blob: fed9d2417b72016cba64816b03bdbee1d220886d [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/socket/ssl_client_socket.h"
#include <errno.h>
#include <string.h>
#include <utility>
#include <openssl/bio.h>
#include <openssl/evp.h>
#include <openssl/pem.h>
#include "base/callback_helpers.h"
#include "base/files/file_util.h"
#include "base/location.h"
#include "base/macros.h"
#include "base/memory/ref_counted.h"
#include "base/run_loop.h"
#include "base/single_thread_task_runner.h"
#include "base/threading/thread_task_runner_handle.h"
#include "base/time/time.h"
#include "crypto/scoped_openssl_types.h"
#include "net/base/address_list.h"
#include "net/base/io_buffer.h"
#include "net/base/net_errors.h"
#include "net/base/test_completion_callback.h"
#include "net/cert/asn1_util.h"
#include "net/cert/ct_policy_enforcer.h"
#include "net/cert/ct_policy_status.h"
#include "net/cert/ct_verifier.h"
#include "net/cert/mock_cert_verifier.h"
#include "net/cert/test_root_certs.h"
#include "net/der/input.h"
#include "net/der/parser.h"
#include "net/der/tag.h"
#include "net/dns/host_resolver.h"
#include "net/http/transport_security_state.h"
#include "net/log/net_log.h"
#include "net/log/test_net_log.h"
#include "net/log/test_net_log_entry.h"
#include "net/log/test_net_log_util.h"
#include "net/socket/client_socket_factory.h"
#include "net/socket/client_socket_handle.h"
#include "net/socket/socket_test_util.h"
#include "net/socket/tcp_client_socket.h"
#include "net/ssl/channel_id_service.h"
#include "net/ssl/default_channel_id_store.h"
#include "net/ssl/ssl_cert_request_info.h"
#include "net/ssl/ssl_config_service.h"
#include "net/ssl/ssl_connection_status_flags.h"
#include "net/ssl/ssl_info.h"
#include "net/ssl/test_ssl_private_key.h"
#include "net/test/cert_test_util.h"
#include "net/test/spawned_test_server/spawned_test_server.h"
#include "net/test/test_data_directory.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "testing/platform_test.h"
using testing::_;
using testing::Return;
using testing::Truly;
namespace net {
namespace {
// WrappedStreamSocket is a base class that wraps an existing StreamSocket,
// forwarding the Socket and StreamSocket interfaces to the underlying
// transport.
// This is to provide a common base class for subclasses to override specific
// StreamSocket methods for testing, while still communicating with a 'real'
// StreamSocket.
class WrappedStreamSocket : public StreamSocket {
public:
explicit WrappedStreamSocket(std::unique_ptr<StreamSocket> transport)
: transport_(std::move(transport)) {}
~WrappedStreamSocket() override {}
// StreamSocket implementation:
int Connect(const CompletionCallback& callback) override {
return transport_->Connect(callback);
}
void Disconnect() override { transport_->Disconnect(); }
bool IsConnected() const override { return transport_->IsConnected(); }
bool IsConnectedAndIdle() const override {
return transport_->IsConnectedAndIdle();
}
int GetPeerAddress(IPEndPoint* address) const override {
return transport_->GetPeerAddress(address);
}
int GetLocalAddress(IPEndPoint* address) const override {
return transport_->GetLocalAddress(address);
}
const BoundNetLog& NetLog() const override { return transport_->NetLog(); }
void SetSubresourceSpeculation() override {
transport_->SetSubresourceSpeculation();
}
void SetOmniboxSpeculation() override { transport_->SetOmniboxSpeculation(); }
bool WasEverUsed() const override { return transport_->WasEverUsed(); }
bool WasNpnNegotiated() const override {
return transport_->WasNpnNegotiated();
}
NextProto GetNegotiatedProtocol() const override {
return transport_->GetNegotiatedProtocol();
}
bool GetSSLInfo(SSLInfo* ssl_info) override {
return transport_->GetSSLInfo(ssl_info);
}
void GetConnectionAttempts(ConnectionAttempts* out) const override {
transport_->GetConnectionAttempts(out);
}
void ClearConnectionAttempts() override {
transport_->ClearConnectionAttempts();
}
void AddConnectionAttempts(const ConnectionAttempts& attempts) override {
transport_->AddConnectionAttempts(attempts);
}
int64_t GetTotalReceivedBytes() const override {
return transport_->GetTotalReceivedBytes();
}
// Socket implementation:
int Read(IOBuffer* buf,
int buf_len,
const CompletionCallback& callback) override {
return transport_->Read(buf, buf_len, callback);
}
int Write(IOBuffer* buf,
int buf_len,
const CompletionCallback& callback) override {
return transport_->Write(buf, buf_len, callback);
}
int SetReceiveBufferSize(int32_t size) override {
return transport_->SetReceiveBufferSize(size);
}
int SetSendBufferSize(int32_t size) override {
return transport_->SetSendBufferSize(size);
}
protected:
std::unique_ptr<StreamSocket> transport_;
};
// ReadBufferingStreamSocket is a wrapper for an existing StreamSocket that
// will ensure a certain amount of data is internally buffered before
// satisfying a Read() request. It exists to mimic OS-level internal
// buffering, but in a way to guarantee that X number of bytes will be
// returned to callers of Read(), regardless of how quickly the OS receives
// them from the TestServer.
class ReadBufferingStreamSocket : public WrappedStreamSocket {
public:
explicit ReadBufferingStreamSocket(std::unique_ptr<StreamSocket> transport);
~ReadBufferingStreamSocket() override {}
// Socket implementation:
int Read(IOBuffer* buf,
int buf_len,
const CompletionCallback& callback) override;
// Sets the internal buffer to |size|. This must not be greater than
// the largest value supplied to Read() - that is, it does not handle
// having "leftovers" at the end of Read().
// Each call to Read() will be prevented from completion until at least
// |size| data has been read.
// Set to 0 to turn off buffering, causing Read() to transparently
// read via the underlying transport.
void SetBufferSize(int size);
private:
enum State {
STATE_NONE,
STATE_READ,
STATE_READ_COMPLETE,
};
int DoLoop(int result);
int DoRead();
int DoReadComplete(int result);
void OnReadCompleted(int result);
State state_;
scoped_refptr<GrowableIOBuffer> read_buffer_;
int buffer_size_;
scoped_refptr<IOBuffer> user_read_buf_;
CompletionCallback user_read_callback_;
};
ReadBufferingStreamSocket::ReadBufferingStreamSocket(
std::unique_ptr<StreamSocket> transport)
: WrappedStreamSocket(std::move(transport)),
read_buffer_(new GrowableIOBuffer()),
buffer_size_(0) {}
void ReadBufferingStreamSocket::SetBufferSize(int size) {
DCHECK(!user_read_buf_.get());
buffer_size_ = size;
read_buffer_->SetCapacity(size);
}
int ReadBufferingStreamSocket::Read(IOBuffer* buf,
int buf_len,
const CompletionCallback& callback) {
if (buffer_size_ == 0)
return transport_->Read(buf, buf_len, callback);
if (buf_len < buffer_size_)
return ERR_UNEXPECTED;
state_ = STATE_READ;
user_read_buf_ = buf;
int result = DoLoop(OK);
if (result == ERR_IO_PENDING)
user_read_callback_ = callback;
else
user_read_buf_ = NULL;
return result;
}
int ReadBufferingStreamSocket::DoLoop(int result) {
int rv = result;
do {
State current_state = state_;
state_ = STATE_NONE;
switch (current_state) {
case STATE_READ:
rv = DoRead();
break;
case STATE_READ_COMPLETE:
rv = DoReadComplete(rv);
break;
case STATE_NONE:
default:
NOTREACHED() << "Unexpected state: " << current_state;
rv = ERR_UNEXPECTED;
break;
}
} while (rv != ERR_IO_PENDING && state_ != STATE_NONE);
return rv;
}
int ReadBufferingStreamSocket::DoRead() {
state_ = STATE_READ_COMPLETE;
int rv =
transport_->Read(read_buffer_.get(),
read_buffer_->RemainingCapacity(),
base::Bind(&ReadBufferingStreamSocket::OnReadCompleted,
base::Unretained(this)));
return rv;
}
int ReadBufferingStreamSocket::DoReadComplete(int result) {
state_ = STATE_NONE;
if (result <= 0)
return result;
read_buffer_->set_offset(read_buffer_->offset() + result);
if (read_buffer_->RemainingCapacity() > 0) {
state_ = STATE_READ;
return OK;
}
memcpy(user_read_buf_->data(),
read_buffer_->StartOfBuffer(),
read_buffer_->capacity());
read_buffer_->set_offset(0);
return read_buffer_->capacity();
}
void ReadBufferingStreamSocket::OnReadCompleted(int result) {
result = DoLoop(result);
if (result == ERR_IO_PENDING)
return;
user_read_buf_ = NULL;
base::ResetAndReturn(&user_read_callback_).Run(result);
}
// Simulates synchronously receiving an error during Read() or Write()
class SynchronousErrorStreamSocket : public WrappedStreamSocket {
public:
explicit SynchronousErrorStreamSocket(
std::unique_ptr<StreamSocket> transport);
~SynchronousErrorStreamSocket() override {}
// Socket implementation:
int Read(IOBuffer* buf,
int buf_len,
const CompletionCallback& callback) override;
int Write(IOBuffer* buf,
int buf_len,
const CompletionCallback& callback) override;
// Sets the next Read() call and all future calls to return |error|.
