blob: 6e4a1bfb936044b23c5a75c74939f381a0f08e9d [file] [log] [blame]
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/builtins/builtins-utils.h"
#include "src/builtins/builtins.h"
#include "src/code-stub-assembler.h"
#include "src/counters.h"
#include "src/elements.h"
#include "src/objects-inl.h"
namespace v8 {
namespace internal {
class TypedArrayBuiltinsAssembler : public CodeStubAssembler {
public:
explicit TypedArrayBuiltinsAssembler(compiler::CodeAssemblerState* state)
: CodeStubAssembler(state) {}
protected:
void GenerateTypedArrayPrototypeGetter(const char* method_name,
int object_offset);
template <IterationKind kIterationKind>
void GenerateTypedArrayPrototypeIterationMethod(const char* method_name);
void LoadMapAndElementsSize(Node* array, Variable* typed_map, Variable* size);
};
void TypedArrayBuiltinsAssembler::LoadMapAndElementsSize(Node* array,
Variable* typed_map,
Variable* size) {
Label unreachable(this), done(this);
Label uint8_elements(this), uint8_clamped_elements(this), int8_elements(this),
uint16_elements(this), int16_elements(this), uint32_elements(this),
int32_elements(this), float32_elements(this), float64_elements(this);
Label* elements_kind_labels[] = {
&uint8_elements, &uint8_clamped_elements, &int8_elements,
&uint16_elements, &int16_elements, &uint32_elements,
&int32_elements, &float32_elements, &float64_elements};
int32_t elements_kinds[] = {
UINT8_ELEMENTS, UINT8_CLAMPED_ELEMENTS, INT8_ELEMENTS,
UINT16_ELEMENTS, INT16_ELEMENTS, UINT32_ELEMENTS,
INT32_ELEMENTS, FLOAT32_ELEMENTS, FLOAT64_ELEMENTS};
const size_t kTypedElementsKindCount = LAST_FIXED_TYPED_ARRAY_ELEMENTS_KIND -
FIRST_FIXED_TYPED_ARRAY_ELEMENTS_KIND +
1;
DCHECK_EQ(kTypedElementsKindCount, arraysize(elements_kinds));
DCHECK_EQ(kTypedElementsKindCount, arraysize(elements_kind_labels));
Node* array_map = LoadMap(array);
Node* elements_kind = LoadMapElementsKind(array_map);
Switch(elements_kind, &unreachable, elements_kinds, elements_kind_labels,
kTypedElementsKindCount);
for (int i = 0; i < static_cast<int>(kTypedElementsKindCount); i++) {
Bind(elements_kind_labels[i]);
{
ElementsKind kind = static_cast<ElementsKind>(elements_kinds[i]);
ExternalArrayType type =
isolate()->factory()->GetArrayTypeFromElementsKind(kind);
Handle<Map> map(isolate()->heap()->MapForFixedTypedArray(type));
typed_map->Bind(HeapConstant(map));
size->Bind(SmiConstant(static_cast<int>(
isolate()->factory()->GetExternalArrayElementSize(type))));
Goto(&done);
}
}
Bind(&unreachable);
{ Unreachable(); }
Bind(&done);
}
TF_BUILTIN(TypedArrayInitialize, TypedArrayBuiltinsAssembler) {
Node* holder = Parameter(1);
Node* length = Parameter(2);
Node* maybe_buffer = Parameter(3);
Node* byte_offset = Parameter(4);
Node* byte_length = Parameter(5);
Node* initialize = Parameter(6);
Node* context = Parameter(9);
static const int32_t fta_base_data_offset =
FixedTypedArrayBase::kDataOffset - kHeapObjectTag;
Label setup_holder(this), alloc_array_buffer(this), aligned(this),
allocate_elements(this), attach_buffer(this), done(this);
Variable fixed_typed_map(this, MachineRepresentation::kTagged);
Variable element_size(this, MachineRepresentation::kTagged);
Variable total_size(this, MachineType::PointerRepresentation());
// Make sure length is a Smi. The caller guarantees this is the case.
