blob: be3cbd7156b10b04c6700453aab8dc8fdcea7eb6 [file] [log] [blame]
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2012 the V8 project authors. All rights reserved.
#ifndef V8_MIPS_ASSEMBLER_MIPS_H_
#define V8_MIPS_ASSEMBLER_MIPS_H_
#include <stdio.h>
#include <set>
#include "src/assembler.h"
#include "src/mips64/constants-mips64.h"
namespace v8 {
namespace internal {
// clang-format off
#define GENERAL_REGISTERS(V) \
V(zero_reg) V(at) V(v0) V(v1) V(a0) V(a1) V(a2) V(a3) \
V(a4) V(a5) V(a6) V(a7) V(t0) V(t1) V(t2) V(t3) \
V(s0) V(s1) V(s2) V(s3) V(s4) V(s5) V(s6) V(s7) V(t8) V(t9) \
V(k0) V(k1) V(gp) V(sp) V(fp) V(ra)
#define ALLOCATABLE_GENERAL_REGISTERS(V) \
V(v0) V(v1) V(a0) V(a1) V(a2) V(a3) \
V(a4) V(a5) V(a6) V(a7) V(t0) V(t1) V(t2) V(s7)
#define DOUBLE_REGISTERS(V) \
V(f0) V(f1) V(f2) V(f3) V(f4) V(f5) V(f6) V(f7) \
V(f8) V(f9) V(f10) V(f11) V(f12) V(f13) V(f14) V(f15) \
V(f16) V(f17) V(f18) V(f19) V(f20) V(f21) V(f22) V(f23) \
V(f24) V(f25) V(f26) V(f27) V(f28) V(f29) V(f30) V(f31)
#define FLOAT_REGISTERS DOUBLE_REGISTERS
#define SIMD128_REGISTERS DOUBLE_REGISTERS
#define ALLOCATABLE_DOUBLE_REGISTERS(V) \
V(f0) V(f2) V(f4) V(f6) V(f8) V(f10) V(f12) V(f14) \
V(f16) V(f18) V(f20) V(f22) V(f24) V(f26)
// clang-format on
// CPU Registers.
//
// 1) We would prefer to use an enum, but enum values are assignment-
// compatible with int, which has caused code-generation bugs.
//
// 2) We would prefer to use a class instead of a struct but we don't like
// the register initialization to depend on the particular initialization
// order (which appears to be different on OS X, Linux, and Windows for the
// installed versions of C++ we tried). Using a struct permits C-style
// "initialization". Also, the Register objects cannot be const as this
// forces initialization stubs in MSVC, making us dependent on initialization
// order.
//
// 3) By not using an enum, we are possibly preventing the compiler from
// doing certain constant folds, which may significantly reduce the
// code generated for some assembly instructions (because they boil down
// to a few constants). If this is a problem, we could change the code
// such that we use an enum in optimized mode, and the struct in debug
// mode. This way we get the compile-time error checking in debug mode
// and best performance in optimized code.
// -----------------------------------------------------------------------------
// Implementation of Register and FPURegister.
struct Register {
static const int kCpRegister = 23; // cp (s7) is the 23rd register.
#if defined(V8_TARGET_LITTLE_ENDIAN)
static const int kMantissaOffset = 0;
static const int kExponentOffset = 4;
#elif defined(V8_TARGET_BIG_ENDIAN)
static const int kMantissaOffset = 4;
static const int kExponentOffset = 0;
#else
#error Unknown endianness
#endif
enum Code {
#define REGISTER_CODE(R) kCode_##R,
GENERAL_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kAfterLast,
kCode_no_reg = -1
};
static const int kNumRegisters = Code::kAfterLast;
static Register from_code(int code) {
DCHECK(code >= 0);
DCHECK(code < kNumRegisters);
Register r = { code };
return r;
}
bool is_valid() const { return 0 <= reg_code && reg_code < kNumRegisters; }
bool is(Register reg) const { return reg_code == reg.reg_code; }
int code() const {
DCHECK(is_valid());
return reg_code;
}
int bit() const {
DCHECK(is_valid());
return 1 << reg_code;
}
// Unfortunately we can't make this private in a struct.
int reg_code;
};
// s7: context register
// s3: lithium scratch
// s4: lithium scratch2
#define DECLARE_REGISTER(R) const Register R = {Register::kCode_##R};
GENERAL_REGISTERS(DECLARE_REGISTER)
#undef DECLARE_REGISTER
const Register no_reg = {Register::kCode_no_reg};
int ToNumber(Register reg);
Register ToRegister(int num);
static const bool kSimpleFPAliasing = true;
// Coprocessor register.
struct FPURegister {
enum Code {
#define REGISTER_CODE(R) kCode_##R,
DOUBLE_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kAfterLast,
kCode_no_reg = -1
};
static const int kMaxNumRegisters = Code::kAfterLast;
inline static int NumRegisters();
// TODO(plind): Warning, inconsistent numbering here. kNumFPURegisters refers
// to number of 32-bit FPU regs, but kNumAllocatableRegisters refers to
// number of Double regs (64-bit regs, or FPU-reg-pairs).
bool is_valid() const { return 0 <= reg_code && reg_code < kMaxNumRegisters; }
bool is(FPURegister reg) const { return reg_code == reg.reg_code; }
FPURegister low() const {
// TODO(plind): Create DCHECK for FR=0 mode. This usage suspect for FR=1.
// Find low reg of a Double-reg pair, which is the reg itself.
DCHECK(reg_code % 2 == 0); // Specified Double reg must be even.
FPURegister reg;
reg.reg_code = reg_code;
DCHECK(reg.is_valid());
return reg;
}
FPURegister high() const {
// TODO(plind): Create DCHECK for FR=0 mode. This usage illegal in FR=1.
// Find high reg of a Doubel-reg pair, which is reg + 1.
DCHECK(reg_code % 2 == 0); // Specified Double reg must be even.
FPURegister reg;
reg.reg_code = reg_code + 1;
DCHECK(reg.is_valid());
return reg;
}
int code() const {
DCHECK(is_valid());
return reg_code;
}
int bit() const {
DCHECK(is_valid());
return 1 << reg_code;
}
static FPURegister from_code(int code) {
FPURegister r = {code};
return r;
}
void setcode(int f) {
reg_code = f;
DCHECK(is_valid());
}
// Unfortunately we can't make this private in a struct.
int reg_code;
};
// A few double registers are reserved: one as a scratch register and one to
// hold 0.0.
// f28: 0.0
// f30: scratch register.
// V8 now supports the O32 ABI, and the FPU Registers are organized as 32
// 32-bit registers, f0 through f31. When used as 'double' they are used
// in pairs, starting with the even numbered register. So a double operation
// on f0 really uses f0 and f1.
