blob: 95a8d01fb27d0e4feec6a3ae1062fc222102f2c7 [file] [log] [blame]
/*
* (C) 1999 Lars Knoll (knoll@kde.org)
* (C) 2000 Gunnstein Lye (gunnstein@netcom.no)
* (C) 2000 Frederik Holljen (frederik.holljen@hig.no)
* (C) 2001 Peter Kelly (pmk@post.com)
* Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 Apple Inc. All rights reserved.
* Copyright (C) 2011 Motorola Mobility. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#include "core/dom/Range.h"
#include "bindings/core/v8/ExceptionState.h"
#include "core/dom/ClientRect.h"
#include "core/dom/ClientRectList.h"
#include "core/dom/DocumentFragment.h"
#include "core/dom/ExceptionCode.h"
#include "core/dom/Node.h"
#include "core/dom/NodeTraversal.h"
#include "core/dom/NodeWithIndex.h"
#include "core/dom/ProcessingInstruction.h"
#include "core/dom/Text.h"
#include "core/editing/EditingUtilities.h"
#include "core/editing/VisiblePosition.h"
#include "core/editing/VisibleUnits.h"
#include "core/editing/iterators/TextIterator.h"
#include "core/editing/serializers/Serialization.h"
#include "core/events/ScopedEventQueue.h"
#include "core/html/HTMLBodyElement.h"
#include "core/html/HTMLElement.h"
#include "core/layout/LayoutBoxModelObject.h"
#include "core/layout/LayoutText.h"
#include "core/svg/SVGSVGElement.h"
#include "platform/geometry/FloatQuad.h"
#include "wtf/text/CString.h"
#include "wtf/text/StringBuilder.h"
#ifndef NDEBUG
#include <stdio.h>
#endif
namespace blink {
inline Range::Range(Document& ownerDocument)
: m_ownerDocument(&ownerDocument)
, m_start(m_ownerDocument)
, m_end(m_ownerDocument)
{
m_ownerDocument->attachRange(this);
}
RawPtr<Range> Range::create(Document& ownerDocument)
{
return new Range(ownerDocument);
}
inline Range::Range(Document& ownerDocument, Node* startContainer, int startOffset, Node* endContainer, int endOffset)
: m_ownerDocument(&ownerDocument)
, m_start(m_ownerDocument)
, m_end(m_ownerDocument)
{
m_ownerDocument->attachRange(this);
// Simply setting the containers and offsets directly would not do any of the checking
// that setStart and setEnd do, so we call those functions.
setStart(startContainer, startOffset);
setEnd(endContainer, endOffset);
}
RawPtr<Range> Range::create(Document& ownerDocument, Node* startContainer, int startOffset, Node* endContainer, int endOffset)
{
return new Range(ownerDocument, startContainer, startOffset, endContainer, endOffset);
}
RawPtr<Range> Range::create(Document& ownerDocument, const Position& start, const Position& end)
{
return new Range(ownerDocument, start.computeContainerNode(), start.computeOffsetInContainerNode(), end.computeContainerNode(), end.computeOffsetInContainerNode());
}
RawPtr<Range> Range::createAdjustedToTreeScope(const TreeScope& treeScope, const Position& position)
{
RawPtr<Range> range = create(treeScope.document(), position, position);
// Make sure the range is in this scope.
Node* firstNode = range->firstNode();
ASSERT(firstNode);
Node* shadowHostInThisScopeOrFirstNode = treeScope.ancestorInThisScope(firstNode);
ASSERT(shadowHostInThisScopeOrFirstNode);
if (shadowHostInThisScopeOrFirstNode == firstNode)
return range.release();
// If not, create a range for the shadow host in this scope.
ContainerNode* container = shadowHostInThisScopeOrFirstNode->parentNode();
ASSERT(container);
unsigned offset = shadowHostInThisScopeOrFirstNode->nodeIndex();
return Range::create(treeScope.document(), container, offset, container, offset);
}
void Range::dispose()
{
#if ENABLE(OILPAN)
// A prompt detach from the owning Document helps avoid GC overhead.
m_ownerDocument->detachRange(this);
#endif
}
bool Range::inDocument() const
{
ASSERT(m_start.inDocument() == m_end.inDocument());
return m_start.inDocument();
}
void Range::setDocument(Document& document)
{
ASSERT(m_ownerDocument != document);
ASSERT(m_ownerDocument);
m_ownerDocument->detachRange(this);
m_ownerDocument = &document;
m_start.setToStartOfNode(document);
m_end.setToStartOfNode(document);
m_ownerDocument->attachRange(this);
}
Node* Range::commonAncestorContainer() const
{
return commonAncestorContainer(m_start.container(), m_end.container());
}
Node* Range::commonAncestorContainer(const Node* containerA, const Node* containerB)
{
if (!containerA || !containerB)
return nullptr;
return containerA->commonAncestor(*containerB, NodeTraversal::parent);
}
static inline bool checkForDifferentRootContainer(const RangeBoundaryPoint& start, const RangeBoundaryPoint& end)
{
Node* endRootContainer = end.container();
while (endRootContainer->parentNode())
endRootContainer = endRootContainer->parentNode();
Node* startRootContainer = start.container();
while (startRootContainer->parentNode())
startRootContainer = startRootContainer->parentNode();
return startRootContainer != endRootContainer || (Range::compareBoundaryPoints(start, end, ASSERT_NO_EXCEPTION) > 0);
}
void Range::setStart(RawPtr<Node> refNode, int offset, ExceptionState& exceptionState)
{
if (!refNode) {
// FIXME: Generated bindings code never calls with null, and neither should other callers!
exceptionState.throwTypeError("The node provided is null.");
return;
}
bool didMoveDocument = false;
if (refNode->document() != m_ownerDocument) {
setDocument(refNode->document());
didMoveDocument = true;
}
Node* childNode = checkNodeWOffset(refNode.get(), offset, exceptionState);
if (exceptionState.hadException())
return;
m_start.set(refNode, offset, childNode);
if (didMoveDocument || checkForDifferentRootContainer(m_start, m_end))
collapse(true);
}
void Range::setEnd(RawPtr<Node> refNode, int offset, ExceptionState& exceptionState)
{
if (!refNode) {
// FIXME: Generated bindings code never calls with null, and neither should other callers!
exceptionState.throwTypeError("The node provided is null.");
return;
}
bool didMoveDocument = false;
if (refNode->document() != m_ownerDocument) {
setDocument(refNode->document());
didMoveDocument = true;
}
Node* childNode = checkNodeWOffset(refNode.get(), offset, exceptionState);
if (exceptionState.hadException())
return;
m_end.set(refNode, offset, childNode);
if (didMoveDocument || checkForDifferentRootContainer(m_start, m_end))
collapse(false);
}
void Range::setStart(const Position& start, ExceptionState& exceptionState)
{
Position parentAnchored = start.parentAnchoredEquivalent();
setStart(parentAnchored.computeContainerNode(), parentAnchored.offsetInContainerNode(), exceptionState);
}
void Range::setEnd(const Position& end, ExceptionState& exceptionState)
{
Position parentAnchored = end.parentAnchoredEquivalent();
setEnd(parentAnchored.computeContainerNode(), parentAnchored.offsetInContainerNode(), exceptionState);
}
void Range::collapse(bool toStart)
{
if (toStart)
m_end = m_start;
else
m_start = m_end;
}
bool Range::isNodeFullyContained(Node& node) const
{
ContainerNode* parentNode = node.parentNode();
int nodeIndex = node.nodeIndex();
return isPointInRange(parentNode, nodeIndex, IGNORE_EXCEPTION) // starts in the middle of this range, or on the boundary points.
