
#include "src/s390/frames-s390.h"
namespace v8 {
namespace internal {
namespace compiler {
enum class OperandMode : uint32_t {
kNone = 0u,
// Immediate mode
kShift32Imm = 1u << 0,
kShift64Imm = 1u << 1,
kInt32Imm = 1u << 2,
kInt32Imm_Negate = 1u << 3,
kUint32Imm = 1u << 4,
kInt20Imm = 1u << 5,
kUint12Imm = 1u << 6,
// Instr format
kAllowRRR = 1u << 7,
kAllowRM = 1u << 8,
kAllowRI = 1u << 9,
kAllowRRI = 1u << 10,
kAllowRRM = 1u << 11,
// Useful combination
kAllowImmediate = kAllowRI | kAllowRRI,
kAllowMemoryOperand = kAllowRM | kAllowRRM,
kAllowDistinctOps = kAllowRRR | kAllowRRI | kAllowRRM,
kBitWiseCommonMode = kAllowRI,
kArithmeticCommonMode = kAllowRM | kAllowRI
};
typedef base::Flags<OperandMode, uint32_t> OperandModes;
DEFINE_OPERATORS_FOR_FLAGS(OperandModes);
OperandModes immediateModeMask =
OperandMode::kShift32Imm | OperandMode::kShift64Imm |
OperandMode::kInt32Imm | OperandMode::kInt32Imm_Negate |
OperandMode::kUint32Imm | OperandMode::kInt20Imm;
#define AndOperandMode \
((OperandMode::kBitWiseCommonMode | OperandMode::kUint32Imm | \
OperandMode::kAllowRM | (CpuFeatures::IsSupported(DISTINCT_OPS) \
? OperandMode::kAllowRRR \
: OperandMode::kBitWiseCommonMode)))
#define OrOperandMode AndOperandMode
#define XorOperandMode AndOperandMode
#define ShiftOperandMode \
((OperandMode::kBitWiseCommonMode | OperandMode::kShift64Imm | \
(CpuFeatures::IsSupported(DISTINCT_OPS) \
? OperandMode::kAllowRRR \
: OperandMode::kBitWiseCommonMode)))
#define AddOperandMode \
((OperandMode::kArithmeticCommonMode | OperandMode::kInt32Imm | \
(CpuFeatures::IsSupported(DISTINCT_OPS) \
? (OperandMode::kAllowRRR | OperandMode::kAllowRRI) \
: OperandMode::kArithmeticCommonMode)))
#define SubOperandMode \
((OperandMode::kArithmeticCommonMode | OperandMode::kInt32Imm_Negate | \
(CpuFeatures::IsSupported(DISTINCT_OPS) \
? (OperandMode::kAllowRRR | OperandMode::kAllowRRI) \
: OperandMode::kArithmeticCommonMode)))
#define MulOperandMode \
(OperandMode::kArithmeticCommonMode | OperandMode::kInt32Imm)
// Adds S390-specific methods for generating operands.
class S390OperandGenerator final : public OperandGenerator {
public:
explicit S390OperandGenerator(InstructionSelector* selector)
: OperandGenerator(selector) {}
InstructionOperand UseOperand(Node* node, OperandModes mode) {
if (CanBeImmediate(node, mode)) {
return UseImmediate(node);
}
return UseRegister(node);
}
InstructionOperand UseAnyExceptImmediate(Node* node) {
if (NodeProperties::IsConstant(node))
return UseRegister(node);
else
return Use(node);
}
int64_t GetImmediate(Node* node) {
if (node->opcode() == IrOpcode::kInt32Constant)
return OpParameter<int32_t>(node);
else if (node->opcode() == IrOpcode::kInt64Constant)
return OpParameter<int64_t>(node);
else
UNIMPLEMENTED();
return 0L;
}
bool CanBeImmediate(Node* node, OperandModes mode) {
int64_t value;
if (node->opcode() == IrOpcode::kInt32Constant)
value = OpParameter<int32_t>(node);
else if (node->opcode() == IrOpcode::kInt64Constant)
value = OpParameter<int64_t>(node);
else
return false;
return CanBeImmediate(value, mode);
}
bool CanBeImmediate(int64_t value, OperandModes mode) {
if (mode & OperandMode::kShift32Imm)
return 0 <= value && value < 32;
else if (mode & OperandMode::kShift64Imm)
return 0 <= value && value < 64;
else if (mode & OperandMode::kInt32Imm)
return is_int32(value);
else if (mode & OperandMode::kInt32Imm_Negate)
return is_int32(-value);
else if (mode & OperandMode::kUint32Imm)
return is_uint32(value);
else if (mode & OperandMode::kInt20Imm)
return is_int20(value);
else if (mode & OperandMode::kUint12Imm)
return is_uint12(value);
else
return false;
}
bool CanBeMemoryOperand(InstructionCode opcode, Node* user, Node* input,
int effect_level) {
if (input->opcode() != IrOpcode::kLoad ||
!selector()->CanCover(user, input)) {
return false;
}
if (effect_level != selector()->GetEffectLevel(input)) {
return false;
}
MachineRepresentation rep =
LoadRepresentationOf(input->op()).representation();
switch (opcode) {
case kS390_Cmp64:
case kS390_LoadAndTestWord64:
return rep == MachineRepresentation::kWord64 || IsAnyTagged(rep);
case kS390_LoadAndTestWord32:
case kS390_Cmp32:
return rep == MachineRepresentation::kWord32;
default:
break;
}
return false;
}
AddressingMode GenerateMemoryOperandInputs(Node* index, Node* base,
Node* displacement,
DisplacementMode displacement_mode,
InstructionOperand inputs[],
size_t* input_count) {
AddressingMode mode = kMode_MRI;
if (base != nullptr) {
inputs[(*input_count)++] = UseRegister(base);
if (index != nullptr) {
inputs[(*input_count)++] = UseRegister(index);
if (displacement != nullptr) {
inputs[(*input_count)++] = displacement_mode
? UseNegatedImmediate(displacement)
: UseImmediate(displacement);
mode = kMode_MRRI;
} else {
mode = kMode_MRR;
}
} else {
if (displacement == nullptr) {
mode = kMode_MR;
} else {
inputs[(*input_count)++] = displacement_mode == kNegativeDisplacement
? UseNegatedImmediate(displacement)
: UseImmediate(displacement);
mode = kMode_MRI;
}
}
} else {
DCHECK_NOT_NULL(index);
inputs[(*input_count)++] = UseRegister(index);
if (displacement != nullptr) {
inputs[(*input_count)++] = displacement_mode == kNegativeDisplacement
? UseNegatedImmediate(displacement)
: UseImmediate(displacement);
mode = kMode_MRI;
} else {
mode = kMode_MR;
}
}
return mode;
}
AddressingMode GetEffectiveAddressMemoryOperand(
Node* operand, InstructionOperand inputs[], size_t* input_count,
OperandModes immediate_mode = OperandMode::kInt20Imm) {
#if V8_TARGET_ARCH_S390X
BaseWithIndexAndDisplacement64Matcher m(operand,
AddressOption::kAllowInputSwap);
#else
BaseWithIndexAndDisplacement32Matcher m(operand,
AddressOption::kAllowInputSwap);
#endif
DCHECK(m.matches());
if ((m.displacement() == nullptr ||
CanBeImmediate(m.displacement(), immediate_mode))) {
DCHECK(m.scale() == 0);
return GenerateMemoryOperandInputs(m.index(), m.base(), m.displacement(),
m.displacement_mode(), inputs,
input_count);
} else {
inputs[(*input_count)++] = UseRegister(operand->InputAt(0));
inputs[(*input_count)++] = UseRegister(operand->InputAt(1));
return kMode_MRR;
}
}
bool CanBeBetterLeftOperand(Node* node) const {
return !selector()->IsLive(node);
}
MachineRepresentation GetRepresentation(Node* node) {
return sequence()->GetRepresentation(selector()->GetVirtualRegister(node));
}
bool Is64BitOperand(Node* node) {
return MachineRepresentation::kWord64 == GetRepresentation(node);
}
};
namespace {
bool S390OpcodeOnlySupport12BitDisp(ArchOpcode opcode) {
switch (opcode) {
case kS390_CmpFloat:
case kS390_CmpDouble:
return true;
default:
return false;
}
}
bool S390OpcodeOnlySupport12BitDisp(InstructionCode op) {
ArchOpcode opcode = ArchOpcodeField::decode(op);
return S390OpcodeOnlySupport12BitDisp(opcode);
}
#define OpcodeImmMode(op) \
(S390OpcodeOnlySupport12BitDisp(op) ? OperandMode::kUint12Imm \
: OperandMode::kInt20Imm)
ArchOpcode SelectLoadOpcode(Node* node) {
NodeMatcher m(node);
DCHECK(m.IsLoad());
LoadRepresentation load_rep = LoadRepresentationOf(node->op());
ArchOpcode opcode = kArchNop;
switch (load_rep.representation()) {
case MachineRepresentation::kFloat32:
opcode = kS390_LoadFloat32;
break;
case MachineRepresentation::kFloat64:
opcode = kS390_LoadDouble;
break;
case MachineRepresentation::kBit: // Fall through.
case MachineRepresentation::kWord8:
opcode = load_rep.IsSigned() ? kS390_LoadWordS8 : kS390_LoadWordU8;
break;
case MachineRepresentation::kWord16:
opcode = load_rep.IsSigned() ? kS390_LoadWordS16 : kS390_LoadWordU16;
break;
#if !V8_TARGET_ARCH_S390X
case MachineRepresentation::kTaggedSigned: // Fall through.
case MachineRepresentation::kTaggedPointer: // Fall through.
case MachineRepresentation::kTagged: // Fall through.
#endif
case MachineRepresentation::kWord32:
opcode = kS390_LoadWordU32;
break;
#if V8_TARGET_ARCH_S390X
case MachineRepresentation::kTaggedSigned: // Fall through.
case MachineRepresentation::kTaggedPointer: // Fall through.
case MachineRepresentation::kTagged: // Fall through.
case MachineRepresentation::kWord64:
opcode = kS390_LoadWord64;
break;
#else
case MachineRepresentation::kWord64: // Fall through.
