blob: ea0be65eb6fd83de9707d70e6dbcc6328314947f [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_AST_AST_TYPES_H_
#define V8_AST_AST_TYPES_H_
#include "src/conversions.h"
#include "src/handles.h"
#include "src/objects.h"
#include "src/ostreams.h"
namespace v8 {
namespace internal {
// SUMMARY
//
// A simple type system for compiler-internal use. It is based entirely on
// union types, and all subtyping hence amounts to set inclusion. Besides the
// obvious primitive types and some predefined unions, the type language also
// can express class types (a.k.a. specific maps) and singleton types (i.e.,
// concrete constants).
//
// Types consist of two dimensions: semantic (value range) and representation.
// Both are related through subtyping.
//
//
// SEMANTIC DIMENSION
//
// The following equations and inequations hold for the semantic axis:
//
// None <= T
// T <= Any
//
// Number = Signed32 \/ Unsigned32 \/ Double
// Smi <= Signed32
// Name = String \/ Symbol
// UniqueName = InternalizedString \/ Symbol
// InternalizedString < String
//
// Receiver = Object \/ Proxy
// Array < Object
// Function < Object
// RegExp < Object
// OtherUndetectable < Object
// DetectableReceiver = Receiver - OtherUndetectable
//
// Class(map) < T iff instance_type(map) < T
// Constant(x) < T iff instance_type(map(x)) < T
// Array(T) < Array
// Function(R, S, T0, T1, ...) < Function
// Context(T) < Internal
//
// Both structural Array and Function types are invariant in all parameters;
// relaxing this would make Union and Intersect operations more involved.
// There is no subtyping relation between Array, Function, or Context types
// and respective Constant types, since these types cannot be reconstructed
// for arbitrary heap values.
// Note also that Constant(x) < Class(map(x)) does _not_ hold, since x's map can
// change! (Its instance type cannot, however.)
// TODO(rossberg): the latter is not currently true for proxies, because of fix,
// but will hold once we implement direct proxies.
// However, we also define a 'temporal' variant of the subtyping relation that
// considers the _current_ state only, i.e., Constant(x) <_now Class(map(x)).
//
//
// REPRESENTATIONAL DIMENSION
//
// For the representation axis, the following holds:
//
// None <= R
// R <= Any
//
// UntaggedInt = UntaggedInt1 \/ UntaggedInt8 \/
// UntaggedInt16 \/ UntaggedInt32
// UntaggedFloat = UntaggedFloat32 \/ UntaggedFloat64
// UntaggedNumber = UntaggedInt \/ UntaggedFloat
// Untagged = UntaggedNumber \/ UntaggedPtr
// Tagged = TaggedInt \/ TaggedPtr
//
// Subtyping relates the two dimensions, for example:
//
// Number <= Tagged \/ UntaggedNumber
// Object <= TaggedPtr \/ UntaggedPtr
//
// That holds because the semantic type constructors defined by the API create
// types that allow for all possible representations, and dually, the ones for
// representation types initially include all semantic ranges. Representations
// can then e.g. be narrowed for a given semantic type using intersection:
//
// SignedSmall /\ TaggedInt (a 'smi')
// Number /\ TaggedPtr (a heap number)
//
//
// RANGE TYPES
//
// A range type represents a continuous integer interval by its minimum and
// maximum value. Either value may be an infinity, in which case that infinity
// itself is also included in the range. A range never contains NaN or -0.
//
// If a value v happens to be an integer n, then Constant(v) is considered a
// subtype of Range(n, n) (and therefore also a subtype of any larger range).
// In order to avoid large unions, however, it is usually a good idea to use
// Range rather than Constant.
//
//
// PREDICATES
//
// There are two main functions for testing types:
//
// T1->Is(T2) -- tests whether T1 is included in T2 (i.e., T1 <= T2)
// T1->Maybe(T2) -- tests whether T1 and T2 overlap (i.e., T1 /\ T2 =/= 0)
//
// Typically, the former is to be used to select representations (e.g., via
// T->Is(SignedSmall())), and the latter to check whether a specific case needs
// handling (e.g., via T->Maybe(Number())).
//
// There is no functionality to discover whether a type is a leaf in the
// lattice. That is intentional. It should always be possible to refine the
// lattice (e.g., splitting up number types further) without invalidating any
// existing assumptions or tests.
// Consequently, do not normally use Equals for type tests, always use Is!
//
// The NowIs operator implements state-sensitive subtying, as described above.
// Any compilation decision based on such temporary properties requires runtime
// guarding!