// If there is already a pending asynchronous read, the configured error
// will not be returned until that asynchronous read has completed and Read()
// is called again.
void SetNextReadError(int error) {
DCHECK_GE(0, error);
have_read_error_ = true;
pending_read_error_ = error;
}
// Sets the next Write() call and all future calls to return |error|.
// If there is already a pending asynchronous write, the configured error
// will not be returned until that asynchronous write has completed and
// Write() is called again.
void SetNextWriteError(int error) {
DCHECK_GE(0, error);
have_write_error_ = true;
pending_write_error_ = error;
}
private:
bool have_read_error_;
int pending_read_error_;
bool have_write_error_;
int pending_write_error_;
DISALLOW_COPY_AND_ASSIGN(SynchronousErrorStreamSocket);
};
SynchronousErrorStreamSocket::SynchronousErrorStreamSocket(
std::unique_ptr<StreamSocket> transport)
: WrappedStreamSocket(std::move(transport)),
have_read_error_(false),
pending_read_error_(OK),
have_write_error_(false),
pending_write_error_(OK) {}
int SynchronousErrorStreamSocket::Read(IOBuffer* buf,
int buf_len,
const CompletionCallback& callback) {
if (have_read_error_)
return pending_read_error_;
return transport_->Read(buf, buf_len, callback);
}
int SynchronousErrorStreamSocket::Write(IOBuffer* buf,
int buf_len,
const CompletionCallback& callback) {
if (have_write_error_)
return pending_write_error_;
return transport_->Write(buf, buf_len, callback);
}
// FakeBlockingStreamSocket wraps an existing StreamSocket and simulates the
// underlying transport needing to complete things asynchronously in a
// deterministic manner (e.g.: independent of the TestServer and the OS's
// semantics).
class FakeBlockingStreamSocket : public WrappedStreamSocket {
public:
explicit FakeBlockingStreamSocket(std::unique_ptr<StreamSocket> transport);
~FakeBlockingStreamSocket() override {}
// Socket implementation:
int Read(IOBuffer* buf,
int buf_len,
const CompletionCallback& callback) override;
int Write(IOBuffer* buf,
int buf_len,
const CompletionCallback& callback) override;
int pending_read_result() const { return pending_read_result_; }
IOBuffer* pending_read_buf() const { return pending_read_buf_.get(); }
// Blocks read results on the socket. Reads will not complete until
// UnblockReadResult() has been called and a result is ready from the
// underlying transport. Note: if BlockReadResult() is called while there is a
// hanging asynchronous Read(), that Read is blocked.
void BlockReadResult();
void UnblockReadResult();
// Waits for the blocked Read() call to be complete at the underlying
// transport.
void WaitForReadResult();
// Causes the next call to Write() to return ERR_IO_PENDING, not beginning the
// underlying transport until UnblockWrite() has been called. Note: if there
// is a pending asynchronous write, it is NOT blocked. For purposes of
// blocking writes, data is considered to have reached the underlying
// transport as soon as Write() is called.
void BlockWrite();
void UnblockWrite();
// Waits for the blocked Write() call to be scheduled.
void WaitForWrite();
private:
// Handles completion from the underlying transport read.
void OnReadCompleted(int result);
// True if read callbacks are blocked.
bool should_block_read_;
// The buffer for the pending read, or NULL if not consumed.
scoped_refptr<IOBuffer> pending_read_buf_;
// The user callback for the pending read call.
CompletionCallback pending_read_callback_;
// The result for the blocked read callback, or ERR_IO_PENDING if not
// completed.
int pending_read_result_;
// WaitForReadResult() wait loop.
std::unique_ptr<base::RunLoop> read_loop_;
// True if write calls are blocked.
bool should_block_write_;
// The buffer for the pending write, or NULL if not scheduled.
scoped_refptr<IOBuffer> pending_write_buf_;
// The callback for the pending write call.
CompletionCallback pending_write_callback_;
// The length for the pending write, or -1 if not scheduled.
int pending_write_len_;
// WaitForWrite() wait loop.
std::unique_ptr<base::RunLoop> write_loop_;
};
FakeBlockingStreamSocket::FakeBlockingStreamSocket(
std::unique_ptr<StreamSocket> transport)
: WrappedStreamSocket(std::move(transport)),
should_block_read_(false),
pending_read_result_(ERR_IO_PENDING),
should_block_write_(false),
pending_write_len_(-1) {}
int FakeBlockingStreamSocket::Read(IOBuffer* buf,
int len,
const CompletionCallback& callback) {
DCHECK(!pending_read_buf_);
DCHECK(pending_read_callback_.is_null());
DCHECK_EQ(ERR_IO_PENDING, pending_read_result_);
DCHECK(!callback.is_null());
int rv = transport_->Read(buf, len, base::Bind(
&FakeBlockingStreamSocket::OnReadCompleted, base::Unretained(this)));
if (rv == ERR_IO_PENDING) {
// Save the callback to be called later.
pending_read_buf_ = buf;
pending_read_callback_ = callback;
} else if (should_block_read_) {
// Save the callback and read result to be called later.
pending_read_buf_ = buf;
pending_read_callback_ = callback;
OnReadCompleted(rv);
rv = ERR_IO_PENDING;
}
return rv;
}
int FakeBlockingStreamSocket::Write(IOBuffer* buf,
int len,
const CompletionCallback& callback) {
DCHECK(buf);
DCHECK_LE(0, len);
if (!should_block_write_)
return transport_->Write(buf, len, callback);
// Schedule the write, but do nothing.
DCHECK(!pending_write_buf_.get());
DCHECK_EQ(-1, pending_write_len_);
DCHECK(pending_write_callback_.is_null());
DCHECK(!callback.is_null());
pending_write_buf_ = buf;
pending_write_len_ = len;
pending_write_callback_ = callback;
// Stop the write loop, if any.
if (write_loop_)
write_loop_->Quit();
return ERR_IO_PENDING;
}
void FakeBlockingStreamSocket::BlockReadResult() {
DCHECK(!should_block_read_);
should_block_read_ = true;
}
void FakeBlockingStreamSocket::UnblockReadResult() {
DCHECK(should_block_read_);
should_block_read_ = false;
// If the operation is still pending in the underlying transport, immediately
// return - OnReadCompleted() will handle invoking the callback once the
// transport has completed.
if (pending_read_result_ == ERR_IO_PENDING)
return;
int result = pending_read_result_;
pending_read_buf_ = nullptr;
pending_read_result_ = ERR_IO_PENDING;
base::ResetAndReturn(&pending_read_callback_).Run(result);
}
void FakeBlockingStreamSocket::WaitForReadResult() {
DCHECK(should_block_read_);
DCHECK(!read_loop_);
if (pending_read_result_ != ERR_IO_PENDING)
return;
read_loop_.reset(new base::RunLoop);
read_loop_->Run();
read_loop_.reset();
DCHECK_NE(ERR_IO_PENDING, pending_read_result_);
}
void FakeBlockingStreamSocket::BlockWrite() {
DCHECK(!should_block_write_);
should_block_write_ = true;
}
void FakeBlockingStreamSocket::UnblockWrite() {
DCHECK(should_block_write_);
should_block_write_ = false;
// Do nothing if UnblockWrite() was called after BlockWrite(),
// without a Write() in between.