#endif
case MachineRepresentation::kSimd128: // Fall through.
case MachineRepresentation::kSimd1x4: // Fall through.
case MachineRepresentation::kSimd1x8: // Fall through.
case MachineRepresentation::kSimd1x16: // Fall through.
case MachineRepresentation::kNone:
default:
UNREACHABLE();
}
return opcode;
}
bool AutoZeroExtendsWord32ToWord64(Node* node) {
#if !V8_TARGET_ARCH_S390X
return true;
#else
switch (node->opcode()) {
case IrOpcode::kInt32Div:
case IrOpcode::kUint32Div:
case IrOpcode::kInt32MulHigh:
case IrOpcode::kUint32MulHigh:
case IrOpcode::kInt32Mod:
case IrOpcode::kUint32Mod:
case IrOpcode::kWord32Clz:
case IrOpcode::kWord32Popcnt:
return true;
default:
return false;
}
return false;
#endif
}
bool ZeroExtendsWord32ToWord64(Node* node) {
#if !V8_TARGET_ARCH_S390X
return true;
#else
switch (node->opcode()) {
case IrOpcode::kInt32Add:
case IrOpcode::kInt32Sub:
case IrOpcode::kWord32And:
case IrOpcode::kWord32Or:
case IrOpcode::kWord32Xor:
case IrOpcode::kWord32Shl:
case IrOpcode::kWord32Shr:
case IrOpcode::kWord32Sar:
case IrOpcode::kInt32Mul:
case IrOpcode::kWord32Ror:
case IrOpcode::kInt32Div:
case IrOpcode::kUint32Div:
case IrOpcode::kInt32MulHigh:
case IrOpcode::kInt32Mod:
case IrOpcode::kUint32Mod:
case IrOpcode::kWord32Popcnt:
return true;
// TODO(john.yan): consider the following case to be valid
// case IrOpcode::kWord32Equal:
// case IrOpcode::kInt32LessThan:
// case IrOpcode::kInt32LessThanOrEqual:
// case IrOpcode::kUint32LessThan:
// case IrOpcode::kUint32LessThanOrEqual:
// case IrOpcode::kUint32MulHigh:
// // These 32-bit operations implicitly zero-extend to 64-bit on x64, so
// the
// // zero-extension is a no-op.
// return true;
// case IrOpcode::kProjection: {
// Node* const value = node->InputAt(0);
// switch (value->opcode()) {
// case IrOpcode::kInt32AddWithOverflow:
// case IrOpcode::kInt32SubWithOverflow:
// case IrOpcode::kInt32MulWithOverflow:
// return true;
// default:
// return false;
// }
// }
case IrOpcode::kLoad: {
LoadRepresentation load_rep = LoadRepresentationOf(node->op());
switch (load_rep.representation()) {
case MachineRepresentation::kWord32:
return true;
default:
return false;
}
}
default:
return false;
}
#endif
}
void VisitRR(InstructionSelector* selector, ArchOpcode opcode, Node* node) {
S390OperandGenerator g(selector);
selector->Emit(opcode, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
void VisitRRR(InstructionSelector* selector, ArchOpcode opcode, Node* node) {
S390OperandGenerator g(selector);
selector->Emit(opcode, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)),
g.UseRegister(node->InputAt(1)));
}
#if V8_TARGET_ARCH_S390X
void VisitRRO(InstructionSelector* selector, ArchOpcode opcode, Node* node,
OperandModes operand_mode) {
S390OperandGenerator g(selector);
selector->Emit(opcode, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)),
g.UseOperand(node->InputAt(1), operand_mode));
}
void VisitTryTruncateDouble(InstructionSelector* selector, ArchOpcode opcode,
Node* node) {
S390OperandGenerator g(selector);
InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))};
InstructionOperand outputs[2];
size_t output_count = 0;
outputs[output_count++] = g.DefineAsRegister(node);
Node* success_output = NodeProperties::FindProjection(node, 1);
if (success_output) {
outputs[output_count++] = g.DefineAsRegister(success_output);
}
selector->Emit(opcode, output_count, outputs, 1, inputs);
}
#endif
// Shared routine for multiple binary operations.
template <typename Matcher>
void VisitBinop(InstructionSelector* selector, Node* node,
InstructionCode opcode, OperandModes operand_mode,
FlagsContinuation* cont) {
S390OperandGenerator g(selector);
Matcher m(node);
Node* left = m.left().node();
Node* right = m.right().node();
InstructionOperand inputs[4];
size_t input_count = 0;
InstructionOperand outputs[2];
size_t output_count = 0;
// TODO(turbofan): match complex addressing modes.
if (left == right) {
// If both inputs refer to the same operand, enforce allocating a register
// for both of them to ensure that we don't end up generating code like
// this:
//
// mov rax, [rbp-0x10]
// add rax, [rbp-0x10]
// jo label
InstructionOperand const input = g.UseRegister(left);
inputs[input_count++] = input;
inputs[input_count++] = input;
} else if (g.CanBeImmediate(right, operand_mode)) {
inputs[input_count++] = g.UseRegister(left);
inputs[input_count++] = g.UseImmediate(right);
} else {
if (node->op()->HasProperty(Operator::kCommutative) &&
g.CanBeBetterLeftOperand(right)) {
std::swap(left, right);
}
inputs[input_count++] = g.UseRegister(left);
inputs[input_count++] = g.UseRegister(right);
}
if (cont->IsBranch()) {
inputs[input_count++] = g.Label(cont->true_block());
inputs[input_count++] = g.Label(cont->false_block());
}
if (cont->IsDeoptimize()) {
// If we can deoptimize as a result of the binop, we need to make sure that
// the deopt inputs are not overwritten by the binop result. One way
// to achieve that is to declare the output register as same-as-first.
outputs[output_count++] = g.DefineSameAsFirst(node);
} else {
outputs[output_count++] = g.DefineAsRegister(node);
}
if (cont->IsSet()) {
outputs[output_count++] = g.DefineAsRegister(cont->result());
}
DCHECK_NE(0u, input_count);
DCHECK_NE(0u, output_count);
DCHECK_GE(arraysize(inputs), input_count);
DCHECK_GE(arraysize(outputs), output_count);
opcode = cont->Encode(opcode);
if (cont->IsDeoptimize()) {
selector->EmitDeoptimize(opcode, output_count, outputs, input_count, inputs,
cont->kind(), cont->reason(), cont->frame_state());
} else if (cont->IsTrap()) {
inputs[input_count++] = g.UseImmediate(cont->trap_id());
selector->Emit(opcode, output_count, outputs, input_count, inputs);
} else {
selector->Emit(opcode, output_count, outputs, input_count, inputs);
}
}
// Shared routine for multiple binary operations.
template <typename Matcher>
void VisitBinop(InstructionSelector* selector, Node* node, ArchOpcode opcode,
OperandModes operand_mode) {
FlagsContinuation cont;
VisitBinop<Matcher>(selector, node, opcode, operand_mode, &cont);
}
void VisitBin32op(InstructionSelector* selector, Node* node,
InstructionCode opcode, OperandModes operand_mode,
FlagsContinuation* cont) {
S390OperandGenerator g(selector);
Int32BinopMatcher m(node);
Node* left = m.left().node();
Node* right = m.right().node();
InstructionOperand inputs[8];
size_t input_count = 0;
InstructionOperand outputs[2];
size_t output_count = 0;
// match left of TruncateInt64ToInt32
if (m.left().IsTruncateInt64ToInt32() && selector->CanCover(node, left)) {
left = left->InputAt(0);
}
// match right of TruncateInt64ToInt32
if (m.right().IsTruncateInt64ToInt32() && selector->CanCover(node, right)) {
right = right->InputAt(0);
}
#if V8_TARGET_ARCH_S390X
if ((ZeroExtendsWord32ToWord64(right) || g.CanBeBetterLeftOperand(right)) &&
node->op()->HasProperty(Operator::kCommutative) &&
!g.CanBeImmediate(right, operand_mode)) {
std::swap(left, right);
}
#else
if (node->op()->HasProperty(Operator::kCommutative) &&
!g.CanBeImmediate(right, operand_mode) &&
(g.CanBeBetterLeftOperand(right))) {
std::swap(left, right);
}
#endif
// left is always register
InstructionOperand const left_input = g.UseRegister(left);
inputs[input_count++] = left_input;
// TODO(turbofan): match complex addressing modes.
if (left == right) {
// If both inputs refer to the same operand, enforce allocating a register
// for both of them to ensure that we don't end up generating code like
// this:
//
// mov rax, [rbp-0x10]
// add rax, [rbp-0x10]
// jo label
inputs[input_count++] = left_input;
// Can only be RR or RRR
operand_mode &= OperandMode::kAllowRRR;
} else if ((operand_mode & OperandMode::kAllowImmediate) &&
g.CanBeImmediate(right, operand_mode)) {
inputs[input_count++] = g.UseImmediate(right);
// Can only be RI or RRI
operand_mode &= OperandMode::kAllowImmediate;
} else if (operand_mode & OperandMode::kAllowMemoryOperand) {
NodeMatcher mright(right);
if (mright.IsLoad() && selector->CanCover(node, right) &&
SelectLoadOpcode(right) == kS390_LoadWordU32) {
AddressingMode mode =
g.GetEffectiveAddressMemoryOperand(right, inputs, &input_count);
opcode |= AddressingModeField::encode(mode);
operand_mode &= ~OperandMode::kAllowImmediate;
if (operand_mode & OperandMode::kAllowRM)
operand_mode &= ~OperandMode::kAllowDistinctOps;
} else if (operand_mode & OperandMode::kAllowRM) {
DCHECK(!(operand_mode & OperandMode::kAllowRRM));
inputs[input_count++] = g.Use(right);
// Can not be Immediate
operand_mode &=
~OperandMode::kAllowImmediate & ~OperandMode::kAllowDistinctOps;
} else if (operand_mode & OperandMode::kAllowRRM) {
DCHECK(!(operand_mode & OperandMode::kAllowRM));
inputs[input_count++] = g.Use(right);
// Can not be Immediate
operand_mode &= ~OperandMode::kAllowImmediate;
} else {
UNREACHABLE();
}
} else {
inputs[input_count++] = g.UseRegister(right);
// Can only be RR or RRR
operand_mode &= OperandMode::kAllowRRR;
}
bool doZeroExt =
AutoZeroExtendsWord32ToWord64(node) || !ZeroExtendsWord32ToWord64(left);
inputs[input_count++] =
g.TempImmediate(doZeroExt && (!AutoZeroExtendsWord32ToWord64(node)));
if (cont->IsBranch()) {
inputs[input_count++] = g.Label(cont->true_block());
inputs[input_count++] = g.Label(cont->false_block());
}
if (doZeroExt && (operand_mode & OperandMode::kAllowDistinctOps) &&
// If we can deoptimize as a result of the binop, we need to make sure
// that
// the deopt inputs are not overwritten by the binop result. One way
// to achieve that is to declare the output register as same-as-first.