//
//
// PROPERTIES
//
// Various formal properties hold for constructors, operators, and predicates
// over types. For example, constructors are injective and subtyping is a
// complete partial order.
//
// See test/cctest/test-types.cc for a comprehensive executable specification,
// especially with respect to the properties of the more exotic 'temporal'
// constructors and predicates (those prefixed 'Now').
//
//
// IMPLEMENTATION
//
// Internally, all 'primitive' types, and their unions, are represented as
// bitsets. Bit 0 is reserved for tagging. Class is a heap pointer to the
// respective map. Only structured types require allocation.
// Note that the bitset representation is closed under both Union and Intersect.
// -----------------------------------------------------------------------------
// Values for bitset types
// clang-format off
#define AST_MASK_BITSET_TYPE_LIST(V) \
V(Representation, 0xffc00000u) \
V(Semantic, 0x003ffffeu)
#define AST_REPRESENTATION(k) ((k) & AstBitsetType::kRepresentation)
#define AST_SEMANTIC(k) ((k) & AstBitsetType::kSemantic)
// Bits 21-22 are available.
#define AST_REPRESENTATION_BITSET_TYPE_LIST(V) \
V(None, 0) \
V(UntaggedBit, 1u << 23 | kSemantic) \
V(UntaggedIntegral8, 1u << 24 | kSemantic) \
V(UntaggedIntegral16, 1u << 25 | kSemantic) \
V(UntaggedIntegral32, 1u << 26 | kSemantic) \
V(UntaggedFloat32, 1u << 27 | kSemantic) \
V(UntaggedFloat64, 1u << 28 | kSemantic) \
V(UntaggedPointer, 1u << 29 | kSemantic) \
V(TaggedSigned, 1u << 30 | kSemantic) \
V(TaggedPointer, 1u << 31 | kSemantic) \
\
V(UntaggedIntegral, kUntaggedBit | kUntaggedIntegral8 | \
kUntaggedIntegral16 | kUntaggedIntegral32) \
V(UntaggedFloat, kUntaggedFloat32 | kUntaggedFloat64) \
V(UntaggedNumber, kUntaggedIntegral | kUntaggedFloat) \
V(Untagged, kUntaggedNumber | kUntaggedPointer) \
V(Tagged, kTaggedSigned | kTaggedPointer)
#define AST_INTERNAL_BITSET_TYPE_LIST(V) \
V(OtherUnsigned31, 1u << 1 | AST_REPRESENTATION(kTagged | kUntaggedNumber)) \
V(OtherUnsigned32, 1u << 2 | AST_REPRESENTATION(kTagged | kUntaggedNumber)) \
V(OtherSigned32, 1u << 3 | AST_REPRESENTATION(kTagged | kUntaggedNumber)) \
V(OtherNumber, 1u << 4 | AST_REPRESENTATION(kTagged | kUntaggedNumber))
#define AST_SEMANTIC_BITSET_TYPE_LIST(V) \
V(Negative31, 1u << 5 | \
AST_REPRESENTATION(kTagged | kUntaggedNumber)) \
V(Null, 1u << 6 | AST_REPRESENTATION(kTaggedPointer)) \
V(Undefined, 1u << 7 | AST_REPRESENTATION(kTaggedPointer)) \
V(Boolean, 1u << 8 | AST_REPRESENTATION(kTaggedPointer)) \
V(Unsigned30, 1u << 9 | \
AST_REPRESENTATION(kTagged | kUntaggedNumber)) \
V(MinusZero, 1u << 10 | \
AST_REPRESENTATION(kTagged | kUntaggedNumber)) \
V(NaN, 1u << 11 | \
AST_REPRESENTATION(kTagged | kUntaggedNumber)) \
V(Symbol, 1u << 12 | AST_REPRESENTATION(kTaggedPointer)) \
V(InternalizedString, 1u << 13 | AST_REPRESENTATION(kTaggedPointer)) \
V(OtherString, 1u << 14 | AST_REPRESENTATION(kTaggedPointer)) \
V(OtherObject, 1u << 15 | AST_REPRESENTATION(kTaggedPointer)) \
V(OtherUndetectable, 1u << 16 | AST_REPRESENTATION(kTaggedPointer)) \
