blob: 2dfca6404fbba2166324b50658d0cccd1d630fca [file] [log] [blame]
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/wasm/baseline/liftoff-assembler.h"
#include "src/assembler-inl.h"
#include "src/base/optional.h"
#include "src/compiler/linkage.h"
#include "src/compiler/wasm-compiler.h"
#include "src/counters.h"
#include "src/macro-assembler-inl.h"
#include "src/wasm/function-body-decoder-impl.h"
#include "src/wasm/memory-tracing.h"
#include "src/wasm/wasm-objects.h"
#include "src/wasm/wasm-opcodes.h"
namespace v8 {
namespace internal {
namespace wasm {
constexpr auto kRegister = LiftoffAssembler::VarState::kRegister;
constexpr auto KIntConst = LiftoffAssembler::VarState::KIntConst;
constexpr auto kStack = LiftoffAssembler::VarState::kStack;
namespace {
#define __ asm_->
#define TRACE(...) \
do { \
if (FLAG_trace_liftoff) PrintF("[liftoff] " __VA_ARGS__); \
} while (false)
#if V8_TARGET_ARCH_ARM64
// On ARM64, the Assembler keeps track of pointers to Labels to resolve
// branches to distant targets. Moving labels would confuse the Assembler,
// thus store the label on the heap and keep a unique_ptr.
class MovableLabel {
public:
Label* get() { return label_.get(); }
MovableLabel() : MovableLabel(new Label()) {}
operator bool() const { return label_ != nullptr; }
static MovableLabel None() { return MovableLabel(nullptr); }
private:
std::unique_ptr<Label> label_;
explicit MovableLabel(Label* label) : label_(label) {}
};
#else
// On all other platforms, just store the Label directly.
class MovableLabel {
public:
Label* get() { return &label_; }
operator bool() const { return true; }
static MovableLabel None() { return MovableLabel(); }
private:
Label label_;
};
#endif
wasm::WasmValue WasmPtrValue(uintptr_t ptr) {
using int_t = std::conditional<kPointerSize == 8, uint64_t, uint32_t>::type;
static_assert(sizeof(int_t) == sizeof(uintptr_t), "weird uintptr_t");
return wasm::WasmValue(static_cast<int_t>(ptr));
}
wasm::WasmValue WasmPtrValue(void* ptr) {
return WasmPtrValue(reinterpret_cast<uintptr_t>(ptr));
}
compiler::CallDescriptor* GetLoweredCallDescriptor(
Zone* zone, compiler::CallDescriptor* call_desc) {
return kPointerSize == 4 ? compiler::GetI32WasmCallDescriptor(zone, call_desc)
: call_desc;
}
constexpr ValueType kTypesArr_ilfd[] = {kWasmI32, kWasmI64, kWasmF32, kWasmF64};
constexpr Vector<const ValueType> kTypes_ilfd = ArrayVector(kTypesArr_ilfd);
class LiftoffCompiler {
public:
MOVE_ONLY_NO_DEFAULT_CONSTRUCTOR(LiftoffCompiler);
// TODO(clemensh): Make this a template parameter.
static constexpr wasm::Decoder::ValidateFlag validate =
wasm::Decoder::kValidate;
using Value = ValueBase;
struct ElseState {
MovableLabel label;
LiftoffAssembler::CacheState state;
};
struct Control : public ControlWithNamedConstructors<Control, Value> {
MOVE_ONLY_WITH_DEFAULT_CONSTRUCTORS(Control);
std::unique_ptr<ElseState> else_state;
LiftoffAssembler::CacheState label_state;
MovableLabel label;
};
using Decoder = WasmFullDecoder<validate, LiftoffCompiler>;
struct OutOfLineCode {
MovableLabel label;
MovableLabel continuation;
Builtins::Name builtin;
wasm::WasmCodePosition position;
LiftoffRegList regs_to_save;
uint32_t pc; // for trap handler.
// Named constructors:
static OutOfLineCode Trap(Builtins::Name b, wasm::WasmCodePosition pos,
uint32_t pc) {
return {{}, {}, b, pos, {}, pc};
}
static OutOfLineCode StackCheck(wasm::WasmCodePosition pos,
LiftoffRegList regs) {
return {{}, MovableLabel::None(), Builtins::kWasmStackGuard, pos, regs,
0};
}
};
LiftoffCompiler(LiftoffAssembler* liftoff_asm,
compiler::CallDescriptor* call_descriptor,
compiler::ModuleEnv* env,
compiler::RuntimeExceptionSupport runtime_exception_support,
SourcePositionTableBuilder* source_position_table_builder,
std::vector<trap_handler::ProtectedInstructionData>*
protected_instructions,
Zone* compilation_zone, std::unique_ptr<Zone>* codegen_zone)
: asm_(liftoff_asm),
descriptor_(
GetLoweredCallDescriptor(compilation_zone, call_descriptor)),
env_(env),
min_size_(uint64_t{env_->module->initial_pages} * wasm::kWasmPageSize),
max_size_(uint64_t{env_->module->has_maximum_pages
? env_->module->maximum_pages
: wasm::kV8MaxWasmMemoryPages} *
wasm::kWasmPageSize),
runtime_exception_support_(runtime_exception_support),
source_position_table_builder_(source_position_table_builder),
protected_instructions_(protected_instructions),
compilation_zone_(compilation_zone),
codegen_zone_(codegen_zone),
safepoint_table_builder_(compilation_zone_) {}
~LiftoffCompiler() { BindUnboundLabels(nullptr); }
bool ok() const { return ok_; }
void unsupported(Decoder* decoder, const char* reason) {
ok_ = false;
TRACE("unsupported: %s\n", reason);
decoder->errorf(decoder->pc(), "unsupported liftoff operation: %s", reason);
BindUnboundLabels(decoder);
}
bool DidAssemblerBailout(Decoder* decoder) {
if (decoder->failed() || !asm_->did_bailout()) return false;
unsupported(decoder, asm_->bailout_reason());
return true;
}
bool CheckSupportedType(Decoder* decoder,
Vector<const ValueType> supported_types,
ValueType type, const char* context) {
char buffer[128];
// Check supported types.
for (ValueType supported : supported_types) {
if (type == supported) return true;
}
SNPrintF(ArrayVector(buffer), "%s %s", WasmOpcodes::TypeName(type),
context);
unsupported(decoder, buffer);
return false;
}
int GetSafepointTableOffset() const {
return safepoint_table_builder_.GetCodeOffset();
}
void BindUnboundLabels(Decoder* decoder) {
#ifdef DEBUG
// Bind all labels now, otherwise their destructor will fire a DCHECK error
// if they where referenced before.
uint32_t control_depth = decoder ? decoder->control_depth() : 0;
for (uint32_t i = 0; i < control_depth; ++i) {
Control* c = decoder->control_at(i);
Label* label = c->label.get();
if (!label->is_bound()) __ bind(label);
if (c->else_state) {
Label* else_label = c->else_state->label.get();
if (!else_label->is_bound()) __ bind(else_label);
}
}
for (auto& ool : out_of_line_code_) {
if (!ool.label.get()->is_bound()) __ bind(ool.label.get());
}
#endif
}
void StartFunction(Decoder* decoder) {
int num_locals = decoder->NumLocals();
__ set_num_locals(num_locals);
for (int i = 0; i < num_locals; ++i) {
__ set_local_type(i, decoder->GetLocalType(i));
}
}
// Returns the number of inputs processed (1 or 2).
uint32_t ProcessParameter(ValueType type, uint32_t input_idx) {
const int num_lowered_params = 1 + (kNeedI64RegPair && type == kWasmI64);
// Initialize to anything, will be set in the loop and used afterwards.