!cont->IsDeoptimize()) {
outputs[output_count++] = g.DefineAsRegister(node);
} else {
outputs[output_count++] = g.DefineSameAsFirst(node);
}
if (cont->IsSet()) {
outputs[output_count++] = g.DefineAsRegister(cont->result());
}
DCHECK_NE(0u, input_count);
DCHECK_NE(0u, output_count);
DCHECK_GE(arraysize(inputs), input_count);
DCHECK_GE(arraysize(outputs), output_count);
opcode = cont->Encode(opcode);
if (cont->IsDeoptimize()) {
selector->EmitDeoptimize(opcode, output_count, outputs, input_count, inputs,
cont->kind(), cont->reason(), cont->frame_state());
} else if (cont->IsTrap()) {
inputs[input_count++] = g.UseImmediate(cont->trap_id());
selector->Emit(opcode, output_count, outputs, input_count, inputs);
} else {
selector->Emit(opcode, output_count, outputs, input_count, inputs);
}
}
void VisitBin32op(InstructionSelector* selector, Node* node, ArchOpcode opcode,
OperandModes operand_mode) {
FlagsContinuation cont;
VisitBin32op(selector, node, opcode, operand_mode, &cont);
}
} // namespace
void InstructionSelector::VisitLoad(Node* node) {
S390OperandGenerator g(this);
ArchOpcode opcode = SelectLoadOpcode(node);
InstructionOperand outputs[1];
outputs[0] = g.DefineAsRegister(node);
InstructionOperand inputs[3];
size_t input_count = 0;
AddressingMode mode =
g.GetEffectiveAddressMemoryOperand(node, inputs, &input_count);
InstructionCode code = opcode | AddressingModeField::encode(mode);
Emit(code, 1, outputs, input_count, inputs);
}
void InstructionSelector::VisitProtectedLoad(Node* node) {
// TODO(eholk)
UNIMPLEMENTED();
}
void InstructionSelector::VisitStore(Node* node) {
S390OperandGenerator g(this);
Node* base = node->InputAt(0);
Node* offset = node->InputAt(1);
Node* value = node->InputAt(2);
StoreRepresentation store_rep = StoreRepresentationOf(node->op());
WriteBarrierKind write_barrier_kind = store_rep.write_barrier_kind();
MachineRepresentation rep = store_rep.representation();
if (write_barrier_kind != kNoWriteBarrier) {
DCHECK(CanBeTaggedPointer(rep));
AddressingMode addressing_mode;
InstructionOperand inputs[3];
size_t input_count = 0;
inputs[input_count++] = g.UseUniqueRegister(base);
// OutOfLineRecordWrite uses the offset in an 'AddP' instruction as well as
// for the store itself, so we must check compatibility with both.
if (g.CanBeImmediate(offset, OperandMode::kInt20Imm)) {
inputs[input_count++] = g.UseImmediate(offset);
addressing_mode = kMode_MRI;
} else {
inputs[input_count++] = g.UseUniqueRegister(offset);
addressing_mode = kMode_MRR;
}
inputs[input_count++] = g.UseUniqueRegister(value);
RecordWriteMode record_write_mode = RecordWriteMode::kValueIsAny;
switch (write_barrier_kind) {
case kNoWriteBarrier:
UNREACHABLE();
break;
case kMapWriteBarrier:
record_write_mode = RecordWriteMode::kValueIsMap;
break;
case kPointerWriteBarrier:
record_write_mode = RecordWriteMode::kValueIsPointer;
break;
case kFullWriteBarrier:
record_write_mode = RecordWriteMode::kValueIsAny;
break;
}
InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()};
size_t const temp_count = arraysize(temps);
InstructionCode code = kArchStoreWithWriteBarrier;
code |= AddressingModeField::encode(addressing_mode);
code |= MiscField::encode(static_cast<int>(record_write_mode));
Emit(code, 0, nullptr, input_count, inputs, temp_count, temps);
} else {
ArchOpcode opcode = kArchNop;
NodeMatcher m(value);
switch (rep) {
case MachineRepresentation::kFloat32:
opcode = kS390_StoreFloat32;
break;
case MachineRepresentation::kFloat64:
opcode = kS390_StoreDouble;
break;
case MachineRepresentation::kBit: // Fall through.
case MachineRepresentation::kWord8:
opcode = kS390_StoreWord8;
break;
case MachineRepresentation::kWord16:
opcode = kS390_StoreWord16;
break;
#if !V8_TARGET_ARCH_S390X
case MachineRepresentation::kTaggedSigned: // Fall through.
case MachineRepresentation::kTaggedPointer: // Fall through.
case MachineRepresentation::kTagged: // Fall through.
#endif
case MachineRepresentation::kWord32:
opcode = kS390_StoreWord32;
if (m.IsWord32ReverseBytes()) {
opcode = kS390_StoreReverse32;
value = value->InputAt(0);
}
break;
#if V8_TARGET_ARCH_S390X
case MachineRepresentation::kTaggedSigned: // Fall through.
case MachineRepresentation::kTaggedPointer: // Fall through.
case MachineRepresentation::kTagged: // Fall through.
case MachineRepresentation::kWord64:
opcode = kS390_StoreWord64;
if (m.IsWord64ReverseBytes()) {
opcode = kS390_StoreReverse64;
value = value->InputAt(0);
}
break;
#else
case MachineRepresentation::kWord64: // Fall through.
#endif
case MachineRepresentation::kSimd128: // Fall through.
case MachineRepresentation::kSimd1x4: // Fall through.
case MachineRepresentation::kSimd1x8: // Fall through.
case MachineRepresentation::kSimd1x16: // Fall through.
case MachineRepresentation::kNone:
UNREACHABLE();
return;
}
InstructionOperand inputs[4];
size_t input_count = 0;
AddressingMode addressing_mode =
g.GetEffectiveAddressMemoryOperand(node, inputs, &input_count);
InstructionCode code =
opcode | AddressingModeField::encode(addressing_mode);
InstructionOperand value_operand = g.UseRegister(value);
inputs[input_count++] = value_operand;
Emit(code, 0, static_cast<InstructionOperand*>(nullptr), input_count,
inputs);
}
}
void InstructionSelector::VisitProtectedStore(Node* node) {
// TODO(eholk)
UNIMPLEMENTED();
}
// Architecture supports unaligned access, therefore VisitLoad is used instead
void InstructionSelector::VisitUnalignedLoad(Node* node) { UNREACHABLE(); }
// Architecture supports unaligned access, therefore VisitStore is used instead
void InstructionSelector::VisitUnalignedStore(Node* node) { UNREACHABLE(); }
void InstructionSelector::VisitCheckedLoad(Node* node) {
CheckedLoadRepresentation load_rep = CheckedLoadRepresentationOf(node->op());
S390OperandGenerator g(this);
Node* const base = node->InputAt(0);
Node* const offset = node->InputAt(1);
Node* const length = node->InputAt(2);
ArchOpcode opcode = kArchNop;
switch (load_rep.representation()) {
case MachineRepresentation::kWord8:
opcode = load_rep.IsSigned() ? kCheckedLoadInt8 : kCheckedLoadUint8;
break;
case MachineRepresentation::kWord16:
opcode = load_rep.IsSigned() ? kCheckedLoadInt16 : kCheckedLoadUint16;
break;
case MachineRepresentation::kWord32:
opcode = kCheckedLoadWord32;
break;
#if V8_TARGET_ARCH_S390X
case MachineRepresentation::kWord64:
opcode = kCheckedLoadWord64;
break;
#endif
case MachineRepresentation::kFloat32:
opcode = kCheckedLoadFloat32;
break;
case MachineRepresentation::kFloat64:
opcode = kCheckedLoadFloat64;
break;
case MachineRepresentation::kBit: // Fall through.
case MachineRepresentation::kTaggedSigned: // Fall through.
case MachineRepresentation::kTaggedPointer: // Fall through.
case MachineRepresentation::kTagged: // Fall through.
#if !V8_TARGET_ARCH_S390X
case MachineRepresentation::kWord64: // Fall through.
#endif
case MachineRepresentation::kSimd128: // Fall through.
case MachineRepresentation::kSimd1x4: // Fall through.
case MachineRepresentation::kSimd1x8: // Fall through.
case MachineRepresentation::kSimd1x16: // Fall through.
case MachineRepresentation::kNone:
UNREACHABLE();
return;
}
AddressingMode addressingMode = kMode_MRR;
Emit(opcode | AddressingModeField::encode(addressingMode),
g.DefineAsRegister(node), g.UseRegister(base), g.UseRegister(offset),
g.UseOperand(length, OperandMode::kUint32Imm));
}
void InstructionSelector::VisitCheckedStore(Node* node) {
MachineRepresentation rep = CheckedStoreRepresentationOf(node->op());
S390OperandGenerator g(this);
Node* const base = node->InputAt(0);
Node* const offset = node->InputAt(1);
Node* const length = node->InputAt(2);
Node* const value = node->InputAt(3);
ArchOpcode opcode = kArchNop;
switch (rep) {
case MachineRepresentation::kWord8:
opcode = kCheckedStoreWord8;
break;
case MachineRepresentation::kWord16:
opcode = kCheckedStoreWord16;
break;
case MachineRepresentation::kWord32:
opcode = kCheckedStoreWord32;
break;
#if V8_TARGET_ARCH_S390X
case MachineRepresentation::kWord64:
opcode = kCheckedStoreWord64;
break;
#endif
case MachineRepresentation::kFloat32:
opcode = kCheckedStoreFloat32;
break;
case MachineRepresentation::kFloat64:
opcode = kCheckedStoreFloat64;
break;
case MachineRepresentation::kBit: // Fall through.
case MachineRepresentation::kTaggedSigned: // Fall through.
case MachineRepresentation::kTaggedPointer: // Fall through.
case MachineRepresentation::kTagged: // Fall through.
#if !V8_TARGET_ARCH_S390X
case MachineRepresentation::kWord64: // Fall through.
#endif
case MachineRepresentation::kSimd128: // Fall through.
case MachineRepresentation::kSimd1x4: // Fall through.
case MachineRepresentation::kSimd1x8: // Fall through.
case MachineRepresentation::kSimd1x16: // Fall through.
case MachineRepresentation::kNone:
UNREACHABLE();
return;
}
AddressingMode addressingMode = kMode_MRR;
Emit(opcode | AddressingModeField::encode(addressingMode), g.NoOutput(),
g.UseRegister(base), g.UseRegister(offset),
g.UseOperand(length, OperandMode::kUint32Imm), g.UseRegister(value));
}
#if 0
static inline bool IsContiguousMask32(uint32_t value, int* mb, int* me) {
int mask_width = base::bits::CountPopulation32(value);
int mask_msb = base::bits::CountLeadingZeros32(value);
int mask_lsb = base::bits::CountTrailingZeros32(value);
if ((mask_width == 0) || (mask_msb + mask_width + mask_lsb != 32))
return false;
*mb = mask_lsb + mask_width - 1;
*me = mask_lsb;
return true;
}
#endif
#if V8_TARGET_ARCH_S390X
static inline bool IsContiguousMask64(uint64_t value, int* mb, int* me) {
int mask_width = base::bits::CountPopulation64(value);
int mask_msb = base::bits::CountLeadingZeros64(value);
int mask_lsb = base::bits::CountTrailingZeros64(value);
if ((mask_width == 0) || (mask_msb + mask_width + mask_lsb != 64))
return false;
*mb = mask_lsb + mask_width - 1;
*me = mask_lsb;
return true;
}
#endif
void InstructionSelector::VisitWord32And(Node* node) {
VisitBin32op(this, node, kS390_And32, AndOperandMode);
}
#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitWord64And(Node* node) {
S390OperandGenerator g(this);
Int64BinopMatcher m(node);
int mb = 0;
int me = 0;
if (m.right().HasValue() && IsContiguousMask64(m.right().Value(), &mb, &me)) {
int sh = 0;
Node* left = m.left().node();
if ((m.left().IsWord64Shr() || m.left().IsWord64Shl()) &&
CanCover(node, left)) {
Int64BinopMatcher mleft(m.left().node());
if (mleft.right().IsInRange(0, 63)) {
left = mleft.left().node();
sh = mleft.right().Value();
if (m.left().IsWord64Shr()) {
// Adjust the mask such that it doesn't include any rotated bits.