length = ToInteger(context, length, CodeStubAssembler::kTruncateMinusZero);
CSA_ASSERT(this, TaggedIsSmi(length));
byte_offset =
ToInteger(context, byte_offset, CodeStubAssembler::kTruncateMinusZero);
CSA_ASSERT(this, TaggedIsSmi(byte_offset));
// byte_length can be -0, get rid of it.
byte_length =
ToInteger(context, byte_length, CodeStubAssembler::kTruncateMinusZero);
GotoIfNot(IsNull(maybe_buffer), &setup_holder);
// If the buffer is null, then we need a Smi byte_length. The caller
// guarantees this is the case, because when byte_length >
// TypedArrayMaxSizeInHeap, a buffer is allocated and passed in here.
CSA_ASSERT(this, TaggedIsSmi(byte_length));
Goto(&setup_holder);
Bind(&setup_holder);
{
LoadMapAndElementsSize(holder, &fixed_typed_map, &element_size);
// Setup the holder (JSArrayBufferView).
// - Set the length.
// - Set the byte_offset.
// - Set the byte_length.
// - Set InternalFields to 0.
StoreObjectField(holder, JSTypedArray::kLengthOffset, length);
StoreObjectField(holder, JSArrayBufferView::kByteOffsetOffset, byte_offset);
StoreObjectField(holder, JSArrayBufferView::kByteLengthOffset, byte_length);
for (int offset = JSTypedArray::kSize;
offset < JSTypedArray::kSizeWithInternalFields;
offset += kPointerSize) {
StoreObjectField(holder, offset, SmiConstant(Smi::kZero));
}
Branch(IsNull(maybe_buffer), &alloc_array_buffer, &attach_buffer);
}
Bind(&alloc_array_buffer);
{
// Allocate a new ArrayBuffer and initialize it with empty properties and
// elements.
Node* const native_context = LoadNativeContext(context);
Node* const map =
LoadContextElement(native_context, Context::ARRAY_BUFFER_MAP_INDEX);
Node* empty_fixed_array = LoadRoot(Heap::kEmptyFixedArrayRootIndex);
Node* buffer = Allocate(JSArrayBuffer::kSizeWithInternalFields);
StoreMapNoWriteBarrier(buffer, map);
StoreObjectFieldNoWriteBarrier(buffer, JSArray::kPropertiesOffset,
empty_fixed_array);
StoreObjectFieldNoWriteBarrier(buffer, JSArray::kElementsOffset,
empty_fixed_array);
// Setup the ArrayBuffer.
// - Set BitField to 0.
// - Set IsExternal and IsNeuterable bits of BitFieldSlot.
// - Set the byte_length field to byte_length.
// - Set backing_store to null/Smi(0).
// - Set all internal fields to Smi(0).
StoreObjectFieldNoWriteBarrier(buffer, JSArrayBuffer::kBitFieldSlot,
SmiConstant(Smi::kZero));
int32_t bitfield_value = (1 << JSArrayBuffer::IsExternal::kShift) |
(1 << JSArrayBuffer::IsNeuterable::kShift);
StoreObjectFieldNoWriteBarrier(buffer, JSArrayBuffer::kBitFieldOffset,
Int32Constant(bitfield_value),
MachineRepresentation::kWord32);
StoreObjectFieldNoWriteBarrier(buffer, JSArrayBuffer::kByteLengthOffset,
byte_length);
StoreObjectFieldNoWriteBarrier(buffer, JSArrayBuffer::kBackingStoreOffset,
SmiConstant(Smi::kZero));
for (int i = 0; i < v8::ArrayBuffer::kInternalFieldCount; i++) {
int offset = JSArrayBuffer::kSize + i * kPointerSize;
StoreObjectFieldNoWriteBarrier(buffer, offset, SmiConstant(Smi::kZero));
}
StoreObjectField(holder, JSArrayBufferView::kBufferOffset, buffer);
// Check the alignment.
GotoIf(SmiEqual(SmiMod(element_size.value(), SmiConstant(kObjectAlignment)),
SmiConstant(0)),
&aligned);
// Fix alignment if needed.