LiftoffRegister reg = LiftoffRegister::from_code(kGpReg, 0);
RegClass rc = num_lowered_params == 1 ? reg_class_for(type) : kGpReg;
LiftoffRegList pinned;
for (int pair_idx = 0; pair_idx < num_lowered_params; ++pair_idx) {
compiler::LinkageLocation param_loc =
descriptor_->GetInputLocation(input_idx + pair_idx);
// Initialize to anything, will be set in both arms of the if.
LiftoffRegister in_reg = LiftoffRegister::from_code(kGpReg, 0);
if (param_loc.IsRegister()) {
DCHECK(!param_loc.IsAnyRegister());
int reg_code = param_loc.AsRegister();
RegList cache_regs = rc == kGpReg ? kLiftoffAssemblerGpCacheRegs
: kLiftoffAssemblerFpCacheRegs;
if (cache_regs & (1 << reg_code)) {
// This is a cache register, just use it.
in_reg = LiftoffRegister::from_code(rc, reg_code);
} else {
// Move to a cache register (spill one if necessary).
// Note that we cannot create a {LiftoffRegister} for reg_code, since
// {LiftoffRegister} can only store cache regs.
LiftoffRegister in_reg = __ GetUnusedRegister(rc, pinned);
if (rc == kGpReg) {
__ Move(in_reg.gp(), Register::from_code(reg_code), type);
} else {
__ Move(in_reg.fp(), DoubleRegister::from_code(reg_code), type);
}
}
} else if (param_loc.IsCallerFrameSlot()) {
in_reg = __ GetUnusedRegister(rc, pinned);
ValueType lowered_type = num_lowered_params == 1 ? type : kWasmI32;
__ LoadCallerFrameSlot(in_reg, -param_loc.AsCallerFrameSlot(),
lowered_type);
}
reg = pair_idx == 0 ? in_reg : LiftoffRegister::ForPair(reg, in_reg);
pinned.set(reg);
}
__ PushRegister(type, reg);
return num_lowered_params;
}
void StackCheck(wasm::WasmCodePosition position) {
if (FLAG_wasm_no_stack_checks || !runtime_exception_support_) return;
out_of_line_code_.push_back(
OutOfLineCode::StackCheck(position, __ cache_state()->used_registers));
OutOfLineCode& ool = out_of_line_code_.back();
__ StackCheck(ool.label.get());
if (ool.continuation) __ bind(ool.continuation.get());
}
void StartFunctionBody(Decoder* decoder, Control* block) {
__ EnterFrame(StackFrame::WASM_COMPILED);
__ set_has_frame(true);
pc_offset_stack_frame_construction_ = __ PrepareStackFrame();
// {PrepareStackFrame} is the first platform-specific assembler method.
// If this failed, we can bail out immediately, avoiding runtime overhead
// and potential failures because of other unimplemented methods.
// A platform implementing {PrepareStackFrame} must ensure that we can
// finish compilation without errors even if we hit unimplemented
// LiftoffAssembler methods.
if (DidAssemblerBailout(decoder)) return;
// Parameter 0 is the wasm context.
uint32_t num_params =
static_cast<uint32_t>(decoder->sig_->parameter_count());
for (uint32_t i = 0; i < __ num_locals(); ++i) {
if (!CheckSupportedType(decoder, kTypes_ilfd, __ local_type(i), "param"))
return;
}
// Input 0 is the call target, the context is at 1.
constexpr int kContextParameterIndex = 1;
// Store the context parameter to a special stack slot.
compiler::LinkageLocation context_loc =
descriptor_->GetInputLocation(kContextParameterIndex);
DCHECK(context_loc.IsRegister());
DCHECK(!context_loc.IsAnyRegister());
Register context_reg = Register::from_code(context_loc.AsRegister());
__ SpillContext(context_reg);
// Input 0 is the code target, 1 is the context. First parameter at 2.
uint32_t input_idx = kContextParameterIndex + 1;
for (uint32_t param_idx = 0; param_idx < num_params; ++param_idx) {
input_idx += ProcessParameter(__ local_type(param_idx), input_idx);
}
DCHECK_EQ(input_idx, descriptor_->InputCount());
// Set to a gp register, to mark this uninitialized.
LiftoffRegister zero_double_reg(Register::from_code<0>());
DCHECK(zero_double_reg.is_gp());
for (uint32_t param_idx = num_params; param_idx < __ num_locals();
++param_idx) {
ValueType type = decoder->GetLocalType(param_idx);
switch (type) {
case kWasmI32:
__ cache_state()->stack_state.emplace_back(kWasmI32, uint32_t{0});
break;
case kWasmI64:
__ cache_state()->stack_state.emplace_back(kWasmI64, uint32_t{0});
break;
case kWasmF32:
case kWasmF64:
if (zero_double_reg.is_gp()) {
// Note: This might spill one of the registers used to hold
// parameters.
zero_double_reg = __ GetUnusedRegister(kFpReg);
// Zero is represented by the bit pattern 0 for both f32 and f64.
__ LoadConstant(zero_double_reg, WasmValue(0.));
}
__ PushRegister(type, zero_double_reg);
break;
default:
UNIMPLEMENTED();
}
}
block->label_state.stack_base = __ num_locals();
// The function-prologue stack check is associated with position 0, which
// is never a position of any instruction in the function.
StackCheck(0);
DCHECK_EQ(__ num_locals(), __ cache_state()->stack_height());
}
void GenerateOutOfLineCode(OutOfLineCode& ool) {
__ bind(ool.label.get());
const bool is_stack_check = ool.builtin == Builtins::kWasmStackGuard;
if (!runtime_exception_support_) {
// We cannot test calls to the runtime in cctest/test-run-wasm.
// Therefore we emit a call to C here instead of a call to the runtime.
// In this mode, we never generate stack checks.
DCHECK(!is_stack_check);
__ CallTrapCallbackForTesting();
__ LeaveFrame(StackFrame::WASM_COMPILED);
__ Ret();
return;
}
if (!is_stack_check && env_->use_trap_handler) {
uint32_t pc = static_cast<uint32_t>(__ pc_offset());
DCHECK_EQ(pc, __ pc_offset());
protected_instructions_->emplace_back(
trap_handler::ProtectedInstructionData{ool.pc, pc});
}
if (!ool.regs_to_save.is_empty()) __ PushRegisters(ool.regs_to_save);
source_position_table_builder_->AddPosition(
__ pc_offset(), SourcePosition(ool.position), false);
__ Call(__ isolate()->builtins()->builtin_handle(ool.builtin),
RelocInfo::CODE_TARGET);
safepoint_table_builder_.DefineSafepoint(asm_, Safepoint::kSimple, 0,
Safepoint::kNoLazyDeopt);
DCHECK_EQ(ool.continuation.get()->is_bound(), is_stack_check);
if (!ool.regs_to_save.is_empty()) __ PopRegisters(ool.regs_to_save);
if (is_stack_check) {
__ emit_jump(ool.continuation.get());
} else {
__ AssertUnreachable(AbortReason::kUnexpectedReturnFromWasmTrap);
}
}
void FinishFunction(Decoder* decoder) {
if (DidAssemblerBailout(decoder)) return;
for (OutOfLineCode& ool : out_of_line_code_) {
GenerateOutOfLineCode(ool);
}
safepoint_table_builder_.Emit(asm_, __ GetTotalFrameSlotCount());
__ PatchPrepareStackFrame(pc_offset_stack_frame_construction_,
__ GetTotalFrameSlotCount());
}
void OnFirstError(Decoder* decoder) {
ok_ = false;
BindUnboundLabels(decoder);
}
void NextInstruction(Decoder* decoder, WasmOpcode) {
TraceCacheState(decoder);
}
void Block(Decoder* decoder, Control* block) {
block->label_state.stack_base = __ cache_state()->stack_height();
}
void Loop(Decoder* decoder, Control* loop) {
loop->label_state.stack_base = __ cache_state()->stack_height();
// Before entering a loop, spill all locals to the stack, in order to free
// the cache registers, and to avoid unnecessarily reloading stack values
// into registers at branches.