if (mb > 63 - sh) mb = 63 - sh;
sh = (64 - sh) & 0x3f;
} else {
// Adjust the mask such that it doesn't include any rotated bits.
if (me < sh) me = sh;
}
}
}
if (mb >= me) {
bool match = false;
ArchOpcode opcode;
int mask;
if (me == 0) {
match = true;
opcode = kS390_RotLeftAndClearLeft64;
mask = mb;
} else if (mb == 63) {
match = true;
opcode = kS390_RotLeftAndClearRight64;
mask = me;
} else if (sh && me <= sh && m.left().IsWord64Shl()) {
match = true;
opcode = kS390_RotLeftAndClear64;
mask = mb;
}
if (match) {
Emit(opcode, g.DefineAsRegister(node), g.UseRegister(left),
g.TempImmediate(sh), g.TempImmediate(mask));
return;
}
}
}
VisitBinop<Int64BinopMatcher>(this, node, kS390_And64,
OperandMode::kUint32Imm);
}
#endif
void InstructionSelector::VisitWord32Or(Node* node) {
VisitBin32op(this, node, kS390_Or32, OrOperandMode);
}
#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitWord64Or(Node* node) {
Int64BinopMatcher m(node);
VisitBinop<Int64BinopMatcher>(this, node, kS390_Or64,
OperandMode::kUint32Imm);
}
#endif
void InstructionSelector::VisitWord32Xor(Node* node) {
VisitBin32op(this, node, kS390_Xor32, XorOperandMode);
}
#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitWord64Xor(Node* node) {
VisitBinop<Int64BinopMatcher>(this, node, kS390_Xor64,
OperandMode::kUint32Imm);
}
#endif
void InstructionSelector::VisitWord32Shl(Node* node) {
VisitBin32op(this, node, kS390_ShiftLeft32, ShiftOperandMode);
}
#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitWord64Shl(Node* node) {
S390OperandGenerator g(this);
Int64BinopMatcher m(node);
// TODO(mbrandy): eliminate left sign extension if right >= 32
if (m.left().IsWord64And() && m.right().IsInRange(0, 63)) {
Int64BinopMatcher mleft(m.left().node());
int sh = m.right().Value();
int mb;
int me;
if (mleft.right().HasValue() &&
IsContiguousMask64(mleft.right().Value() << sh, &mb, &me)) {
// Adjust the mask such that it doesn't include any rotated bits.
if (me < sh) me = sh;
if (mb >= me) {
bool match = false;
ArchOpcode opcode;
int mask;
if (me == 0) {
match = true;
opcode = kS390_RotLeftAndClearLeft64;
mask = mb;
} else if (mb == 63) {
match = true;
opcode = kS390_RotLeftAndClearRight64;
mask = me;
} else if (sh && me <= sh) {
match = true;
opcode = kS390_RotLeftAndClear64;
mask = mb;
}
if (match) {
Emit(opcode, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()), g.TempImmediate(sh),
g.TempImmediate(mask));
return;
}
}
}
}
VisitRRO(this, kS390_ShiftLeft64, node, OperandMode::kShift64Imm);
}
#endif
void InstructionSelector::VisitWord32Shr(Node* node) {
VisitBin32op(this, node, kS390_ShiftRight32, ShiftOperandMode);
}
#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitWord64Shr(Node* node) {
S390OperandGenerator g(this);
Int64BinopMatcher m(node);
if (m.left().IsWord64And() && m.right().IsInRange(0, 63)) {
Int64BinopMatcher mleft(m.left().node());
int sh = m.right().Value();
int mb;
int me;
if (mleft.right().HasValue() &&
IsContiguousMask64((uint64_t)(mleft.right().Value()) >> sh, &mb, &me)) {
// Adjust the mask such that it doesn't include any rotated bits.
if (mb > 63 - sh) mb = 63 - sh;
sh = (64 - sh) & 0x3f;
if (mb >= me) {
bool match = false;
ArchOpcode opcode;
int mask;
if (me == 0) {
match = true;
opcode = kS390_RotLeftAndClearLeft64;
mask = mb;
} else if (mb == 63) {
match = true;
opcode = kS390_RotLeftAndClearRight64;
mask = me;
}
if (match) {
Emit(opcode, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()), g.TempImmediate(sh),
g.TempImmediate(mask));
return;
}
}
}
}
VisitRRO(this, kS390_ShiftRight64, node, OperandMode::kShift64Imm);
}
#endif
void InstructionSelector::VisitWord32Sar(Node* node) {
S390OperandGenerator g(this);
Int32BinopMatcher m(node);
// Replace with sign extension for (x << K) >> K where K is 16 or 24.
if (CanCover(node, m.left().node()) && m.left().IsWord32Shl()) {
Int32BinopMatcher mleft(m.left().node());
if (mleft.right().Is(16) && m.right().Is(16)) {
bool doZeroExt = !ZeroExtendsWord32ToWord64(mleft.left().node());
Emit(kS390_ExtendSignWord16,
doZeroExt ? g.DefineAsRegister(node) : g.DefineSameAsFirst(node),
g.UseRegister(mleft.left().node()), g.TempImmediate(doZeroExt));
return;
} else if (mleft.right().Is(24) && m.right().Is(24)) {
bool doZeroExt = !ZeroExtendsWord32ToWord64(mleft.left().node());
Emit(kS390_ExtendSignWord8,
doZeroExt ? g.DefineAsRegister(node) : g.DefineSameAsFirst(node),
g.UseRegister(mleft.left().node()), g.TempImmediate(doZeroExt));
return;
}
}
VisitBin32op(this, node, kS390_ShiftRightArith32, ShiftOperandMode);
}
#if !V8_TARGET_ARCH_S390X
void VisitPairBinop(InstructionSelector* selector, InstructionCode opcode,
InstructionCode opcode2, Node* node) {
S390OperandGenerator g(selector);
Node* projection1 = NodeProperties::FindProjection(node, 1);
if (projection1) {
// We use UseUniqueRegister here to avoid register sharing with the output
// registers.
InstructionOperand inputs[] = {
g.UseRegister(node->InputAt(0)), g.UseUniqueRegister(node->InputAt(1)),
g.UseRegister(node->InputAt(2)), g.UseUniqueRegister(node->InputAt(3))};
InstructionOperand outputs[] = {
g.DefineAsRegister(node),
g.DefineAsRegister(NodeProperties::FindProjection(node, 1))};
selector->Emit(opcode, 2, outputs, 4, inputs);
} else {
// The high word of the result is not used, so we emit the standard 32 bit
// instruction.
selector->Emit(opcode2, g.DefineSameAsFirst(node),
g.UseRegister(node->InputAt(0)),
g.UseRegister(node->InputAt(2)), g.TempImmediate(0));
}
}
void InstructionSelector::VisitInt32PairAdd(Node* node) {
VisitPairBinop(this, kS390_AddPair, kS390_Add32, node);
}
void InstructionSelector::VisitInt32PairSub(Node* node) {
VisitPairBinop(this, kS390_SubPair, kS390_Sub32, node);
}
void InstructionSelector::VisitInt32PairMul(Node* node) {
S390OperandGenerator g(this);
Node* projection1 = NodeProperties::FindProjection(node, 1);
if (projection1) {
InstructionOperand inputs[] = {g.UseUniqueRegister(node->InputAt(0)),
g.UseUniqueRegister(node->InputAt(1)),
g.UseUniqueRegister(node->InputAt(2)),
g.UseUniqueRegister(node->InputAt(3))};
InstructionOperand outputs[] = {
g.DefineAsRegister(node),
g.DefineAsRegister(NodeProperties::FindProjection(node, 1))};
Emit(kS390_MulPair, 2, outputs, 4, inputs);
} else {
// The high word of the result is not used, so we emit the standard 32 bit
// instruction.
Emit(kS390_Mul32, g.DefineSameAsFirst(node),
g.UseRegister(node->InputAt(0)), g.Use(node->InputAt(2)),
g.TempImmediate(0));
}
}
namespace {
// Shared routine for multiple shift operations.
void VisitPairShift(InstructionSelector* selector, InstructionCode opcode,
Node* node) {
S390OperandGenerator g(selector);
// We use g.UseUniqueRegister here to guarantee that there is
// no register aliasing of input registers with output registers.
Int32Matcher m(node->InputAt(2));
InstructionOperand shift_operand;
if (m.HasValue()) {
shift_operand = g.UseImmediate(m.node());
} else {
shift_operand = g.UseUniqueRegister(m.node());
}
InstructionOperand inputs[] = {g.UseUniqueRegister(node->InputAt(0)),
g.UseUniqueRegister(node->InputAt(1)),
shift_operand};
Node* projection1 = NodeProperties::FindProjection(node, 1);
InstructionOperand outputs[2];
InstructionOperand temps[1];
int32_t output_count = 0;
int32_t temp_count = 0;
outputs[output_count++] = g.DefineAsRegister(node);
if (projection1) {
outputs[output_count++] = g.DefineAsRegister(projection1);
} else {
temps[temp_count++] = g.TempRegister();
}
selector->Emit(opcode, output_count, outputs, 3, inputs, temp_count, temps);
}
} // namespace
void InstructionSelector::VisitWord32PairShl(Node* node) {
VisitPairShift(this, kS390_ShiftLeftPair, node);
}
void InstructionSelector::VisitWord32PairShr(Node* node) {
VisitPairShift(this, kS390_ShiftRightPair, node);
}
void InstructionSelector::VisitWord32PairSar(Node* node) {
VisitPairShift(this, kS390_ShiftRightArithPair, node);
}
#endif
#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitWord64Sar(Node* node) {
VisitRRO(this, kS390_ShiftRightArith64, node, OperandMode::kShift64Imm);
}
#endif
void InstructionSelector::VisitWord32Ror(Node* node) {
// TODO(john): match dst = ror(src1, src2 + imm)
VisitBin32op(this, node, kS390_RotRight32,
OperandMode::kAllowRI | OperandMode::kAllowRRR |
OperandMode::kAllowRRI | OperandMode::kShift32Imm);
}
#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitWord64Ror(Node* node) {
VisitRRO(this, kS390_RotRight64, node, OperandMode::kShift64Imm);
}
#endif
void InstructionSelector::VisitWord32Clz(Node* node) {
VisitRR(this, kS390_Cntlz32, node);
}
#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitWord64Clz(Node* node) {
S390OperandGenerator g(this);
Emit(kS390_Cntlz64, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
#endif
void InstructionSelector::VisitWord32Popcnt(Node* node) {
S390OperandGenerator g(this);
Node* value = node->InputAt(0);
Emit(kS390_Popcnt32, g.DefineAsRegister(node), g.UseRegister(value));
}
#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitWord64Popcnt(Node* node) {
S390OperandGenerator g(this);
Emit(kS390_Popcnt64, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
#endif
void InstructionSelector::VisitWord32Ctz(Node* node) { UNREACHABLE(); }
#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitWord64Ctz(Node* node) { UNREACHABLE(); }
#endif
void InstructionSelector::VisitWord32ReverseBits(Node* node) { UNREACHABLE(); }
#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitWord64ReverseBits(Node* node) { UNREACHABLE(); }
#endif
void InstructionSelector::VisitWord64ReverseBytes(Node* node) {
S390OperandGenerator g(this);
Emit(kS390_LoadReverse64RR, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitWord32ReverseBytes(Node* node) {
S390OperandGenerator g(this);
NodeMatcher input(node->InputAt(0));
if (CanCover(node, input.node()) && input.IsLoad()) {
LoadRepresentation load_rep = LoadRepresentationOf(input.node()->op());
if (load_rep.representation() == MachineRepresentation::kWord32) {
Node* base = input.node()->InputAt(0);
Node* offset = input.node()->InputAt(1);
Emit(kS390_LoadReverse32 | AddressingModeField::encode(kMode_MRR),
// TODO(john.yan): one of the base and offset can be imm.
