blob: 76caeb5aae4cdbde158f6ddf611b836a12526d55 [file] [log] [blame]
// Copyright 2018 The Crashpad Authors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "snapshot/sanitized/process_snapshot_sanitized.h"
#include <stdint.h>
#include "snapshot/cpu_context.h"
#include "util/numeric/safe_assignment.h"
namespace crashpad {
namespace {
class StackReferencesAddressRange : public MemorySnapshot::Delegate {
public:
// Returns true if stack contains a pointer aligned word in the range [low,
// high). The search starts at the first pointer aligned address greater than
// stack_pointer.
bool CheckStack(const MemorySnapshot* stack,
VMAddress stack_pointer,
VMAddress low,
VMAddress high,
bool is_64_bit) {
stack_ = stack;
stack_pointer_ = stack_pointer;
low_ = low;
high_ = high;
is_64_bit_ = is_64_bit;
return stack_->Read(this);
}
// MemorySnapshot::Delegate
bool MemorySnapshotDelegateRead(void* data, size_t size) {
return is_64_bit_ ? ScanStackForPointers<uint64_t>(data, size)
: ScanStackForPointers<uint32_t>(data, size);
}
private:
template <typename Pointer>
bool ScanStackForPointers(void* data, size_t size) {
size_t sp_offset;
if (!AssignIfInRange(&sp_offset, stack_pointer_ - stack_->Address())) {
return false;
}
const size_t aligned_sp_offset =
(sp_offset + sizeof(Pointer) - 1) & ~(sizeof(Pointer) - 1);
auto words = reinterpret_cast<Pointer*>(static_cast<char*>(data) +
aligned_sp_offset);
size_t word_count = (size - aligned_sp_offset) / sizeof(Pointer);
for (size_t index = 0; index < word_count; ++index) {
if (words[index] >= low_ && words[index] < high_) {
return true;
}
}
return false;
}
VMAddress stack_pointer_;
VMAddress low_;
VMAddress high_;
const MemorySnapshot* stack_;
bool is_64_bit_;
};
} // namespace
ProcessSnapshotSanitized::ProcessSnapshotSanitized() = default;
ProcessSnapshotSanitized::~ProcessSnapshotSanitized() = default;
bool ProcessSnapshotSanitized::Initialize(
const ProcessSnapshot* snapshot,
const std::vector<std::string>* annotations_whitelist,
VMAddress target_module_address,
bool sanitize_stacks) {
INITIALIZATION_STATE_SET_INITIALIZING(initialized_);
snapshot_ = snapshot;
annotations_whitelist_ = annotations_whitelist;
sanitize_stacks_ = sanitize_stacks;
if (target_module_address) {
const ExceptionSnapshot* exception = snapshot_->Exception();
if (!exception) {
return false;
}
const ThreadSnapshot* exc_thread = nullptr;
for (const auto thread : snapshot_->Threads()) {
if (thread->ThreadID() == exception->ThreadID()) {
exc_thread = thread;
break;
}
}
if (!exc_thread) {
return false;
}
const ModuleSnapshot* target_module = nullptr;
for (const auto module : snapshot_->Modules()) {
if (target_module_address >= module->Address() &&
target_module_address < module->Address() + module->Size()) {
target_module = module;
break;
}
}
if (!target_module) {
return false;
}
// Only allow the snapshot if the program counter or some address on the
// stack points into the target module.