&& isPointInRange(parentNode, nodeIndex + 1, IGNORE_EXCEPTION); // ends in the middle of this range, or on the boundary points.
}
bool Range::isPointInRange(Node* refNode, int offset, ExceptionState& exceptionState) const
{
if (!refNode) {
// FIXME: Generated bindings code never calls with null, and neither should other callers!
exceptionState.throwTypeError("The node provided is null.");
return false;
}
if (!refNode->inActiveDocument() || refNode->document() != m_ownerDocument) {
return false;
}
checkNodeWOffset(refNode, offset, exceptionState);
if (exceptionState.hadException())
return false;
return compareBoundaryPoints(refNode, offset, m_start.container(), m_start.offset(), exceptionState) >= 0 && !exceptionState.hadException()
&& compareBoundaryPoints(refNode, offset, m_end.container(), m_end.offset(), exceptionState) <= 0 && !exceptionState.hadException();
}
short Range::comparePoint(Node* refNode, int offset, ExceptionState& exceptionState) const
{
// http://developer.mozilla.org/en/docs/DOM:range.comparePoint
// This method returns -1, 0 or 1 depending on if the point described by the
// refNode node and an offset within the node is before, same as, or after the range respectively.
if (!refNode->inActiveDocument()) {
exceptionState.throwDOMException(WrongDocumentError, "The node provided is not in an active document.");
return 0;
}
if (refNode->document() != m_ownerDocument) {
exceptionState.throwDOMException(WrongDocumentError, "The node provided is not in this Range's Document.");
return 0;
}
checkNodeWOffset(refNode, offset, exceptionState);
if (exceptionState.hadException())
return 0;
// compare to start, and point comes before
if (compareBoundaryPoints(refNode, offset, m_start.container(), m_start.offset(), exceptionState) < 0)
return -1;
if (exceptionState.hadException())
return 0;
// compare to end, and point comes after
if (compareBoundaryPoints(refNode, offset, m_end.container(), m_end.offset(), exceptionState) > 0 && !exceptionState.hadException())
return 1;
// point is in the middle of this range, or on the boundary points
return 0;
}
short Range::compareBoundaryPoints(unsigned how, const Range* sourceRange, ExceptionState& exceptionState) const
{
if (!(how == START_TO_START || how == START_TO_END || how == END_TO_END || how == END_TO_START)) {
exceptionState.throwDOMException(NotSupportedError, "The comparison method provided must be one of 'START_TO_START', 'START_TO_END', 'END_TO_END', or 'END_TO_START'.");
return 0;
}
Node* thisCont = commonAncestorContainer();
Node* sourceCont = sourceRange->commonAncestorContainer();
if (thisCont->document() != sourceCont->document()) {
exceptionState.throwDOMException(WrongDocumentError, "The source range is in a different document than this range.");
return 0;
}
Node* thisTop = thisCont;
Node* sourceTop = sourceCont;
while (thisTop->parentNode())
thisTop = thisTop->parentNode();
while (sourceTop->parentNode())
sourceTop = sourceTop->parentNode();
if (thisTop != sourceTop) { // in different DocumentFragments
exceptionState.throwDOMException(WrongDocumentError, "The source range is in a different document than this range.");
return 0;
}
switch (how) {
case START_TO_START:
return compareBoundaryPoints(m_start, sourceRange->m_start, exceptionState);
case START_TO_END:
return compareBoundaryPoints(m_end, sourceRange->m_start, exceptionState);
case END_TO_END:
return compareBoundaryPoints(m_end, sourceRange->m_end, exceptionState);
case END_TO_START:
return compareBoundaryPoints(m_start, sourceRange->m_end, exceptionState);
}
ASSERT_NOT_REACHED();
return 0;
}
short Range::compareBoundaryPoints(Node* containerA, int offsetA, Node* containerB, int offsetB, ExceptionState& exceptionState)
{
bool disconnected = false;
short result = comparePositionsInDOMTree(containerA, offsetA, containerB, offsetB, &disconnected);
if (disconnected) {
exceptionState.throwDOMException(WrongDocumentError, "The two ranges are in separate documents.");
return 0;
}
return result;
}
short Range::compareBoundaryPoints(const RangeBoundaryPoint& boundaryA, const RangeBoundaryPoint& boundaryB, ExceptionState& exceptionState)
{
return compareBoundaryPoints(boundaryA.container(), boundaryA.offset(), boundaryB.container(), boundaryB.offset(), exceptionState);
}
bool Range::boundaryPointsValid() const
{
TrackExceptionState exceptionState;
return compareBoundaryPoints(m_start, m_end, exceptionState) <= 0 && !exceptionState.hadException();
}
void Range::deleteContents(ExceptionState& exceptionState)
{
ASSERT(boundaryPointsValid());
{
EventQueueScope eventQueueScope;
processContents(DELETE_CONTENTS, exceptionState);
}
}
static bool nodeValidForIntersects(Node* refNode, Document* expectedDocument, ExceptionState& exceptionState)
{
if (!refNode) {
// FIXME: Generated bindings code never calls with null, and neither should other callers!
exceptionState.throwTypeError("The node provided is null.");
return false;
}
if (!refNode->inActiveDocument() || refNode->document() != expectedDocument) {
// Firefox doesn't throw an exception for these cases; it returns false.
return false;
}
return true;
}
bool Range::intersectsNode(Node* refNode, ExceptionState& exceptionState)
{
// http://developer.mozilla.org/en/docs/DOM:range.intersectsNode
// Returns a bool if the node intersects the range.
if (!nodeValidForIntersects(refNode, m_ownerDocument.get(), exceptionState))
return false;
ContainerNode* parentNode = refNode->parentNode();
if (!parentNode)
return true;
int nodeIndex = refNode->nodeIndex();
if (comparePoint(parentNode, nodeIndex, exceptionState) < 0 // starts before start
&& comparePoint(parentNode, nodeIndex + 1, exceptionState) < 0) { // ends before start
return false;
}
if (comparePoint(parentNode, nodeIndex, exceptionState) > 0 // starts after end
&& comparePoint(parentNode, nodeIndex + 1, exceptionState) > 0) { // ends after end
return false;
}
return true; // all other cases
}
bool Range::intersectsNode(Node* refNode, const Position& start, const Position& end, ExceptionState& exceptionState)
{
// http://developer.mozilla.org/en/docs/DOM:range.intersectsNode
// Returns a bool if the node intersects the range.