if (!pending_write_buf_.get())
return;
int rv = transport_->Write(
pending_write_buf_.get(), pending_write_len_, pending_write_callback_);
pending_write_buf_ = NULL;
pending_write_len_ = -1;
if (rv == ERR_IO_PENDING) {
pending_write_callback_.Reset();
} else {
base::ResetAndReturn(&pending_write_callback_).Run(rv);
}
}
void FakeBlockingStreamSocket::WaitForWrite() {
DCHECK(should_block_write_);
DCHECK(!write_loop_);
if (pending_write_buf_.get())
return;
write_loop_.reset(new base::RunLoop);
write_loop_->Run();
write_loop_.reset();
DCHECK(pending_write_buf_.get());
}
void FakeBlockingStreamSocket::OnReadCompleted(int result) {
DCHECK_EQ(ERR_IO_PENDING, pending_read_result_);
DCHECK(!pending_read_callback_.is_null());
if (should_block_read_) {
// Store the result so that the callback can be invoked once Unblock() is
// called.
pending_read_result_ = result;
// Stop the WaitForReadResult() call if any.
if (read_loop_)
read_loop_->Quit();
} else {
// Either the Read() was never blocked or UnblockReadResult() was called
// before the Read() completed. Either way, return the result to the caller.
pending_read_buf_ = nullptr;
base::ResetAndReturn(&pending_read_callback_).Run(result);
}
}
// CountingStreamSocket wraps an existing StreamSocket and maintains a count of
// reads and writes on the socket.
class CountingStreamSocket : public WrappedStreamSocket {
public:
explicit CountingStreamSocket(std::unique_ptr<StreamSocket> transport)
: WrappedStreamSocket(std::move(transport)),
read_count_(0),
write_count_(0) {}
~CountingStreamSocket() override {}
// Socket implementation:
int Read(IOBuffer* buf,
int buf_len,
const CompletionCallback& callback) override {
read_count_++;
return transport_->Read(buf, buf_len, callback);
}
int Write(IOBuffer* buf,
int buf_len,
const CompletionCallback& callback) override {
write_count_++;
return transport_->Write(buf, buf_len, callback);
}
int read_count() const { return read_count_; }
int write_count() const { return write_count_; }
private:
int read_count_;
int write_count_;
};
// CompletionCallback that will delete the associated StreamSocket when
// the callback is invoked.
class DeleteSocketCallback : public TestCompletionCallbackBase {
public:
explicit DeleteSocketCallback(StreamSocket* socket)
: socket_(socket),
callback_(base::Bind(&DeleteSocketCallback::OnComplete,
base::Unretained(this))) {}
~DeleteSocketCallback() override {}
const CompletionCallback& callback() const { return callback_; }
private:
void OnComplete(int result) {
if (socket_) {
delete socket_;
socket_ = NULL;
} else {
ADD_FAILURE() << "Deleting socket twice";
}
SetResult(result);
}
StreamSocket* socket_;
CompletionCallback callback_;
DISALLOW_COPY_AND_ASSIGN(DeleteSocketCallback);
};
// A ChannelIDStore that always returns an error when asked for a
// channel id.
class FailingChannelIDStore : public ChannelIDStore {
int GetChannelID(const std::string& server_identifier,
std::unique_ptr<crypto::ECPrivateKey>* key_result,
const GetChannelIDCallback& callback) override {
return ERR_UNEXPECTED;
}
void SetChannelID(std::unique_ptr<ChannelID> channel_id) override {}
void DeleteChannelID(const std::string& server_identifier,
const base::Closure& completion_callback) override {}
void DeleteForDomainsCreatedBetween(
const base::Callback<bool(const std::string&)>& domain_predicate,
base::Time delete_begin,
base::Time delete_end,
const base::Closure& completion_callback) override {}
void DeleteAll(const base::Closure& completion_callback) override {}
void GetAllChannelIDs(const GetChannelIDListCallback& callback) override {}
int GetChannelIDCount() override { return 0; }
void SetForceKeepSessionState() override {}
bool IsEphemeral() override { return true; }
};
// A ChannelIDStore that asynchronously returns an error when asked for a
// channel id.
class AsyncFailingChannelIDStore : public ChannelIDStore {
int GetChannelID(const std::string& server_identifier,
std::unique_ptr<crypto::ECPrivateKey>* key_result,
const GetChannelIDCallback& callback) override {
base::ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE,
base::Bind(callback, ERR_UNEXPECTED, server_identifier, nullptr));
return ERR_IO_PENDING;
}
void SetChannelID(std::unique_ptr<ChannelID> channel_id) override {}
void DeleteChannelID(const std::string& server_identifier,
const base::Closure& completion_callback) override {}
void DeleteForDomainsCreatedBetween(
const base::Callback<bool(const std::string&)>& domain_predicate,
base::Time delete_begin,
base::Time delete_end,
const base::Closure& completion_callback) override {}
void DeleteAll(const base::Closure& completion_callback) override {}
void GetAllChannelIDs(const GetChannelIDListCallback& callback) override {}
int GetChannelIDCount() override { return 0; }
void SetForceKeepSessionState() override {}
bool IsEphemeral() override { return true; }
};
// A mock CTVerifier that records every call to Verify but doesn't verify
// anything.
class MockCTVerifier : public CTVerifier {
public:
MOCK_METHOD5(Verify, int(X509Certificate*,
const std::string&,
const std::string&,
ct::CTVerifyResult*,
const BoundNetLog&));
MOCK_METHOD1(SetObserver, void(CTVerifier::Observer*));
};
// A mock CTPolicyEnforcer that returns a custom verification result.
class MockCTPolicyEnforcer : public CTPolicyEnforcer {
public:
MOCK_METHOD3(DoesConformToCertPolicy,
ct::CertPolicyCompliance(X509Certificate* cert,
const ct::SCTList&,
const BoundNetLog&));
MOCK_METHOD4(DoesConformToCTEVPolicy,
ct::EVPolicyCompliance(X509Certificate* cert,
const ct::EVCertsWhitelist*,
const ct::SCTList&,
const BoundNetLog&));
};
class SSLClientSocketTest : public PlatformTest {
public:
SSLClientSocketTest()
: socket_factory_(ClientSocketFactory::GetDefaultFactory()),
cert_verifier_(new MockCertVerifier),
transport_security_state_(new TransportSecurityState),
ct_verifier_(new MockCTVerifier),
ct_policy_enforcer_(new MockCTPolicyEnforcer) {
cert_verifier_->set_default_result(OK);
context_.cert_verifier = cert_verifier_.get();
context_.transport_security_state = transport_security_state_.get();
context_.cert_transparency_verifier = ct_verifier_.get();
context_.ct_policy_enforcer = ct_policy_enforcer_.get();
EXPECT_CALL(*ct_verifier_, Verify(_, _, _, _, _))
.WillRepeatedly(Return(OK));
EXPECT_CALL(*ct_policy_enforcer_, DoesConformToCertPolicy(_, _, _))
.WillRepeatedly(
Return(ct::CertPolicyCompliance::CERT_POLICY_COMPLIES_VIA_SCTS));
EXPECT_CALL(*ct_policy_enforcer_, DoesConformToCTEVPolicy(_, _, _, _))
.WillRepeatedly(
Return(ct::EVPolicyCompliance::EV_POLICY_COMPLIES_VIA_SCTS));
}
protected:
// The address of the spawned test server, after calling StartTestServer().
const AddressList& addr() const { return addr_; }
// The SpawnedTestServer object, after calling StartTestServer().
const SpawnedTestServer* spawned_test_server() const {
return spawned_test_server_.get();
}
void SetCTVerifier(CTVerifier* ct_verifier) {
context_.cert_transparency_verifier = ct_verifier;
}
void SetCTPolicyEnforcer(CTPolicyEnforcer* policy_enforcer) {
context_.ct_policy_enforcer = policy_enforcer;
}
// Starts the test server with SSL configuration |ssl_options|. Returns true
// on success.