V(Proxy, 1u << 17 | AST_REPRESENTATION(kTaggedPointer)) \
V(Function, 1u << 18 | AST_REPRESENTATION(kTaggedPointer)) \
V(Hole, 1u << 19 | AST_REPRESENTATION(kTaggedPointer)) \
V(OtherInternal, 1u << 20 | \
AST_REPRESENTATION(kTagged | kUntagged)) \
\
V(Signed31, kUnsigned30 | kNegative31) \
V(Signed32, kSigned31 | kOtherUnsigned31 | \
kOtherSigned32) \
V(Signed32OrMinusZero, kSigned32 | kMinusZero) \
V(Signed32OrMinusZeroOrNaN, kSigned32 | kMinusZero | kNaN) \
V(Negative32, kNegative31 | kOtherSigned32) \
V(Unsigned31, kUnsigned30 | kOtherUnsigned31) \
V(Unsigned32, kUnsigned30 | kOtherUnsigned31 | \
kOtherUnsigned32) \
V(Unsigned32OrMinusZero, kUnsigned32 | kMinusZero) \
V(Unsigned32OrMinusZeroOrNaN, kUnsigned32 | kMinusZero | kNaN) \
V(Integral32, kSigned32 | kUnsigned32) \
V(PlainNumber, kIntegral32 | kOtherNumber) \
V(OrderedNumber, kPlainNumber | kMinusZero) \
V(MinusZeroOrNaN, kMinusZero | kNaN) \
V(Number, kOrderedNumber | kNaN) \
V(String, kInternalizedString | kOtherString) \
V(UniqueName, kSymbol | kInternalizedString) \
V(Name, kSymbol | kString) \
V(BooleanOrNumber, kBoolean | kNumber) \
V(BooleanOrNullOrNumber, kBooleanOrNumber | kNull) \
V(BooleanOrNullOrUndefined, kBoolean | kNull | kUndefined) \
V(NullOrNumber, kNull | kNumber) \
V(NullOrUndefined, kNull | kUndefined) \
V(Undetectable, kNullOrUndefined | kOtherUndetectable) \
V(NumberOrOddball, kNumber | kNullOrUndefined | kBoolean | kHole) \
V(NumberOrString, kNumber | kString) \
V(NumberOrUndefined, kNumber | kUndefined) \
V(PlainPrimitive, kNumberOrString | kBoolean | kNullOrUndefined) \
V(Primitive, kSymbol | kPlainPrimitive) \
V(DetectableReceiver, kFunction | kOtherObject | kProxy) \
V(Object, kFunction | kOtherObject | kOtherUndetectable) \
V(Receiver, kObject | kProxy) \
V(StringOrReceiver, kString | kReceiver) \
V(Unique, kBoolean | kUniqueName | kNull | kUndefined | \
kReceiver) \
V(Internal, kHole | kOtherInternal) \
V(NonInternal, kPrimitive | kReceiver) \
V(NonNumber, kUnique | kString | kInternal) \
V(Any, 0xfffffffeu)
// clang-format on
/*
* The following diagrams show how integers (in the mathematical sense) are
* divided among the different atomic numerical types.
*
* ON OS32 N31 U30 OU31 OU32 ON
* ______[_______[_______[_______[_______[_______[_______
* -2^31 -2^30 0 2^30 2^31 2^32
*
* E.g., OtherUnsigned32 (OU32) covers all integers from 2^31 to 2^32-1.
*
* Some of the atomic numerical bitsets are internal only (see
* INTERNAL_BITSET_TYPE_LIST). To a types user, they should only occur in
* union with certain other bitsets. For instance, OtherNumber should only
* occur as part of PlainNumber.
*/
#define AST_PROPER_BITSET_TYPE_LIST(V) \
AST_REPRESENTATION_BITSET_TYPE_LIST(V) \
AST_SEMANTIC_BITSET_TYPE_LIST(V)
#define AST_BITSET_TYPE_LIST(V) \
AST_MASK_BITSET_TYPE_LIST(V) \
AST_REPRESENTATION_BITSET_TYPE_LIST(V) \
AST_INTERNAL_BITSET_TYPE_LIST(V) \
AST_SEMANTIC_BITSET_TYPE_LIST(V)
class AstType;
// -----------------------------------------------------------------------------
// Bitset types (internal).