g.DefineAsRegister(node), g.UseRegister(base),
g.UseRegister(offset));
return;
}
}
Emit(kS390_LoadReverse32RR, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitInt32Add(Node* node) {
VisitBin32op(this, node, kS390_Add32, AddOperandMode);
}
#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitInt64Add(Node* node) {
VisitBinop<Int64BinopMatcher>(this, node, kS390_Add64,
OperandMode::kInt32Imm);
}
#endif
void InstructionSelector::VisitInt32Sub(Node* node) {
S390OperandGenerator g(this);
Int32BinopMatcher m(node);
if (m.left().Is(0)) {
Node* right = m.right().node();
bool doZeroExt = ZeroExtendsWord32ToWord64(right);
Emit(kS390_Neg32, g.DefineAsRegister(node), g.UseRegister(right),
g.TempImmediate(doZeroExt));
} else {
VisitBin32op(this, node, kS390_Sub32, SubOperandMode);
}
}
#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitInt64Sub(Node* node) {
S390OperandGenerator g(this);
Int64BinopMatcher m(node);
if (m.left().Is(0)) {
Emit(kS390_Neg64, g.DefineAsRegister(node),
g.UseRegister(m.right().node()));
} else {
VisitBinop<Int64BinopMatcher>(this, node, kS390_Sub64,
OperandMode::kInt32Imm_Negate);
}
}
#endif
namespace {
void VisitCompare(InstructionSelector* selector, InstructionCode opcode,
InstructionOperand left, InstructionOperand right,
FlagsContinuation* cont);
#if V8_TARGET_ARCH_S390X
void VisitMul(InstructionSelector* selector, Node* node, ArchOpcode opcode) {
S390OperandGenerator g(selector);
Int32BinopMatcher m(node);
Node* left = m.left().node();
Node* right = m.right().node();
if (g.CanBeImmediate(right, OperandMode::kInt32Imm)) {
selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left),
g.UseImmediate(right));
} else {
if (g.CanBeBetterLeftOperand(right)) {
std::swap(left, right);
}
selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left),
g.Use(right));
}
}
#endif
} // namespace
void InstructionSelector::VisitInt32MulWithOverflow(Node* node) {
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont = FlagsContinuation::ForSet(kNotEqual, ovf);
return VisitBin32op(this, node, kS390_Mul32WithOverflow,
OperandMode::kInt32Imm | OperandMode::kAllowDistinctOps,
&cont);
}
VisitBin32op(this, node, kS390_Mul32, MulOperandMode);
}
void InstructionSelector::VisitInt32Mul(Node* node) {
S390OperandGenerator g(this);
Int32BinopMatcher m(node);
Node* left = m.left().node();
Node* right = m.right().node();
if (g.CanBeImmediate(right, OperandMode::kInt32Imm) &&
base::bits::IsPowerOfTwo32(g.GetImmediate(right))) {
int power = 31 - base::bits::CountLeadingZeros32(g.GetImmediate(right));
bool doZeroExt = !ZeroExtendsWord32ToWord64(left);
InstructionOperand dst =
(doZeroExt && CpuFeatures::IsSupported(DISTINCT_OPS))
? g.DefineAsRegister(node)
: g.DefineSameAsFirst(node);
Emit(kS390_ShiftLeft32, dst, g.UseRegister(left), g.UseImmediate(power),
g.TempImmediate(doZeroExt));
return;
}
VisitBin32op(this, node, kS390_Mul32, MulOperandMode);
}
#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitInt64Mul(Node* node) {
S390OperandGenerator g(this);
Int64BinopMatcher m(node);
Node* left = m.left().node();
Node* right = m.right().node();
if (g.CanBeImmediate(right, OperandMode::kInt32Imm) &&
base::bits::IsPowerOfTwo64(g.GetImmediate(right))) {
int power = 63 - base::bits::CountLeadingZeros64(g.GetImmediate(right));
Emit(kS390_ShiftLeft64, g.DefineSameAsFirst(node), g.UseRegister(left),
g.UseImmediate(power));
return;
}
VisitMul(this, node, kS390_Mul64);
}
#endif
void InstructionSelector::VisitInt32MulHigh(Node* node) {
VisitBin32op(this, node, kS390_MulHigh32,
OperandMode::kInt32Imm | OperandMode::kAllowDistinctOps);
}
void InstructionSelector::VisitUint32MulHigh(Node* node) {
VisitBin32op(this, node, kS390_MulHighU32,
OperandMode::kAllowRRM | OperandMode::kAllowRRR);
}
void InstructionSelector::VisitInt32Div(Node* node) {
VisitBin32op(this, node, kS390_Div32,
OperandMode::kAllowRRM | OperandMode::kAllowRRR);
}
#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitInt64Div(Node* node) {
VisitRRR(this, kS390_Div64, node);
}
#endif
void InstructionSelector::VisitUint32Div(Node* node) {
VisitBin32op(this, node, kS390_DivU32,
OperandMode::kAllowRRM | OperandMode::kAllowRRR);
}
#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitUint64Div(Node* node) {
VisitRRR(this, kS390_DivU64, node);
}
#endif
void InstructionSelector::VisitInt32Mod(Node* node) {
VisitBin32op(this, node, kS390_Mod32,
OperandMode::kAllowRRM | OperandMode::kAllowRRR);
}
#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitInt64Mod(Node* node) {
VisitRRR(this, kS390_Mod64, node);
}
#endif
void InstructionSelector::VisitUint32Mod(Node* node) {
VisitBin32op(this, node, kS390_ModU32,
OperandMode::kAllowRRM | OperandMode::kAllowRRR);
}
#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitUint64Mod(Node* node) {
VisitRRR(this, kS390_ModU64, node);
}
#endif
void InstructionSelector::VisitChangeFloat32ToFloat64(Node* node) {
VisitRR(this, kS390_Float32ToDouble, node);
}
void InstructionSelector::VisitRoundInt32ToFloat32(Node* node) {
VisitRR(this, kS390_Int32ToFloat32, node);
}
void InstructionSelector::VisitRoundUint32ToFloat32(Node* node) {
VisitRR(this, kS390_Uint32ToFloat32, node);
}
void InstructionSelector::VisitChangeInt32ToFloat64(Node* node) {
VisitRR(this, kS390_Int32ToDouble, node);
}
void InstructionSelector::VisitChangeUint32ToFloat64(Node* node) {
VisitRR(this, kS390_Uint32ToDouble, node);
}
void InstructionSelector::VisitChangeFloat64ToInt32(Node* node) {
VisitRR(this, kS390_DoubleToInt32, node);
}
void InstructionSelector::VisitChangeFloat64ToUint32(Node* node) {
VisitRR(this, kS390_DoubleToUint32, node);
}
void InstructionSelector::VisitTruncateFloat64ToUint32(Node* node) {
VisitRR(this, kS390_DoubleToUint32, node);
}
#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitTryTruncateFloat32ToInt64(Node* node) {
VisitTryTruncateDouble(this, kS390_Float32ToInt64, node);
}
void InstructionSelector::VisitTryTruncateFloat64ToInt64(Node* node) {
VisitTryTruncateDouble(this, kS390_DoubleToInt64, node);
}
void InstructionSelector::VisitTryTruncateFloat32ToUint64(Node* node) {
VisitTryTruncateDouble(this, kS390_Float32ToUint64, node);
}
void InstructionSelector::VisitTryTruncateFloat64ToUint64(Node* node) {
VisitTryTruncateDouble(this, kS390_DoubleToUint64, node);
}
void InstructionSelector::VisitChangeInt32ToInt64(Node* node) {
// TODO(mbrandy): inspect input to see if nop is appropriate.
VisitRR(this, kS390_ExtendSignWord32, node);
}
void InstructionSelector::VisitChangeUint32ToUint64(Node* node) {
S390OperandGenerator g(this);
Node* value = node->InputAt(0);
if (ZeroExtendsWord32ToWord64(value)) {
// These 32-bit operations implicitly zero-extend to 64-bit on x64, so the
// zero-extension is a no-op.
return EmitIdentity(node);
}
VisitRR(this, kS390_Uint32ToUint64, node);
}
#endif
void InstructionSelector::VisitTruncateFloat64ToFloat32(Node* node) {
VisitRR(this, kS390_DoubleToFloat32, node);
}
void InstructionSelector::VisitTruncateFloat64ToWord32(Node* node) {
VisitRR(this, kArchTruncateDoubleToI, node);
}
void InstructionSelector::VisitRoundFloat64ToInt32(Node* node) {
VisitRR(this, kS390_DoubleToInt32, node);
}
void InstructionSelector::VisitTruncateFloat32ToInt32(Node* node) {
VisitRR(this, kS390_Float32ToInt32, node);
}
void InstructionSelector::VisitTruncateFloat32ToUint32(Node* node) {
VisitRR(this, kS390_Float32ToUint32, node);
}
#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitTruncateInt64ToInt32(Node* node) {
// TODO(mbrandy): inspect input to see if nop is appropriate.