if (!nodeValidForIntersects(refNode, start.document(), exceptionState))
return false;
ContainerNode* parentNode = refNode->parentNode();
if (!parentNode)
return true;
int nodeIndex = refNode->nodeIndex();
Node* startContainerNode = start.computeContainerNode();
int startOffset = start.computeOffsetInContainerNode();
if (compareBoundaryPoints(parentNode, nodeIndex, startContainerNode, startOffset, exceptionState) < 0 // starts before start
&& compareBoundaryPoints(parentNode, nodeIndex + 1, startContainerNode, startOffset, exceptionState) < 0) { // ends before start
ASSERT(!exceptionState.hadException());
return false;
}
Node* endContainerNode = end.computeContainerNode();
int endOffset = end.computeOffsetInContainerNode();
if (compareBoundaryPoints(parentNode, nodeIndex, endContainerNode, endOffset, exceptionState) > 0 // starts after end
&& compareBoundaryPoints(parentNode, nodeIndex + 1, endContainerNode, endOffset, exceptionState) > 0) { // ends after end
ASSERT(!exceptionState.hadException());
return false;
}
return true; // all other cases
}
static inline Node* highestAncestorUnderCommonRoot(Node* node, Node* commonRoot)
{
if (node == commonRoot)
return 0;
ASSERT(commonRoot->contains(node));
while (node->parentNode() != commonRoot)
node = node->parentNode();
return node;
}
static inline Node* childOfCommonRootBeforeOffset(Node* container, unsigned offset, Node* commonRoot)
{
ASSERT(container);
ASSERT(commonRoot);
if (!commonRoot->contains(container))
return 0;
if (container == commonRoot) {
container = container->firstChild();
for (unsigned i = 0; container && i < offset; i++)
container = container->nextSibling();
} else {
while (container->parentNode() != commonRoot)
container = container->parentNode();
}
return container;
}
RawPtr<DocumentFragment> Range::processContents(ActionType action, ExceptionState& exceptionState)
{
typedef HeapVector<Member<Node>> NodeVector;
RawPtr<DocumentFragment> fragment = nullptr;
if (action == EXTRACT_CONTENTS || action == CLONE_CONTENTS)
fragment = DocumentFragment::create(*m_ownerDocument.get());
if (collapsed())
return fragment.release();
RawPtr<Node> commonRoot = commonAncestorContainer();
ASSERT(commonRoot);
if (m_start.container() == m_end.container()) {
processContentsBetweenOffsets(action, fragment, m_start.container(), m_start.offset(), m_end.offset(), exceptionState);
return fragment;
}
// Since mutation observers can modify the range during the process, the boundary points need to be saved.
RangeBoundaryPoint originalStart(m_start);
RangeBoundaryPoint originalEnd(m_end);
// what is the highest node that partially selects the start / end of the range?
RawPtr<Node> partialStart = highestAncestorUnderCommonRoot(originalStart.container(), commonRoot.get());
RawPtr<Node> partialEnd = highestAncestorUnderCommonRoot(originalEnd.container(), commonRoot.get());
// Start and end containers are different.
// There are three possibilities here:
// 1. Start container == commonRoot (End container must be a descendant)
// 2. End container == commonRoot (Start container must be a descendant)
// 3. Neither is commonRoot, they are both descendants
//
// In case 3, we grab everything after the start (up until a direct child
// of commonRoot) into leftContents, and everything before the end (up until
// a direct child of commonRoot) into rightContents. Then we process all
// commonRoot children between leftContents and rightContents
//
// In case 1 or 2, we skip either processing of leftContents or rightContents,
// in which case the last lot of nodes either goes from the first or last
// child of commonRoot.
//
// These are deleted, cloned, or extracted (i.e. both) depending on action.
// Note that we are verifying that our common root hierarchy is still intact
// after any DOM mutation event, at various stages below. See webkit bug 60350.
RawPtr<Node> leftContents = nullptr;
if (originalStart.container() != commonRoot && commonRoot->contains(originalStart.container())) {
leftContents = processContentsBetweenOffsets(action, nullptr, originalStart.container(), originalStart.offset(), originalStart.container()->lengthOfContents(), exceptionState);
leftContents = processAncestorsAndTheirSiblings(action, originalStart.container(), ProcessContentsForward, leftContents, commonRoot.get(), exceptionState);
}
RawPtr<Node> rightContents = nullptr;
if (m_end.container() != commonRoot && commonRoot->contains(originalEnd.container())) {
rightContents = processContentsBetweenOffsets(action, nullptr, originalEnd.container(), 0, originalEnd.offset(), exceptionState);
rightContents = processAncestorsAndTheirSiblings(action, originalEnd.container(), ProcessContentsBackward, rightContents, commonRoot.get(), exceptionState);
}
// delete all children of commonRoot between the start and end container
RawPtr<Node> processStart = childOfCommonRootBeforeOffset(originalStart.container(), originalStart.offset(), commonRoot.get());
if (processStart && originalStart.container() != commonRoot) // processStart contains nodes before m_start.
processStart = processStart->nextSibling();
RawPtr<Node> processEnd = childOfCommonRootBeforeOffset(originalEnd.container(), originalEnd.offset(), commonRoot.get());
// Collapse the range, making sure that the result is not within a node that was partially selected.
if (action == EXTRACT_CONTENTS || action == DELETE_CONTENTS) {
if (partialStart && commonRoot->contains(partialStart.get())) {
// FIXME: We should not continue if we have an earlier error.
exceptionState.clearException();
setStart(partialStart->parentNode(), partialStart->nodeIndex() + 1, exceptionState);
} else if (partialEnd && commonRoot->contains(partialEnd.get())) {
// FIXME: We should not continue if we have an earlier error.
exceptionState.clearException();
setStart(partialEnd->parentNode(), partialEnd->nodeIndex(), exceptionState);
}
if (exceptionState.hadException())
return nullptr;
m_end = m_start;
}
originalStart.clear();
originalEnd.clear();
// Now add leftContents, stuff in between, and rightContents to the fragment
// (or just delete the stuff in between)
if ((action == EXTRACT_CONTENTS || action == CLONE_CONTENTS) && leftContents)
fragment->appendChild(leftContents, exceptionState);
if (processStart) {
NodeVector nodes;
for (Node* n = processStart.get(); n && n != processEnd; n = n->nextSibling())
nodes.append(n);
processNodes(action, nodes, commonRoot, fragment, exceptionState);
}
if ((action == EXTRACT_CONTENTS || action == CLONE_CONTENTS) && rightContents)
fragment->appendChild(rightContents, exceptionState);
return fragment.release();
}
static inline void deleteCharacterData(RawPtr<CharacterData> data, unsigned startOffset, unsigned endOffset, ExceptionState& exceptionState)
{
if (data->length() - endOffset)
data->deleteData(endOffset, data->length() - endOffset, exceptionState);
if (startOffset)
data->deleteData(0, startOffset, exceptionState);
}
RawPtr<Node> Range::processContentsBetweenOffsets(ActionType action, RawPtr<DocumentFragment> fragment,
Node* container, unsigned startOffset, unsigned endOffset, ExceptionState& exceptionState)
{
ASSERT(container);
ASSERT(startOffset <= endOffset);
// This switch statement must be consistent with that of Node::lengthOfContents.