// TODO(clemensh): Come up with a better strategy here, involving
// pre-analysis of the function.
__ SpillLocals();
// Loop labels bind at the beginning of the block.
__ bind(loop->label.get());
// Save the current cache state for the merge when jumping to this loop.
loop->label_state.Split(*__ cache_state());
// Execute a stack check in the loop header.
StackCheck(decoder->position());
}
void Try(Decoder* decoder, Control* block) { unsupported(decoder, "try"); }
void If(Decoder* decoder, const Value& cond, Control* if_block) {
DCHECK_EQ(if_block, decoder->control_at(0));
DCHECK(if_block->is_if());
if (if_block->start_merge.arity > 0 || if_block->end_merge.arity > 1)
return unsupported(decoder, "multi-value if");
// Allocate the else state.
if_block->else_state = base::make_unique<ElseState>();
// Test the condition, jump to else if zero.
Register value = __ PopToRegister(kGpReg).gp();
__ emit_cond_jump(kEqual, if_block->else_state->label.get(), kWasmI32,
value);
if_block->label_state.stack_base = __ cache_state()->stack_height();
// Store the state (after popping the value) for executing the else branch.
if_block->else_state->state.Split(*__ cache_state());
}
void FallThruTo(Decoder* decoder, Control* c) {
if (c->end_merge.reached) {
__ MergeFullStackWith(c->label_state);
} else if (c->is_onearmed_if()) {
c->label_state.InitMerge(*__ cache_state(), __ num_locals(),
c->br_merge()->arity);
__ MergeFullStackWith(c->label_state);
} else {
c->label_state.Split(*__ cache_state());
}
TraceCacheState(decoder);
}
void PopControl(Decoder* decoder, Control* c) {
if (!c->is_loop() && c->end_merge.reached) {
__ cache_state()->Steal(c->label_state);
}
if (!c->label.get()->is_bound()) {
__ bind(c->label.get());
}
}
void EndControl(Decoder* decoder, Control* c) {}
void GenerateCCall(Register res_reg, uint32_t num_args,
const Register* arg_regs, ExternalReference ext_ref) {
static constexpr int kNumReturns = 1;
static constexpr int kMaxArgs = 2;
static constexpr MachineType kReps[]{
MachineType::Uint32(), MachineType::Pointer(), MachineType::Pointer()};
static_assert(arraysize(kReps) == kNumReturns + kMaxArgs, "mismatch");
DCHECK_LE(num_args, kMaxArgs);
MachineSignature sig(kNumReturns, num_args, kReps);
auto call_descriptor =
compiler::Linkage::GetSimplifiedCDescriptor(compilation_zone_, &sig);
// Before making a call, spill all cache registers.
__ SpillAllRegisters();
// Store arguments on our stack, then align the stack for calling to C.
uint32_t num_params =
static_cast<uint32_t>(call_descriptor->ParameterCount());
__ PrepareCCall(num_params, arg_regs);
// Set parameters (in sp[0], sp[8], ...).
uint32_t num_stack_params = 0;
for (uint32_t param = 0; param < num_params; ++param) {
constexpr size_t kInputShift = 1; // Input 0 is the call target.
compiler::LinkageLocation loc =
call_descriptor->GetInputLocation(param + kInputShift);
if (loc.IsRegister()) {
Register reg = Register::from_code(loc.AsRegister());
// Load address of that parameter to the register.
__ SetCCallRegParamAddr(reg, param, num_params);
} else {
DCHECK(loc.IsCallerFrameSlot());
__ SetCCallStackParamAddr(num_stack_params, param, num_params);
++num_stack_params;
}
}
// Now execute the call.
__ CallC(ext_ref, num_params);
// Load return value.
compiler::LinkageLocation return_loc =
call_descriptor->GetReturnLocation(0);
DCHECK(return_loc.IsRegister());
Register return_reg = Register::from_code(return_loc.AsRegister());
if (return_reg != res_reg) {
DCHECK_EQ(MachineRepresentation::kWord32,
sig.GetReturn(0).representation());
__ Move(LiftoffRegister(res_reg), LiftoffRegister(return_reg), kWasmI32);
}
}
template <ValueType type, class EmitFn>
void EmitUnOp(EmitFn fn) {
static RegClass rc = reg_class_for(type);
LiftoffRegList pinned;
LiftoffRegister src = pinned.set(__ PopToRegister(rc, pinned));
LiftoffRegister dst = __ GetUnusedRegister(rc, {src}, pinned);
fn(dst, src);
__ PushRegister(type, dst);
}
void EmitI32UnOpWithCFallback(bool (LiftoffAssembler::*emit_fn)(Register,
Register),
ExternalReference (*fallback_fn)(Isolate*)) {
auto emit_with_c_fallback = [=](LiftoffRegister dst, LiftoffRegister src) {
if (emit_fn && (asm_->*emit_fn)(dst.gp(), src.gp())) return;
ExternalReference ext_ref = fallback_fn(asm_->isolate());
Register args[] = {src.gp()};
GenerateCCall(dst.gp(), arraysize(args), args, ext_ref);
};
EmitUnOp<kWasmI32>(emit_with_c_fallback);
}
void UnOp(Decoder* decoder, WasmOpcode opcode, FunctionSig*,
const Value& value, Value* result) {
#define CASE_I32_UNOP(opcode, fn) \
case WasmOpcode::kExpr##opcode: \
EmitUnOp<kWasmI32>([=](LiftoffRegister dst, LiftoffRegister src) { \
__ emit_##fn(dst.gp(), src.gp()); \
}); \
break;
#define CASE_FLOAT_UNOP(opcode, type, fn) \
case WasmOpcode::kExpr##opcode: \
EmitUnOp<kWasm##type>([=](LiftoffRegister dst, LiftoffRegister src) { \
__ emit_##fn(dst.fp(), src.fp()); \
}); \
break;
switch (opcode) {
CASE_I32_UNOP(I32Clz, i32_clz)
CASE_I32_UNOP(I32Ctz, i32_ctz)
case kExprI32Popcnt:
EmitI32UnOpWithCFallback(&LiftoffAssembler::emit_i32_popcnt,
&ExternalReference::wasm_word32_popcnt);
break;
case kExprI32Eqz:
EmitUnOp<kWasmI32>([=](LiftoffRegister dst, LiftoffRegister src) {
__ emit_i32_set_cond(kEqual, dst.gp(), src.gp());
});
break;
CASE_FLOAT_UNOP(F32Neg, F32, f32_neg)
CASE_FLOAT_UNOP(F32Sqrt, F32, f32_sqrt)
CASE_FLOAT_UNOP(F64Neg, F64, f64_neg)
CASE_FLOAT_UNOP(F64Sqrt, F64, f64_sqrt)
default:
return unsupported(decoder, WasmOpcodes::OpcodeName(opcode));
}
#undef CASE_I32_UNOP
#undef CASE_FLOAT_UNOP
}
template <ValueType type, typename EmitFn>
void EmitMonomorphicBinOp(EmitFn fn) {
static constexpr RegClass rc = reg_class_for(type);
LiftoffRegList pinned;
LiftoffRegister rhs = pinned.set(__ PopToRegister(rc, pinned));
LiftoffRegister lhs = pinned.set(__ PopToRegister(rc, pinned));
LiftoffRegister dst = __ GetUnusedRegister(rc, {lhs, rhs}, pinned);
fn(dst, lhs, rhs);
__ PushRegister(type, dst);
}
template <ValueType result_type, RegClass src_rc, typename EmitFn>
void EmitBinOpWithDifferentResultType(EmitFn fn) {
LiftoffRegList pinned;
LiftoffRegister rhs = pinned.set(__ PopToRegister(src_rc, pinned));
LiftoffRegister lhs = pinned.set(__ PopToRegister(src_rc, pinned));
LiftoffRegister dst = __ GetUnusedRegister(reg_class_for(result_type));
fn(dst, lhs, rhs);
__ PushRegister(result_type, dst);
}
void BinOp(Decoder* decoder, WasmOpcode opcode, FunctionSig*,
const Value& lhs, const Value& rhs, Value* result) {
#define CASE_I32_BINOP(opcode, fn) \
case WasmOpcode::kExpr##opcode: \
return EmitMonomorphicBinOp<kWasmI32>( \
[=](LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { \
__ emit_##fn(dst.gp(), lhs.gp(), rhs.gp()); \
});
#define CASE_FLOAT_BINOP(opcode, type, fn) \
case WasmOpcode::kExpr##opcode: \
return EmitMonomorphicBinOp<kWasm##type>( \
[=](LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { \
__ emit_##fn(dst.fp(), lhs.fp(), rhs.fp()); \
});
#define CASE_I32_CMPOP(opcode, cond) \
case WasmOpcode::kExpr##opcode: \
return EmitMonomorphicBinOp<kWasmI32>( \
[=](LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { \
__ emit_i32_set_cond(cond, dst.gp(), lhs.gp(), rhs.gp()); \
});
#define CASE_F32_CMPOP(opcode, cond) \
case WasmOpcode::kExpr##opcode: \
return EmitBinOpWithDifferentResultType<kWasmI32, kFpReg>( \
[=](LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { \
__ emit_f32_set_cond(cond, dst.gp(), lhs.fp(), rhs.fp()); \
});
#define CASE_SHIFTOP(opcode, fn) \
case WasmOpcode::kExpr##opcode: \
return EmitMonomorphicBinOp<kWasmI32>( \
[=](LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { \
__ emit_##fn(dst.gp(), lhs.gp(), rhs.gp(), {}); \
});
#define CASE_CCALL_BINOP(opcode, type, ext_ref_fn) \
case WasmOpcode::kExpr##opcode: \
return EmitMonomorphicBinOp<kWasmI32>( \
[=](LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { \
Register args[] = {lhs.gp(), rhs.gp()}; \
auto ext_ref = ExternalReference::ext_ref_fn(__ isolate()); \
GenerateCCall(dst.gp(), arraysize(args), args, ext_ref); \
});
switch (opcode) {
CASE_I32_BINOP(I32Add, i32_add)
CASE_I32_BINOP(I32Sub, i32_sub)
CASE_I32_BINOP(I32Mul, i32_mul)
CASE_I32_BINOP(I32And, i32_and)
CASE_I32_BINOP(I32Ior, i32_or)
CASE_I32_BINOP(I32Xor, i32_xor)
CASE_I32_CMPOP(I32Eq, kEqual)
CASE_I32_CMPOP(I32Ne, kUnequal)
CASE_I32_CMPOP(I32LtS, kSignedLessThan)
CASE_I32_CMPOP(I32LtU, kUnsignedLessThan)
CASE_I32_CMPOP(I32GtS, kSignedGreaterThan)
CASE_I32_CMPOP(I32GtU, kUnsignedGreaterThan)
CASE_I32_CMPOP(I32LeS, kSignedLessEqual)
CASE_I32_CMPOP(I32LeU, kUnsignedLessEqual)
CASE_I32_CMPOP(I32GeS, kSignedGreaterEqual)
CASE_I32_CMPOP(I32GeU, kUnsignedGreaterEqual)
CASE_F32_CMPOP(F32Eq, kEqual)
CASE_F32_CMPOP(F32Ne, kUnequal)
CASE_F32_CMPOP(F32Lt, kUnsignedLessThan)
CASE_F32_CMPOP(F32Gt, kUnsignedGreaterThan)
CASE_F32_CMPOP(F32Le, kUnsignedLessEqual)
CASE_F32_CMPOP(F32Ge, kUnsignedGreaterEqual)
CASE_SHIFTOP(I32Shl, i32_shl)
CASE_SHIFTOP(I32ShrS, i32_sar)
CASE_SHIFTOP(I32ShrU, i32_shr)
CASE_CCALL_BINOP(I32Rol, I32, wasm_word32_rol)
CASE_CCALL_BINOP(I32Ror, I32, wasm_word32_ror)
CASE_FLOAT_BINOP(F32Add, F32, f32_add)
CASE_FLOAT_BINOP(F32Sub, F32, f32_sub)
CASE_FLOAT_BINOP(F32Mul, F32, f32_mul)
CASE_FLOAT_BINOP(F32Div, F32, f32_div)
CASE_FLOAT_BINOP(F64Add, F64, f64_add)
CASE_FLOAT_BINOP(F64Sub, F64, f64_sub)
CASE_FLOAT_BINOP(F64Mul, F64, f64_mul)
CASE_FLOAT_BINOP(F64Div, F64, f64_div)
default:
return unsupported(decoder, WasmOpcodes::OpcodeName(opcode));
}
#undef CASE_I32_BINOP
#undef CASE_FLOAT_BINOP
#undef CASE_I32_CMPOP
#undef CASE_F32_CMPOP
#undef CASE_SHIFTOP
#undef CASE_CCALL_BINOP
}
void I32Const(Decoder* decoder, Value* result, int32_t value) {
__ cache_state()->stack_state.emplace_back(kWasmI32, value);
}
void I64Const(Decoder* decoder, Value* result, int64_t value) {
// The {VarState} stores constant values as int32_t, thus we only store
// 64-bit constants in this field if it fits in an int32_t. Larger values
// cannot be used as immediate value anyway, so we can also just put them in
// a register immediately.