DCHECK_EQ(0, FixedTypedArrayBase::kHeaderSize & kObjectAlignmentMask);
Node* aligned_header_size =
IntPtrConstant(FixedTypedArrayBase::kHeaderSize + kObjectAlignmentMask);
Node* size = IntPtrAdd(SmiToWord(byte_length), aligned_header_size);
total_size.Bind(WordAnd(size, IntPtrConstant(~kObjectAlignmentMask)));
Goto(&allocate_elements);
}
Bind(&aligned);
{
Node* header_size = IntPtrConstant(FixedTypedArrayBase::kHeaderSize);
total_size.Bind(IntPtrAdd(SmiToWord(byte_length), header_size));
Goto(&allocate_elements);
}
Bind(&allocate_elements);
{
// Allocate a FixedTypedArray and set the length, base pointer and external
// pointer.
CSA_ASSERT(this, IsRegularHeapObjectSize(total_size.value()));
Node* elements = Allocate(total_size.value());
StoreMapNoWriteBarrier(elements, fixed_typed_map.value());
StoreObjectFieldNoWriteBarrier(elements, FixedArray::kLengthOffset, length);
StoreObjectFieldNoWriteBarrier(
elements, FixedTypedArrayBase::kBasePointerOffset, elements);
StoreObjectFieldNoWriteBarrier(elements,
FixedTypedArrayBase::kExternalPointerOffset,
IntPtrConstant(fta_base_data_offset),
MachineType::PointerRepresentation());
StoreObjectField(holder, JSObject::kElementsOffset, elements);
GotoIf(IsFalse(initialize), &done);
// Initialize the backing store by filling it with 0s.
Node* backing_store = IntPtrAdd(BitcastTaggedToWord(elements),
IntPtrConstant(fta_base_data_offset));
// Call out to memset to perform initialization.
Node* memset =
ExternalConstant(ExternalReference::libc_memset_function(isolate()));
CallCFunction3(MachineType::AnyTagged(), MachineType::Pointer(),
MachineType::IntPtr(), MachineType::UintPtr(), memset,
backing_store, IntPtrConstant(0), SmiToWord(byte_length));
Goto(&done);
}
Bind(&attach_buffer);
{
StoreObjectField(holder, JSArrayBufferView::kBufferOffset, maybe_buffer);
Node* elements = Allocate(FixedTypedArrayBase::kHeaderSize);
StoreMapNoWriteBarrier(elements, fixed_typed_map.value());
StoreObjectFieldNoWriteBarrier(elements, FixedArray::kLengthOffset, length);
StoreObjectFieldNoWriteBarrier(
elements, FixedTypedArrayBase::kBasePointerOffset, SmiConstant(0));
Node* backing_store =
LoadObjectField(maybe_buffer, JSArrayBuffer::kBackingStoreOffset,
MachineType::Pointer());
Node* external_pointer = IntPtrAdd(backing_store, SmiToWord(byte_offset));
StoreObjectFieldNoWriteBarrier(
elements, FixedTypedArrayBase::kExternalPointerOffset, external_pointer,
MachineType::PointerRepresentation());
StoreObjectField(holder, JSObject::kElementsOffset, elements);
Goto(&done);
}
Bind(&done);
{ Return(UndefinedConstant()); }
}
// -----------------------------------------------------------------------------
// ES6 section 22.2 TypedArray Objects
// ES6 section 22.2.3.1 get %TypedArray%.prototype.buffer
BUILTIN(TypedArrayPrototypeBuffer) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSTypedArray, typed_array, "get TypedArray.prototype.buffer");
return *typed_array->GetBuffer();
}
void TypedArrayBuiltinsAssembler::GenerateTypedArrayPrototypeGetter(
const char* method_name, int object_offset) {
Node* receiver = Parameter(0);
Node* context = Parameter(3);
// Check if the {receiver} is actually a JSTypedArray.
Label receiver_is_incompatible(this, Label::kDeferred);
GotoIf(TaggedIsSmi(receiver), &receiver_is_incompatible);
GotoIfNot(HasInstanceType(receiver, JS_TYPED_ARRAY_TYPE),
&receiver_is_incompatible);
// Check if the {receiver}'s JSArrayBuffer was neutered.