class AstBitsetType {
public:
typedef uint32_t bitset; // Internal
enum : uint32_t {
#define DECLARE_TYPE(type, value) k##type = (value),
AST_BITSET_TYPE_LIST(DECLARE_TYPE)
#undef DECLARE_TYPE
kUnusedEOL = 0
};
static bitset SignedSmall();
static bitset UnsignedSmall();
bitset Bitset() {
return static_cast<bitset>(reinterpret_cast<uintptr_t>(this) ^ 1u);
}
static bool IsInhabited(bitset bits) {
return AST_SEMANTIC(bits) != kNone && AST_REPRESENTATION(bits) != kNone;
}
static bool SemanticIsInhabited(bitset bits) {
return AST_SEMANTIC(bits) != kNone;
}
static bool Is(bitset bits1, bitset bits2) {
return (bits1 | bits2) == bits2;
}
static double Min(bitset);
static double Max(bitset);
static bitset Glb(AstType* type); // greatest lower bound that's a bitset
static bitset Glb(double min, double max);
static bitset Lub(AstType* type); // least upper bound that's a bitset
static bitset Lub(i::Map* map);
static bitset Lub(i::Object* value);
static bitset Lub(double value);
static bitset Lub(double min, double max);
static bitset ExpandInternals(bitset bits);
static const char* Name(bitset);
static void Print(std::ostream& os, bitset); // NOLINT
#ifdef DEBUG
static void Print(bitset);
#endif
static bitset NumberBits(bitset bits);
static bool IsBitset(AstType* type) {
return reinterpret_cast<uintptr_t>(type) & 1;
}
static AstType* NewForTesting(bitset bits) { return New(bits); }
private:
friend class AstType;
static AstType* New(bitset bits) {
return reinterpret_cast<AstType*>(static_cast<uintptr_t>(bits | 1u));
}
struct Boundary {
bitset internal;
bitset external;
double min;
};
static const Boundary BoundariesArray[];
static inline const Boundary* Boundaries();
static inline size_t BoundariesSize();
};
// -----------------------------------------------------------------------------
// Superclass for non-bitset types (internal).
class AstTypeBase {
protected:
friend class AstType;
enum Kind {
kClass,
kConstant,
kContext,
kArray,
kFunction,
kTuple,
kUnion,
kRange
};
Kind kind() const { return kind_; }
explicit AstTypeBase(Kind kind) : kind_(kind) {}
static bool IsKind(AstType* type, Kind kind) {
if (AstBitsetType::IsBitset(type)) return false;
AstTypeBase* base = reinterpret_cast<AstTypeBase*>(type);
return base->kind() == kind;
}
// The hacky conversion to/from AstType*.
static AstType* AsType(AstTypeBase* type) {
return reinterpret_cast<AstType*>(type);
}
static AstTypeBase* FromType(AstType* type) {
return reinterpret_cast<AstTypeBase*>(type);
}
private:
Kind kind_;
};
// -----------------------------------------------------------------------------
// Class types.
class AstClassType : public AstTypeBase {
public:
i::Handle<i::Map> Map() { return map_; }
private:
friend class AstType;
friend class AstBitsetType;
static AstType* New(i::Handle<i::Map> map, Zone* zone) {
return AsType(new (zone->New(sizeof(AstClassType)))
AstClassType(AstBitsetType::Lub(*map), map));
}
static AstClassType* cast(AstType* type) {
DCHECK(IsKind(type, kClass));
return static_cast<AstClassType*>(FromType(type));
}
AstClassType(AstBitsetType::bitset bitset, i::Handle<i::Map> map)
: AstTypeBase(kClass), bitset_(bitset), map_(map) {}
AstBitsetType::bitset Lub() { return bitset_; }
AstBitsetType::bitset bitset_;
Handle<i::Map> map_;
};
// -----------------------------------------------------------------------------
// Constant types.
class AstConstantType : public AstTypeBase {
public:
i::Handle<i::Object> Value() { return object_; }
private:
friend class AstType;
friend class AstBitsetType;
static AstType* New(i::Handle<i::Object> value, Zone* zone) {
AstBitsetType::bitset bitset = AstBitsetType::Lub(*value);
return AsType(new (zone->New(sizeof(AstConstantType)))
AstConstantType(bitset, value));
}
static AstConstantType* cast(AstType* type) {
DCHECK(IsKind(type, kConstant));
return static_cast<AstConstantType*>(FromType(type));
}
AstConstantType(AstBitsetType::bitset bitset, i::Handle<i::Object> object)
: AstTypeBase(kConstant), bitset_(bitset), object_(object) {}
AstBitsetType::bitset Lub() { return bitset_; }
AstBitsetType::bitset bitset_;
Handle<i::Object> object_;
};
// TODO(neis): Also cache value if numerical.
// TODO(neis): Allow restricting the representation.