bool StartTestServer(const SpawnedTestServer::SSLOptions& ssl_options) {
spawned_test_server_.reset(new SpawnedTestServer(
SpawnedTestServer::TYPE_HTTPS, ssl_options, base::FilePath()));
if (!spawned_test_server_->Start()) {
LOG(ERROR) << "Could not start SpawnedTestServer";
return false;
}
if (!spawned_test_server_->GetAddressList(&addr_)) {
LOG(ERROR) << "Could not get SpawnedTestServer address list";
return false;
}
return true;
}
std::unique_ptr<SSLClientSocket> CreateSSLClientSocket(
std::unique_ptr<StreamSocket> transport_socket,
const HostPortPair& host_and_port,
const SSLConfig& ssl_config) {
std::unique_ptr<ClientSocketHandle> connection(new ClientSocketHandle);
connection->SetSocket(std::move(transport_socket));
return socket_factory_->CreateSSLClientSocket(
std::move(connection), host_and_port, ssl_config, context_);
}
// Create an SSLClientSocket object and use it to connect to a test
// server, then wait for connection results. This must be called after
// a successful StartTestServer() call.
// |ssl_config| the SSL configuration to use.
// |result| will retrieve the ::Connect() result value.
// Returns true on success, false otherwise. Success means that the SSL socket
// could be created and its Connect() was called, not that the connection
// itself was a success.
bool CreateAndConnectSSLClientSocket(const SSLConfig& ssl_config,
int* result) {
std::unique_ptr<StreamSocket> transport(
new TCPClientSocket(addr_, NULL, &log_, NetLog::Source()));
int rv = callback_.GetResult(transport->Connect(callback_.callback()));
if (rv != OK) {
LOG(ERROR) << "Could not connect to SpawnedTestServer";
return false;
}
sock_ = CreateSSLClientSocket(std::move(transport),
spawned_test_server_->host_port_pair(),
ssl_config);
EXPECT_FALSE(sock_->IsConnected());
*result = callback_.GetResult(sock_->Connect(callback_.callback()));
return true;
}
// Adds the server certificate with provided cert status.
// Must be called after StartTestServer has been called.
void AddServerCertStatusToSSLConfig(CertStatus status,
SSLConfig* ssl_config) {
ASSERT_TRUE(spawned_test_server());
// Find out the certificate the server is using.
scoped_refptr<X509Certificate> server_cert =
spawned_test_server()->GetCertificate();
// Get the MockCertVerifier to verify it as an EV cert.
CertVerifyResult verify_result;
verify_result.cert_status = status;
verify_result.verified_cert = server_cert;
cert_verifier_->AddResultForCert(server_cert.get(), verify_result, OK);
}
ClientSocketFactory* socket_factory_;
std::unique_ptr<MockCertVerifier> cert_verifier_;
std::unique_ptr<TransportSecurityState> transport_security_state_;
std::unique_ptr<MockCTVerifier> ct_verifier_;
std::unique_ptr<MockCTPolicyEnforcer> ct_policy_enforcer_;
SSLClientSocketContext context_;
std::unique_ptr<SSLClientSocket> sock_;
TestNetLog log_;
private:
std::unique_ptr<SpawnedTestServer> spawned_test_server_;
TestCompletionCallback callback_;
AddressList addr_;
};
// Verifies the correctness of GetSSLCertRequestInfo.
class SSLClientSocketCertRequestInfoTest : public SSLClientSocketTest {
protected:
// Creates a test server with the given SSLOptions, connects to it and returns
// the SSLCertRequestInfo reported by the socket.
scoped_refptr<SSLCertRequestInfo> GetCertRequest(
SpawnedTestServer::SSLOptions ssl_options) {
SpawnedTestServer spawned_test_server(SpawnedTestServer::TYPE_HTTPS,
ssl_options, base::FilePath());
if (!spawned_test_server.Start())
return NULL;
AddressList addr;
if (!spawned_test_server.GetAddressList(&addr))
return NULL;
TestCompletionCallback callback;
TestNetLog log;
std::unique_ptr<StreamSocket> transport(
new TCPClientSocket(addr, NULL, &log, NetLog::Source()));
int rv = callback.GetResult(transport->Connect(callback.callback()));
EXPECT_EQ(OK, rv);
std::unique_ptr<SSLClientSocket> sock(CreateSSLClientSocket(
std::move(transport), spawned_test_server.host_port_pair(),
SSLConfig()));
EXPECT_FALSE(sock->IsConnected());
rv = callback.GetResult(sock->Connect(callback.callback()));
EXPECT_EQ(ERR_SSL_CLIENT_AUTH_CERT_NEEDED, rv);
scoped_refptr<SSLCertRequestInfo> request_info = new SSLCertRequestInfo();
sock->GetSSLCertRequestInfo(request_info.get());
sock->Disconnect();
EXPECT_FALSE(sock->IsConnected());
EXPECT_TRUE(spawned_test_server.host_port_pair().Equals(
request_info->host_and_port));
return request_info;
}
};
class SSLClientSocketFalseStartTest : public SSLClientSocketTest {
protected:
// Creates an SSLClientSocket with |client_config| attached to a
// FakeBlockingStreamSocket, returning both in |*out_raw_transport| and
// |*out_sock|. The FakeBlockingStreamSocket is owned by the SSLClientSocket,
// so |*out_raw_transport| is a raw pointer.
//
// The client socket will begin a connect using |callback| but stop before the
// server's finished message is received. The finished message will be blocked
// in |*out_raw_transport|. To complete the handshake and successfully read
// data, the caller must unblock reads on |*out_raw_transport|. (Note that, if
// the client successfully false started, |callback.WaitForResult()| will
// return OK without unblocking transport reads. But Read() will still block.)
//
// Must be called after StartTestServer is called.
void CreateAndConnectUntilServerFinishedReceived(
const SSLConfig& client_config,
TestCompletionCallback* callback,
FakeBlockingStreamSocket** out_raw_transport,
std::unique_ptr<SSLClientSocket>* out_sock) {
CHECK(spawned_test_server());
std::unique_ptr<StreamSocket> real_transport(
new TCPClientSocket(addr(), NULL, NULL, NetLog::Source()));
std::unique_ptr<FakeBlockingStreamSocket> transport(
new FakeBlockingStreamSocket(std::move(real_transport)));
int rv = callback->GetResult(transport->Connect(callback->callback()));
EXPECT_EQ(OK, rv);
FakeBlockingStreamSocket* raw_transport = transport.get();
std::unique_ptr<SSLClientSocket> sock = CreateSSLClientSocket(
std::move(transport), spawned_test_server()->host_port_pair(),
client_config);
// Connect. Stop before the client processes the first server leg
// (ServerHello, etc.)
raw_transport->BlockReadResult();
rv = sock->Connect(callback->callback());
EXPECT_EQ(ERR_IO_PENDING, rv);
raw_transport->WaitForReadResult();
// Release the ServerHello and wait for the client to write
// ClientKeyExchange, etc. (A proxy for waiting for the entirety of the
// server's leg to complete, since it may span multiple reads.)
EXPECT_FALSE(callback->have_result());
raw_transport->BlockWrite();
raw_transport->UnblockReadResult();
raw_transport->WaitForWrite();
// And, finally, release that and block the next server leg
// (ChangeCipherSpec, Finished).
raw_transport->BlockReadResult();
raw_transport->UnblockWrite();
*out_raw_transport = raw_transport;
*out_sock = std::move(sock);
}
void TestFalseStart(const SpawnedTestServer::SSLOptions& server_options,
const SSLConfig& client_config,
bool expect_false_start) {
ASSERT_TRUE(StartTestServer(server_options));
TestCompletionCallback callback;
FakeBlockingStreamSocket* raw_transport = NULL;
std::unique_ptr<SSLClientSocket> sock;
ASSERT_NO_FATAL_FAILURE(CreateAndConnectUntilServerFinishedReceived(
client_config, &callback, &raw_transport, &sock));
if (expect_false_start) {
// When False Starting, the handshake should complete before receiving the
// Change Cipher Spec and Finished messages.