Node* receiver_buffer =
LoadObjectField(receiver, JSTypedArray::kBufferOffset);
Label if_receiverisneutered(this, Label::kDeferred);
GotoIf(IsDetachedBuffer(receiver_buffer), &if_receiverisneutered);
Return(LoadObjectField(receiver, object_offset));
Bind(&if_receiverisneutered);
{
// The {receiver}s buffer was neutered, default to zero.
Return(SmiConstant(0));
}
Bind(&receiver_is_incompatible);
{
// The {receiver} is not a valid JSTypedArray.
CallRuntime(Runtime::kThrowIncompatibleMethodReceiver, context,
HeapConstant(
factory()->NewStringFromAsciiChecked(method_name, TENURED)),
receiver);
Unreachable();
}
}
// ES6 section 22.2.3.2 get %TypedArray%.prototype.byteLength
TF_BUILTIN(TypedArrayPrototypeByteLength, TypedArrayBuiltinsAssembler) {
GenerateTypedArrayPrototypeGetter("get TypedArray.prototype.byteLength",
JSTypedArray::kByteLengthOffset);
}
// ES6 section 22.2.3.3 get %TypedArray%.prototype.byteOffset
TF_BUILTIN(TypedArrayPrototypeByteOffset, TypedArrayBuiltinsAssembler) {
GenerateTypedArrayPrototypeGetter("get TypedArray.prototype.byteOffset",
JSTypedArray::kByteOffsetOffset);
}
// ES6 section 22.2.3.18 get %TypedArray%.prototype.length
TF_BUILTIN(TypedArrayPrototypeLength, TypedArrayBuiltinsAssembler) {
GenerateTypedArrayPrototypeGetter("get TypedArray.prototype.length",
JSTypedArray::kLengthOffset);
}
template <IterationKind kIterationKind>
void TypedArrayBuiltinsAssembler::GenerateTypedArrayPrototypeIterationMethod(
const char* method_name) {
Node* receiver = Parameter(0);
Node* context = Parameter(3);
Label throw_bad_receiver(this, Label::kDeferred);
Label throw_typeerror(this, Label::kDeferred);
GotoIf(TaggedIsSmi(receiver), &throw_bad_receiver);
Node* map = LoadMap(receiver);
Node* instance_type = LoadMapInstanceType(map);
GotoIf(Word32NotEqual(instance_type, Int32Constant(JS_TYPED_ARRAY_TYPE)),
&throw_bad_receiver);
// Check if the {receiver}'s JSArrayBuffer was neutered.
Node* receiver_buffer =
LoadObjectField(receiver, JSTypedArray::kBufferOffset);
Label if_receiverisneutered(this, Label::kDeferred);
GotoIf(IsDetachedBuffer(receiver_buffer), &if_receiverisneutered);
Return(CreateArrayIterator(receiver, map, instance_type, context,
kIterationKind));
Variable var_message(this, MachineRepresentation::kTagged);
Bind(&throw_bad_receiver);
var_message.Bind(SmiConstant(MessageTemplate::kNotTypedArray));
Goto(&throw_typeerror);
Bind(&if_receiverisneutered);
var_message.Bind(
SmiConstant(Smi::FromInt(MessageTemplate::kDetachedOperation)));
Goto(&throw_typeerror);
Bind(&throw_typeerror);
{
Node* method_arg = HeapConstant(
isolate()->factory()->NewStringFromAsciiChecked(method_name, TENURED));
Node* result = CallRuntime(Runtime::kThrowTypeError, context,
var_message.value(), method_arg);
Return(result);
}
}
TF_BUILTIN(TypedArrayPrototypeValues, TypedArrayBuiltinsAssembler) {
GenerateTypedArrayPrototypeIterationMethod<IterationKind::kValues>(
"%TypedArray%.prototype.values()");
}
TF_BUILTIN(TypedArrayPrototypeEntries, TypedArrayBuiltinsAssembler) {
GenerateTypedArrayPrototypeIterationMethod<IterationKind::kEntries>(
"%TypedArray%.prototype.entries()");
}
TF_BUILTIN(TypedArrayPrototypeKeys, TypedArrayBuiltinsAssembler) {
GenerateTypedArrayPrototypeIterationMethod<IterationKind::kKeys>(
"%TypedArray%.prototype.keys()");
}
namespace {
int64_t CapRelativeIndex(Handle<Object> num, int64_t minimum, int64_t maximum) {
int64_t relative;