// -----------------------------------------------------------------------------
// Range types.
class AstRangeType : public AstTypeBase {
public:
struct Limits {
double min;
double max;
Limits(double min, double max) : min(min), max(max) {}
explicit Limits(AstRangeType* range)
: min(range->Min()), max(range->Max()) {}
bool IsEmpty();
static Limits Empty() { return Limits(1, 0); }
static Limits Intersect(Limits lhs, Limits rhs);
static Limits Union(Limits lhs, Limits rhs);
};
double Min() { return limits_.min; }
double Max() { return limits_.max; }
private:
friend class AstType;
friend class AstBitsetType;
friend class AstUnionType;
static AstType* New(double min, double max,
AstBitsetType::bitset representation, Zone* zone) {
return New(Limits(min, max), representation, zone);
}
static bool IsInteger(double x) {
return nearbyint(x) == x && !i::IsMinusZero(x); // Allows for infinities.
}
static AstType* New(Limits lim, AstBitsetType::bitset representation,
Zone* zone) {
DCHECK(IsInteger(lim.min) && IsInteger(lim.max));
DCHECK(lim.min <= lim.max);
DCHECK(AST_REPRESENTATION(representation) == representation);
AstBitsetType::bitset bits =
AST_SEMANTIC(AstBitsetType::Lub(lim.min, lim.max)) | representation;
return AsType(new (zone->New(sizeof(AstRangeType)))
AstRangeType(bits, lim));
}
static AstRangeType* cast(AstType* type) {
DCHECK(IsKind(type, kRange));
return static_cast<AstRangeType*>(FromType(type));
}
AstRangeType(AstBitsetType::bitset bitset, Limits limits)
: AstTypeBase(kRange), bitset_(bitset), limits_(limits) {}
AstBitsetType::bitset Lub() { return bitset_; }
AstBitsetType::bitset bitset_;
Limits limits_;
};
// -----------------------------------------------------------------------------
// Context types.
class AstContextType : public AstTypeBase {
public:
AstType* Outer() { return outer_; }
private:
friend class AstType;
static AstType* New(AstType* outer, Zone* zone) {
return AsType(new (zone->New(sizeof(AstContextType)))
AstContextType(outer)); // NOLINT
}
static AstContextType* cast(AstType* type) {
DCHECK(IsKind(type, kContext));
return static_cast<AstContextType*>(FromType(type));
}
explicit AstContextType(AstType* outer)
: AstTypeBase(kContext), outer_(outer) {}
AstType* outer_;
};
// -----------------------------------------------------------------------------
// Array types.
class AstArrayType : public AstTypeBase {
public:
AstType* Element() { return element_; }
private:
friend class AstType;
explicit AstArrayType(AstType* element)
: AstTypeBase(kArray), element_(element) {}
static AstType* New(AstType* element, Zone* zone) {
return AsType(new (zone->New(sizeof(AstArrayType))) AstArrayType(element));
}
static AstArrayType* cast(AstType* type) {
DCHECK(IsKind(type, kArray));
return static_cast<AstArrayType*>(FromType(type));
}
AstType* element_;
};
// -----------------------------------------------------------------------------
// Superclass for types with variable number of type fields.
class AstStructuralType : public AstTypeBase {
public:
int LengthForTesting() { return Length(); }
protected:
friend class AstType;
int Length() { return length_; }
AstType* Get(int i) {
DCHECK(0 <= i && i < this->Length());
return elements_[i];
}
void Set(int i, AstType* type) {
DCHECK(0 <= i && i < this->Length());
elements_[i] = type;
}
void Shrink(int length) {
DCHECK(2 <= length && length <= this->Length());
length_ = length;
}
AstStructuralType(Kind kind, int length, i::Zone* zone)
: AstTypeBase(kind), length_(length) {
elements_ =
reinterpret_cast<AstType**>(zone->New(sizeof(AstType*) * length));
}
private:
int length_;
AstType** elements_;
};
// -----------------------------------------------------------------------------
// Function types.
class AstFunctionType : public AstStructuralType {
public:
int Arity() { return this->Length() - 2; }
AstType* Result() { return this->Get(0); }
AstType* Receiver() { return this->Get(1); }
AstType* Parameter(int i) { return this->Get(2 + i); }
void InitParameter(int i, AstType* type) { this->Set(2 + i, type); }
private:
friend class AstType;
AstFunctionType(AstType* result, AstType* receiver, int arity, Zone* zone)
: AstStructuralType(kFunction, 2 + arity, zone) {
Set(0, result);
Set(1, receiver);
}
static AstType* New(AstType* result, AstType* receiver, int arity,
Zone* zone) {
return AsType(new (zone->New(sizeof(AstFunctionType)))
AstFunctionType(result, receiver, arity, zone));
}
static AstFunctionType* cast(AstType* type) {
DCHECK(IsKind(type, kFunction));
return static_cast<AstFunctionType*>(FromType(type));
}
};
// -----------------------------------------------------------------------------
// Tuple types.