//
// Note: callback.have_result() may not be true without waiting. The NSS
// state machine sometimes lives on a separate thread, so this thread may
// not yet have processed the signal that the handshake has completed.
int rv = callback.WaitForResult();
EXPECT_EQ(OK, rv);
EXPECT_TRUE(sock->IsConnected());
const char request_text[] = "GET / HTTP/1.0\r\n\r\n";
static const int kRequestTextSize =
static_cast<int>(arraysize(request_text) - 1);
scoped_refptr<IOBuffer> request_buffer(new IOBuffer(kRequestTextSize));
memcpy(request_buffer->data(), request_text, kRequestTextSize);
// Write the request.
rv = callback.GetResult(sock->Write(request_buffer.get(),
kRequestTextSize,
callback.callback()));
EXPECT_EQ(kRequestTextSize, rv);
// The read will hang; it's waiting for the peer to complete the
// handshake, and the handshake is still blocked.
scoped_refptr<IOBuffer> buf(new IOBuffer(4096));
rv = sock->Read(buf.get(), 4096, callback.callback());
// After releasing reads, the connection proceeds.
raw_transport->UnblockReadResult();
rv = callback.GetResult(rv);
EXPECT_LT(0, rv);
} else {
// False Start is not enabled, so the handshake will not complete because
// the server second leg is blocked.
base::RunLoop().RunUntilIdle();
EXPECT_FALSE(callback.have_result());
}
}
};
class SSLClientSocketChannelIDTest : public SSLClientSocketTest {
protected:
void EnableChannelID() {
channel_id_service_.reset(new ChannelIDService(
new DefaultChannelIDStore(NULL), base::ThreadTaskRunnerHandle::Get()));
context_.channel_id_service = channel_id_service_.get();
}
void EnableFailingChannelID() {
channel_id_service_.reset(new ChannelIDService(
new FailingChannelIDStore(), base::ThreadTaskRunnerHandle::Get()));
context_.channel_id_service = channel_id_service_.get();
}
void EnableAsyncFailingChannelID() {
channel_id_service_.reset(new ChannelIDService(
new AsyncFailingChannelIDStore(), base::ThreadTaskRunnerHandle::Get()));
context_.channel_id_service = channel_id_service_.get();
}
private:
std::unique_ptr<ChannelIDService> channel_id_service_;
};
} // namespace
TEST_F(SSLClientSocketTest, Connect) {
ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions()));
TestCompletionCallback callback;
TestNetLog log;
std::unique_ptr<StreamSocket> transport(
new TCPClientSocket(addr(), NULL, &log, NetLog::Source()));
int rv = callback.GetResult(transport->Connect(callback.callback()));
EXPECT_EQ(OK, rv);
std::unique_ptr<SSLClientSocket> sock(CreateSSLClientSocket(
std::move(transport), spawned_test_server()->host_port_pair(),
SSLConfig()));
EXPECT_FALSE(sock->IsConnected());
rv = sock->Connect(callback.callback());
TestNetLogEntry::List entries;
log.GetEntries(&entries);
EXPECT_TRUE(LogContainsBeginEvent(entries, 5, NetLog::TYPE_SSL_CONNECT));
if (rv == ERR_IO_PENDING)
rv = callback.WaitForResult();
EXPECT_EQ(OK, rv);
EXPECT_TRUE(sock->IsConnected());
log.GetEntries(&entries);
EXPECT_TRUE(LogContainsEndEvent(entries, -1, NetLog::TYPE_SSL_CONNECT));
sock->Disconnect();
EXPECT_FALSE(sock->IsConnected());
}
TEST_F(SSLClientSocketTest, ConnectExpired) {
SpawnedTestServer::SSLOptions ssl_options(
SpawnedTestServer::SSLOptions::CERT_EXPIRED);
ASSERT_TRUE(StartTestServer(ssl_options));
cert_verifier_->set_default_result(ERR_CERT_DATE_INVALID);
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(SSLConfig(), &rv));
EXPECT_EQ(ERR_CERT_DATE_INVALID, rv);
// Rather than testing whether or not the underlying socket is connected,
// test that the handshake has finished. This is because it may be
// desirable to disconnect the socket before showing a user prompt, since
// the user may take indefinitely long to respond.
TestNetLogEntry::List entries;
log_.GetEntries(&entries);
EXPECT_TRUE(LogContainsEndEvent(entries, -1, NetLog::TYPE_SSL_CONNECT));
}
TEST_F(SSLClientSocketTest, ConnectMismatched) {
SpawnedTestServer::SSLOptions ssl_options(
SpawnedTestServer::SSLOptions::CERT_MISMATCHED_NAME);
ASSERT_TRUE(StartTestServer(ssl_options));
cert_verifier_->set_default_result(ERR_CERT_COMMON_NAME_INVALID);
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(SSLConfig(), &rv));
EXPECT_EQ(ERR_CERT_COMMON_NAME_INVALID, rv);
// Rather than testing whether or not the underlying socket is connected,
// test that the handshake has finished. This is because it may be
// desirable to disconnect the socket before showing a user prompt, since
// the user may take indefinitely long to respond.
TestNetLogEntry::List entries;
log_.GetEntries(&entries);
EXPECT_TRUE(LogContainsEndEvent(entries, -1, NetLog::TYPE_SSL_CONNECT));
}
#if defined(OS_WIN)
// Tests that certificates parsable by SSLClientSocket's internal SSL
// implementation, but not X509Certificate are treated as fatal non-certificate
// errors. This is regression test for https://crbug.com/91341.
TEST_F(SSLClientSocketTest, ConnectBadValidity) {
SpawnedTestServer::SSLOptions ssl_options(
SpawnedTestServer::SSLOptions::CERT_BAD_VALIDITY);
ASSERT_TRUE(StartTestServer(ssl_options));
SSLConfig ssl_config;
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv));
EXPECT_EQ(ERR_SSL_SERVER_CERT_BAD_FORMAT, rv);
EXPECT_FALSE(IsCertificateError(rv));
SSLInfo ssl_info;
ASSERT_TRUE(sock_->GetSSLInfo(&ssl_info));
EXPECT_FALSE(ssl_info.cert);
}
#endif // defined(OS_WIN)
// Attempt to connect to a page which requests a client certificate. It should
// return an error code on connect.
TEST_F(SSLClientSocketTest, ConnectClientAuthCertRequested) {
SpawnedTestServer::SSLOptions ssl_options;
ssl_options.request_client_certificate = true;
ASSERT_TRUE(StartTestServer(ssl_options));
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(SSLConfig(), &rv));
EXPECT_EQ(ERR_SSL_CLIENT_AUTH_CERT_NEEDED, rv);
TestNetLogEntry::List entries;
log_.GetEntries(&entries);
EXPECT_TRUE(LogContainsEndEvent(entries, -1, NetLog::TYPE_SSL_CONNECT));
EXPECT_FALSE(sock_->IsConnected());
}
// Connect to a server requesting optional client authentication. Send it a
// null certificate. It should allow the connection.
//
// TODO(davidben): Also test providing an actual certificate.
TEST_F(SSLClientSocketTest, ConnectClientAuthSendNullCert) {
SpawnedTestServer::SSLOptions ssl_options;
ssl_options.request_client_certificate = true;
ASSERT_TRUE(StartTestServer(ssl_options));
// Our test server accepts certificate-less connections.
// TODO(davidben): Add a test which requires them and verify the error.
SSLConfig ssl_config;
ssl_config.send_client_cert = true;
ssl_config.client_cert = NULL;
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv));
EXPECT_EQ(OK, rv);
// We responded to the server's certificate request with a Certificate
// message with no client certificate in it. ssl_info.client_cert_sent
// should be false in this case.
SSLInfo ssl_info;
sock_->GetSSLInfo(&ssl_info);
EXPECT_FALSE(ssl_info.client_cert_sent);
sock_->Disconnect();
EXPECT_FALSE(sock_->IsConnected());
}
// TODO(wtc): Add unit tests for IsConnectedAndIdle:
// - Server closes an SSL connection (with a close_notify alert message).
// - Server closes the underlying TCP connection directly.
// - Server sends data unexpectedly.