int32_t value_i32 = static_cast<int32_t>(value);
if (value_i32 == value) {
__ cache_state()->stack_state.emplace_back(kWasmI64, value_i32);
} else {
LiftoffRegister reg = __ GetUnusedRegister(reg_class_for(kWasmI64));
__ LoadConstant(reg, WasmValue(value));
__ PushRegister(kWasmI64, reg);
}
}
void F32Const(Decoder* decoder, Value* result, float value) {
LiftoffRegister reg = __ GetUnusedRegister(kFpReg);
__ LoadConstant(reg, WasmValue(value));
__ PushRegister(kWasmF32, reg);
}
void F64Const(Decoder* decoder, Value* result, double value) {
LiftoffRegister reg = __ GetUnusedRegister(kFpReg);
__ LoadConstant(reg, WasmValue(value));
__ PushRegister(kWasmF64, reg);
}
void Drop(Decoder* decoder, const Value& value) {
__ DropStackSlot(&__ cache_state()->stack_state.back());
__ cache_state()->stack_state.pop_back();
}
void DoReturn(Decoder* decoder, Vector<Value> values, bool implicit) {
if (implicit) {
DCHECK_EQ(1, decoder->control_depth());
Control* func_block = decoder->control_at(0);
__ bind(func_block->label.get());
__ cache_state()->Steal(func_block->label_state);
}
if (!values.is_empty()) {
if (values.size() > 1) return unsupported(decoder, "multi-return");
RegClass rc = reg_class_for(values[0].type);
LiftoffRegister reg = __ PopToRegister(rc);
__ MoveToReturnRegister(reg, values[0].type);
}
__ LeaveFrame(StackFrame::WASM_COMPILED);
__ DropStackSlotsAndRet(
static_cast<uint32_t>(descriptor_->StackParameterCount()));
}
void GetLocal(Decoder* decoder, Value* result,
const LocalIndexOperand<validate>& operand) {
auto& slot = __ cache_state()->stack_state[operand.index];
DCHECK_EQ(slot.type(), operand.type);
switch (slot.loc()) {
case kRegister:
__ PushRegister(slot.type(), slot.reg());
break;
case KIntConst:
__ cache_state()->stack_state.emplace_back(operand.type,
slot.i32_const());
break;
case kStack: {
auto rc = reg_class_for(operand.type);
LiftoffRegister reg = __ GetUnusedRegister(rc);
__ Fill(reg, operand.index, operand.type);
__ PushRegister(slot.type(), reg);
break;
}
}
}
void SetLocalFromStackSlot(LiftoffAssembler::VarState& dst_slot,
uint32_t local_index) {
auto& state = *__ cache_state();
ValueType type = dst_slot.type();
if (dst_slot.is_reg()) {
LiftoffRegister slot_reg = dst_slot.reg();
if (state.get_use_count(slot_reg) == 1) {
__ Fill(dst_slot.reg(), state.stack_height() - 1, type);
return;
}
state.dec_used(slot_reg);
}
DCHECK_EQ(type, __ local_type(local_index));
RegClass rc = reg_class_for(type);
LiftoffRegister dst_reg = __ GetUnusedRegister(rc);
__ Fill(dst_reg, __ cache_state()->stack_height() - 1, type);
dst_slot = LiftoffAssembler::VarState(type, dst_reg);
__ cache_state()->inc_used(dst_reg);
}
void SetLocal(uint32_t local_index, bool is_tee) {
auto& state = *__ cache_state();
auto& source_slot = state.stack_state.back();
auto& target_slot = state.stack_state[local_index];
switch (source_slot.loc()) {
case kRegister:
__ DropStackSlot(&target_slot);
target_slot = source_slot;
if (is_tee) state.inc_used(target_slot.reg());
break;
case KIntConst:
__ DropStackSlot(&target_slot);
target_slot = source_slot;
break;
case kStack:
SetLocalFromStackSlot(target_slot, local_index);
break;
}
if (!is_tee) __ cache_state()->stack_state.pop_back();
}
void SetLocal(Decoder* decoder, const Value& value,
const LocalIndexOperand<validate>& operand) {
SetLocal(operand.index, false);
}
void TeeLocal(Decoder* decoder, const Value& value, Value* result,
const LocalIndexOperand<validate>& operand) {
SetLocal(operand.index, true);
}
void GetGlobal(Decoder* decoder, Value* result,
const GlobalIndexOperand<validate>& operand) {
const auto* global = &env_->module->globals[operand.index];
if (global->type != kWasmI32 && global->type != kWasmI64)
return unsupported(decoder, "non-int global");
LiftoffRegList pinned;
Register addr = pinned.set(__ GetUnusedRegister(kGpReg)).gp();
__ LoadFromContext(addr, offsetof(WasmContext, globals_start),
kPointerSize);
LiftoffRegister value =
pinned.set(__ GetUnusedRegister(reg_class_for(global->type), pinned));
LoadType type =
global->type == kWasmI32 ? LoadType::kI32Load : LoadType::kI64Load;
if (type.size() > kPointerSize)
return unsupported(decoder, "global > kPointerSize");
__ Load(value, addr, no_reg, global->offset, type, pinned);
__ PushRegister(global->type, value);
}
void SetGlobal(Decoder* decoder, const Value& value,
const GlobalIndexOperand<validate>& operand) {
auto* global = &env_->module->globals[operand.index];
if (global->type != kWasmI32) return unsupported(decoder, "non-i32 global");
LiftoffRegList pinned;
Register addr = pinned.set(__ GetUnusedRegister(kGpReg)).gp();
__ LoadFromContext(addr, offsetof(WasmContext, globals_start),
kPointerSize);
LiftoffRegister reg =
pinned.set(__ PopToRegister(reg_class_for(global->type), pinned));
StoreType type =
global->type == kWasmI32 ? StoreType::kI32Store : StoreType::kI64Store;
__ Store(addr, no_reg, global->offset, reg, type, pinned);
}
void Unreachable(Decoder* decoder) { unsupported(decoder, "unreachable"); }
void Select(Decoder* decoder, const Value& cond, const Value& fval,
const Value& tval, Value* result) {
unsupported(decoder, "select");
}
void Br(Control* target) {
if (!target->br_merge()->reached) {
target->label_state.InitMerge(*__ cache_state(), __ num_locals(),
target->br_merge()->arity);
}
__ MergeStackWith(target->label_state, target->br_merge()->arity);
__ jmp(target->label.get());
}
void Br(Decoder* decoder, Control* target) {
Br(target);
}
void BrIf(Decoder* decoder, const Value& cond, Control* target) {
Label cont_false;
Register value = __ PopToRegister(kGpReg).gp();
__ emit_cond_jump(kEqual, &cont_false, kWasmI32, value);
Br(target);
__ bind(&cont_false);
}
// Generate a branch table case, potentially reusing previously generated
// stack transfer code.
void GenerateBrCase(Decoder* decoder, uint32_t br_depth,
std::map<uint32_t, MovableLabel>& br_targets) {
MovableLabel& label = br_targets[br_depth];
if (label.get()->is_bound()) {
__ jmp(label.get());
} else {
__ bind(label.get());
Br(decoder->control_at(br_depth));
}
}
// Generate a branch table for input in [min, max).
// TODO(wasm): Generate a real branch table (like TF TableSwitch).
void GenerateBrTable(Decoder* decoder, LiftoffRegister tmp,
LiftoffRegister value, uint32_t min, uint32_t max,
BranchTableIterator<validate>& table_iterator,
std::map<uint32_t, MovableLabel>& br_targets) {
DCHECK_LT(min, max);
// Check base case.
if (max == min + 1) {
DCHECK_EQ(min, table_iterator.cur_index());
GenerateBrCase(decoder, table_iterator.next(), br_targets);
return;
}
uint32_t split = min + (max - min) / 2;
Label upper_half;
__ LoadConstant(tmp, WasmValue(split));
__ emit_cond_jump(kUnsignedGreaterEqual, &upper_half, kWasmI32, value.gp(),
tmp.gp());
// Emit br table for lower half:
GenerateBrTable(decoder, tmp, value, min, split, table_iterator,
br_targets);
__ bind(&upper_half);
// Emit br table for upper half:
GenerateBrTable(decoder, tmp, value, split, max, table_iterator,
br_targets);
}
void BrTable(Decoder* decoder, const BranchTableOperand<validate>& operand,
const Value& key) {
LiftoffRegList pinned;
LiftoffRegister value = pinned.set(__ PopToRegister(kGpReg));
BranchTableIterator<validate> table_iterator(decoder, operand);
std::map<uint32_t, MovableLabel> br_targets;
if (operand.table_count > 0) {
LiftoffRegister tmp = __ GetUnusedRegister(kGpReg, pinned);
__ LoadConstant(tmp, WasmValue(uint32_t{operand.table_count}));
Label case_default;
__ emit_cond_jump(kUnsignedGreaterEqual, &case_default, kWasmI32,
value.gp(), tmp.gp());
GenerateBrTable(decoder, tmp, value, 0, operand.table_count,
table_iterator, br_targets);
__ bind(&case_default);
}
// Generate the default case.