class AstTupleType : public AstStructuralType {
public:
int Arity() { return this->Length(); }
AstType* Element(int i) { return this->Get(i); }
void InitElement(int i, AstType* type) { this->Set(i, type); }
private:
friend class AstType;
AstTupleType(int length, Zone* zone)
: AstStructuralType(kTuple, length, zone) {}
static AstType* New(int length, Zone* zone) {
return AsType(new (zone->New(sizeof(AstTupleType)))
AstTupleType(length, zone));
}
static AstTupleType* cast(AstType* type) {
DCHECK(IsKind(type, kTuple));
return static_cast<AstTupleType*>(FromType(type));
}
};
// -----------------------------------------------------------------------------
// Union types (internal).
// A union is a structured type with the following invariants:
// - its length is at least 2
// - at most one field is a bitset, and it must go into index 0
// - no field is a union
// - no field is a subtype of any other field
class AstUnionType : public AstStructuralType {
private:
friend AstType;
friend AstBitsetType;
AstUnionType(int length, Zone* zone)
: AstStructuralType(kUnion, length, zone) {}
static AstType* New(int length, Zone* zone) {
return AsType(new (zone->New(sizeof(AstUnionType)))
AstUnionType(length, zone));
}
static AstUnionType* cast(AstType* type) {
DCHECK(IsKind(type, kUnion));
return static_cast<AstUnionType*>(FromType(type));
}
bool Wellformed();
};
class AstType {
public:
typedef AstBitsetType::bitset bitset; // Internal
// Constructors.
#define DEFINE_TYPE_CONSTRUCTOR(type, value) \
static AstType* type() { return AstBitsetType::New(AstBitsetType::k##type); }
AST_PROPER_BITSET_TYPE_LIST(DEFINE_TYPE_CONSTRUCTOR)
#undef DEFINE_TYPE_CONSTRUCTOR
static AstType* SignedSmall() {
return AstBitsetType::New(AstBitsetType::SignedSmall());
}
static AstType* UnsignedSmall() {
return AstBitsetType::New(AstBitsetType::UnsignedSmall());
}
static AstType* Class(i::Handle<i::Map> map, Zone* zone) {
return AstClassType::New(map, zone);
}
static AstType* Constant(i::Handle<i::Object> value, Zone* zone) {
return AstConstantType::New(value, zone);
}
static AstType* Range(double min, double max, Zone* zone) {
return AstRangeType::New(min, max,
AST_REPRESENTATION(AstBitsetType::kTagged |
AstBitsetType::kUntaggedNumber),
zone);
}
static AstType* Context(AstType* outer, Zone* zone) {
return AstContextType::New(outer, zone);
}
static AstType* Array(AstType* element, Zone* zone) {
return AstArrayType::New(element, zone);
}
static AstType* Function(AstType* result, AstType* receiver, int arity,
Zone* zone) {
return AstFunctionType::New(result, receiver, arity, zone);
}
static AstType* Function(AstType* result, Zone* zone) {
return Function(result, Any(), 0, zone);
}
static AstType* Function(AstType* result, AstType* param0, Zone* zone) {
AstType* function = Function(result, Any(), 1, zone);
function->AsFunction()->InitParameter(0, param0);
return function;
}
static AstType* Function(AstType* result, AstType* param0, AstType* param1,
Zone* zone) {
AstType* function = Function(result, Any(), 2, zone);
function->AsFunction()->InitParameter(0, param0);
function->AsFunction()->InitParameter(1, param1);
return function;
}
static AstType* Function(AstType* result, AstType* param0, AstType* param1,
AstType* param2, Zone* zone) {
AstType* function = Function(result, Any(), 3, zone);
function->AsFunction()->InitParameter(0, param0);
function->AsFunction()->InitParameter(1, param1);
function->AsFunction()->InitParameter(2, param2);
return function;
}
static AstType* Function(AstType* result, int arity, AstType** params,
Zone* zone) {
AstType* function = Function(result, Any(), arity, zone);
for (int i = 0; i < arity; ++i) {
function->AsFunction()->InitParameter(i, params[i]);
}
return function;
}
static AstType* Tuple(AstType* first, AstType* second, AstType* third,
Zone* zone) {
AstType* tuple = AstTupleType::New(3, zone);
tuple->AsTuple()->InitElement(0, first);
tuple->AsTuple()->InitElement(1, second);
tuple->AsTuple()->InitElement(2, third);
return tuple;
}
static AstType* Union(AstType* type1, AstType* type2, Zone* zone);
static AstType* Intersect(AstType* type1, AstType* type2, Zone* zone);
static AstType* Of(double value, Zone* zone) {
return AstBitsetType::New(
AstBitsetType::ExpandInternals(AstBitsetType::Lub(value)));
}
static AstType* Of(i::Object* value, Zone* zone) {
return AstBitsetType::New(
AstBitsetType::ExpandInternals(AstBitsetType::Lub(value)));
}
static AstType* Of(i::Handle<i::Object> value, Zone* zone) {
return Of(*value, zone);
}
static AstType* For(i::Map* map) {
return AstBitsetType::New(
AstBitsetType::ExpandInternals(AstBitsetType::Lub(map)));
}
static AstType* For(i::Handle<i::Map> map) { return For(*map); }
// Extraction of components.