// (Modern mips hardware also supports 32 64-bit registers, via setting
// (privileged) Status Register FR bit to 1. This is used by the N32 ABI,
// but it is not in common use. Someday we will want to support this in v8.)
// For O32 ABI, Floats and Doubles refer to same set of 32 32-bit registers.
typedef FPURegister FloatRegister;
typedef FPURegister DoubleRegister;
// TODO(mips64) Define SIMD registers.
typedef FPURegister Simd128Register;
const DoubleRegister no_freg = {-1};
const DoubleRegister f0 = {0}; // Return value in hard float mode.
const DoubleRegister f1 = {1};
const DoubleRegister f2 = {2};
const DoubleRegister f3 = {3};
const DoubleRegister f4 = {4};
const DoubleRegister f5 = {5};
const DoubleRegister f6 = {6};
const DoubleRegister f7 = {7};
const DoubleRegister f8 = {8};
const DoubleRegister f9 = {9};
const DoubleRegister f10 = {10};
const DoubleRegister f11 = {11};
const DoubleRegister f12 = {12}; // Arg 0 in hard float mode.
const DoubleRegister f13 = {13};
const DoubleRegister f14 = {14}; // Arg 1 in hard float mode.
const DoubleRegister f15 = {15};
const DoubleRegister f16 = {16};
const DoubleRegister f17 = {17};
const DoubleRegister f18 = {18};
const DoubleRegister f19 = {19};
const DoubleRegister f20 = {20};
const DoubleRegister f21 = {21};
const DoubleRegister f22 = {22};
const DoubleRegister f23 = {23};
const DoubleRegister f24 = {24};
const DoubleRegister f25 = {25};
const DoubleRegister f26 = {26};
const DoubleRegister f27 = {27};
const DoubleRegister f28 = {28};
const DoubleRegister f29 = {29};
const DoubleRegister f30 = {30};
const DoubleRegister f31 = {31};
// Register aliases.
// cp is assumed to be a callee saved register.
// Defined using #define instead of "static const Register&" because Clang
// complains otherwise when a compilation unit that includes this header
// doesn't use the variables.
#define kRootRegister s6
#define cp s7
#define kLithiumScratchReg s3
#define kLithiumScratchReg2 s4
#define kLithiumScratchDouble f30
#define kDoubleRegZero f28
// Used on mips64r6 for compare operations.
// We use the last non-callee saved odd register for N64 ABI
#define kDoubleCompareReg f23
// FPU (coprocessor 1) control registers.
// Currently only FCSR (#31) is implemented.
struct FPUControlRegister {
bool is_valid() const { return reg_code == kFCSRRegister; }
bool is(FPUControlRegister creg) const { return reg_code == creg.reg_code; }
int code() const {
DCHECK(is_valid());
return reg_code;
}
int bit() const {
DCHECK(is_valid());
return 1 << reg_code;
}
void setcode(int f) {
reg_code = f;
DCHECK(is_valid());
}
// Unfortunately we can't make this private in a struct.
int reg_code;
};
const FPUControlRegister no_fpucreg = { kInvalidFPUControlRegister };
const FPUControlRegister FCSR = { kFCSRRegister };
// -----------------------------------------------------------------------------
// Machine instruction Operands.
const int kSmiShift = kSmiTagSize + kSmiShiftSize;
const uint64_t kSmiShiftMask = (1UL << kSmiShift) - 1;
// Class Operand represents a shifter operand in data processing instructions.
class Operand BASE_EMBEDDED {
public:
// Immediate.
INLINE(explicit Operand(int64_t immediate,
RelocInfo::Mode rmode = RelocInfo::NONE64));
INLINE(explicit Operand(const ExternalReference& f));
INLINE(explicit Operand(const char* s));
INLINE(explicit Operand(Object** opp));
INLINE(explicit Operand(Context** cpp));
explicit Operand(Handle<Object> handle);
INLINE(explicit Operand(Smi* value));
// Register.
INLINE(explicit Operand(Register rm));
// Return true if this is a register operand.
INLINE(bool is_reg() const);
inline int64_t immediate() const {
DCHECK(!is_reg());
return imm64_;
}
Register rm() const { return rm_; }
private:
Register rm_;
int64_t imm64_; // Valid if rm_ == no_reg.
RelocInfo::Mode rmode_;
friend class Assembler;
friend class MacroAssembler;
};
// On MIPS we have only one adressing mode with base_reg + offset.
// Class MemOperand represents a memory operand in load and store instructions.
class MemOperand : public Operand {
public:
// Immediate value attached to offset.
enum OffsetAddend {
offset_minus_one = -1,
offset_zero = 0
};
explicit MemOperand(Register rn, int32_t offset = 0);
explicit MemOperand(Register rn, int32_t unit, int32_t multiplier,
OffsetAddend offset_addend = offset_zero);
int32_t offset() const { return offset_; }
bool OffsetIsInt16Encodable() const {
return is_int16(offset_);
}
private:
int32_t offset_;
friend class Assembler;
};
class Assembler : public AssemblerBase {
public:
// Create an assembler. Instructions and relocation information are emitted
// into a buffer, with the instructions starting from the beginning and the
// relocation information starting from the end of the buffer. See CodeDesc
// for a detailed comment on the layout (globals.h).
//
// If the provided buffer is NULL, the assembler allocates and grows its own
// buffer, and buffer_size determines the initial buffer size. The buffer is
// owned by the assembler and deallocated upon destruction of the assembler.
//
// If the provided buffer is not NULL, the assembler uses the provided buffer
// for code generation and assumes its size to be buffer_size. If the buffer
// is too small, a fatal error occurs. No deallocation of the buffer is done
// upon destruction of the assembler.
Assembler(Isolate* isolate, void* buffer, int buffer_size);
virtual ~Assembler() { }
// GetCode emits any pending (non-emitted) code and fills the descriptor
// desc. GetCode() is idempotent; it returns the same result if no other
// Assembler functions are invoked in between GetCode() calls.
void GetCode(CodeDesc* desc);
// Label operations & relative jumps (PPUM Appendix D).
//
// Takes a branch opcode (cc) and a label (L) and generates
// either a backward branch or a forward branch and links it
// to the label fixup chain. Usage:
//
// Label L; // unbound label
// j(cc, &L); // forward branch to unbound label
// bind(&L); // bind label to the current pc
// j(cc, &L); // backward branch to bound label
// bind(&L); // illegal: a label may be bound only once
//
// Note: The same Label can be used for forward and backward branches
// but it may be bound only once.
void bind(Label* L); // Binds an unbound label L to current code position.
enum OffsetSize : int { kOffset26 = 26, kOffset21 = 21, kOffset16 = 16 };
// Determines if Label is bound and near enough so that branch instruction
// can be used to reach it, instead of jump instruction.
bool is_near(Label* L);
bool is_near(Label* L, OffsetSize bits);
bool is_near_branch(Label* L);
inline bool is_near_pre_r6(Label* L) {
DCHECK(!(kArchVariant == kMips64r6));
return pc_offset() - L->pos() < kMaxBranchOffset - 4 * kInstrSize;
}
inline bool is_near_r6(Label* L) {
DCHECK(kArchVariant == kMips64r6);
return pc_offset() - L->pos() < kMaxCompactBranchOffset - 4 * kInstrSize;
}
int BranchOffset(Instr instr);
// Returns the branch offset to the given label from the current code
// position. Links the label to the current position if it is still unbound.