RawPtr<Node> result = nullptr;
switch (container->getNodeType()) {
case Node::TEXT_NODE:
case Node::CDATA_SECTION_NODE:
case Node::COMMENT_NODE:
case Node::PROCESSING_INSTRUCTION_NODE:
endOffset = std::min(endOffset, toCharacterData(container)->length());
if (action == EXTRACT_CONTENTS || action == CLONE_CONTENTS) {
RawPtr<CharacterData> c = static_pointer_cast<CharacterData>(container->cloneNode(true));
deleteCharacterData(c, startOffset, endOffset, exceptionState);
if (fragment) {
result = fragment;
result->appendChild(c.release(), exceptionState);
} else {
result = c.release();
}
}
if (action == EXTRACT_CONTENTS || action == DELETE_CONTENTS)
toCharacterData(container)->deleteData(startOffset, endOffset - startOffset, exceptionState);
break;
case Node::ELEMENT_NODE:
case Node::ATTRIBUTE_NODE:
case Node::DOCUMENT_NODE:
case Node::DOCUMENT_TYPE_NODE:
case Node::DOCUMENT_FRAGMENT_NODE:
// FIXME: Should we assert that some nodes never appear here?
if (action == EXTRACT_CONTENTS || action == CLONE_CONTENTS) {
if (fragment)
result = fragment;
else
result = container->cloneNode(false);
}
Node* n = container->firstChild();
HeapVector<Member<Node>> nodes;
for (unsigned i = startOffset; n && i; i--)
n = n->nextSibling();
for (unsigned i = startOffset; n && i < endOffset; i++, n = n->nextSibling())
nodes.append(n);
processNodes(action, nodes, container, result, exceptionState);
break;
}
return result.release();
}
void Range::processNodes(ActionType action, HeapVector<Member<Node>>& nodes, RawPtr<Node> oldContainer, RawPtr<Node> newContainer, ExceptionState& exceptionState)
{
for (auto& node : nodes) {
switch (action) {
case DELETE_CONTENTS:
oldContainer->removeChild(node.get(), exceptionState);
break;
case EXTRACT_CONTENTS:
newContainer->appendChild(node.release(), exceptionState); // Will remove n from its parent.
break;
case CLONE_CONTENTS:
newContainer->appendChild(node->cloneNode(true), exceptionState);
break;
}
}
}
RawPtr<Node> Range::processAncestorsAndTheirSiblings(ActionType action, Node* container, ContentsProcessDirection direction, RawPtr<Node> passedClonedContainer, Node* commonRoot, ExceptionState& exceptionState)
{
typedef HeapVector<Member<Node>> NodeVector;
RawPtr<Node> clonedContainer = passedClonedContainer;
NodeVector ancestors;
for (ContainerNode* n = container->parentNode(); n && n != commonRoot; n = n->parentNode())
ancestors.append(n);
RawPtr<Node> firstChildInAncestorToProcess = direction == ProcessContentsForward ? container->nextSibling() : container->previousSibling();
for (const RawPtr<Node>& ancestor : ancestors) {
if (action == EXTRACT_CONTENTS || action == CLONE_CONTENTS) {
if (RawPtr<Node> clonedAncestor = ancestor->cloneNode(false)) { // Might have been removed already during mutation event.
clonedAncestor->appendChild(clonedContainer, exceptionState);
clonedContainer = clonedAncestor;
}
}
// Copy siblings of an ancestor of start/end containers
// FIXME: This assertion may fail if DOM is modified during mutation event
// FIXME: Share code with Range::processNodes
ASSERT(!firstChildInAncestorToProcess || firstChildInAncestorToProcess->parentNode() == ancestor);
NodeVector nodes;
for (Node* child = firstChildInAncestorToProcess.get(); child;
child = (direction == ProcessContentsForward) ? child->nextSibling() : child->previousSibling())
nodes.append(child);
for (const RawPtr<Node>& node : nodes) {
Node* child = node.get();
switch (action) {
case DELETE_CONTENTS:
// Prior call of ancestor->removeChild() may cause a tree change due to DOMSubtreeModified event.
// Therefore, we need to make sure |ancestor| is still |child|'s parent.
if (ancestor == child->parentNode())
ancestor->removeChild(child, exceptionState);
break;
case EXTRACT_CONTENTS: // will remove child from ancestor
if (direction == ProcessContentsForward)
clonedContainer->appendChild(child, exceptionState);
else
clonedContainer->insertBefore(child, clonedContainer->firstChild(), exceptionState);
break;
case CLONE_CONTENTS:
if (direction == ProcessContentsForward)
clonedContainer->appendChild(child->cloneNode(true), exceptionState);
else
clonedContainer->insertBefore(child->cloneNode(true), clonedContainer->firstChild(), exceptionState);
break;
}
}
firstChildInAncestorToProcess = direction == ProcessContentsForward ? ancestor->nextSibling() : ancestor->previousSibling();
}
return clonedContainer.release();
}
RawPtr<DocumentFragment> Range::extractContents(ExceptionState& exceptionState)
{
checkExtractPrecondition(exceptionState);
if (exceptionState.hadException())
return nullptr;
return processContents(EXTRACT_CONTENTS, exceptionState);
}
RawPtr<DocumentFragment> Range::cloneContents(ExceptionState& exceptionState)
{
return processContents(CLONE_CONTENTS, exceptionState);
}
void Range::insertNode(RawPtr<Node> prpNewNode, ExceptionState& exceptionState)
{
RawPtr<Node> newNode = prpNewNode;
if (!newNode) {
// FIXME: Generated bindings code never calls with null, and neither should other callers!
exceptionState.throwTypeError("The node provided is null.");
return;
}
// HierarchyRequestError: Raised if the container of the start of the Range is of a type that
// does not allow children of the type of newNode or if newNode is an ancestor of the container.
// an extra one here - if a text node is going to split, it must have a parent to insert into
bool startIsText = m_start.container()->isTextNode();
if (startIsText && !m_start.container()->parentNode()) {
exceptionState.throwDOMException(HierarchyRequestError, "This operation would split a text node, but there's no parent into which to insert.");
return;
}
// In the case where the container is a text node, we check against the container's parent, because
// text nodes get split up upon insertion.
Node* checkAgainst;
if (startIsText)
checkAgainst = m_start.container()->parentNode();
else
checkAgainst = m_start.container();
Node::NodeType newNodeType = newNode->getNodeType();
int numNewChildren;
if (newNodeType == Node::DOCUMENT_FRAGMENT_NODE && !newNode->isShadowRoot()) {
// check each child node, not the DocumentFragment itself
numNewChildren = 0;
for (Node* c = toDocumentFragment(newNode)->firstChild(); c; c = c->nextSibling()) {
if (!checkAgainst->childTypeAllowed(c->getNodeType())) {
exceptionState.throwDOMException(HierarchyRequestError, "The node to be inserted contains a '" + c->nodeName() + "' node, which may not be inserted here.");
return;
}
++numNewChildren;
}
} else {
numNewChildren = 1;
if (!checkAgainst->childTypeAllowed(newNodeType)) {
exceptionState.throwDOMException(HierarchyRequestError, "The node to be inserted is a '" + newNode->nodeName() + "' node, which may not be inserted here.");
return;
}
}
for (Node* n = m_start.container(); n; n = n->parentNode()) {
if (n == newNode) {
exceptionState.throwDOMException(HierarchyRequestError, "The node to be inserted contains the insertion point; it may not be inserted into itself.");
return;
}
}
// InvalidNodeTypeError: Raised if newNode is an Attr, Entity, Notation, ShadowRoot or Document node.