if (V8_LIKELY(num->IsSmi())) {
relative = Smi::cast(*num)->value();
} else {
DCHECK(num->IsHeapNumber());
double fp = HeapNumber::cast(*num)->value();
if (V8_UNLIKELY(!std::isfinite(fp))) {
// +Infinity / -Infinity
DCHECK(!std::isnan(fp));
return fp < 0 ? minimum : maximum;
}
relative = static_cast<int64_t>(fp);
}
return relative < 0 ? std::max<int64_t>(relative + maximum, minimum)
: std::min<int64_t>(relative, maximum);
}
} // namespace
BUILTIN(TypedArrayPrototypeCopyWithin) {
HandleScope scope(isolate);
Handle<JSTypedArray> array;
const char* method = "%TypedArray%.prototype.copyWithin";
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, array, JSTypedArray::Validate(isolate, args.receiver(), method));
if (V8_UNLIKELY(array->WasNeutered())) return *array;
int64_t len = array->length_value();
int64_t to = 0;
int64_t from = 0;
int64_t final = len;
if (V8_LIKELY(args.length() > 1)) {
Handle<Object> num;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, num, Object::ToInteger(isolate, args.at<Object>(1)));
to = CapRelativeIndex(num, 0, len);
if (args.length() > 2) {
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, num, Object::ToInteger(isolate, args.at<Object>(2)));
from = CapRelativeIndex(num, 0, len);
Handle<Object> end = args.atOrUndefined(isolate, 3);
if (!end->IsUndefined(isolate)) {
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, num,
Object::ToInteger(isolate, end));
final = CapRelativeIndex(num, 0, len);
}
}
}
int64_t count = std::min<int64_t>(final - from, len - to);
if (count <= 0) return *array;
// TypedArray buffer may have been transferred/detached during parameter
// processing above. Return early in this case, to prevent potential UAF error
// TODO(caitp): throw here, as though the full algorithm were performed (the
// throw would have come from ecma262/#sec-integerindexedelementget)
// (see )
if (V8_UNLIKELY(array->WasNeutered())) return *array;
// Ensure processed indexes are within array bounds
DCHECK_GE(from, 0);
DCHECK_LT(from, len);
DCHECK_GE(to, 0);
DCHECK_LT(to, len);
DCHECK_GE(len - count, 0);
Handle<FixedTypedArrayBase> elements(
FixedTypedArrayBase::cast(array->elements()));
size_t element_size = array->element_size();
to = to * element_size;
from = from * element_size;
count = count * element_size;
uint8_t* data = static_cast<uint8_t*>(elements->DataPtr());
std::memmove(data + to, data + from, count);
return *array;
}
BUILTIN(TypedArrayPrototypeIncludes) {
HandleScope scope(isolate);
Handle<JSTypedArray> array;
const char* method = "%TypedArray%.prototype.includes";
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, array, JSTypedArray::Validate(isolate, args.receiver(), method));
if (args.length() < 2) return isolate->heap()->false_value();
int64_t len = array->length_value();
if (len == 0) return isolate->heap()->false_value();
int64_t index = 0;
if (args.length() > 2) {
Handle<Object> num;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, num, Object::ToInteger(isolate, args.at<Object>(2)));
index = CapRelativeIndex(num, 0, len);
}
Handle<Object> search_element = args.at<Object>(1);
ElementsAccessor* elements = array->GetElementsAccessor();
Maybe<bool> result = elements->IncludesValue(isolate, array, search_element,
static_cast<uint32_t>(index),
static_cast<uint32_t>(len));
return *isolate->factory()->ToBoolean(result.FromJust());
}
} // namespace internal
} // namespace v8