// Manages the jump elimination optimization if the second parameter is true.
int32_t branch_offset_helper(Label* L, OffsetSize bits);
inline int32_t branch_offset(Label* L) {
return branch_offset_helper(L, OffsetSize::kOffset16);
}
inline int32_t branch_offset21(Label* L) {
return branch_offset_helper(L, OffsetSize::kOffset21);
}
inline int32_t branch_offset26(Label* L) {
return branch_offset_helper(L, OffsetSize::kOffset26);
}
inline int32_t shifted_branch_offset(Label* L) {
return branch_offset(L) >> 2;
}
inline int32_t shifted_branch_offset21(Label* L) {
return branch_offset21(L) >> 2;
}
inline int32_t shifted_branch_offset26(Label* L) {
return branch_offset26(L) >> 2;
}
uint64_t jump_address(Label* L);
uint64_t jump_offset(Label* L);
// Puts a labels target address at the given position.
// The high 8 bits are set to zero.
void label_at_put(Label* L, int at_offset);
// Read/Modify the code target address in the branch/call instruction at pc.
static Address target_address_at(Address pc);
static void set_target_address_at(
Isolate* isolate, Address pc, Address target,
ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
// On MIPS there is no Constant Pool so we skip that parameter.
INLINE(static Address target_address_at(Address pc, Address constant_pool)) {
return target_address_at(pc);
}
INLINE(static void set_target_address_at(
Isolate* isolate, Address pc, Address constant_pool, Address target,
ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)) {
set_target_address_at(isolate, pc, target, icache_flush_mode);
}
INLINE(static Address target_address_at(Address pc, Code* code)) {
Address constant_pool = code ? code->constant_pool() : NULL;
return target_address_at(pc, constant_pool);
}
INLINE(static void set_target_address_at(
Isolate* isolate, Address pc, Code* code, Address target,
ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)) {
Address constant_pool = code ? code->constant_pool() : NULL;
set_target_address_at(isolate, pc, constant_pool, target,
icache_flush_mode);
}
// Return the code target address at a call site from the return address
// of that call in the instruction stream.
inline static Address target_address_from_return_address(Address pc);
static void JumpLabelToJumpRegister(Address pc);
static void QuietNaN(HeapObject* nan);
// This sets the branch destination (which gets loaded at the call address).
// This is for calls and branches within generated code. The serializer
// has already deserialized the lui/ori instructions etc.
inline static void deserialization_set_special_target_at(
Isolate* isolate, Address instruction_payload, Code* code,
Address target) {
set_target_address_at(
isolate,
instruction_payload - kInstructionsFor64BitConstant * kInstrSize, code,
target);
}
// This sets the internal reference at the pc.
inline static void deserialization_set_target_internal_reference_at(
Isolate* isolate, Address pc, Address target,
RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);
// Size of an instruction.
static const int kInstrSize = sizeof(Instr);
// Difference between address of current opcode and target address offset.
static const int kBranchPCOffset = 4;
// Here we are patching the address in the LUI/ORI instruction pair.
// These values are used in the serialization process and must be zero for
// MIPS platform, as Code, Embedded Object or External-reference pointers
// are split across two consecutive instructions and don't exist separately
// in the code, so the serializer should not step forwards in memory after
// a target is resolved and written.
static const int kSpecialTargetSize = 0;
// Number of consecutive instructions used to store 32bit/64bit constant.
// This constant was used in RelocInfo::target_address_address() function
// to tell serializer address of the instruction that follows
// LUI/ORI instruction pair.
static const int kInstructionsFor32BitConstant = 2;
static const int kInstructionsFor64BitConstant = 4;
// Distance between the instruction referring to the address of the call
// target and the return address.
#ifdef _MIPS_ARCH_MIPS64R6
static const int kCallTargetAddressOffset = 5 * kInstrSize;
#else
static const int kCallTargetAddressOffset = 6 * kInstrSize;
#endif
// Distance between start of patched debug break slot and the emitted address
// to jump to.
static const int kPatchDebugBreakSlotAddressOffset = 6 * kInstrSize;
// Difference between address of current opcode and value read from pc
// register.
static const int kPcLoadDelta = 4;
#ifdef _MIPS_ARCH_MIPS64R6
static const int kDebugBreakSlotInstructions = 5;
#else
static const int kDebugBreakSlotInstructions = 6;
#endif
static const int kDebugBreakSlotLength =
kDebugBreakSlotInstructions * kInstrSize;
// ---------------------------------------------------------------------------
// Code generation.
// Insert the smallest number of nop instructions
// possible to align the pc offset to a multiple
// of m. m must be a power of 2 (>= 4).
void Align(int m);
// Insert the smallest number of zero bytes possible to align the pc offset
// to a mulitple of m. m must be a power of 2 (>= 2).
void DataAlign(int m);
// Aligns code to something that's optimal for a jump target for the platform.
void CodeTargetAlign();
// Different nop operations are used by the code generator to detect certain
// states of the generated code.
enum NopMarkerTypes {
NON_MARKING_NOP = 0,
DEBUG_BREAK_NOP,
// IC markers.
PROPERTY_ACCESS_INLINED,
PROPERTY_ACCESS_INLINED_CONTEXT,
PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
// Helper values.
LAST_CODE_MARKER,
FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED,
// Code aging
CODE_AGE_MARKER_NOP = 6,
CODE_AGE_SEQUENCE_NOP
};
// Type == 0 is the default non-marking nop. For mips this is a
// sll(zero_reg, zero_reg, 0). We use rt_reg == at for non-zero
// marking, to avoid conflict with ssnop and ehb instructions.
void nop(unsigned int type = 0) {
DCHECK(type < 32);
Register nop_rt_reg = (type == 0) ? zero_reg : at;
sll(zero_reg, nop_rt_reg, type, true);
}
// --------Branch-and-jump-instructions----------
// We don't use likely variant of instructions.