GenerateBrCase(decoder, table_iterator.next(), br_targets);
DCHECK(!table_iterator.has_next());
}
void Else(Decoder* decoder, Control* if_block) {
if (if_block->reachable()) __ emit_jump(if_block->label.get());
__ bind(if_block->else_state->label.get());
__ cache_state()->Steal(if_block->else_state->state);
}
Label* AddOutOfLineTrap(wasm::WasmCodePosition position,
Builtins::Name builtin, uint32_t pc = 0) {
DCHECK(!FLAG_wasm_no_bounds_checks);
// The pc is needed for memory OOB trap with trap handler enabled. Other
// callers should not even compute it.
DCHECK_EQ(pc != 0, builtin == Builtins::kThrowWasmTrapMemOutOfBounds &&
env_->use_trap_handler);
out_of_line_code_.push_back(OutOfLineCode::Trap(builtin, position, pc));
return out_of_line_code_.back().label.get();
}
// Returns true if the memory access is statically known to be out of bounds
// (a jump to the trap was generated then); return false otherwise.
bool BoundsCheckMem(Decoder* decoder, uint32_t access_size, uint32_t offset,
Register index, LiftoffRegList pinned) {
const bool statically_oob =
access_size > max_size_ || offset > max_size_ - access_size;
if (!statically_oob &&
(FLAG_wasm_no_bounds_checks || env_->use_trap_handler)) {
return false;
}
Label* trap_label = AddOutOfLineTrap(
decoder->position(), Builtins::kThrowWasmTrapMemOutOfBounds);
if (statically_oob) {
__ emit_jump(trap_label);
Control* current_block = decoder->control_at(0);
if (current_block->reachable()) {
current_block->reachability = kSpecOnlyReachable;
}
return true;
}
DCHECK(!env_->use_trap_handler);
DCHECK(!FLAG_wasm_no_bounds_checks);
uint32_t end_offset = offset + access_size - 1;
// If the end offset is larger than the smallest memory, dynamically check
// the end offset against the actual memory size, which is not known at
// compile time. Otherwise, only one check is required (see below).
LiftoffRegister end_offset_reg =
pinned.set(__ GetUnusedRegister(kGpReg, pinned));
LiftoffRegister mem_size = __ GetUnusedRegister(kGpReg, pinned);
__ LoadFromContext(mem_size.gp(), offsetof(WasmContext, mem_size), 4);
__ LoadConstant(end_offset_reg, WasmValue(end_offset));
if (end_offset >= min_size_) {
__ emit_cond_jump(kUnsignedGreaterEqual, trap_label, kWasmI32,
end_offset_reg.gp(), mem_size.gp());
}
// Just reuse the end_offset register for computing the effective size.
LiftoffRegister effective_size_reg = end_offset_reg;
__ emit_i32_sub(effective_size_reg.gp(), mem_size.gp(),
end_offset_reg.gp());
__ emit_cond_jump(kUnsignedGreaterEqual, trap_label, kWasmI32, index,
effective_size_reg.gp());
return false;
}
void TraceMemoryOperation(bool is_store, MachineRepresentation rep,
Register index, uint32_t offset,
WasmCodePosition position) {
// Before making the runtime call, spill all cache registers.
__ SpillAllRegisters();
LiftoffRegList pinned = LiftoffRegList::ForRegs(index);
// Get one register for computing the address (offset + index).
LiftoffRegister address = pinned.set(__ GetUnusedRegister(kGpReg, pinned));
// Compute offset+index in address.
__ LoadConstant(address, WasmValue(offset));
__ emit_i32_add(address.gp(), address.gp(), index);
// Get a register to hold the stack slot for wasm::MemoryTracingInfo.
LiftoffRegister info = pinned.set(__ GetUnusedRegister(kGpReg, pinned));
// Allocate stack slot for wasm::MemoryTracingInfo.
__ AllocateStackSlot(info.gp(), sizeof(wasm::MemoryTracingInfo));
// Now store all information into the wasm::MemoryTracingInfo struct.
__ Store(info.gp(), no_reg, offsetof(wasm::MemoryTracingInfo, address),
address, StoreType::kI32Store, pinned);
__ LoadConstant(address, WasmValue(is_store ? 1 : 0));
__ Store(info.gp(), no_reg, offsetof(wasm::MemoryTracingInfo, is_store),
address, StoreType::kI32Store8, pinned);
__ LoadConstant(address, WasmValue(static_cast<int>(rep)));
__ Store(info.gp(), no_reg, offsetof(wasm::MemoryTracingInfo, mem_rep),
address, StoreType::kI32Store8, pinned);
source_position_table_builder_->AddPosition(
__ pc_offset(), SourcePosition(position), false);
Register args[] = {info.gp()};
GenerateRuntimeCall(arraysize(args), args);
}
void GenerateRuntimeCall(int num_args, Register* args) {
auto call_descriptor = compiler::Linkage::GetRuntimeCallDescriptor(
compilation_zone_, Runtime::kWasmTraceMemory, num_args,
compiler::Operator::kNoProperties, compiler::CallDescriptor::kNoFlags);
// Currently, only one argument is supported. More arguments require some
// caution for the parallel register moves (reuse StackTransferRecipe).
DCHECK_EQ(1, num_args);
constexpr size_t kInputShift = 1; // Input 0 is the call target.
compiler::LinkageLocation param_loc =
call_descriptor->GetInputLocation(kInputShift);
if (param_loc.IsRegister()) {
Register reg = Register::from_code(param_loc.AsRegister());
__ Move(LiftoffRegister(reg), LiftoffRegister(args[0]),
LiftoffAssembler::kWasmIntPtr);
} else {
DCHECK(param_loc.IsCallerFrameSlot());
__ PushCallerFrameSlot(LiftoffRegister(args[0]),
LiftoffAssembler::kWasmIntPtr);
}
// Allocate the codegen zone if not done before.