VMAddress pc = exception->Context()->InstructionPointer();
VMAddress module_address_low = target_module->Address();
VMAddress module_address_high = module_address_low + target_module->Size();
if ((pc < module_address_low || pc >= module_address_high) &&
!StackReferencesAddressRange().CheckStack(
exc_thread->Stack(),
exception->Context()->StackPointer(),
module_address_low,
module_address_high,
exception->Context()->Is64Bit())) {
return false;
}
}
if (annotations_whitelist_) {
for (const auto module : snapshot_->Modules()) {
modules_.emplace_back(std::make_unique<internal::ModuleSnapshotSanitized>(
module, annotations_whitelist_));
}
}
if (sanitize_stacks_) {
for (const auto module : snapshot_->Modules()) {
address_ranges_.Insert(module->Address(), module->Size());
}
for (const auto thread : snapshot_->Threads()) {
address_ranges_.Insert(thread->Stack()->Address(),
thread->Stack()->Size());
threads_.emplace_back(std::make_unique<internal::ThreadSnapshotSanitized>(
thread, &address_ranges_));
}
}
INITIALIZATION_STATE_SET_VALID(initialized_);
return true;
}
pid_t ProcessSnapshotSanitized::ProcessID() const {
INITIALIZATION_STATE_DCHECK_VALID(initialized_);
return snapshot_->ProcessID();
}
pid_t ProcessSnapshotSanitized::ParentProcessID() const {
INITIALIZATION_STATE_DCHECK_VALID(initialized_);
return snapshot_->ParentProcessID();
}
void ProcessSnapshotSanitized::SnapshotTime(timeval* snapshot_time) const {
INITIALIZATION_STATE_DCHECK_VALID(initialized_);
snapshot_->SnapshotTime(snapshot_time);
}
void ProcessSnapshotSanitized::ProcessStartTime(timeval* start_time) const {
INITIALIZATION_STATE_DCHECK_VALID(initialized_);
snapshot_->ProcessStartTime(start_time);
}
void ProcessSnapshotSanitized::ProcessCPUTimes(timeval* user_time,
timeval* system_time) const {
INITIALIZATION_STATE_DCHECK_VALID(initialized_);
snapshot_->ProcessCPUTimes(user_time, system_time);
}
void ProcessSnapshotSanitized::ReportID(UUID* report_id) const {
INITIALIZATION_STATE_DCHECK_VALID(initialized_);
snapshot_->ReportID(report_id);
}
void ProcessSnapshotSanitized::ClientID(UUID* client_id) const {
INITIALIZATION_STATE_DCHECK_VALID(initialized_);
snapshot_->ClientID(client_id);
}
const std::map<std::string, std::string>&
ProcessSnapshotSanitized::AnnotationsSimpleMap() const {
INITIALIZATION_STATE_DCHECK_VALID(initialized_);
return snapshot_->AnnotationsSimpleMap();
}
const SystemSnapshot* ProcessSnapshotSanitized::System() const {
INITIALIZATION_STATE_DCHECK_VALID(initialized_);
return snapshot_->System();
}
std::vector<const ThreadSnapshot*> ProcessSnapshotSanitized::Threads() const {
INITIALIZATION_STATE_DCHECK_VALID(initialized_);
if (!sanitize_stacks_) {
return snapshot_->Threads();
}
std::vector<const ThreadSnapshot*> threads;
for (const auto& thread : threads_) {
threads.push_back(thread.get());
}
return threads;
}
std::vector<const ModuleSnapshot*> ProcessSnapshotSanitized::Modules() const {
INITIALIZATION_STATE_DCHECK_VALID(initialized_);
if (!annotations_whitelist_) {
return snapshot_->Modules();
}
std::vector<const ModuleSnapshot*> modules;
for (const auto& module : modules_) {
modules.push_back(module.get());
}
return modules;
}
std::vector<UnloadedModuleSnapshot> ProcessSnapshotSanitized::UnloadedModules()
const {
INITIALIZATION_STATE_DCHECK_VALID(initialized_);
return snapshot_->UnloadedModules();
}
const ExceptionSnapshot* ProcessSnapshotSanitized::Exception() const {
INITIALIZATION_STATE_DCHECK_VALID(initialized_);
return snapshot_->Exception();
}
std::vector<const MemoryMapRegionSnapshot*>
ProcessSnapshotSanitized::MemoryMap() const {
INITIALIZATION_STATE_DCHECK_VALID(initialized_);
return snapshot_->MemoryMap();
}
std::vector<HandleSnapshot> ProcessSnapshotSanitized::Handles() const {
INITIALIZATION_STATE_DCHECK_VALID(initialized_);
return snapshot_->Handles();
}
std::vector<const MemorySnapshot*> ProcessSnapshotSanitized::ExtraMemory()
const {
INITIALIZATION_STATE_DCHECK_VALID(initialized_);
return snapshot_->ExtraMemory();
}
} // namespace crashpad