void b(int16_t offset);
inline void b(Label* L) { b(shifted_branch_offset(L)); }
void bal(int16_t offset);
inline void bal(Label* L) { bal(shifted_branch_offset(L)); }
void bc(int32_t offset);
inline void bc(Label* L) { bc(shifted_branch_offset26(L)); }
void balc(int32_t offset);
inline void balc(Label* L) { balc(shifted_branch_offset26(L)); }
void beq(Register rs, Register rt, int16_t offset);
inline void beq(Register rs, Register rt, Label* L) {
beq(rs, rt, shifted_branch_offset(L));
}
void bgez(Register rs, int16_t offset);
void bgezc(Register rt, int16_t offset);
inline void bgezc(Register rt, Label* L) {
bgezc(rt, shifted_branch_offset(L));
}
void bgeuc(Register rs, Register rt, int16_t offset);
inline void bgeuc(Register rs, Register rt, Label* L) {
bgeuc(rs, rt, shifted_branch_offset(L));
}
void bgec(Register rs, Register rt, int16_t offset);
inline void bgec(Register rs, Register rt, Label* L) {
bgec(rs, rt, shifted_branch_offset(L));
}
void bgezal(Register rs, int16_t offset);
void bgezalc(Register rt, int16_t offset);
inline void bgezalc(Register rt, Label* L) {
bgezalc(rt, shifted_branch_offset(L));
}
void bgezall(Register rs, int16_t offset);
inline void bgezall(Register rs, Label* L) {
bgezall(rs, branch_offset(L) >> 2);
}
void bgtz(Register rs, int16_t offset);
void bgtzc(Register rt, int16_t offset);
inline void bgtzc(Register rt, Label* L) {
bgtzc(rt, shifted_branch_offset(L));
}
void blez(Register rs, int16_t offset);
void blezc(Register rt, int16_t offset);
inline void blezc(Register rt, Label* L) {
blezc(rt, shifted_branch_offset(L));
}
void bltz(Register rs, int16_t offset);
void bltzc(Register rt, int16_t offset);
inline void bltzc(Register rt, Label* L) {
bltzc(rt, shifted_branch_offset(L));
}
void bltuc(Register rs, Register rt, int16_t offset);
inline void bltuc(Register rs, Register rt, Label* L) {
bltuc(rs, rt, shifted_branch_offset(L));
}
void bltc(Register rs, Register rt, int16_t offset);
inline void bltc(Register rs, Register rt, Label* L) {
bltc(rs, rt, shifted_branch_offset(L));
}
void bltzal(Register rs, int16_t offset);
void blezalc(Register rt, int16_t offset);
inline void blezalc(Register rt, Label* L) {
blezalc(rt, shifted_branch_offset(L));
}
void bltzalc(Register rt, int16_t offset);
inline void bltzalc(Register rt, Label* L) {
bltzalc(rt, shifted_branch_offset(L));
}
void bgtzalc(Register rt, int16_t offset);
inline void bgtzalc(Register rt, Label* L) {
bgtzalc(rt, shifted_branch_offset(L));
}
void beqzalc(Register rt, int16_t offset);
inline void beqzalc(Register rt, Label* L) {
beqzalc(rt, shifted_branch_offset(L));
}
void beqc(Register rs, Register rt, int16_t offset);
inline void beqc(Register rs, Register rt, Label* L) {
beqc(rs, rt, shifted_branch_offset(L));
}
void beqzc(Register rs, int32_t offset);
inline void beqzc(Register rs, Label* L) {
beqzc(rs, shifted_branch_offset21(L));
}
void bnezalc(Register rt, int16_t offset);
inline void bnezalc(Register rt, Label* L) {
bnezalc(rt, shifted_branch_offset(L));
}
void bnec(Register rs, Register rt, int16_t offset);
inline void bnec(Register rs, Register rt, Label* L) {
bnec(rs, rt, shifted_branch_offset(L));
}
void bnezc(Register rt, int32_t offset);
inline void bnezc(Register rt, Label* L) {
bnezc(rt, shifted_branch_offset21(L));
}
void bne(Register rs, Register rt, int16_t offset);
inline void bne(Register rs, Register rt, Label* L) {
bne(rs, rt, shifted_branch_offset(L));
}
void bovc(Register rs, Register rt, int16_t offset);
inline void bovc(Register rs, Register rt, Label* L) {
bovc(rs, rt, shifted_branch_offset(L));
}
void bnvc(Register rs, Register rt, int16_t offset);
inline void bnvc(Register rs, Register rt, Label* L) {
bnvc(rs, rt, shifted_branch_offset(L));
}
// Never use the int16_t b(l)cond version with a branch offset
// instead of using the Label* version.
// Jump targets must be in the current 256 MB-aligned region. i.e. 28 bits.
void j(int64_t target);
void jal(int64_t target);
void j(Label* target);
void jal(Label* target);
void jalr(Register rs, Register rd = ra);
void jr(Register target);
void jic(Register rt, int16_t offset);
void jialc(Register rt, int16_t offset);
// -------Data-processing-instructions---------
// Arithmetic.
void addu(Register rd, Register rs, Register rt);
void subu(Register rd, Register rs, Register rt);
void div(Register rs, Register rt);
void divu(Register rs, Register rt);
void ddiv(Register rs, Register rt);
void ddivu(Register rs, Register rt);
void div(Register rd, Register rs, Register rt);
void divu(Register rd, Register rs, Register rt);
void ddiv(Register rd, Register rs, Register rt);
void ddivu(Register rd, Register rs, Register rt);
void mod(Register rd, Register rs, Register rt);
void modu(Register rd, Register rs, Register rt);
void dmod(Register rd, Register rs, Register rt);
void dmodu(Register rd, Register rs, Register rt);
void mul(Register rd, Register rs, Register rt);
void muh(Register rd, Register rs, Register rt);
void mulu(Register rd, Register rs, Register rt);
void muhu(Register rd, Register rs, Register rt);
void mult(Register rs, Register rt);
void multu(Register rs, Register rt);
void dmul(Register rd, Register rs, Register rt);
void dmuh(Register rd, Register rs, Register rt);
void dmulu(Register rd, Register rs, Register rt);
void dmuhu(Register rd, Register rs, Register rt);
void daddu(Register rd, Register rs, Register rt);
void dsubu(Register rd, Register rs, Register rt);
void dmult(Register rs, Register rt);
void dmultu(Register rs, Register rt);
void addiu(Register rd, Register rs, int32_t j);
void daddiu(Register rd, Register rs, int32_t j);
// Logical.
void and_(Register rd, Register rs, Register rt);
void or_(Register rd, Register rs, Register rt);
void xor_(Register rd, Register rs, Register rt);
void nor(Register rd, Register rs, Register rt);
void andi(Register rd, Register rs, int32_t j);
void ori(Register rd, Register rs, int32_t j);
void xori(Register rd, Register rs, int32_t j);
void lui(Register rd, int32_t j);
void aui(Register rt, Register rs, int32_t j);
void daui(Register rt, Register rs, int32_t j);
void dahi(Register rs, int32_t j);
void dati(Register rs, int32_t j);
// Shifts.
// Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop
// and may cause problems in normal code. coming_from_nop makes sure this
// doesn't happen.
void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false);
void sllv(Register rd, Register rt, Register rs);
void srl(Register rd, Register rt, uint16_t sa);
void srlv(Register rd, Register rt, Register rs);
void sra(Register rt, Register rd, uint16_t sa);
void srav(Register rt, Register rd, Register rs);
void rotr(Register rd, Register rt, uint16_t sa);
void rotrv(Register rd, Register rt, Register rs);
void dsll(Register rd, Register rt, uint16_t sa);
void dsllv(Register rd, Register rt, Register rs);
void dsrl(Register rd, Register rt, uint16_t sa);
void dsrlv(Register rd, Register rt, Register rs);
void drotr(Register rd, Register rt, uint16_t sa);
void drotr32(Register rd, Register rt, uint16_t sa);
void drotrv(Register rd, Register rt, Register rs);
void dsra(Register rt, Register rd, uint16_t sa);
void dsrav(Register rd, Register rt, Register rs);
void dsll32(Register rt, Register rd, uint16_t sa);
void dsrl32(Register rt, Register rd, uint16_t sa);
void dsra32(Register rt, Register rd, uint16_t sa);
// ------------Memory-instructions-------------
void lb(Register rd, const MemOperand& rs);
void lbu(Register rd, const MemOperand& rs);
void lh(Register rd, const MemOperand& rs);
void lhu(Register rd, const MemOperand& rs);
void lw(Register rd, const MemOperand& rs);
void lwu(Register rd, const MemOperand& rs);
void lwl(Register rd, const MemOperand& rs);
void lwr(Register rd, const MemOperand& rs);
void sb(Register rd, const MemOperand& rs);
void sh(Register rd, const MemOperand& rs);
void sw(Register rd, const MemOperand& rs);
void swl(Register rd, const MemOperand& rs);
void swr(Register rd, const MemOperand& rs);
void ldl(Register rd, const MemOperand& rs);
void ldr(Register rd, const MemOperand& rs);
void sdl(Register rd, const MemOperand& rs);
void sdr(Register rd, const MemOperand& rs);
void ld(Register rd, const MemOperand& rs);
void sd(Register rd, const MemOperand& rs);
// ---------PC-Relative-instructions-----------
void addiupc(Register rs, int32_t imm19);
void lwpc(Register rs, int32_t offset19);
void lwupc(Register rs, int32_t offset19);
void ldpc(Register rs, int32_t offset18);
void auipc(Register rs, int16_t imm16);
void aluipc(Register rs, int16_t imm16);
// ----------------Prefetch--------------------
void pref(int32_t hint, const MemOperand& rs);
// -------------Misc-instructions--------------
// Break / Trap instructions.
void break_(uint32_t code, bool break_as_stop = false);
void stop(const char* msg, uint32_t code = kMaxStopCode);
void tge(Register rs, Register rt, uint16_t code);
void tgeu(Register rs, Register rt, uint16_t code);
void tlt(Register rs, Register rt, uint16_t code);
void tltu(Register rs, Register rt, uint16_t code);
void teq(Register rs, Register rt, uint16_t code);
void tne(Register rs, Register rt, uint16_t code);
// Memory barrier instruction.
void sync();
// Move from HI/LO register.
void mfhi(Register rd);
void mflo(Register rd);
// Set on less than.
void slt(Register rd, Register rs, Register rt);
void sltu(Register rd, Register rs, Register rt);
void slti(Register rd, Register rs, int32_t j);
void sltiu(Register rd, Register rs, int32_t j);
// Conditional move.
void movz(Register rd, Register rs, Register rt);
void movn(Register rd, Register rs, Register rt);
void movt(Register rd, Register rs, uint16_t cc = 0);
void movf(Register rd, Register rs, uint16_t cc = 0);
void sel(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
void sel_s(FPURegister fd, FPURegister fs, FPURegister ft);
void sel_d(FPURegister fd, FPURegister fs, FPURegister ft);
void seleqz(Register rd, Register rs, Register rt);
void seleqz(SecondaryField fmt, FPURegister fd, FPURegister fs,
FPURegister ft);
void selnez(Register rs, Register rt, Register rd);
void selnez(SecondaryField fmt, FPURegister fd, FPURegister fs,
FPURegister ft);
void seleqz_d(FPURegister fd, FPURegister fs, FPURegister ft);
void seleqz_s(FPURegister fd, FPURegister fs, FPURegister ft);
void selnez_d(FPURegister fd, FPURegister fs, FPURegister ft);
void selnez_s(FPURegister fd, FPURegister fs, FPURegister ft);
void movz_s(FPURegister fd, FPURegister fs, Register rt);
void movz_d(FPURegister fd, FPURegister fs, Register rt);
void movt_s(FPURegister fd, FPURegister fs, uint16_t cc = 0);
void movt_d(FPURegister fd, FPURegister fs, uint16_t cc = 0);
void movf_s(FPURegister fd, FPURegister fs, uint16_t cc = 0);
void movf_d(FPURegister fd, FPURegister fs, uint16_t cc = 0);
void movn_s(FPURegister fd, FPURegister fs, Register rt);
void movn_d(FPURegister fd, FPURegister fs, Register rt);
// Bit twiddling.
void clz(Register rd, Register rs);
void dclz(Register rd, Register rs);
void ins_(Register rt, Register rs, uint16_t pos, uint16_t size);
void ext_(Register rt, Register rs, uint16_t pos, uint16_t size);
void dext_(Register rt, Register rs, uint16_t pos, uint16_t size);
void dextm(Register rt, Register rs, uint16_t pos, uint16_t size);
void dextu(Register rt, Register rs, uint16_t pos, uint16_t size);
void dins_(Register rt, Register rs, uint16_t pos, uint16_t size);
void bitswap(Register rd, Register rt);
void dbitswap(Register rd, Register rt);
void align(Register rd, Register rs, Register rt, uint8_t bp);
void dalign(Register rd, Register rs, Register rt, uint8_t bp);
void wsbh(Register rd, Register rt);
void dsbh(Register rd, Register rt);
void dshd(Register rd, Register rt);
void seh(Register rd, Register rt);
void seb(Register rd, Register rt);
// --------Coprocessor-instructions----------------
// Load, store, and move.
void lwc1(FPURegister fd, const MemOperand& src);
void ldc1(FPURegister fd, const MemOperand& src);
void swc1(FPURegister fs, const MemOperand& dst);
void sdc1(FPURegister fs, const MemOperand& dst);
void mtc1(Register rt, FPURegister fs);
void mthc1(Register rt, FPURegister fs);
void dmtc1(Register rt, FPURegister fs);
void mfc1(Register rt, FPURegister fs);
void mfhc1(Register rt, FPURegister fs);
void dmfc1(Register rt, FPURegister fs);
void ctc1(Register rt, FPUControlRegister fs);
void cfc1(Register rt, FPUControlRegister fs);
// Arithmetic.