VisitRR(this, kS390_Int64ToInt32, node);
}
void InstructionSelector::VisitRoundInt64ToFloat32(Node* node) {
VisitRR(this, kS390_Int64ToFloat32, node);
}
void InstructionSelector::VisitRoundInt64ToFloat64(Node* node) {
VisitRR(this, kS390_Int64ToDouble, node);
}
void InstructionSelector::VisitRoundUint64ToFloat32(Node* node) {
VisitRR(this, kS390_Uint64ToFloat32, node);
}
void InstructionSelector::VisitRoundUint64ToFloat64(Node* node) {
VisitRR(this, kS390_Uint64ToDouble, node);
}
#endif
void InstructionSelector::VisitBitcastFloat32ToInt32(Node* node) {
VisitRR(this, kS390_BitcastFloat32ToInt32, node);
}
#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitBitcastFloat64ToInt64(Node* node) {
VisitRR(this, kS390_BitcastDoubleToInt64, node);
}
#endif
void InstructionSelector::VisitBitcastInt32ToFloat32(Node* node) {
VisitRR(this, kS390_BitcastInt32ToFloat32, node);
}
#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitBitcastInt64ToFloat64(Node* node) {
VisitRR(this, kS390_BitcastInt64ToDouble, node);
}
#endif
void InstructionSelector::VisitFloat32Add(Node* node) {
VisitRRR(this, kS390_AddFloat, node);
}
void InstructionSelector::VisitFloat64Add(Node* node) {
// TODO(mbrandy): detect multiply-add
VisitRRR(this, kS390_AddDouble, node);
}
void InstructionSelector::VisitFloat32Sub(Node* node) {
VisitRRR(this, kS390_SubFloat, node);
}
void InstructionSelector::VisitFloat64Sub(Node* node) {
// TODO(mbrandy): detect multiply-subtract
VisitRRR(this, kS390_SubDouble, node);
}
void InstructionSelector::VisitFloat32Mul(Node* node) {
VisitRRR(this, kS390_MulFloat, node);
}
void InstructionSelector::VisitFloat64Mul(Node* node) {
// TODO(mbrandy): detect negate
VisitRRR(this, kS390_MulDouble, node);
}
void InstructionSelector::VisitFloat32Div(Node* node) {
VisitRRR(this, kS390_DivFloat, node);
}
void InstructionSelector::VisitFloat64Div(Node* node) {
VisitRRR(this, kS390_DivDouble, node);
}
void InstructionSelector::VisitFloat64Mod(Node* node) {
S390OperandGenerator g(this);
Emit(kS390_ModDouble, g.DefineAsFixed(node, d1),
g.UseFixed(node->InputAt(0), d1), g.UseFixed(node->InputAt(1), d2))
->MarkAsCall();
}
void InstructionSelector::VisitFloat32Max(Node* node) {
VisitRRR(this, kS390_MaxFloat, node);
}
void InstructionSelector::VisitFloat64Max(Node* node) {
VisitRRR(this, kS390_MaxDouble, node);
}
void InstructionSelector::VisitFloat64SilenceNaN(Node* node) {
VisitRR(this, kS390_Float64SilenceNaN, node);
}
void InstructionSelector::VisitFloat32Min(Node* node) {
VisitRRR(this, kS390_MinFloat, node);
}
void InstructionSelector::VisitFloat64Min(Node* node) {
VisitRRR(this, kS390_MinDouble, node);
}
void InstructionSelector::VisitFloat32Abs(Node* node) {
VisitRR(this, kS390_AbsFloat, node);
}
void InstructionSelector::VisitFloat64Abs(Node* node) {
VisitRR(this, kS390_AbsDouble, node);
}
void InstructionSelector::VisitFloat32Sqrt(Node* node) {
VisitRR(this, kS390_SqrtFloat, node);
}
void InstructionSelector::VisitFloat64Ieee754Unop(Node* node,
InstructionCode opcode) {
S390OperandGenerator g(this);
Emit(opcode, g.DefineAsFixed(node, d1), g.UseFixed(node->InputAt(0), d1))
->MarkAsCall();
}
void InstructionSelector::VisitFloat64Ieee754Binop(Node* node,
InstructionCode opcode) {
S390OperandGenerator g(this);
Emit(opcode, g.DefineAsFixed(node, d1), g.UseFixed(node->InputAt(0), d1),
g.UseFixed(node->InputAt(1), d2))
->MarkAsCall();
}
void InstructionSelector::VisitFloat64Sqrt(Node* node) {
VisitRR(this, kS390_SqrtDouble, node);
}
void InstructionSelector::VisitFloat32RoundDown(Node* node) {
VisitRR(this, kS390_FloorFloat, node);
}
void InstructionSelector::VisitFloat64RoundDown(Node* node) {
VisitRR(this, kS390_FloorDouble, node);
}
void InstructionSelector::VisitFloat32RoundUp(Node* node) {
VisitRR(this, kS390_CeilFloat, node);
}
void InstructionSelector::VisitFloat64RoundUp(Node* node) {
VisitRR(this, kS390_CeilDouble, node);
}
void InstructionSelector::VisitFloat32RoundTruncate(Node* node) {
VisitRR(this, kS390_TruncateFloat, node);
}
void InstructionSelector::VisitFloat64RoundTruncate(Node* node) {
VisitRR(this, kS390_TruncateDouble, node);
}
void InstructionSelector::VisitFloat64RoundTiesAway(Node* node) {
VisitRR(this, kS390_RoundDouble, node);
}
void InstructionSelector::VisitFloat32RoundTiesEven(Node* node) {
UNREACHABLE();
}
void InstructionSelector::VisitFloat64RoundTiesEven(Node* node) {
UNREACHABLE();
}
void InstructionSelector::VisitFloat32Neg(Node* node) {
VisitRR(this, kS390_NegFloat, node);
}
void InstructionSelector::VisitFloat64Neg(Node* node) {
VisitRR(this, kS390_NegDouble, node);
}
void InstructionSelector::VisitInt32AddWithOverflow(Node* node) {
OperandModes mode = AddOperandMode;
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
return VisitBin32op(this, node, kS390_Add32, mode, &cont);
}
FlagsContinuation cont;
VisitBin32op(this, node, kS390_Add32, mode, &cont);
}
void InstructionSelector::VisitInt32SubWithOverflow(Node* node) {
OperandModes mode = SubOperandMode;
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
return VisitBin32op(this, node, kS390_Sub32, mode, &cont);
}
FlagsContinuation cont;
VisitBin32op(this, node, kS390_Sub32, mode, &cont);
}
#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitInt64AddWithOverflow(Node* node) {
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
return VisitBinop<Int64BinopMatcher>(this, node, kS390_Add64,
OperandMode::kInt32Imm, &cont);
}
FlagsContinuation cont;
VisitBinop<Int64BinopMatcher>(this, node, kS390_Add64, OperandMode::kInt32Imm,
&cont);
}
void InstructionSelector::VisitInt64SubWithOverflow(Node* node) {
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
return VisitBinop<Int64BinopMatcher>(this, node, kS390_Sub64,
OperandMode::kInt32Imm_Negate, &cont);
}
FlagsContinuation cont;
VisitBinop<Int64BinopMatcher>(this, node, kS390_Sub64,
OperandMode::kInt32Imm_Negate, &cont);
}
#endif
static bool CompareLogical(FlagsContinuation* cont) {
switch (cont->condition()) {
case kUnsignedLessThan:
case kUnsignedGreaterThanOrEqual:
case kUnsignedLessThanOrEqual:
case kUnsignedGreaterThan:
return true;
default:
return false;
}
UNREACHABLE();
return false;
}
namespace {
// Shared routine for multiple compare operations.
void VisitCompare(InstructionSelector* selector, InstructionCode opcode,
InstructionOperand left, InstructionOperand right,
FlagsContinuation* cont) {
S390OperandGenerator g(selector);
opcode = cont->Encode(opcode);
if (cont->IsBranch()) {
selector->Emit(opcode, g.NoOutput(), left, right,
g.Label(cont->true_block()), g.Label(cont->false_block()));
} else if (cont->IsDeoptimize()) {
selector->EmitDeoptimize(opcode, g.NoOutput(), left, right, cont->kind(),
cont->reason(), cont->frame_state());
} else if (cont->IsSet()) {
selector->Emit(opcode, g.DefineAsRegister(cont->result()), left, right);
} else {
DCHECK(cont->IsTrap());
selector->Emit(opcode, g.NoOutput(), left, right,
g.UseImmediate(cont->trap_id()));
}
}
void VisitWordCompareZero(InstructionSelector* selector, Node* user,
Node* value, InstructionCode opcode,
FlagsContinuation* cont);
void VisitLoadAndTest(InstructionSelector* selector, InstructionCode opcode,
Node* node, Node* value, FlagsContinuation* cont,
bool discard_output = false);
// Shared routine for multiple word compare operations.
void VisitWordCompare(InstructionSelector* selector, Node* node,
InstructionCode opcode, FlagsContinuation* cont,
OperandModes immediate_mode) {
S390OperandGenerator g(selector);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
DCHECK(IrOpcode::IsComparisonOpcode(node->opcode()) ||
node->opcode() == IrOpcode::kInt32Sub ||
node->opcode() == IrOpcode::kInt64Sub);
InstructionOperand inputs[8];
InstructionOperand outputs[1];
size_t input_count = 0;
size_t output_count = 0;
// If one of the two inputs is an immediate, make sure it's on the right, or
// if one of the two inputs is a memory operand, make sure it's on the left.
int effect_level = selector->GetEffectLevel(node);
if (cont->IsBranch()) {
effect_level = selector->GetEffectLevel(
cont->true_block()->PredecessorAt(0)->control_input());
}
if ((!g.CanBeImmediate(right, immediate_mode) &&
g.CanBeImmediate(left, immediate_mode)) ||
(!g.CanBeMemoryOperand(opcode, node, right, effect_level) &&
g.CanBeMemoryOperand(opcode, node, left, effect_level))) {
if (!node->op()->HasProperty(Operator::kCommutative)) cont->Commute();
std::swap(left, right);
}
// check if compare with 0
if (g.CanBeImmediate(right, immediate_mode) && g.GetImmediate(right) == 0) {
DCHECK(opcode == kS390_Cmp32 || opcode == kS390_Cmp64);
ArchOpcode load_and_test = (opcode == kS390_Cmp32)
? kS390_LoadAndTestWord32
: kS390_LoadAndTestWord64;
return VisitLoadAndTest(selector, load_and_test, node, left, cont, true);
}
inputs[input_count++] = g.UseRegister(left);
if (g.CanBeMemoryOperand(opcode, node, right, effect_level)) {
// generate memory operand
AddressingMode addressing_mode = g.GetEffectiveAddressMemoryOperand(
right, inputs, &input_count, OpcodeImmMode(opcode));
opcode |= AddressingModeField::encode(addressing_mode);
} else if (g.CanBeImmediate(right, immediate_mode)) {
inputs[input_count++] = g.UseImmediate(right);
} else {
inputs[input_count++] = g.UseAnyExceptImmediate(right);
}
opcode = cont->Encode(opcode);
if (cont->IsBranch()) {
inputs[input_count++] = g.Label(cont->true_block());
inputs[input_count++] = g.Label(cont->false_block());
} else if (cont->IsSet()) {
outputs[output_count++] = g.DefineAsRegister(cont->result());
} else if (cont->IsTrap()) {
inputs[input_count++] = g.UseImmediate(cont->trap_id());
} else {
DCHECK(cont->IsDeoptimize());
// nothing to do
}
DCHECK(input_count <= 8 && output_count <= 1);
if (cont->IsDeoptimize()) {
selector->EmitDeoptimize(opcode, 0, nullptr, input_count, inputs,
cont->kind(), cont->reason(), cont->frame_state());
} else {
selector->Emit(opcode, output_count, outputs, input_count, inputs);
}
}
void VisitWord32Compare(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
OperandModes mode =
(CompareLogical(cont) ? OperandMode::kUint32Imm : OperandMode::kInt32Imm);
VisitWordCompare(selector, node, kS390_Cmp32, cont, mode);
}
#if V8_TARGET_ARCH_S390X
void VisitWord64Compare(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
OperandModes mode =
(CompareLogical(cont) ? OperandMode::kUint32Imm : OperandMode::kInt32Imm);
VisitWordCompare(selector, node, kS390_Cmp64, cont, mode);
}
#endif
// Shared routine for multiple float32 compare operations.