if (!*codegen_zone_) {
codegen_zone_->reset(
new Zone(__ isolate()->allocator(), "LiftoffCodegenZone"));
}
__ CallRuntime(codegen_zone_->get(), Runtime::kWasmTraceMemory);
__ DeallocateStackSlot(sizeof(wasm::MemoryTracingInfo));
}
void LoadMem(Decoder* decoder, LoadType type,
const MemoryAccessOperand<validate>& operand,
const Value& index_val, Value* result) {
ValueType value_type = type.value_type();
if (!CheckSupportedType(decoder, kTypes_ilfd, value_type, "load")) return;
LiftoffRegList pinned;
Register index = pinned.set(__ PopToRegister(kGpReg)).gp();
if (BoundsCheckMem(decoder, type.size(), operand.offset, index, pinned)) {
return;
}
Register addr = pinned.set(__ GetUnusedRegister(kGpReg, pinned)).gp();
__ LoadFromContext(addr, offsetof(WasmContext, mem_start), kPointerSize);
RegClass rc = reg_class_for(value_type);
LiftoffRegister value = pinned.set(__ GetUnusedRegister(rc, pinned));
uint32_t protected_load_pc = 0;
__ Load(value, addr, index, operand.offset, type, pinned,
&protected_load_pc);
if (env_->use_trap_handler) {
AddOutOfLineTrap(decoder->position(),
Builtins::kThrowWasmTrapMemOutOfBounds,
protected_load_pc);
}
__ PushRegister(value_type, value);
if (FLAG_wasm_trace_memory) {
TraceMemoryOperation(false, type.mem_type().representation(), index,
operand.offset, decoder->position());
}
}
void StoreMem(Decoder* decoder, StoreType type,
const MemoryAccessOperand<validate>& operand,
const Value& index_val, const Value& value_val) {
ValueType value_type = type.value_type();
if (!CheckSupportedType(decoder, kTypes_ilfd, value_type, "store")) return;
RegClass rc = reg_class_for(value_type);
LiftoffRegList pinned;
LiftoffRegister value = pinned.set(__ PopToRegister(rc));
Register index = pinned.set(__ PopToRegister(kGpReg, pinned)).gp();
if (BoundsCheckMem(decoder, type.size(), operand.offset, index, pinned)) {
return;
}
Register addr = pinned.set(__ GetUnusedRegister(kGpReg, pinned)).gp();
__ LoadFromContext(addr, offsetof(WasmContext, mem_start), kPointerSize);
uint32_t protected_store_pc = 0;
__ Store(addr, index, operand.offset, value, type, pinned,
&protected_store_pc);
if (env_->use_trap_handler) {
AddOutOfLineTrap(decoder->position(),
Builtins::kThrowWasmTrapMemOutOfBounds,
protected_store_pc);
}
if (FLAG_wasm_trace_memory) {
TraceMemoryOperation(true, type.mem_rep(), index, operand.offset,
decoder->position());
}
}
void CurrentMemoryPages(Decoder* decoder, Value* result) {
unsupported(decoder, "current_memory");
}
void GrowMemory(Decoder* decoder, const Value& value, Value* result) {
unsupported(decoder, "grow_memory");
}
void CallDirect(Decoder* decoder,
const CallFunctionOperand<validate>& operand,
const Value args[], Value returns[]) {
if (operand.sig->return_count() > 1)
return unsupported(decoder, "multi-return");
if (operand.sig->return_count() == 1 &&
!CheckSupportedType(decoder, kTypes_ilfd, operand.sig->GetReturn(0),
"return"))
return;
auto call_descriptor =
compiler::GetWasmCallDescriptor(compilation_zone_, operand.sig);
call_descriptor =
GetLoweredCallDescriptor(compilation_zone_, call_descriptor);
__ PrepareCall(operand.sig, call_descriptor);
source_position_table_builder_->AddPosition(
__ pc_offset(), SourcePosition(decoder->position()), false);
if (FLAG_wasm_jit_to_native) {
// Just encode the function index. This will be patched at instantiation.
Address addr = reinterpret_cast<Address>(operand.index);
__ CallNativeWasmCode(addr);
} else {
Handle<Code> target = operand.index < env_->function_code.size()
? env_->function_code[operand.index]
: env_->default_function_code;
__ Call(target, RelocInfo::CODE_TARGET);
}
safepoint_table_builder_.DefineSafepoint(asm_, Safepoint::kSimple, 0,
Safepoint::kNoLazyDeopt);
__ FinishCall(operand.sig, call_descriptor);
}
void CallIndirect(Decoder* decoder, const Value& index_val,
const CallIndirectOperand<validate>& operand,
const Value args[], Value returns[]) {
if (operand.sig->return_count() > 1) {
return unsupported(decoder, "multi-return");
}
if (operand.sig->return_count() == 1 &&
!CheckSupportedType(decoder, kTypes_ilfd, operand.sig->GetReturn(0),
"return")) {
return;
}
// Assume only one table for now.
uint32_t table_index = 0;
// Pop the index.
LiftoffRegister index = __ PopToRegister(kGpReg);
// If that register is still being used after popping, we move it to another
// register, because we want to modify that register.
if (__ cache_state()->is_used(index)) {
LiftoffRegister new_index =
__ GetUnusedRegister(kGpReg, LiftoffRegList::ForRegs(index));
__ Move(new_index, index, kWasmI32);
index = new_index;
}
LiftoffRegList pinned = LiftoffRegList::ForRegs(index);
// Get three temporary registers.
LiftoffRegister table = pinned.set(__ GetUnusedRegister(kGpReg, pinned));
LiftoffRegister tmp_const =
pinned.set(__ GetUnusedRegister(kGpReg, pinned));
LiftoffRegister scratch = pinned.set(__ GetUnusedRegister(kGpReg, pinned));
LiftoffRegister* explicit_context = nullptr;
// Bounds check against the table size.
Label* invalid_func_label = AddOutOfLineTrap(
decoder->position(), Builtins::kThrowWasmTrapFuncInvalid);
static constexpr LoadType kPointerLoadType =
kPointerSize == 8 ? LoadType::kI64Load : LoadType::kI32Load;
static constexpr int kFixedArrayOffset =
FixedArray::kHeaderSize - kHeapObjectTag;
uint32_t canonical_sig_num = env_->module->signature_ids[operand.sig_index];
DCHECK_GE(canonical_sig_num, 0);
DCHECK_GE(kMaxInt, canonical_sig_num);
if (WASM_CONTEXT_TABLES) {
// Compare against table size stored in {wasm_context->table_size}.
__ LoadFromContext(tmp_const.gp(), offsetof(WasmContext, table_size),
sizeof(uint32_t));
__ emit_cond_jump(kUnsignedGreaterEqual, invalid_func_label, kWasmI32,
index.gp(), tmp_const.gp());
// Load the table from {wasm_context->table}
__ LoadFromContext(table.gp(), offsetof(WasmContext, table),
kPointerSize);
// Load the signature from {wasm_context->table[$index].sig_id}
// == wasm_context.table + $index * #sizeof(IndirectionFunctionTableEntry)
// + #offsetof(sig_id)
__ LoadConstant(
tmp_const,
WasmValue(static_cast<uint32_t>(sizeof(IndirectFunctionTableEntry))));
__ emit_i32_mul(index.gp(), index.gp(), tmp_const.gp());
__ Load(scratch, table.gp(), index.gp(),
offsetof(IndirectFunctionTableEntry, sig_id), LoadType::kI32Load,
pinned);
__ LoadConstant(tmp_const, WasmValue(canonical_sig_num));
Label* sig_mismatch_label = AddOutOfLineTrap(
decoder->position(), Builtins::kThrowWasmTrapFuncSigMismatch);
__ emit_cond_jump(kUnequal, sig_mismatch_label,
LiftoffAssembler::kWasmIntPtr, scratch.gp(),
tmp_const.gp());
// Load the target address from {wasm_context->table[$index].target}
__ Load(scratch, table.gp(), index.gp(),
offsetof(IndirectFunctionTableEntry, target), kPointerLoadType,
pinned);
// Load the context from {wasm_context->table[$index].context}
// TODO(wasm): directly allocate the correct context register to avoid
// any potential moves.
__ Load(tmp_const, table.gp(), index.gp(),
offsetof(IndirectFunctionTableEntry, context), kPointerLoadType,
pinned);
explicit_context = &tmp_const;
} else {
// Compare against table size, which is a patchable constant.
uint32_t table_size =
env_->module->function_tables[table_index].initial_size;
__ LoadConstant(tmp_const, WasmValue(table_size),
RelocInfo::WASM_FUNCTION_TABLE_SIZE_REFERENCE);
__ emit_cond_jump(kUnsignedGreaterEqual, invalid_func_label, kWasmI32,
index.gp(), tmp_const.gp());
wasm::GlobalHandleAddress function_table_handle_address =
env_->function_tables[table_index];
__ LoadConstant(table, WasmPtrValue(function_table_handle_address),
RelocInfo::WASM_GLOBAL_HANDLE);
__ Load(table, table.gp(), no_reg, 0, kPointerLoadType, pinned);
// Load signature from the table and check.