// Tests that the socket can be read from successfully. Also test that a peer's
// close_notify alert is successfully processed without error.
TEST_F(SSLClientSocketTest, Read) {
ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions()));
TestCompletionCallback callback;
std::unique_ptr<StreamSocket> transport(
new TCPClientSocket(addr(), NULL, NULL, NetLog::Source()));
EXPECT_EQ(0, transport->GetTotalReceivedBytes());
int rv = callback.GetResult(transport->Connect(callback.callback()));
EXPECT_EQ(OK, rv);
std::unique_ptr<SSLClientSocket> sock(CreateSSLClientSocket(
std::move(transport), spawned_test_server()->host_port_pair(),
SSLConfig()));
EXPECT_EQ(0, sock->GetTotalReceivedBytes());
rv = callback.GetResult(sock->Connect(callback.callback()));
EXPECT_EQ(OK, rv);
// Number of network bytes received should increase because of SSL socket
// establishment.
EXPECT_GT(sock->GetTotalReceivedBytes(), 0);
const char request_text[] = "GET / HTTP/1.0\r\n\r\n";
scoped_refptr<IOBuffer> request_buffer(
new IOBuffer(arraysize(request_text) - 1));
memcpy(request_buffer->data(), request_text, arraysize(request_text) - 1);
rv = callback.GetResult(sock->Write(
request_buffer.get(), arraysize(request_text) - 1, callback.callback()));
EXPECT_EQ(static_cast<int>(arraysize(request_text) - 1), rv);
scoped_refptr<IOBuffer> buf(new IOBuffer(4096));
int64_t unencrypted_bytes_read = 0;
int64_t network_bytes_read_during_handshake = sock->GetTotalReceivedBytes();
do {
rv = callback.GetResult(sock->Read(buf.get(), 4096, callback.callback()));
EXPECT_GE(rv, 0);
if (rv >= 0) {
unencrypted_bytes_read += rv;
}
} while (rv > 0);
EXPECT_GT(unencrypted_bytes_read, 0);
// Reading the payload should increase the number of bytes on network layer.
EXPECT_GT(sock->GetTotalReceivedBytes(), network_bytes_read_during_handshake);
// Number of bytes received on the network after the handshake should be
// higher than the number of encrypted bytes read.
EXPECT_GE(sock->GetTotalReceivedBytes() - network_bytes_read_during_handshake,
unencrypted_bytes_read);
// The peer should have cleanly closed the connection with a close_notify.
EXPECT_EQ(0, rv);
}
// Tests that SSLClientSocket properly handles when the underlying transport
// synchronously fails a transport read in during the handshake. The error code
// should be preserved so SSLv3 fallback logic can condition on it.
TEST_F(SSLClientSocketTest, Connect_WithSynchronousError) {
ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions()));
TestCompletionCallback callback;
std::unique_ptr<StreamSocket> real_transport(
new TCPClientSocket(addr(), NULL, NULL, NetLog::Source()));
std::unique_ptr<SynchronousErrorStreamSocket> transport(
new SynchronousErrorStreamSocket(std::move(real_transport)));
int rv = callback.GetResult(transport->Connect(callback.callback()));
EXPECT_EQ(OK, rv);
// Disable TLS False Start to avoid handshake non-determinism.
SSLConfig ssl_config;
ssl_config.false_start_enabled = false;
SynchronousErrorStreamSocket* raw_transport = transport.get();
std::unique_ptr<SSLClientSocket> sock(CreateSSLClientSocket(
std::move(transport), spawned_test_server()->host_port_pair(),
ssl_config));
raw_transport->SetNextWriteError(ERR_CONNECTION_RESET);
rv = callback.GetResult(sock->Connect(callback.callback()));
EXPECT_EQ(ERR_CONNECTION_RESET, rv);
EXPECT_FALSE(sock->IsConnected());
}
// Tests that the SSLClientSocket properly handles when the underlying transport
// synchronously returns an error code - such as if an intermediary terminates
// the socket connection uncleanly.
// This is a regression test for http://crbug.com/238536
TEST_F(SSLClientSocketTest, Read_WithSynchronousError) {
ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions()));
TestCompletionCallback callback;
std::unique_ptr<StreamSocket> real_transport(
new TCPClientSocket(addr(), NULL, NULL, NetLog::Source()));
std::unique_ptr<SynchronousErrorStreamSocket> transport(
new SynchronousErrorStreamSocket(std::move(real_transport)));
int rv = callback.GetResult(transport->Connect(callback.callback()));
EXPECT_EQ(OK, rv);
// Disable TLS False Start to avoid handshake non-determinism.
SSLConfig ssl_config;
ssl_config.false_start_enabled = false;
SynchronousErrorStreamSocket* raw_transport = transport.get();
std::unique_ptr<SSLClientSocket> sock(CreateSSLClientSocket(
std::move(transport), spawned_test_server()->host_port_pair(),
ssl_config));
rv = callback.GetResult(sock->Connect(callback.callback()));
EXPECT_EQ(OK, rv);
EXPECT_TRUE(sock->IsConnected());
const char request_text[] = "GET / HTTP/1.0\r\n\r\n";
static const int kRequestTextSize =
static_cast<int>(arraysize(request_text) - 1);
scoped_refptr<IOBuffer> request_buffer(new IOBuffer(kRequestTextSize));
memcpy(request_buffer->data(), request_text, kRequestTextSize);
rv = callback.GetResult(
sock->Write(request_buffer.get(), kRequestTextSize, callback.callback()));
EXPECT_EQ(kRequestTextSize, rv);
// Simulate an unclean/forcible shutdown.
raw_transport->SetNextReadError(ERR_CONNECTION_RESET);
scoped_refptr<IOBuffer> buf(new IOBuffer(4096));
// Note: This test will hang if this bug has regressed. Simply checking that
// rv != ERR_IO_PENDING is insufficient, as ERR_IO_PENDING is a legitimate
// result when using a dedicated task runner for NSS.
rv = callback.GetResult(sock->Read(buf.get(), 4096, callback.callback()));
EXPECT_EQ(ERR_CONNECTION_RESET, rv);
}
// Tests that the SSLClientSocket properly handles when the underlying transport
// asynchronously returns an error code while writing data - such as if an
// intermediary terminates the socket connection uncleanly.
// This is a regression test for http://crbug.com/249848
TEST_F(SSLClientSocketTest, Write_WithSynchronousError) {
ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions()));
TestCompletionCallback callback;
std::unique_ptr<StreamSocket> real_transport(
new TCPClientSocket(addr(), NULL, NULL, NetLog::Source()));
// Note: |error_socket|'s ownership is handed to |transport|, but a pointer
// is retained in order to configure additional errors.
std::unique_ptr<SynchronousErrorStreamSocket> error_socket(
new SynchronousErrorStreamSocket(std::move(real_transport)));
SynchronousErrorStreamSocket* raw_error_socket = error_socket.get();
std::unique_ptr<FakeBlockingStreamSocket> transport(
new FakeBlockingStreamSocket(std::move(error_socket)));
FakeBlockingStreamSocket* raw_transport = transport.get();
int rv = callback.GetResult(transport->Connect(callback.callback()));
EXPECT_EQ(OK, rv);
// Disable TLS False Start to avoid handshake non-determinism.
SSLConfig ssl_config;
ssl_config.false_start_enabled = false;
std::unique_ptr<SSLClientSocket> sock(CreateSSLClientSocket(
std::move(transport), spawned_test_server()->host_port_pair(),
ssl_config));
rv = callback.GetResult(sock->Connect(callback.callback()));
EXPECT_EQ(OK, rv);
EXPECT_TRUE(sock->IsConnected());
const char request_text[] = "GET / HTTP/1.0\r\n\r\n";
static const int kRequestTextSize =
static_cast<int>(arraysize(request_text) - 1);
scoped_refptr<IOBuffer> request_buffer(new IOBuffer(kRequestTextSize));
memcpy(request_buffer->data(), request_text, kRequestTextSize);
// Simulate an unclean/forcible shutdown on the underlying socket.