void VisitFloat32Compare(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
VisitWordCompare(selector, node, kS390_CmpFloat, cont, OperandMode::kNone);
}
// Shared routine for multiple float64 compare operations.
void VisitFloat64Compare(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
VisitWordCompare(selector, node, kS390_CmpDouble, cont, OperandMode::kNone);
}
void VisitTestUnderMask(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
DCHECK(node->opcode() == IrOpcode::kWord32And ||
node->opcode() == IrOpcode::kWord64And);
ArchOpcode opcode =
(node->opcode() == IrOpcode::kWord32And) ? kS390_Tst32 : kS390_Tst64;
S390OperandGenerator g(selector);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
if (!g.CanBeImmediate(right, OperandMode::kUint32Imm) &&
g.CanBeImmediate(left, OperandMode::kUint32Imm)) {
std::swap(left, right);
}
VisitCompare(selector, opcode, g.UseRegister(left),
g.UseOperand(right, OperandMode::kUint32Imm), cont);
}
void VisitLoadAndTest(InstructionSelector* selector, InstructionCode opcode,
Node* node, Node* value, FlagsContinuation* cont,
bool discard_output) {
static_assert(kS390_LoadAndTestFloat64 - kS390_LoadAndTestWord32 == 3,
"LoadAndTest Opcode shouldn't contain other opcodes.");
// TODO(john.yan): Add support for Float32/Float64.
DCHECK(opcode >= kS390_LoadAndTestWord32 ||
opcode <= kS390_LoadAndTestWord64);
S390OperandGenerator g(selector);
InstructionOperand inputs[8];
InstructionOperand outputs[2];
size_t input_count = 0;
size_t output_count = 0;
bool use_value = false;
int effect_level = selector->GetEffectLevel(node);
if (cont->IsBranch()) {
effect_level = selector->GetEffectLevel(
cont->true_block()->PredecessorAt(0)->control_input());
}
if (g.CanBeMemoryOperand(opcode, node, value, effect_level)) {
// generate memory operand
AddressingMode addressing_mode =
g.GetEffectiveAddressMemoryOperand(value, inputs, &input_count);
opcode |= AddressingModeField::encode(addressing_mode);
} else {
inputs[input_count++] = g.UseAnyExceptImmediate(value);
use_value = true;
}
if (!discard_output && !use_value) {
outputs[output_count++] = g.DefineAsRegister(value);
}
opcode = cont->Encode(opcode);
if (cont->IsBranch()) {
inputs[input_count++] = g.Label(cont->true_block());
inputs[input_count++] = g.Label(cont->false_block());
} else if (cont->IsSet()) {
outputs[output_count++] = g.DefineAsRegister(cont->result());
} else if (cont->IsTrap()) {
inputs[input_count++] = g.UseImmediate(cont->trap_id());
} else {
DCHECK(cont->IsDeoptimize());
// nothing to do
}
DCHECK(input_count <= 8 && output_count <= 2);
opcode = cont->Encode(opcode);
if (cont->IsDeoptimize()) {
selector->EmitDeoptimize(opcode, output_count, outputs, input_count, inputs,
cont->kind(), cont->reason(), cont->frame_state());
} else {
selector->Emit(opcode, output_count, outputs, input_count, inputs);
}
}
// Shared routine for word comparisons against zero.
void VisitWordCompareZero(InstructionSelector* selector, Node* user,
Node* value, InstructionCode opcode,
FlagsContinuation* cont) {
// Try to combine with comparisons against 0 by simply inverting the branch.
while (value->opcode() == IrOpcode::kWord32Equal &&
selector->CanCover(user, value)) {
Int32BinopMatcher m(value);
if (!m.right().Is(0)) break;
user = value;
value = m.left().node();
cont->Negate();
}
FlagsCondition fc = cont->condition();
if (selector->CanCover(user, value)) {
switch (value->opcode()) {
case IrOpcode::kWord32Equal: {
cont->OverwriteAndNegateIfEqual(kEqual);
Int32BinopMatcher m(value);
if (m.right().Is(0)) {
// Try to combine the branch with a comparison.
Node* const user = m.node();
Node* const value = m.left().node();
if (selector->CanCover(user, value)) {
switch (value->opcode()) {
case IrOpcode::kInt32Sub:
return VisitWord32Compare(selector, value, cont);
case IrOpcode::kWord32And:
return VisitTestUnderMask(selector, value, cont);
default:
break;
}
}
}
return VisitWord32Compare(selector, value, cont);
}
case IrOpcode::kInt32LessThan:
cont->OverwriteAndNegateIfEqual(kSignedLessThan);
return VisitWord32Compare(selector, value, cont);
case IrOpcode::kInt32LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual);
return VisitWord32Compare(selector, value, cont);
case IrOpcode::kUint32LessThan:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
return VisitWord32Compare(selector, value, cont);
case IrOpcode::kUint32LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
return VisitWord32Compare(selector, value, cont);
#if V8_TARGET_ARCH_S390X
case IrOpcode::kWord64Equal: {
cont->OverwriteAndNegateIfEqual(kEqual);
Int64BinopMatcher m(value);
if (m.right().Is(0)) {
// Try to combine the branch with a comparison.
Node* const user = m.node();
Node* const value = m.left().node();
if (selector->CanCover(user, value)) {
switch (value->opcode()) {
case IrOpcode::kInt64Sub:
return VisitWord64Compare(selector, value, cont);
case IrOpcode::kWord64And:
return VisitTestUnderMask(selector, value, cont);
default:
break;
}
}
}
return VisitWord64Compare(selector, value, cont);
}
case IrOpcode::kInt64LessThan:
cont->OverwriteAndNegateIfEqual(kSignedLessThan);
return VisitWord64Compare(selector, value, cont);
case IrOpcode::kInt64LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual);
return VisitWord64Compare(selector, value, cont);
case IrOpcode::kUint64LessThan:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
return VisitWord64Compare(selector, value, cont);
case IrOpcode::kUint64LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
return VisitWord64Compare(selector, value, cont);
#endif
case IrOpcode::kFloat32Equal:
cont->OverwriteAndNegateIfEqual(kEqual);
return VisitFloat32Compare(selector, value, cont);
case IrOpcode::kFloat32LessThan:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
return VisitFloat32Compare(selector, value, cont);
case IrOpcode::kFloat32LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
return VisitFloat32Compare(selector, value, cont);
case IrOpcode::kFloat64Equal:
cont->OverwriteAndNegateIfEqual(kEqual);
return VisitFloat64Compare(selector, value, cont);
case IrOpcode::kFloat64LessThan:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
return VisitFloat64Compare(selector, value, cont);
case IrOpcode::kFloat64LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
return VisitFloat64Compare(selector, value, cont);
case IrOpcode::kProjection:
// Check if this is the overflow output projection of an
// <Operation>WithOverflow node.
if (ProjectionIndexOf(value->op()) == 1u) {
// We cannot combine the <Operation>WithOverflow with this branch
// unless the 0th projection (the use of the actual value of the
// <Operation> is either nullptr, which means there's no use of the
// actual value, or was already defined, which means it is scheduled
// *AFTER* this branch).
Node* const node = value->InputAt(0);
Node* const result = NodeProperties::FindProjection(node, 0);
if (result == nullptr || selector->IsDefined(result)) {
switch (node->opcode()) {
case IrOpcode::kInt32AddWithOverflow:
cont->OverwriteAndNegateIfEqual(kOverflow);
return VisitBin32op(selector, node, kS390_Add32, AddOperandMode,
cont);
case IrOpcode::kInt32SubWithOverflow:
cont->OverwriteAndNegateIfEqual(kOverflow);
return VisitBin32op(selector, node, kS390_Sub32, SubOperandMode,
cont);
case IrOpcode::kInt32MulWithOverflow:
cont->OverwriteAndNegateIfEqual(kNotEqual);
return VisitBin32op(
selector, node, kS390_Mul32WithOverflow,
OperandMode::kInt32Imm | OperandMode::kAllowDistinctOps,
cont);
#if V8_TARGET_ARCH_S390X
case IrOpcode::kInt64AddWithOverflow:
cont->OverwriteAndNegateIfEqual(kOverflow);
return VisitBinop<Int64BinopMatcher>(
selector, node, kS390_Add64, OperandMode::kInt32Imm, cont);
case IrOpcode::kInt64SubWithOverflow:
cont->OverwriteAndNegateIfEqual(kOverflow);
return VisitBinop<Int64BinopMatcher>(
selector, node, kS390_Sub64, OperandMode::kInt32Imm_Negate,
cont);
#endif
default:
break;
}
}
}
break;
case IrOpcode::kInt32Sub:
if (fc == kNotEqual || fc == kEqual)
return VisitWord32Compare(selector, value, cont);
break;
case IrOpcode::kWord32And:
return VisitTestUnderMask(selector, value, cont);
case IrOpcode::kLoad: {
LoadRepresentation load_rep = LoadRepresentationOf(value->op());
switch (load_rep.representation()) {
case MachineRepresentation::kWord32:
if (opcode == kS390_LoadAndTestWord32) {
return VisitLoadAndTest(selector, opcode, user, value, cont);
}
default:
break;
}
break;
}
case IrOpcode::kInt32Add:
// can't handle overflow case.
break;
case IrOpcode::kWord32Or:
return VisitBin32op(selector, value, kS390_Or32, OrOperandMode, cont);
case IrOpcode::kWord32Xor:
return VisitBin32op(selector, value, kS390_Xor32, XorOperandMode, cont);
case IrOpcode::kWord32Sar:
case IrOpcode::kWord32Shl:
case IrOpcode::kWord32Shr:
case IrOpcode::kWord32Ror:
// doesn't generate cc, so ignore.
break;
#if V8_TARGET_ARCH_S390X
case IrOpcode::kInt64Sub:
if (fc == kNotEqual || fc == kEqual)
return VisitWord64Compare(selector, value, cont);
break;
case IrOpcode::kWord64And:
return VisitTestUnderMask(selector, value, cont);
case IrOpcode::kInt64Add:
// can't handle overflow case.