switch (newNodeType) {
case Node::ATTRIBUTE_NODE:
case Node::DOCUMENT_NODE:
exceptionState.throwDOMException(InvalidNodeTypeError, "The node to be inserted is a '" + newNode->nodeName() + "' node, which may not be inserted here.");
return;
default:
if (newNode->isShadowRoot()) {
exceptionState.throwDOMException(InvalidNodeTypeError, "The node to be inserted is a shadow root, which may not be inserted here.");
return;
}
break;
}
EventQueueScope scope;
bool collapsed = m_start == m_end;
RawPtr<Node> container = nullptr;
if (startIsText) {
container = m_start.container();
RawPtr<Text> newText = toText(container)->splitText(m_start.offset(), exceptionState);
if (exceptionState.hadException())
return;
container = m_start.container();
container->parentNode()->insertBefore(newNode.release(), newText.get(), exceptionState);
if (exceptionState.hadException())
return;
if (collapsed) {
// Some types of events don't support EventQueueScope. Given
// circumstance may mutate the tree so newText->parentNode() may
// become null.
if (!newText->parentNode()) {
exceptionState.throwDOMException(HierarchyRequestError, "This operation would set range's end to parent with new offset, but there's no parent into which to continue.");
return;
}
m_end.setToBeforeChild(*newText);
}
} else {
RawPtr<Node> lastChild = (newNodeType == Node::DOCUMENT_FRAGMENT_NODE) ? toDocumentFragment(newNode)->lastChild() : newNode.get();
if (lastChild && lastChild == m_start.childBefore()) {
// The insertion will do nothing, but we need to extend the range to include
// the inserted nodes.
Node* firstChild = (newNodeType == Node::DOCUMENT_FRAGMENT_NODE) ? toDocumentFragment(newNode)->firstChild() : newNode.get();
ASSERT(firstChild);
m_start.setToBeforeChild(*firstChild);
return;
}
container = m_start.container();
container->insertBefore(newNode.release(), NodeTraversal::childAt(*container, m_start.offset()), exceptionState);
if (exceptionState.hadException())
return;
// Note that m_start.offset() may have changed as a result of container->insertBefore,
// when the node we are inserting comes before the range in the same container.
if (collapsed && numNewChildren)
m_end.set(m_start.container(), m_start.offset() + numNewChildren, lastChild.get());
}
}
String Range::toString() const
{
StringBuilder builder;
Node* pastLast = pastLastNode();
for (Node* n = firstNode(); n != pastLast; n = NodeTraversal::next(*n)) {
Node::NodeType type = n->getNodeType();
if (type == Node::TEXT_NODE || type == Node::CDATA_SECTION_NODE) {
String data = toCharacterData(n)->data();
int length = data.length();
int start = (n == m_start.container()) ? std::min(std::max(0, m_start.offset()), length) : 0;
int end = (n == m_end.container()) ? std::min(std::max(start, m_end.offset()), length) : length;
builder.append(data, start, end - start);
}
}
return builder.toString();
}
String Range::text() const
{
return plainText(EphemeralRange(this), TextIteratorEmitsObjectReplacementCharacter);
}
RawPtr<DocumentFragment> Range::createContextualFragment(const String& markup, ExceptionState& exceptionState)
{
// Algorithm: http://domparsing.spec.whatwg.org/#extensions-to-the-range-interface
Node* node = m_start.container();
// Step 1.
RawPtr<Element> element;
if (!m_start.offset() && (node->isDocumentNode() || node->isDocumentFragment()))
element = nullptr;
else if (node->isElementNode())
element = toElement(node);
else
element = node->parentElement();
// Step 2.
if (!element || isHTMLHtmlElement(element)) {
Document& document = node->document();
if (document.isHTMLDocument() || document.isXHTMLDocument()) {
// Optimization over spec: try to reuse the existing <body> element, if it is available.
element = document.body();
if (!element)
element = HTMLBodyElement::create(document);
} else if (document.isSVGDocument()) {
element = document.documentElement();
if (!element)
element = SVGSVGElement::create(document);
}
}
if (!element || (!element->isHTMLElement() && !element->isSVGElement())) {
exceptionState.throwDOMException(NotSupportedError, "The range's container must be an HTML or SVG Element, Document, or DocumentFragment.");
return nullptr;
}
// Steps 3, 4, 5.
RawPtr<DocumentFragment> fragment = blink::createContextualFragment(markup, element.get(), AllowScriptingContentAndDoNotMarkAlreadyStarted, exceptionState);
if (!fragment)
return nullptr;
return fragment.release();
}
void Range::detach()
{
// This is now a no-op as per the DOM specification.
}
Node* Range::checkNodeWOffset(Node* n, int offset, ExceptionState& exceptionState) const
{
switch (n->getNodeType()) {
case Node::DOCUMENT_TYPE_NODE:
exceptionState.throwDOMException(InvalidNodeTypeError, "The node provided is of type '" + n->nodeName() + "'.");
return nullptr;
case Node::CDATA_SECTION_NODE:
case Node::COMMENT_NODE:
case Node::TEXT_NODE:
if (static_cast<unsigned>(offset) > toCharacterData(n)->length())
exceptionState.throwDOMException(IndexSizeError, "The offset " + String::number(offset) + " is larger than or equal to the node's length (" + String::number(toCharacterData(n)->length()) + ").");
return nullptr;
case Node::PROCESSING_INSTRUCTION_NODE:
if (static_cast<unsigned>(offset) > toProcessingInstruction(n)->data().length())
exceptionState.throwDOMException(IndexSizeError, "The offset " + String::number(offset) + " is larger than or equal to than the node's length (" + String::number(toProcessingInstruction(n)->data().length()) + ").");
return nullptr;
case Node::ATTRIBUTE_NODE:
case Node::DOCUMENT_FRAGMENT_NODE:
case Node::DOCUMENT_NODE:
case Node::ELEMENT_NODE: {
if (!offset)
return nullptr;
Node* childBefore = NodeTraversal::childAt(*n, offset - 1);
if (!childBefore)
exceptionState.throwDOMException(IndexSizeError, "There is no child at offset " + String::number(offset) + ".");
return childBefore;
}
}
ASSERT_NOT_REACHED();
return nullptr;
}
void Range::checkNodeBA(Node* n, ExceptionState& exceptionState) const
{
if (!n) {
// FIXME: Generated bindings code never calls with null, and neither should other callers!
exceptionState.throwTypeError("The node provided is null.");
return;
}
// InvalidNodeTypeError: Raised if the root container of refNode is not an
// Attr, Document, DocumentFragment or ShadowRoot node, or part of a SVG shadow DOM tree,
// or if refNode is a Document, DocumentFragment, ShadowRoot, Attr, Entity, or Notation node.