// However, simulate this error asynchronously.
raw_error_socket->SetNextWriteError(ERR_CONNECTION_RESET);
raw_transport->BlockWrite();
// This write should complete synchronously, because the TLS ciphertext
// can be created and placed into the outgoing buffers independent of the
// underlying transport.
rv = callback.GetResult(
sock->Write(request_buffer.get(), kRequestTextSize, callback.callback()));
EXPECT_EQ(kRequestTextSize, rv);
scoped_refptr<IOBuffer> buf(new IOBuffer(4096));
rv = sock->Read(buf.get(), 4096, callback.callback());
EXPECT_EQ(ERR_IO_PENDING, rv);
// Now unblock the outgoing request, having it fail with the connection
// being reset.
raw_transport->UnblockWrite();
// Note: This will cause an inifite loop if this bug has regressed. Simply
// checking that rv != ERR_IO_PENDING is insufficient, as ERR_IO_PENDING
// is a legitimate result when using a dedicated task runner for NSS.
rv = callback.GetResult(rv);
EXPECT_EQ(ERR_CONNECTION_RESET, rv);
}
// If there is a Write failure at the transport with no follow-up Read, although
// the write error will not be returned to the client until a future Read or
// Write operation, SSLClientSocket should not spin attempting to re-write on
// the socket. This is a regression test for part of https://crbug.com/381160.
TEST_F(SSLClientSocketTest, Write_WithSynchronousErrorNoRead) {
ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions()));
TestCompletionCallback callback;
std::unique_ptr<StreamSocket> real_transport(
new TCPClientSocket(addr(), NULL, NULL, NetLog::Source()));
// Note: intermediate sockets' ownership are handed to |sock|, but a pointer
// is retained in order to query them.
std::unique_ptr<SynchronousErrorStreamSocket> error_socket(
new SynchronousErrorStreamSocket(std::move(real_transport)));
SynchronousErrorStreamSocket* raw_error_socket = error_socket.get();
std::unique_ptr<CountingStreamSocket> counting_socket(
new CountingStreamSocket(std::move(error_socket)));
CountingStreamSocket* raw_counting_socket = counting_socket.get();
int rv = callback.GetResult(counting_socket->Connect(callback.callback()));
ASSERT_EQ(OK, rv);
// Disable TLS False Start to avoid handshake non-determinism.
SSLConfig ssl_config;
ssl_config.false_start_enabled = false;
std::unique_ptr<SSLClientSocket> sock(CreateSSLClientSocket(
std::move(counting_socket), spawned_test_server()->host_port_pair(),
ssl_config));
rv = callback.GetResult(sock->Connect(callback.callback()));
ASSERT_EQ(OK, rv);
ASSERT_TRUE(sock->IsConnected());
// Simulate an unclean/forcible shutdown on the underlying socket.
raw_error_socket->SetNextWriteError(ERR_CONNECTION_RESET);
const char request_text[] = "GET / HTTP/1.0\r\n\r\n";
static const int kRequestTextSize =
static_cast<int>(arraysize(request_text) - 1);
scoped_refptr<IOBuffer> request_buffer(new IOBuffer(kRequestTextSize));
memcpy(request_buffer->data(), request_text, kRequestTextSize);
// This write should complete synchronously, because the TLS ciphertext
// can be created and placed into the outgoing buffers independent of the
// underlying transport.
rv = callback.GetResult(
sock->Write(request_buffer.get(), kRequestTextSize, callback.callback()));
ASSERT_EQ(kRequestTextSize, rv);
// Let the event loop spin for a little bit of time. Even on platforms where
// pumping the state machine involve thread hops, there should be no further
// writes on the transport socket.
//
// TODO(davidben): Avoid the arbitrary timeout?
int old_write_count = raw_counting_socket->write_count();
base::RunLoop loop;
base::ThreadTaskRunnerHandle::Get()->PostDelayedTask(
FROM_HERE, loop.QuitClosure(), base::TimeDelta::FromMilliseconds(100));
loop.Run();
EXPECT_EQ(old_write_count, raw_counting_socket->write_count());
}
// Test the full duplex mode, with Read and Write pending at the same time.
// This test also serves as a regression test for http://crbug.com/29815.
TEST_F(SSLClientSocketTest, Read_FullDuplex) {
ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions()));
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(SSLConfig(), &rv));
EXPECT_EQ(OK, rv);
// Issue a "hanging" Read first.
TestCompletionCallback callback;
scoped_refptr<IOBuffer> buf(new IOBuffer(4096));
rv = sock_->Read(buf.get(), 4096, callback.callback());
// We haven't written the request, so there should be no response yet.
ASSERT_EQ(ERR_IO_PENDING, rv);
// Write the request.
// The request is padded with a User-Agent header to a size that causes the
// memio circular buffer (4k bytes) in SSLClientSocketNSS to wrap around.
// This tests the fix for http://crbug.com/29815.
std::string request_text = "GET / HTTP/1.1\r\nUser-Agent: long browser name ";
for (int i = 0; i < 3770; ++i)
request_text.push_back('*');
request_text.append("\r\n\r\n");
scoped_refptr<IOBuffer> request_buffer(new StringIOBuffer(request_text));
TestCompletionCallback callback2; // Used for Write only.
rv = callback2.GetResult(sock_->Write(
request_buffer.get(), request_text.size(), callback2.callback()));
EXPECT_EQ(static_cast<int>(request_text.size()), rv);
// Now get the Read result.
rv = callback.WaitForResult();
EXPECT_GT(rv, 0);
}
// Attempts to Read() and Write() from an SSLClientSocketNSS in full duplex
// mode when the underlying transport is blocked on sending data. When the
// underlying transport completes due to an error, it should invoke both the
// Read() and Write() callbacks. If the socket is deleted by the Read()
// callback, the Write() callback should not be invoked.
// Regression test for http://crbug.com/232633
TEST_F(SSLClientSocketTest, Read_DeleteWhilePendingFullDuplex) {
ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions()));
TestCompletionCallback callback;
std::unique_ptr<StreamSocket> real_transport(
new TCPClientSocket(addr(), NULL, NULL, NetLog::Source()));
// Note: |error_socket|'s ownership is handed to |transport|, but a pointer
// is retained in order to configure additional errors.
std::unique_ptr<SynchronousErrorStreamSocket> error_socket(
new SynchronousErrorStreamSocket(std::move(real_transport)));
SynchronousErrorStreamSocket* raw_error_socket = error_socket.get();
std::unique_ptr<FakeBlockingStreamSocket> transport(
new FakeBlockingStreamSocket(std::move(error_socket)));
FakeBlockingStreamSocket* raw_transport = transport.get();
int rv = callback.GetResult(transport->Connect(callback.callback()));
EXPECT_EQ(OK, rv);
// Disable TLS False Start to avoid handshake non-determinism.
SSLConfig ssl_config;
ssl_config.false_start_enabled = false;
std::unique_ptr<SSLClientSocket> sock = CreateSSLClientSocket(
std::move(transport), spawned_test_server()->host_port_pair(),
ssl_config);
rv = callback.GetResult(sock->Connect(callback.callback()));
EXPECT_EQ(OK, rv);
EXPECT_TRUE(sock->IsConnected());
std::string request_text = "GET / HTTP/1.1\r\nUser-Agent: long browser name ";
request_text.append(20 * 1024, '*');
request_text.append("\r\n\r\n");
scoped_refptr<DrainableIOBuffer> request_buffer(new DrainableIOBuffer(
new StringIOBuffer(request_text), request_text.size()));
// Simulate errors being returned from the underlying Read() and Write() ...
raw_error_socket->SetNextReadError(ERR_CONNECTION_RESET);
raw_error_socket->SetNextWriteError(ERR_CONNECTION_RESET);
// ... but have those errors returned asynchronously. Because the Write() will
// return first, this will trigger the error.
raw_transport->BlockReadResult();
raw_transport->BlockWrite();
// Enqueue a Read() before calling Write(), which should "hang" due to
// the ERR_IO_PENDING caused by SetReadShouldBlock() and thus return.
SSLClientSocket* raw_sock = sock.get();
DeleteSocketCallback read_callback(sock.release());
scoped_refptr<IOBuffer> read_buf(new IOBuffer(4096));
rv = raw_sock->Read(read_buf.get(), 4096, read_callback.callback());
// Ensure things didn't complete synchronously, otherwise |sock| is invalid.