static AstType* Representation(AstType* t, Zone* zone);
static AstType* Semantic(AstType* t, Zone* zone);
// Predicates.
bool IsInhabited() { return AstBitsetType::IsInhabited(this->BitsetLub()); }
bool Is(AstType* that) { return this == that || this->SlowIs(that); }
bool Maybe(AstType* that);
bool Equals(AstType* that) { return this->Is(that) && that->Is(this); }
// Equivalent to Constant(val)->Is(this), but avoiding allocation.
bool Contains(i::Object* val);
bool Contains(i::Handle<i::Object> val) { return this->Contains(*val); }
// State-dependent versions of the above that consider subtyping between
// a constant and its map class.
static AstType* NowOf(i::Object* value, Zone* zone);
static AstType* NowOf(i::Handle<i::Object> value, Zone* zone) {
return NowOf(*value, zone);
}
bool NowIs(AstType* that);
bool NowContains(i::Object* val);
bool NowContains(i::Handle<i::Object> val) { return this->NowContains(*val); }
bool NowStable();
// Inspection.
bool IsRange() { return IsKind(AstTypeBase::kRange); }
bool IsClass() { return IsKind(AstTypeBase::kClass); }
bool IsConstant() { return IsKind(AstTypeBase::kConstant); }
bool IsContext() { return IsKind(AstTypeBase::kContext); }
bool IsArray() { return IsKind(AstTypeBase::kArray); }
bool IsFunction() { return IsKind(AstTypeBase::kFunction); }
bool IsTuple() { return IsKind(AstTypeBase::kTuple); }
AstClassType* AsClass() { return AstClassType::cast(this); }
AstConstantType* AsConstant() { return AstConstantType::cast(this); }
AstRangeType* AsRange() { return AstRangeType::cast(this); }
AstContextType* AsContext() { return AstContextType::cast(this); }
AstArrayType* AsArray() { return AstArrayType::cast(this); }
AstFunctionType* AsFunction() { return AstFunctionType::cast(this); }
AstTupleType* AsTuple() { return AstTupleType::cast(this); }
// Minimum and maximum of a numeric type.
// These functions do not distinguish between -0 and +0. If the type equals
// kNaN, they return NaN; otherwise kNaN is ignored. Only call these
// functions on subtypes of Number.
double Min();
double Max();
// Extracts a range from the type: if the type is a range or a union
// containing a range, that range is returned; otherwise, NULL is returned.
AstType* GetRange();
static bool IsInteger(i::Object* x);
static bool IsInteger(double x) {
return nearbyint(x) == x && !i::IsMinusZero(x); // Allows for infinities.
}
int NumClasses();
int NumConstants();
template <class T>
class Iterator {
public:
bool Done() const { return index_ < 0; }
i::Handle<T> Current();
void Advance();
private:
friend class AstType;
Iterator() : index_(-1) {}
explicit Iterator(AstType* type) : type_(type), index_(-1) { Advance(); }
inline bool matches(AstType* type);
inline AstType* get_type();
AstType* type_;
int index_;
};
Iterator<i::Map> Classes() {
if (this->IsBitset()) return Iterator<i::Map>();
return Iterator<i::Map>(this);
}
Iterator<i::Object> Constants() {
if (this->IsBitset()) return Iterator<i::Object>();
return Iterator<i::Object>(this);
}
// Printing.
enum PrintDimension { BOTH_DIMS, SEMANTIC_DIM, REPRESENTATION_DIM };
void PrintTo(std::ostream& os, PrintDimension dim = BOTH_DIMS); // NOLINT
#ifdef DEBUG
void Print();
#endif
// Helpers for testing.