void add_s(FPURegister fd, FPURegister fs, FPURegister ft);
void add_d(FPURegister fd, FPURegister fs, FPURegister ft);
void sub_s(FPURegister fd, FPURegister fs, FPURegister ft);
void sub_d(FPURegister fd, FPURegister fs, FPURegister ft);
void mul_s(FPURegister fd, FPURegister fs, FPURegister ft);
void mul_d(FPURegister fd, FPURegister fs, FPURegister ft);
void madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
void div_s(FPURegister fd, FPURegister fs, FPURegister ft);
void div_d(FPURegister fd, FPURegister fs, FPURegister ft);
void abs_s(FPURegister fd, FPURegister fs);
void abs_d(FPURegister fd, FPURegister fs);
void mov_d(FPURegister fd, FPURegister fs);
void mov_s(FPURegister fd, FPURegister fs);
void neg_s(FPURegister fd, FPURegister fs);
void neg_d(FPURegister fd, FPURegister fs);
void sqrt_s(FPURegister fd, FPURegister fs);
void sqrt_d(FPURegister fd, FPURegister fs);
void rsqrt_s(FPURegister fd, FPURegister fs);
void rsqrt_d(FPURegister fd, FPURegister fs);
void recip_d(FPURegister fd, FPURegister fs);
void recip_s(FPURegister fd, FPURegister fs);
// Conversion.
void cvt_w_s(FPURegister fd, FPURegister fs);
void cvt_w_d(FPURegister fd, FPURegister fs);
void trunc_w_s(FPURegister fd, FPURegister fs);
void trunc_w_d(FPURegister fd, FPURegister fs);
void round_w_s(FPURegister fd, FPURegister fs);
void round_w_d(FPURegister fd, FPURegister fs);
void floor_w_s(FPURegister fd, FPURegister fs);
void floor_w_d(FPURegister fd, FPURegister fs);
void ceil_w_s(FPURegister fd, FPURegister fs);
void ceil_w_d(FPURegister fd, FPURegister fs);
void rint_s(FPURegister fd, FPURegister fs);
void rint_d(FPURegister fd, FPURegister fs);
void rint(SecondaryField fmt, FPURegister fd, FPURegister fs);
void cvt_l_s(FPURegister fd, FPURegister fs);
void cvt_l_d(FPURegister fd, FPURegister fs);
void trunc_l_s(FPURegister fd, FPURegister fs);
void trunc_l_d(FPURegister fd, FPURegister fs);
void round_l_s(FPURegister fd, FPURegister fs);
void round_l_d(FPURegister fd, FPURegister fs);
void floor_l_s(FPURegister fd, FPURegister fs);
void floor_l_d(FPURegister fd, FPURegister fs);
void ceil_l_s(FPURegister fd, FPURegister fs);
void ceil_l_d(FPURegister fd, FPURegister fs);
void class_s(FPURegister fd, FPURegister fs);
void class_d(FPURegister fd, FPURegister fs);
void min(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
void mina(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
void max(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
void maxa(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
void min_s(FPURegister fd, FPURegister fs, FPURegister ft);
void min_d(FPURegister fd, FPURegister fs, FPURegister ft);
void max_s(FPURegister fd, FPURegister fs, FPURegister ft);
void max_d(FPURegister fd, FPURegister fs, FPURegister ft);
void mina_s(FPURegister fd, FPURegister fs, FPURegister ft);
void mina_d(FPURegister fd, FPURegister fs, FPURegister ft);
void maxa_s(FPURegister fd, FPURegister fs, FPURegister ft);
void maxa_d(FPURegister fd, FPURegister fs, FPURegister ft);
void cvt_s_w(FPURegister fd, FPURegister fs);
void cvt_s_l(FPURegister fd, FPURegister fs);
void cvt_s_d(FPURegister fd, FPURegister fs);
void cvt_d_w(FPURegister fd, FPURegister fs);
void cvt_d_l(FPURegister fd, FPURegister fs);
void cvt_d_s(FPURegister fd, FPURegister fs);
// Conditions and branches for MIPSr6.
void cmp(FPUCondition cond, SecondaryField fmt,
FPURegister fd, FPURegister ft, FPURegister fs);
void cmp_s(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft);
void cmp_d(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft);
void bc1eqz(int16_t offset, FPURegister ft);
inline void bc1eqz(Label* L, FPURegister ft) {
bc1eqz(shifted_branch_offset(L), ft);
}
void bc1nez(int16_t offset, FPURegister ft);
inline void bc1nez(Label* L, FPURegister ft) {
bc1nez(shifted_branch_offset(L), ft);
}
// Conditions and branches for non MIPSr6.
void c(FPUCondition cond, SecondaryField fmt,
FPURegister ft, FPURegister fs, uint16_t cc = 0);
void c_s(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0);
void c_d(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0);
void bc1f(int16_t offset, uint16_t cc = 0);
inline void bc1f(Label* L, uint16_t cc = 0) {
bc1f(shifted_branch_offset(L), cc);
}
void bc1t(int16_t offset, uint16_t cc = 0);
inline void bc1t(Label* L, uint16_t cc = 0) {
bc1t(shifted_branch_offset(L), cc);
}
void fcmp(FPURegister src1, const double src2, FPUCondition cond);
// Check the code size generated from label to here.
int SizeOfCodeGeneratedSince(Label* label) {
return pc_offset() - label->pos();
}
// Check the number of instructions generated from label to here.
int InstructionsGeneratedSince(Label* label) {
return SizeOfCodeGeneratedSince(label) / kInstrSize;
}
// Class for scoping postponing the trampoline pool generation.
class BlockTrampolinePoolScope {
public:
explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) {
assem_->StartBlockTrampolinePool();
}
~BlockTrampolinePoolScope() {
assem_->EndBlockTrampolinePool();
}
private:
Assembler* assem_;
DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope);
};
// Class for postponing the assembly buffer growth. Typically used for
// sequences of instructions that must be emitted as a unit, before
// buffer growth (and relocation) can occur.
// This blocking scope is not nestable.
class BlockGrowBufferScope {
public:
explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) {
assem_->StartBlockGrowBuffer();
}
~BlockGrowBufferScope() {
assem_->EndBlockGrowBuffer();
}
private:
Assembler* assem_;
DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope);
};
// Debugging.
// Mark generator continuation.
void RecordGeneratorContinuation();
// Mark address of a debug break slot.
void RecordDebugBreakSlot(RelocInfo::Mode mode);
// Record the AST id of the CallIC being compiled, so that it can be placed
// in the relocation information.
void SetRecordedAstId(TypeFeedbackId ast_id) {
DCHECK(recorded_ast_id_.IsNone());
recorded_ast_id_ = ast_id;
}
TypeFeedbackId RecordedAstId() {
DCHECK(!recorded_ast_id_.IsNone());
return recorded_ast_id_;
}
void ClearRecordedAstId() { recorded_ast_id_ = TypeFeedbackId::None(); }
// Record a comment relocation entry that can be used by a disassembler.