if (!n->parentNode()) {
exceptionState.throwDOMException(InvalidNodeTypeError, "the given Node has no parent.");
return;
}
switch (n->getNodeType()) {
case Node::ATTRIBUTE_NODE:
case Node::DOCUMENT_FRAGMENT_NODE:
case Node::DOCUMENT_NODE:
exceptionState.throwDOMException(InvalidNodeTypeError, "The node provided is of type '" + n->nodeName() + "'.");
return;
case Node::CDATA_SECTION_NODE:
case Node::COMMENT_NODE:
case Node::DOCUMENT_TYPE_NODE:
case Node::ELEMENT_NODE:
case Node::PROCESSING_INSTRUCTION_NODE:
case Node::TEXT_NODE:
break;
}
Node* root = n;
while (ContainerNode* parent = root->parentNode())
root = parent;
switch (root->getNodeType()) {
case Node::ATTRIBUTE_NODE:
case Node::DOCUMENT_NODE:
case Node::DOCUMENT_FRAGMENT_NODE:
case Node::ELEMENT_NODE:
break;
case Node::CDATA_SECTION_NODE:
case Node::COMMENT_NODE:
case Node::DOCUMENT_TYPE_NODE:
case Node::PROCESSING_INSTRUCTION_NODE:
case Node::TEXT_NODE:
exceptionState.throwDOMException(InvalidNodeTypeError, "The node provided is of type '" + n->nodeName() + "'.");
return;
}
}
RawPtr<Range> Range::cloneRange() const
{
return Range::create(*m_ownerDocument.get(), m_start.container(), m_start.offset(), m_end.container(), m_end.offset());
}
void Range::setStartAfter(Node* refNode, ExceptionState& exceptionState)
{
checkNodeBA(refNode, exceptionState);
if (exceptionState.hadException())
return;
setStart(refNode->parentNode(), refNode->nodeIndex() + 1, exceptionState);
}
void Range::setEndBefore(Node* refNode, ExceptionState& exceptionState)
{
checkNodeBA(refNode, exceptionState);
if (exceptionState.hadException())
return;
setEnd(refNode->parentNode(), refNode->nodeIndex(), exceptionState);
}
void Range::setEndAfter(Node* refNode, ExceptionState& exceptionState)
{
checkNodeBA(refNode, exceptionState);
if (exceptionState.hadException())
return;
setEnd(refNode->parentNode(), refNode->nodeIndex() + 1, exceptionState);
}
void Range::selectNode(Node* refNode, ExceptionState& exceptionState)
{
if (!refNode) {
// FIXME: Generated bindings code never calls with null, and neither should other callers!
exceptionState.throwTypeError("The node provided is null.");
return;
}
if (!refNode->parentNode()) {
exceptionState.throwDOMException(InvalidNodeTypeError, "the given Node has no parent.");
return;
}
switch (refNode->getNodeType()) {
case Node::CDATA_SECTION_NODE:
case Node::COMMENT_NODE:
case Node::DOCUMENT_TYPE_NODE:
case Node::ELEMENT_NODE:
case Node::PROCESSING_INSTRUCTION_NODE:
case Node::TEXT_NODE:
break;
case Node::ATTRIBUTE_NODE:
case Node::DOCUMENT_FRAGMENT_NODE:
case Node::DOCUMENT_NODE:
exceptionState.throwDOMException(InvalidNodeTypeError, "The node provided is of type '" + refNode->nodeName() + "'.");
return;
}
if (m_ownerDocument != refNode->document())
setDocument(refNode->document());
setStartBefore(refNode);
setEndAfter(refNode);
}
void Range::selectNodeContents(Node* refNode, ExceptionState& exceptionState)
{
if (!refNode) {
// FIXME: Generated bindings code never calls with null, and neither should other callers!
exceptionState.throwTypeError("The node provided is null.");
return;
}
// InvalidNodeTypeError: Raised if refNode or an ancestor of refNode is an Entity, Notation
// or DocumentType node.
for (Node* n = refNode; n; n = n->parentNode()) {
switch (n->getNodeType()) {
case Node::ATTRIBUTE_NODE:
case Node::CDATA_SECTION_NODE:
case Node::COMMENT_NODE:
case Node::DOCUMENT_FRAGMENT_NODE:
case Node::DOCUMENT_NODE:
case Node::ELEMENT_NODE:
case Node::PROCESSING_INSTRUCTION_NODE:
case Node::TEXT_NODE:
break;
case Node::DOCUMENT_TYPE_NODE:
exceptionState.throwDOMException(InvalidNodeTypeError, "The node provided is of type '" + refNode->nodeName() + "'.");
return;
}
}
if (m_ownerDocument != refNode->document())
setDocument(refNode->document());
m_start.setToStartOfNode(*refNode);
m_end.setToEndOfNode(*refNode);
}
bool Range::selectNodeContents(Node* refNode, Position& start, Position& end)
{
if (!refNode) {
return false;
}
for (Node* n = refNode; n; n = n->parentNode()) {
switch (n->getNodeType()) {
case Node::ATTRIBUTE_NODE:
case Node::CDATA_SECTION_NODE:
case Node::COMMENT_NODE:
case Node::DOCUMENT_FRAGMENT_NODE:
case Node::DOCUMENT_NODE:
case Node::ELEMENT_NODE:
case Node::PROCESSING_INSTRUCTION_NODE:
case Node::TEXT_NODE:
break;
case Node::DOCUMENT_TYPE_NODE:
return false;
}
}
RangeBoundaryPoint startBoundaryPoint(refNode);
startBoundaryPoint.setToStartOfNode(*refNode);
start = startBoundaryPoint.toPosition();
RangeBoundaryPoint endBoundaryPoint(refNode);
endBoundaryPoint.setToEndOfNode(*refNode);
end = endBoundaryPoint.toPosition();
return true;
}
void Range::surroundContents(RawPtr<Node> passNewParent, ExceptionState& exceptionState)
{
RawPtr<Node> newParent = passNewParent;
if (!newParent) {
// FIXME: Generated bindings code never calls with null, and neither should other callers!
exceptionState.throwTypeError("The node provided is null.");
return;
}
// InvalidStateError: Raised if the Range partially selects a non-Text node.
Node* startNonTextContainer = m_start.container();
if (startNonTextContainer->getNodeType() == Node::TEXT_NODE)
startNonTextContainer = startNonTextContainer->parentNode();
Node* endNonTextContainer = m_end.container();
if (endNonTextContainer->getNodeType() == Node::TEXT_NODE)
endNonTextContainer = endNonTextContainer->parentNode();
if (startNonTextContainer != endNonTextContainer) {
exceptionState.throwDOMException(InvalidStateError, "The Range has partially selected a non-Text node.");
return;
}
// InvalidNodeTypeError: Raised if node is an Attr, Entity, DocumentType, Notation,
// Document, or DocumentFragment node.
switch (newParent->getNodeType()) {
case Node::ATTRIBUTE_NODE:
case Node::DOCUMENT_FRAGMENT_NODE:
case Node::DOCUMENT_NODE:
case Node::DOCUMENT_TYPE_NODE:
exceptionState.throwDOMException(InvalidNodeTypeError, "The node provided is of type '" + newParent->nodeName() + "'.");
return;
case Node::CDATA_SECTION_NODE:
case Node::COMMENT_NODE:
case Node::ELEMENT_NODE:
case Node::PROCESSING_INSTRUCTION_NODE:
case Node::TEXT_NODE:
break;
}
// Raise a HierarchyRequestError if m_start.container() doesn't accept children like newParent.