// The table is a FixedArray; signatures are encoded as SMIs.
// [sig1, code1, sig2, code2, sig3, code3, ...]
static_assert(compiler::kFunctionTableEntrySize == 2, "consistency");
static_assert(compiler::kFunctionTableSignatureOffset == 0,
"consistency");
static_assert(compiler::kFunctionTableCodeOffset == 1, "consistency");
__ LoadConstant(tmp_const, WasmValue(kPointerSizeLog2 + 1));
// Shift index such that it's the offset of the signature in the
// FixedArray.
__ emit_i32_shl(index.gp(), index.gp(), tmp_const.gp(), pinned);
// Load the signature.
__ Load(scratch, table.gp(), index.gp(), kFixedArrayOffset,
kPointerLoadType, pinned);
__ LoadConstant(tmp_const, WasmPtrValue(Smi::FromInt(canonical_sig_num)));
Label* sig_mismatch_label = AddOutOfLineTrap(
decoder->position(), Builtins::kThrowWasmTrapFuncSigMismatch);
__ emit_cond_jump(kUnequal, sig_mismatch_label,
LiftoffAssembler::kWasmIntPtr, scratch.gp(),
tmp_const.gp());
// Load code object.
__ Load(scratch, table.gp(), index.gp(), kFixedArrayOffset + kPointerSize,
kPointerLoadType, pinned);
// Move the pointer from the Code object to the instruction start.
__ LoadConstant(tmp_const,
WasmPtrValue(Code::kHeaderSize - kHeapObjectTag));
__ emit_ptrsize_add(scratch.gp(), scratch.gp(), tmp_const.gp());
}
source_position_table_builder_->AddPosition(
__ pc_offset(), SourcePosition(decoder->position()), false);
auto call_descriptor =
compiler::GetWasmCallDescriptor(compilation_zone_, operand.sig);
call_descriptor =
GetLoweredCallDescriptor(compilation_zone_, call_descriptor);
Register target = scratch.gp();
__ PrepareCall(operand.sig, call_descriptor, &target, explicit_context);
__ CallIndirect(operand.sig, call_descriptor, target);
safepoint_table_builder_.DefineSafepoint(asm_, Safepoint::kSimple, 0,
Safepoint::kNoLazyDeopt);
__ FinishCall(operand.sig, call_descriptor);
}
void SimdOp(Decoder* decoder, WasmOpcode opcode, Vector<Value> args,
Value* result) {
unsupported(decoder, "simd");
}
void SimdLaneOp(Decoder* decoder, WasmOpcode opcode,
const SimdLaneOperand<validate>& operand,
const Vector<Value> inputs, Value* result) {
unsupported(decoder, "simd");
}
void SimdShiftOp(Decoder* decoder, WasmOpcode opcode,
const SimdShiftOperand<validate>& operand,
const Value& input, Value* result) {
unsupported(decoder, "simd");
}
void Simd8x16ShuffleOp(Decoder* decoder,
const Simd8x16ShuffleOperand<validate>& operand,
const Value& input0, const Value& input1,
Value* result) {
unsupported(decoder, "simd");
}
void Throw(Decoder* decoder, const ExceptionIndexOperand<validate>&,
Control* block, const Vector<Value>& args) {
unsupported(decoder, "throw");
}
void CatchException(Decoder* decoder,
const ExceptionIndexOperand<validate>& operand,
Control* block, Vector<Value> caught_values) {
unsupported(decoder, "catch");
}
void AtomicOp(Decoder* decoder, WasmOpcode opcode, Vector<Value> args,
const MemoryAccessOperand<validate>& operand, Value* result) {
unsupported(decoder, "atomicop");
}
private:
LiftoffAssembler* const asm_;
compiler::CallDescriptor* const descriptor_;
compiler::ModuleEnv* const env_;
// {min_size_} and {max_size_} are cached values computed from the ModuleEnv.
const uint64_t min_size_;
const uint64_t max_size_;
const compiler::RuntimeExceptionSupport runtime_exception_support_;
bool ok_ = true;
std::vector<OutOfLineCode> out_of_line_code_;
SourcePositionTableBuilder* const source_position_table_builder_;
std::vector<trap_handler::ProtectedInstructionData>* protected_instructions_;
// Zone used to store information during compilation. The result will be
// stored independently, such that this zone can die together with the
// LiftoffCompiler after compilation.
Zone* compilation_zone_;
// This zone is allocated when needed, held externally, and survives until
// code generation (in FinishCompilation).
std::unique_ptr<Zone>* codegen_zone_;
SafepointTableBuilder safepoint_table_builder_;
// The pc offset of the instructions to reserve the stack frame. Needed to
// patch the actually needed stack size in the end.
uint32_t pc_offset_stack_frame_construction_ = 0;
void TraceCacheState(Decoder* decoder) const {
#ifdef DEBUG
if (!FLAG_trace_liftoff || !FLAG_trace_wasm_decoder) return;
OFStream os(stdout);
for (int control_depth = decoder->control_depth() - 1; control_depth >= -1;
--control_depth) {
LiftoffAssembler::CacheState* cache_state =
control_depth == -1
? asm_->cache_state()
: &decoder->control_at(control_depth)->label_state;
bool first = true;
for (LiftoffAssembler::VarState& slot : cache_state->stack_state) {
os << (first ? "" : "-") << slot;
first = false;
}
if (control_depth != -1) PrintF("; ");
}
os << "\n";
#endif
}
};
} // namespace
} // namespace wasm
bool compiler::WasmCompilationUnit::ExecuteLiftoffCompilation() {
base::ElapsedTimer compile_timer;
if (FLAG_trace_wasm_decode_time) {
compile_timer.Start();
}
Zone zone(isolate_->allocator(), "LiftoffCompilationZone");
const wasm::WasmModule* module = env_ ? env_->module : nullptr;
auto call_descriptor = compiler::GetWasmCallDescriptor(&zone, func_body_.sig);
base::Optional<TimedHistogramScope> liftoff_compile_time_scope(
base::in_place, counters()->liftoff_compile_time());
wasm::WasmFullDecoder<wasm::Decoder::kValidate, wasm::LiftoffCompiler>
decoder(&zone, module, func_body_, &liftoff_.asm_, call_descriptor, env_,
runtime_exception_support_,
&liftoff_.source_position_table_builder_,
protected_instructions_.get(), &zone, &liftoff_.codegen_zone_);
decoder.Decode();
liftoff_compile_time_scope.reset();
if (!decoder.interface().ok()) {
// Liftoff compilation failed.
isolate_->counters()->liftoff_unsupported_functions()->Increment();
return false;
}
if (decoder.failed()) return false; // Validation error
if (FLAG_trace_wasm_decode_time) {
double compile_ms = compile_timer.Elapsed().InMillisecondsF();
PrintF(
"wasm-compilation liftoff phase 1 ok: %u bytes, %0.3f ms decode and "
"compile\n",
static_cast<unsigned>(func_body_.end - func_body_.start), compile_ms);
}
// Record the memory cost this unit places on the system until
// it is finalized.
memory_cost_ = liftoff_.asm_.pc_offset();
liftoff_.safepoint_table_offset_ =
decoder.interface().GetSafepointTableOffset();
isolate_->counters()->liftoff_compiled_functions()->Increment();
return true;
}
#undef __
#undef TRACE
} // namespace internal
} // namespace v8