// Use --code-comments to enable.
void RecordComment(const char* msg);
// Record a deoptimization reason that can be used by a log or cpu profiler.
// Use --trace-deopt to enable.
void RecordDeoptReason(const int reason, int raw_position, int id);
static int RelocateInternalReference(RelocInfo::Mode rmode, byte* pc,
intptr_t pc_delta);
// Writes a single byte or word of data in the code stream. Used for
// inline tables, e.g., jump-tables.
void db(uint8_t data);
void dd(uint32_t data);
void dq(uint64_t data);
void dp(uintptr_t data) { dq(data); }
void dd(Label* label);
// Postpone the generation of the trampoline pool for the specified number of
// instructions.
void BlockTrampolinePoolFor(int instructions);
// Check if there is less than kGap bytes available in the buffer.
// If this is the case, we need to grow the buffer before emitting
// an instruction or relocation information.
inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
// Get the number of bytes available in the buffer.
inline intptr_t available_space() const {
return reloc_info_writer.pos() - pc_;
}
// Read/patch instructions.
static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); }
static void instr_at_put(byte* pc, Instr instr) {
*reinterpret_cast<Instr*>(pc) = instr;
}
Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); }
void instr_at_put(int pos, Instr instr) {
*reinterpret_cast<Instr*>(buffer_ + pos) = instr;
}
// Check if an instruction is a branch of some kind.
static bool IsBranch(Instr instr);
static bool IsBc(Instr instr);
static bool IsBzc(Instr instr);
static bool IsBeq(Instr instr);
static bool IsBne(Instr instr);
static bool IsBeqzc(Instr instr);
static bool IsBnezc(Instr instr);
static bool IsBeqc(Instr instr);
static bool IsBnec(Instr instr);
static bool IsJump(Instr instr);
static bool IsJ(Instr instr);
static bool IsLui(Instr instr);
static bool IsOri(Instr instr);
static bool IsJal(Instr instr);
static bool IsJr(Instr instr);
static bool IsJalr(Instr instr);
static bool IsNop(Instr instr, unsigned int type);
static bool IsPop(Instr instr);
static bool IsPush(Instr instr);
static bool IsLwRegFpOffset(Instr instr);
static bool IsSwRegFpOffset(Instr instr);
static bool IsLwRegFpNegOffset(Instr instr);
static bool IsSwRegFpNegOffset(Instr instr);
static Register GetRtReg(Instr instr);
static Register GetRsReg(Instr instr);
static Register GetRdReg(Instr instr);
static uint32_t GetRt(Instr instr);
static uint32_t GetRtField(Instr instr);
static uint32_t GetRs(Instr instr);
static uint32_t GetRsField(Instr instr);
static uint32_t GetRd(Instr instr);
static uint32_t GetRdField(Instr instr);
static uint32_t GetSa(Instr instr);
static uint32_t GetSaField(Instr instr);
static uint32_t GetOpcodeField(Instr instr);
static uint32_t GetFunction(Instr instr);
static uint32_t GetFunctionField(Instr instr);
static uint32_t GetImmediate16(Instr instr);
static uint32_t GetLabelConst(Instr instr);
static int32_t GetBranchOffset(Instr instr);
static bool IsLw(Instr instr);
static int16_t GetLwOffset(Instr instr);
static Instr SetLwOffset(Instr instr, int16_t offset);
static bool IsSw(Instr instr);
static Instr SetSwOffset(Instr instr, int16_t offset);
static bool IsAddImmediate(Instr instr);
static Instr SetAddImmediateOffset(Instr instr, int16_t offset);
static bool IsAndImmediate(Instr instr);
static bool IsEmittedConstant(Instr instr);
void CheckTrampolinePool();
void PatchConstantPoolAccessInstruction(int pc_offset, int offset,
ConstantPoolEntry::Access access,
ConstantPoolEntry::Type type) {
// No embedded constant pool support.
UNREACHABLE();
}
bool IsPrevInstrCompactBranch() { return prev_instr_compact_branch_; }
inline int UnboundLabelsCount() { return unbound_labels_count_; }
protected:
// Load Scaled Address instructions.
void lsa(Register rd, Register rt, Register rs, uint8_t sa);
void dlsa(Register rd, Register rt, Register rs, uint8_t sa);
// Helpers.
void LoadRegPlusOffsetToAt(const MemOperand& src);
// Relocation for a type-recording IC has the AST id added to it. This
// member variable is a way to pass the information from the call site to
// the relocation info.
TypeFeedbackId recorded_ast_id_;
inline static void set_target_internal_reference_encoded_at(Address pc,
Address target);
int64_t buffer_space() const { return reloc_info_writer.pos() - pc_; }
// Decode branch instruction at pos and return branch target pos.
int target_at(int pos, bool is_internal);
// Patch branch instruction at pos to branch to given branch target pos.
void target_at_put(int pos, int target_pos, bool is_internal);
// Say if we need to relocate with this mode.
bool MustUseReg(RelocInfo::Mode rmode);
// Record reloc info for current pc_.
void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
// Block the emission of the trampoline pool before pc_offset.
void BlockTrampolinePoolBefore(int pc_offset) {
if (no_trampoline_pool_before_ < pc_offset)
no_trampoline_pool_before_ = pc_offset;
}
void StartBlockTrampolinePool() {
trampoline_pool_blocked_nesting_++;
}
void EndBlockTrampolinePool() {
trampoline_pool_blocked_nesting_--;
}
bool is_trampoline_pool_blocked() const {
return trampoline_pool_blocked_nesting_ > 0;
}
bool has_exception() const {
return internal_trampoline_exception_;
}
void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi);
bool is_trampoline_emitted() const {
return trampoline_emitted_;
}
// Temporarily block automatic assembly buffer growth.
void StartBlockGrowBuffer() {
DCHECK(!block_buffer_growth_);
block_buffer_growth_ = true;
}
void EndBlockGrowBuffer() {
DCHECK(block_buffer_growth_);
block_buffer_growth_ = false;
}
bool is_buffer_growth_blocked() const {
return block_buffer_growth_;
}
void EmitForbiddenSlotInstruction() {
if (IsPrevInstrCompactBranch()) {
nop();
}
}
inline void CheckTrampolinePoolQuick(int extra_instructions = 0);
private:
// Buffer size and constant pool distance are checked together at regular
// intervals of kBufferCheckInterval emitted bytes.
static const int kBufferCheckInterval = 1*KB/2;
// Code generation.