Node* parentOfNewParent = m_start.container();
// If m_start.container() is a character data node, it will be split and it will be its parent that will
// need to accept newParent (or in the case of a comment, it logically "would" be inserted into the parent,
// although this will fail below for another reason).
if (parentOfNewParent->isCharacterDataNode())
parentOfNewParent = parentOfNewParent->parentNode();
if (!parentOfNewParent) {
exceptionState.throwDOMException(HierarchyRequestError, "The container node is a detached character data node; no parent node is available for insertion.");
return;
}
if (!parentOfNewParent->childTypeAllowed(newParent->getNodeType())) {
exceptionState.throwDOMException(HierarchyRequestError, "The node provided is of type '" + newParent->nodeName() + "', which may not be inserted here.");
return;
}
if (newParent->isShadowIncludingInclusiveAncestorOf(m_start.container())) {
exceptionState.throwDOMException(HierarchyRequestError, "The node provided contains the insertion point; it may not be inserted into itself.");
return;
}
// FIXME: Do we need a check if the node would end up with a child node of a type not
// allowed by the type of node?
while (Node* n = newParent->firstChild()) {
toContainerNode(newParent)->removeChild(n, exceptionState);
if (exceptionState.hadException())
return;
}
RawPtr<DocumentFragment> fragment = extractContents(exceptionState);
if (exceptionState.hadException())
return;
insertNode(newParent, exceptionState);
if (exceptionState.hadException())
return;
newParent->appendChild(fragment.release(), exceptionState);
if (exceptionState.hadException())
return;
selectNode(newParent.get(), exceptionState);
}
void Range::setStartBefore(Node* refNode, ExceptionState& exceptionState)
{
checkNodeBA(refNode, exceptionState);
if (exceptionState.hadException())
return;
setStart(refNode->parentNode(), refNode->nodeIndex(), exceptionState);
}
void Range::checkExtractPrecondition(ExceptionState& exceptionState)
{
ASSERT(boundaryPointsValid());
if (!commonAncestorContainer())
return;
Node* pastLast = pastLastNode();
for (Node* n = firstNode(); n != pastLast; n = NodeTraversal::next(*n)) {
if (n->isDocumentTypeNode()) {
exceptionState.throwDOMException(HierarchyRequestError, "The Range contains a doctype node.");
return;
}
}
}
Node* Range::firstNode() const
{
if (m_start.container()->offsetInCharacters())
return m_start.container();
if (Node* child = NodeTraversal::childAt(*m_start.container(), m_start.offset()))
return child;
if (!m_start.offset())
return m_start.container();
return NodeTraversal::nextSkippingChildren(*m_start.container());
}
ShadowRoot* Range::shadowRoot() const
{
return startContainer() ? startContainer()->containingShadowRoot() : nullptr;
}
Node* Range::pastLastNode() const
{
if (m_end.container()->offsetInCharacters())
return NodeTraversal::nextSkippingChildren(*m_end.container());
if (Node* child = NodeTraversal::childAt(*m_end.container(), m_end.offset()))
return child;
return NodeTraversal::nextSkippingChildren(*m_end.container());
}
IntRect Range::boundingBox() const
{
IntRect result;
Vector<IntRect> rects;
textRects(rects);
for (const IntRect& rect : rects)
result.unite(rect);
return result;
}
void Range::textRects(Vector<IntRect>& rects, bool useSelectionHeight) const
{
Node* startContainer = m_start.container();
ASSERT(startContainer);
Node* endContainer = m_end.container();
ASSERT(endContainer);
Node* stopNode = pastLastNode();
for (Node* node = firstNode(); node != stopNode; node = NodeTraversal::next(*node)) {
LayoutObject* r = node->layoutObject();
if (!r || !r->isText())
continue;
LayoutText* layoutText = toLayoutText(r);
int startOffset = node == startContainer ? m_start.offset() : 0;
int endOffset = node == endContainer ? m_end.offset() : std::numeric_limits<int>::max();
layoutText->absoluteRectsForRange(rects, startOffset, endOffset, useSelectionHeight);
}
}
void Range::textQuads(Vector<FloatQuad>& quads, bool useSelectionHeight) const
{
Node* startContainer = m_start.container();
ASSERT(startContainer);
Node* endContainer = m_end.container();
ASSERT(endContainer);
Node* stopNode = pastLastNode();
for (Node* node = firstNode(); node != stopNode; node = NodeTraversal::next(*node)) {
LayoutObject* r = node->layoutObject();
if (!r || !r->isText())
continue;
LayoutText* layoutText = toLayoutText(r);
int startOffset = node == startContainer ? m_start.offset() : 0;
int endOffset = node == endContainer ? m_end.offset() : std::numeric_limits<int>::max();
layoutText->absoluteQuadsForRange(quads, startOffset, endOffset, useSelectionHeight);
}
}
#ifndef NDEBUG
void Range::formatForDebugger(char* buffer, unsigned length) const
{
StringBuilder result;
const int FormatBufferSize = 1024;
char s[FormatBufferSize];
result.appendLiteral("from offset ");
result.appendNumber(m_start.offset());
result.appendLiteral(" of ");
m_start.container()->formatForDebugger(s, FormatBufferSize);
result.append(s);
result.appendLiteral(" to offset ");
result.appendNumber(m_end.offset());
result.appendLiteral(" of ");
m_end.container()->formatForDebugger(s, FormatBufferSize);
result.append(s);
strncpy(buffer, result.toString().utf8().data(), length - 1);
}
#endif
bool areRangesEqual(const Range* a, const Range* b)
{
if (a == b)
return true;
if (!a || !b)
return false;
return a->startPosition() == b->startPosition() && a->endPosition() == b->endPosition();
}
static inline void boundaryNodeChildrenChanged(RangeBoundaryPoint& boundary, ContainerNode* container)
{
if (!boundary.childBefore())
return;
if (boundary.container() != container)
return;
boundary.invalidateOffset();
}
void Range::nodeChildrenChanged(ContainerNode* container)
{
ASSERT(container);
ASSERT(container->document() == m_ownerDocument);
boundaryNodeChildrenChanged(m_start, container);
boundaryNodeChildrenChanged(m_end, container);
}
static inline void boundaryNodeChildrenWillBeRemoved(RangeBoundaryPoint& boundary, ContainerNode& container)
{
for (Node* nodeToBeRemoved = container.firstChild(); nodeToBeRemoved; nodeToBeRemoved = nodeToBeRemoved->nextSibling()) {
if (boundary.childBefore() == nodeToBeRemoved) {
boundary.setToStartOfNode(container);
return;
}
for (Node* n = boundary.container(); n; n = n->parentNode()) {
if (n == nodeToBeRemoved) {
boundary.setToStartOfNode(container);
return;
}
}
}
}
void Range::nodeChildrenWillBeRemoved(ContainerNode& container)
{
ASSERT(container.document() == m_ownerDocument);
boundaryNodeChildrenWillBeRemoved(m_start, container);
boundaryNodeChildrenWillBeRemoved(m_end, container);
}
static inline void boundaryNodeWillBeRemoved(RangeBoundaryPoint& boundary, Node& nodeToBeRemoved)
{
if (boundary.childBefore() == nodeToBeRemoved) {
boundary.childBeforeWillBeRemoved();
return;
}
for (Node* n = boundary.container(); n; n = n->parentNode()) {
if (n == nodeToBeRemoved) {
boundary.setToBeforeChild(nodeToBeRemoved);
return;
}
}
}
void Range::nodeWillBeRemoved(Node& node)
{
ASSERT(node.document() == m_ownerDocument);
ASSERT(node != m_ownerDocument.get());
// FIXME: Once DOMNodeRemovedFromDocument mutation event removed, we
// should change following if-statement to ASSERT(!node->parentNode).