bool IsBitsetForTesting() { return IsBitset(); }
bool IsUnionForTesting() { return IsUnion(); }
bitset AsBitsetForTesting() { return AsBitset(); }
AstUnionType* AsUnionForTesting() { return AsUnion(); }
private:
// Friends.
template <class>
friend class Iterator;
friend AstBitsetType;
friend AstUnionType;
// Internal inspection.
bool IsKind(AstTypeBase::Kind kind) {
return AstTypeBase::IsKind(this, kind);
}
bool IsNone() { return this == None(); }
bool IsAny() { return this == Any(); }
bool IsBitset() { return AstBitsetType::IsBitset(this); }
bool IsUnion() { return IsKind(AstTypeBase::kUnion); }
bitset AsBitset() {
DCHECK(this->IsBitset());
return reinterpret_cast<AstBitsetType*>(this)->Bitset();
}
AstUnionType* AsUnion() { return AstUnionType::cast(this); }
bitset Representation();
// Auxiliary functions.
bool SemanticMaybe(AstType* that);
bitset BitsetGlb() { return AstBitsetType::Glb(this); }
bitset BitsetLub() { return AstBitsetType::Lub(this); }
bool SlowIs(AstType* that);
bool SemanticIs(AstType* that);
static bool Overlap(AstRangeType* lhs, AstRangeType* rhs);
static bool Contains(AstRangeType* lhs, AstRangeType* rhs);
static bool Contains(AstRangeType* range, AstConstantType* constant);
static bool Contains(AstRangeType* range, i::Object* val);
static int UpdateRange(AstType* type, AstUnionType* result, int size,
Zone* zone);
static AstRangeType::Limits IntersectRangeAndBitset(AstType* range,
AstType* bits,
Zone* zone);
static AstRangeType::Limits ToLimits(bitset bits, Zone* zone);
bool SimplyEquals(AstType* that);
static int AddToUnion(AstType* type, AstUnionType* result, int size,
Zone* zone);
static int IntersectAux(AstType* type, AstType* other, AstUnionType* result,
int size, AstRangeType::Limits* limits, Zone* zone);
static AstType* NormalizeUnion(AstType* unioned, int size, Zone* zone);
static AstType* NormalizeRangeAndBitset(AstType* range, bitset* bits,
Zone* zone);
};
// -----------------------------------------------------------------------------
// Type bounds. A simple struct to represent a pair of lower/upper types.
struct AstBounds {
AstType* lower;
AstType* upper;
AstBounds()
: // Make sure accessing uninitialized bounds crashes big-time.
lower(nullptr),
upper(nullptr) {}
explicit AstBounds(AstType* t) : lower(t), upper(t) {}
AstBounds(AstType* l, AstType* u) : lower(l), upper(u) {
DCHECK(lower->Is(upper));
}
// Unrestricted bounds.
static AstBounds Unbounded() {
return AstBounds(AstType::None(), AstType::Any());
}
// Meet: both b1 and b2 are known to hold.
static AstBounds Both(AstBounds b1, AstBounds b2, Zone* zone) {
AstType* lower = AstType::Union(b1.lower, b2.lower, zone);
AstType* upper = AstType::Intersect(b1.upper, b2.upper, zone);
// Lower bounds are considered approximate, correct as necessary.
if (!lower->Is(upper)) lower = upper;
return AstBounds(lower, upper);
}
// Join: either b1 or b2 is known to hold.
static AstBounds Either(AstBounds b1, AstBounds b2, Zone* zone) {
AstType* lower = AstType::Intersect(b1.lower, b2.lower, zone);
AstType* upper = AstType::Union(b1.upper, b2.upper, zone);
return AstBounds(lower, upper);
}
static AstBounds NarrowLower(AstBounds b, AstType* t, Zone* zone) {
AstType* lower = AstType::Union(b.lower, t, zone);
// Lower bounds are considered approximate, correct as necessary.
if (!lower->Is(b.upper)) lower = b.upper;
return AstBounds(lower, b.upper);
}
static AstBounds NarrowUpper(AstBounds b, AstType* t, Zone* zone) {
AstType* lower = b.lower;
AstType* upper = AstType::Intersect(b.upper, t, zone);
// Lower bounds are considered approximate, correct as necessary.
if (!lower->Is(upper)) lower = upper;
return AstBounds(lower, upper);
}
bool Narrows(AstBounds that) {
return that.lower->Is(this->lower) && this->upper->Is(that.upper);
}
};
} // namespace internal
} // namespace v8
#endif // V8_AST_AST_TYPES_H_