// The relocation writer's position is at least kGap bytes below the end of
// the generated instructions. This is so that multi-instruction sequences do
// not have to check for overflow. The same is true for writes of large
// relocation info entries.
static const int kGap = 32;
// Repeated checking whether the trampoline pool should be emitted is rather
// expensive. By default we only check again once a number of instructions
// has been generated.
static const int kCheckConstIntervalInst = 32;
static const int kCheckConstInterval = kCheckConstIntervalInst * kInstrSize;
int next_buffer_check_; // pc offset of next buffer check.
// Emission of the trampoline pool may be blocked in some code sequences.
int trampoline_pool_blocked_nesting_; // Block emission if this is not zero.
int no_trampoline_pool_before_; // Block emission before this pc offset.
// Keep track of the last emitted pool to guarantee a maximal distance.
int last_trampoline_pool_end_; // pc offset of the end of the last pool.
// Automatic growth of the assembly buffer may be blocked for some sequences.
bool block_buffer_growth_; // Block growth when true.
// Relocation information generation.
// Each relocation is encoded as a variable size value.
static const int kMaxRelocSize = RelocInfoWriter::kMaxSize;
RelocInfoWriter reloc_info_writer;
// The bound position, before this we cannot do instruction elimination.
int last_bound_pos_;
// Readable constants for compact branch handling in emit()
enum class CompactBranchType : bool { NO = false, COMPACT_BRANCH = true };
// Code emission.
inline void CheckBuffer();
void GrowBuffer();
inline void emit(Instr x,
CompactBranchType is_compact_branch = CompactBranchType::NO);
inline void emit(uint64_t x);
inline void CheckForEmitInForbiddenSlot();
template <typename T>
inline void EmitHelper(T x);
inline void EmitHelper(Instr x, CompactBranchType is_compact_branch);
// Instruction generation.
// We have 3 different kind of encoding layout on MIPS.
// However due to many different types of objects encoded in the same fields
// we have quite a few aliases for each mode.
// Using the same structure to refer to Register and FPURegister would spare a
// few aliases, but mixing both does not look clean to me.
// Anyway we could surely implement this differently.
void GenInstrRegister(Opcode opcode,
Register rs,
Register rt,
Register rd,
uint16_t sa = 0,
SecondaryField func = NULLSF);
void GenInstrRegister(Opcode opcode,
Register rs,
Register rt,
uint16_t msb,
uint16_t lsb,
SecondaryField func);
void GenInstrRegister(Opcode opcode,
SecondaryField fmt,
FPURegister ft,
FPURegister fs,
FPURegister fd,
SecondaryField func = NULLSF);
void GenInstrRegister(Opcode opcode,
FPURegister fr,
FPURegister ft,
FPURegister fs,
FPURegister fd,
SecondaryField func = NULLSF);
void GenInstrRegister(Opcode opcode,
SecondaryField fmt,
Register rt,
FPURegister fs,
FPURegister fd,
SecondaryField func = NULLSF);
void GenInstrRegister(Opcode opcode,
SecondaryField fmt,
Register rt,
FPUControlRegister fs,
SecondaryField func = NULLSF);
void GenInstrImmediate(
Opcode opcode, Register rs, Register rt, int32_t j,
CompactBranchType is_compact_branch = CompactBranchType::NO);
void GenInstrImmediate(
Opcode opcode, Register rs, SecondaryField SF, int32_t j,
CompactBranchType is_compact_branch = CompactBranchType::NO);
void GenInstrImmediate(
Opcode opcode, Register r1, FPURegister r2, int32_t j,
CompactBranchType is_compact_branch = CompactBranchType::NO);
void GenInstrImmediate(
Opcode opcode, Register rs, int32_t offset21,
CompactBranchType is_compact_branch = CompactBranchType::NO);
void GenInstrImmediate(Opcode opcode, Register rs, uint32_t offset21);
void GenInstrImmediate(
Opcode opcode, int32_t offset26,
CompactBranchType is_compact_branch = CompactBranchType::NO);
void GenInstrJump(Opcode opcode,
uint32_t address);
// Labels.
void print(Label* L);
void bind_to(Label* L, int pos);
void next(Label* L, bool is_internal);
// One trampoline consists of:
// - space for trampoline slots,
// - space for labels.
//
// Space for trampoline slots is equal to slot_count * 2 * kInstrSize.
// Space for trampoline slots preceeds space for labels. Each label is of one
// instruction size, so total amount for labels is equal to
// label_count * kInstrSize.
class Trampoline {
public:
Trampoline() {
start_ = 0;
next_slot_ = 0;
free_slot_count_ = 0;
end_ = 0;
}
Trampoline(int start, int slot_count) {
start_ = start;
next_slot_ = start;
free_slot_count_ = slot_count;
end_ = start + slot_count * kTrampolineSlotsSize;
}
int start() {
return start_;
}
int end() {
return end_;
}
int take_slot() {
int trampoline_slot = kInvalidSlotPos;
if (free_slot_count_ <= 0) {
// We have run out of space on trampolines.
// Make sure we fail in debug mode, so we become aware of each case
// when this happens.
DCHECK(0);
// Internal exception will be caught.
} else {
trampoline_slot = next_slot_;
free_slot_count_--;
next_slot_ += kTrampolineSlotsSize;
}
return trampoline_slot;
}
private:
int start_;
int end_;
int next_slot_;
int free_slot_count_;
};
int32_t get_trampoline_entry(int32_t pos);
int unbound_labels_count_;
// After trampoline is emitted, long branches are used in generated code for
// the forward branches whose target offsets could be beyond reach of branch
// instruction. We use this information to trigger different mode of
// branch instruction generation, where we use jump instructions rather
// than regular branch instructions.
bool trampoline_emitted_;
static const int kTrampolineSlotsSize = 2 * kInstrSize;
static const int kMaxBranchOffset = (1 << (18 - 1)) - 1;
static const int kMaxCompactBranchOffset = (1 << (28 - 1)) - 1;
static const int kInvalidSlotPos = -1;
// Internal reference positions, required for unbounded internal reference
// labels.
std::set<int64_t> internal_reference_positions_;
void EmittedCompactBranchInstruction() { prev_instr_compact_branch_ = true; }
void ClearCompactBranchState() { prev_instr_compact_branch_ = false; }
bool prev_instr_compact_branch_ = false;
Trampoline trampoline_;
bool internal_trampoline_exception_;
friend class RegExpMacroAssemblerMIPS;
friend class RelocInfo;
friend class CodePatcher;
friend class BlockTrampolinePoolScope;
friend class EnsureSpace;
};
class EnsureSpace BASE_EMBEDDED {
public:
explicit EnsureSpace(Assembler* assembler) {
assembler->CheckBuffer();
}
};
} // namespace internal
} // namespace v8
#endif // V8_ARM_ASSEMBLER_MIPS_H_