if (!node.parentNode())
return;
boundaryNodeWillBeRemoved(m_start, node);
boundaryNodeWillBeRemoved(m_end, node);
}
static inline void boundaryTextInserted(RangeBoundaryPoint& boundary, Node* text, unsigned offset, unsigned length)
{
if (boundary.container() != text)
return;
unsigned boundaryOffset = boundary.offset();
if (offset >= boundaryOffset)
return;
boundary.setOffset(boundaryOffset + length);
}
void Range::didInsertText(Node* text, unsigned offset, unsigned length)
{
ASSERT(text);
ASSERT(text->document() == m_ownerDocument);
boundaryTextInserted(m_start, text, offset, length);
boundaryTextInserted(m_end, text, offset, length);
}
static inline void boundaryTextRemoved(RangeBoundaryPoint& boundary, Node* text, unsigned offset, unsigned length)
{
if (boundary.container() != text)
return;
unsigned boundaryOffset = boundary.offset();
if (offset >= boundaryOffset)
return;
if (offset + length >= boundaryOffset)
boundary.setOffset(offset);
else
boundary.setOffset(boundaryOffset - length);
}
void Range::didRemoveText(Node* text, unsigned offset, unsigned length)
{
ASSERT(text);
ASSERT(text->document() == m_ownerDocument);
boundaryTextRemoved(m_start, text, offset, length);
boundaryTextRemoved(m_end, text, offset, length);
}
static inline void boundaryTextNodesMerged(RangeBoundaryPoint& boundary, const NodeWithIndex& oldNode, unsigned offset)
{
if (boundary.container() == oldNode.node())
boundary.set(oldNode.node().previousSibling(), boundary.offset() + offset, 0);
else if (boundary.container() == oldNode.node().parentNode() && boundary.offset() == oldNode.index())
boundary.set(oldNode.node().previousSibling(), offset, 0);
}
void Range::didMergeTextNodes(const NodeWithIndex& oldNode, unsigned offset)
{
ASSERT(oldNode.node().document() == m_ownerDocument);
ASSERT(oldNode.node().parentNode());
ASSERT(oldNode.node().isTextNode());
ASSERT(oldNode.node().previousSibling());
ASSERT(oldNode.node().previousSibling()->isTextNode());
boundaryTextNodesMerged(m_start, oldNode, offset);
boundaryTextNodesMerged(m_end, oldNode, offset);
}
void Range::updateOwnerDocumentIfNeeded()
{
ASSERT(m_start.container());
ASSERT(m_end.container());
Document& newDocument = m_start.container()->document();
ASSERT(newDocument == m_end.container()->document());
if (newDocument == m_ownerDocument)
return;
m_ownerDocument->detachRange(this);
m_ownerDocument = &newDocument;
m_ownerDocument->attachRange(this);
}
static inline void boundaryTextNodeSplit(RangeBoundaryPoint& boundary, Text& oldNode)
{
Node* boundaryContainer = boundary.container();
unsigned boundaryOffset = boundary.offset();
if (boundary.childBefore() == &oldNode)
boundary.set(boundaryContainer, boundaryOffset + 1, oldNode.nextSibling());
else if (boundary.container() == &oldNode && boundaryOffset > oldNode.length())
boundary.set(oldNode.nextSibling(), boundaryOffset - oldNode.length(), 0);
}
void Range::didSplitTextNode(Text& oldNode)
{
ASSERT(oldNode.document() == m_ownerDocument);
ASSERT(oldNode.parentNode());
ASSERT(oldNode.nextSibling());
ASSERT(oldNode.nextSibling()->isTextNode());
boundaryTextNodeSplit(m_start, oldNode);
boundaryTextNodeSplit(m_end, oldNode);
ASSERT(boundaryPointsValid());
}
void Range::expand(const String& unit, ExceptionState& exceptionState)
{
VisiblePosition start = createVisiblePosition(startPosition());
VisiblePosition end = createVisiblePosition(endPosition());
if (unit == "word") {
start = startOfWord(start);
end = endOfWord(end);
} else if (unit == "sentence") {
start = startOfSentence(start);
end = endOfSentence(end);
} else if (unit == "block") {
start = startOfParagraph(start);
end = endOfParagraph(end);
} else if (unit == "document") {
start = startOfDocument(start);
end = endOfDocument(end);
} else {
return;
}
setStart(start.deepEquivalent().computeContainerNode(), start.deepEquivalent().computeOffsetInContainerNode(), exceptionState);
setEnd(end.deepEquivalent().computeContainerNode(), end.deepEquivalent().computeOffsetInContainerNode(), exceptionState);
}
ClientRectList* Range::getClientRects() const
{
m_ownerDocument->updateLayoutIgnorePendingStylesheets();
Vector<FloatQuad> quads;
getBorderAndTextQuads(quads);
return ClientRectList::create(quads);
}
ClientRect* Range::getBoundingClientRect() const
{
return ClientRect::create(boundingRect());
}
void Range::getBorderAndTextQuads(Vector<FloatQuad>& quads) const
{
Node* startContainer = m_start.container();
Node* endContainer = m_end.container();
Node* stopNode = pastLastNode();
HeapHashSet<Member<Node>> nodeSet;
for (Node* node = firstNode(); node != stopNode; node = NodeTraversal::next(*node)) {
if (node->isElementNode())
nodeSet.add(node);
}
for (Node* node = firstNode(); node != stopNode; node = NodeTraversal::next(*node)) {
if (node->isElementNode()) {
if (!nodeSet.contains(node->parentNode())) {
if (LayoutBoxModelObject* layoutBoxModelObject = toElement(node)->layoutBoxModelObject()) {
Vector<FloatQuad> elementQuads;
layoutBoxModelObject->absoluteQuads(elementQuads);
m_ownerDocument->adjustFloatQuadsForScrollAndAbsoluteZoom(elementQuads, *layoutBoxModelObject);
quads.appendVector(elementQuads);
}
}
} else if (node->isTextNode()) {
if (LayoutText* layoutText = toText(node)->layoutObject()) {
int startOffset = (node == startContainer) ? m_start.offset() : 0;
int endOffset = (node == endContainer) ? m_end.offset() : INT_MAX;
Vector<FloatQuad> textQuads;
layoutText->absoluteQuadsForRange(textQuads, startOffset, endOffset);
m_ownerDocument->adjustFloatQuadsForScrollAndAbsoluteZoom(textQuads, *layoutText);
quads.appendVector(textQuads);
}
}
}
}
FloatRect Range::boundingRect() const
{
m_ownerDocument->updateLayoutIgnorePendingStylesheets();
Vector<FloatQuad> quads;
getBorderAndTextQuads(quads);
FloatRect result;
// As per section 10 in https://www.w3.org/TR/cssom-view/
// "Return a static DOMRect object describing the smallest rectangle that
// includes the first rectangle in list and all of the remaining rectangles
// of which the height or width is not zero."
for (const FloatQuad& quad : quads) {
if (result.isEmpty())
result.uniteIfNonZero(quad.boundingBox());
else
result.unite(quad.boundingBox()); // Skips empty rects.
}
return result;
}
DEFINE_TRACE(Range)
{
visitor->trace(m_ownerDocument);
visitor->trace(m_start);
visitor->trace(m_end);
}
} // namespace blink
#ifndef NDEBUG
void showTree(const blink::Range* range)
{
if (range && range->boundaryPointsValid()) {
range->startContainer()->showTreeAndMark(range->startContainer(), "S", range->endContainer(), "E");
fprintf(stderr, "start offset: %d, end offset: %d\n", range->startOffset(), range->endOffset());
} else {
fprintf(stderr, "Cannot show tree if range is null, or if boundary points are invalid.\n");
}
}
#endif