break;
case IrOpcode::kWord64Or:
// TODO(john.yan): need to handle
break;
case IrOpcode::kWord64Xor:
// TODO(john.yan): need to handle
break;
case IrOpcode::kWord64Sar:
case IrOpcode::kWord64Shl:
case IrOpcode::kWord64Shr:
case IrOpcode::kWord64Ror:
// doesn't generate cc, so ignore
break;
#endif
default:
break;
}
}
// Branch could not be combined with a compare, emit LoadAndTest
VisitLoadAndTest(selector, opcode, user, value, cont, true);
}
void VisitWord32CompareZero(InstructionSelector* selector, Node* user,
Node* value, FlagsContinuation* cont) {
VisitWordCompareZero(selector, user, value, kS390_LoadAndTestWord32, cont);
}
#if V8_TARGET_ARCH_S390X
void VisitWord64CompareZero(InstructionSelector* selector, Node* user,
Node* value, FlagsContinuation* cont) {
VisitWordCompareZero(selector, user, value, kS390_LoadAndTestWord64, cont);
}
#endif
} // namespace
void InstructionSelector::VisitBranch(Node* branch, BasicBlock* tbranch,
BasicBlock* fbranch) {
FlagsContinuation cont(kNotEqual, tbranch, fbranch);
VisitWord32CompareZero(this, branch, branch->InputAt(0), &cont);
}
void InstructionSelector::VisitDeoptimizeIf(Node* node) {
DeoptimizeParameters p = DeoptimizeParametersOf(node->op());
FlagsContinuation cont = FlagsContinuation::ForDeoptimize(
kNotEqual, p.kind(), p.reason(), node->InputAt(1));
VisitWord32CompareZero(this, node, node->InputAt(0), &cont);
}
void InstructionSelector::VisitDeoptimizeUnless(Node* node) {
DeoptimizeParameters p = DeoptimizeParametersOf(node->op());
FlagsContinuation cont = FlagsContinuation::ForDeoptimize(
kEqual, p.kind(), p.reason(), node->InputAt(1));
VisitWord32CompareZero(this, node, node->InputAt(0), &cont);
}
void InstructionSelector::VisitTrapIf(Node* node, Runtime::FunctionId func_id) {
FlagsContinuation cont =
FlagsContinuation::ForTrap(kNotEqual, func_id, node->InputAt(1));
VisitWord32CompareZero(this, node, node->InputAt(0), &cont);
}
void InstructionSelector::VisitTrapUnless(Node* node,
Runtime::FunctionId func_id) {
FlagsContinuation cont =
FlagsContinuation::ForTrap(kEqual, func_id, node->InputAt(1));
VisitWord32CompareZero(this, node, node->InputAt(0), &cont);
}
void InstructionSelector::VisitSwitch(Node* node, const SwitchInfo& sw) {
S390OperandGenerator g(this);
InstructionOperand value_operand = g.UseRegister(node->InputAt(0));
// Emit either ArchTableSwitch or ArchLookupSwitch.
size_t table_space_cost = 4 + sw.value_range;
size_t table_time_cost = 3;
size_t lookup_space_cost = 3 + 2 * sw.case_count;
size_t lookup_time_cost = sw.case_count;
if (sw.case_count > 0 &&
table_space_cost + 3 * table_time_cost <=
lookup_space_cost + 3 * lookup_time_cost &&
sw.min_value > std::numeric_limits<int32_t>::min()) {
InstructionOperand index_operand = value_operand;
if (sw.min_value) {
index_operand = g.TempRegister();
Emit(kS390_Lay | AddressingModeField::encode(kMode_MRI), index_operand,
value_operand, g.TempImmediate(-sw.min_value));
}
#if V8_TARGET_ARCH_S390X
InstructionOperand index_operand_zero_ext = g.TempRegister();
Emit(kS390_Uint32ToUint64, index_operand_zero_ext, index_operand);
index_operand = index_operand_zero_ext;
#endif
// Generate a table lookup.
return EmitTableSwitch(sw, index_operand);
}
// Generate a sequence of conditional jumps.
return EmitLookupSwitch(sw, value_operand);
}
void InstructionSelector::VisitWord32Equal(Node* const node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node);
Int32BinopMatcher m(node);
if (m.right().Is(0)) {
return VisitWord32CompareZero(this, m.node(), m.left().node(), &cont);
}
VisitWord32Compare(this, node, &cont);
}
void InstructionSelector::VisitInt32LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node);
VisitWord32Compare(this, node, &cont);
}
void InstructionSelector::VisitInt32LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kSignedLessThanOrEqual, node);
VisitWord32Compare(this, node, &cont);
}
void InstructionSelector::VisitUint32LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node);
VisitWord32Compare(this, node, &cont);
}
void InstructionSelector::VisitUint32LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node);
VisitWord32Compare(this, node, &cont);
}
#if V8_TARGET_ARCH_S390X
void InstructionSelector::VisitWord64Equal(Node* const node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node);
Int64BinopMatcher m(node);
if (m.right().Is(0)) {
return VisitWord64CompareZero(this, m.node(), m.left().node(), &cont);
}
VisitWord64Compare(this, node, &cont);
}
void InstructionSelector::VisitInt64LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node);
VisitWord64Compare(this, node, &cont);
}
void InstructionSelector::VisitInt64LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kSignedLessThanOrEqual, node);
VisitWord64Compare(this, node, &cont);
}
void InstructionSelector::VisitUint64LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node);
VisitWord64Compare(this, node, &cont);
}
void InstructionSelector::VisitUint64LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node);
VisitWord64Compare(this, node, &cont);
}
#endif
void InstructionSelector::VisitFloat32Equal(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node);
VisitFloat32Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat32LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node);
VisitFloat32Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat32LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node);
VisitFloat32Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat64Equal(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node);
VisitFloat64Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat64LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node);
VisitFloat64Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat64LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node);
VisitFloat64Compare(this, node, &cont);
}
void InstructionSelector::EmitPrepareArguments(
ZoneVector<PushParameter>* arguments, const CallDescriptor* descriptor,
Node* node) {
S390OperandGenerator g(this);
// Prepare for C function call.
if (descriptor->IsCFunctionCall()) {
Emit(kArchPrepareCallCFunction |
MiscField::encode(static_cast<int>(descriptor->ParameterCount())),
0, nullptr, 0, nullptr);
// Poke any stack arguments.
int slot = kStackFrameExtraParamSlot;
for (PushParameter input : (*arguments)) {
Emit(kS390_StoreToStackSlot, g.NoOutput(), g.UseRegister(input.node()),
g.TempImmediate(slot));
++slot;
}
} else {
// Push any stack arguments.
int num_slots = static_cast<int>(descriptor->StackParameterCount());
int slot = 0;
for (PushParameter input : (*arguments)) {
if (slot == 0) {
DCHECK(input.node());
Emit(kS390_PushFrame, g.NoOutput(), g.UseRegister(input.node()),
g.TempImmediate(num_slots));
} else {
// Skip any alignment holes in pushed nodes.
if (input.node()) {
Emit(kS390_StoreToStackSlot, g.NoOutput(),
g.UseRegister(input.node()), g.TempImmediate(slot));
}
}
++slot;
}
}
}
bool InstructionSelector::IsTailCallAddressImmediate() { return false; }
int InstructionSelector::GetTempsCountForTailCallFromJSFunction() { return 3; }
void InstructionSelector::VisitFloat64ExtractLowWord32(Node* node) {
S390OperandGenerator g(this);
Emit(kS390_DoubleExtractLowWord32, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitFloat64ExtractHighWord32(Node* node) {
S390OperandGenerator g(this);
Emit(kS390_DoubleExtractHighWord32, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitFloat64InsertLowWord32(Node* node) {
S390OperandGenerator g(this);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
if (left->opcode() == IrOpcode::kFloat64InsertHighWord32 &&
CanCover(node, left)) {
left = left->InputAt(1);
Emit(kS390_DoubleConstruct, g.DefineAsRegister(node), g.UseRegister(left),
g.UseRegister(right));
return;
}
Emit(kS390_DoubleInsertLowWord32, g.DefineSameAsFirst(node),
g.UseRegister(left), g.UseRegister(right));
}
void InstructionSelector::VisitFloat64InsertHighWord32(Node* node) {
S390OperandGenerator g(this);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
if (left->opcode() == IrOpcode::kFloat64InsertLowWord32 &&
CanCover(node, left)) {
left = left->InputAt(1);
Emit(kS390_DoubleConstruct, g.DefineAsRegister(node), g.UseRegister(right),
g.UseRegister(left));
return;
}
Emit(kS390_DoubleInsertHighWord32, g.DefineSameAsFirst(node),
g.UseRegister(left), g.UseRegister(right));
}
void InstructionSelector::VisitAtomicLoad(Node* node) {
LoadRepresentation load_rep = LoadRepresentationOf(node->op());
S390OperandGenerator g(this);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
ArchOpcode opcode = kArchNop;
switch (load_rep.representation()) {
case MachineRepresentation::kWord8:
opcode = load_rep.IsSigned() ? kAtomicLoadInt8 : kAtomicLoadUint8;
break;
case MachineRepresentation::kWord16:
opcode = load_rep.IsSigned() ? kAtomicLoadInt16 : kAtomicLoadUint16;
break;
case MachineRepresentation::kWord32:
opcode = kAtomicLoadWord32;
break;
default:
UNREACHABLE();
return;
}
Emit(opcode | AddressingModeField::encode(kMode_MRR),
g.DefineAsRegister(node), g.UseRegister(base), g.UseRegister(index));
}
void InstructionSelector::VisitAtomicStore(Node* node) {
MachineRepresentation rep = AtomicStoreRepresentationOf(node->op());
S390OperandGenerator g(this);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
Node* value = node->InputAt(2);
ArchOpcode opcode = kArchNop;
switch (rep) {
case MachineRepresentation::kWord8:
opcode = kAtomicStoreWord8;
break;
case MachineRepresentation::kWord16:
opcode = kAtomicStoreWord16;
break;
case MachineRepresentation::kWord32:
opcode = kAtomicStoreWord32;
break;
default:
UNREACHABLE();
return;
}
InstructionOperand inputs[4];
size_t input_count = 0;
inputs[input_count++] = g.UseUniqueRegister(value);
inputs[input_count++] = g.UseUniqueRegister(base);
inputs[input_count++] = g.UseUniqueRegister(index);
Emit(opcode | AddressingModeField::encode(kMode_MRR), 0, nullptr, input_count,
inputs);
}
// static
MachineOperatorBuilder::Flags
InstructionSelector::SupportedMachineOperatorFlags() {
return MachineOperatorBuilder::kFloat32RoundDown |
MachineOperatorBuilder::kFloat64RoundDown |
MachineOperatorBuilder::kFloat32RoundUp |
MachineOperatorBuilder::kFloat64RoundUp |
MachineOperatorBuilder::kFloat32RoundTruncate |
MachineOperatorBuilder::kFloat64RoundTruncate |
MachineOperatorBuilder::kFloat64RoundTiesAway |
MachineOperatorBuilder::kWord32Popcnt |
MachineOperatorBuilder::kWord32ReverseBytes |
MachineOperatorBuilder::kWord64ReverseBytes |
MachineOperatorBuilder::kWord64Popcnt;
}
// static
MachineOperatorBuilder::AlignmentRequirements
InstructionSelector::AlignmentRequirements() {
return MachineOperatorBuilder::AlignmentRequirements::
FullUnalignedAccessSupport();
}
} // namespace compiler
} // namespace internal
} // namespace v8