ASSERT_EQ(ERR_IO_PENDING, rv);
ASSERT_FALSE(read_callback.have_result());
// Attempt to write the remaining data. OpenSSL will return that its blocked
// because the underlying transport is blocked.
rv = raw_sock->Write(request_buffer.get(),
request_buffer->BytesRemaining(),
callback.callback());
ASSERT_EQ(ERR_IO_PENDING, rv);
ASSERT_FALSE(callback.have_result());
// Now unblock Write(), which will invoke OnSendComplete and (eventually)
// call the Read() callback, deleting the socket and thus aborting calling
// the Write() callback.
raw_transport->UnblockWrite();
rv = read_callback.WaitForResult();
EXPECT_EQ(ERR_CONNECTION_RESET, rv);
// The Write callback should not have been called.
EXPECT_FALSE(callback.have_result());
}
// Tests that the SSLClientSocket does not crash if data is received on the
// transport socket after a failing write. This can occur if we have a Write
// error in a SPDY socket.
// Regression test for http://crbug.com/335557
TEST_F(SSLClientSocketTest, Read_WithWriteError) {
ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions()));
TestCompletionCallback callback;
std::unique_ptr<StreamSocket> real_transport(
new TCPClientSocket(addr(), NULL, NULL, NetLog::Source()));
// Note: |error_socket|'s ownership is handed to |transport|, but a pointer
// is retained in order to configure additional errors.
std::unique_ptr<SynchronousErrorStreamSocket> error_socket(
new SynchronousErrorStreamSocket(std::move(real_transport)));
SynchronousErrorStreamSocket* raw_error_socket = error_socket.get();
std::unique_ptr<FakeBlockingStreamSocket> transport(
new FakeBlockingStreamSocket(std::move(error_socket)));
FakeBlockingStreamSocket* raw_transport = transport.get();
int rv = callback.GetResult(transport->Connect(callback.callback()));
EXPECT_EQ(OK, rv);
// Disable TLS False Start to avoid handshake non-determinism.
SSLConfig ssl_config;
ssl_config.false_start_enabled = false;
std::unique_ptr<SSLClientSocket> sock(CreateSSLClientSocket(
std::move(transport), spawned_test_server()->host_port_pair(),
ssl_config));
rv = callback.GetResult(sock->Connect(callback.callback()));
EXPECT_EQ(OK, rv);
EXPECT_TRUE(sock->IsConnected());
// Send a request so there is something to read from the socket.
const char request_text[] = "GET / HTTP/1.0\r\n\r\n";
static const int kRequestTextSize =
static_cast<int>(arraysize(request_text) - 1);
scoped_refptr<IOBuffer> request_buffer(new IOBuffer(kRequestTextSize));
memcpy(request_buffer->data(), request_text, kRequestTextSize);
rv = callback.GetResult(
sock->Write(request_buffer.get(), kRequestTextSize, callback.callback()));
EXPECT_EQ(kRequestTextSize, rv);
// Start a hanging read.
TestCompletionCallback read_callback;
raw_transport->BlockReadResult();
scoped_refptr<IOBuffer> buf(new IOBuffer(4096));
rv = sock->Read(buf.get(), 4096, read_callback.callback());
EXPECT_EQ(ERR_IO_PENDING, rv);
// Perform another write, but have it fail. Write a request larger than the
// internal socket buffers so that the request hits the underlying transport
// socket and detects the error.
std::string long_request_text =
"GET / HTTP/1.1\r\nUser-Agent: long browser name ";
long_request_text.append(20 * 1024, '*');
long_request_text.append("\r\n\r\n");
scoped_refptr<DrainableIOBuffer> long_request_buffer(new DrainableIOBuffer(
new StringIOBuffer(long_request_text), long_request_text.size()));
raw_error_socket->SetNextWriteError(ERR_CONNECTION_RESET);
// Write as much data as possible until hitting an error. This is necessary
// for NSS. PR_Write will only consume as much data as it can encode into
// application data records before the internal memio buffer is full, which
// should only fill if writing a large amount of data and the underlying
// transport is blocked. Once this happens, NSS will return (total size of all
// application data records it wrote) - 1, with the caller expected to resume
// with the remaining unsent data.
do {
rv = callback.GetResult(sock->Write(long_request_buffer.get(),
long_request_buffer->BytesRemaining(),
callback.callback()));
if (rv > 0) {
long_request_buffer->DidConsume(rv);
// Abort if the entire buffer is ever consumed.
ASSERT_LT(0, long_request_buffer->BytesRemaining());
}
} while (rv > 0);
EXPECT_EQ(ERR_CONNECTION_RESET, rv);
// Release the read.
raw_transport->UnblockReadResult();
rv = read_callback.WaitForResult();
// Should still read bytes despite the write error.
EXPECT_LT(0, rv);
}
// Tests that SSLClientSocket fails the handshake if the underlying
// transport is cleanly closed.
TEST_F(SSLClientSocketTest, Connect_WithZeroReturn) {
ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions()));
TestCompletionCallback callback;
std::unique_ptr<StreamSocket> real_transport(
new TCPClientSocket(addr(), NULL, NULL, NetLog::Source()));
std::unique_ptr<SynchronousErrorStreamSocket> transport(
new SynchronousErrorStreamSocket(std::move(real_transport)));
int rv = callback.GetResult(transport->Connect(callback.callback()));
EXPECT_EQ(OK, rv);
SynchronousErrorStreamSocket* raw_transport = transport.get();
std::unique_ptr<SSLClientSocket> sock(CreateSSLClientSocket(
std::move(transport), spawned_test_server()->host_port_pair(),
SSLConfig()));
raw_transport->SetNextReadError(0);
rv = callback.GetResult(sock->Connect(callback.callback()));
EXPECT_EQ(ERR_CONNECTION_CLOSED, rv);
EXPECT_FALSE(sock->IsConnected());
}
// Tests that SSLClientSocket returns a Read of size 0 if the underlying socket
// is cleanly closed, but the peer does not send close_notify.
// This is a regression test for https://crbug.com/422246
TEST_F(SSLClientSocketTest, Read_WithZeroReturn) {
ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions()));
TestCompletionCallback callback;
std::unique_ptr<StreamSocket> real_transport(
new TCPClientSocket(addr(), NULL, NULL, NetLog::Source()));
std::unique_ptr<SynchronousErrorStreamSocket> transport(
new SynchronousErrorStreamSocket(std::move(real_transport)));
int rv = callback.GetResult(transport->Connect(callback.callback()));
EXPECT_EQ(OK, rv);
// Disable TLS False Start to ensure the handshake has completed.
SSLConfig ssl_config;
ssl_config.false_start_enabled = false;
SynchronousErrorStreamSocket* raw_transport = transport.get();
std::unique_ptr<SSLClientSocket> sock(CreateSSLClientSocket(
std::move(transport), spawned_test_server()->host_port_pair(),
ssl_config));
rv = callback.GetResult(sock->Connect(callback.callback()));
EXPECT_EQ(OK, rv);
EXPECT_TRUE(sock->IsConnected());
raw_transport->SetNextReadError(0);
scoped_refptr<IOBuffer> buf(new IOBuffer(4096));
rv = callback.GetResult(sock->Read(buf.get(), 4096, callback.callback()));
EXPECT_EQ(0, rv);
}
// Tests that SSLClientSocket cleanly returns a Read of size 0 if the
// underlying socket is cleanly closed asynchronously.
// This is a regression test for https://crbug.com/422246
TEST_F(SSLClientSocketTest, Read_WithAsyncZeroReturn) {
ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions()));
TestCompletionCallback callback;
std::unique_ptr<StreamSocket> real_transport(
new TCPClientSocket(addr(), NULL, NULL, NetLog::Source()));
std::unique_ptr<SynchronousErrorStreamSocket> error_socket(
new SynchronousErrorStreamSocket(std::move(real_transport)));
SynchronousErrorStreamSocket* raw_error_socket = error_socket.get();
std::unique_ptr<FakeBlockingStreamSocket> transport(
new FakeBlockingStreamSocket(std::move(error_socket)));
FakeBlockingStreamSocket* raw_transport = transport.get();
int rv = callback.GetResult(transport->Connect(callback.callback()));
EXPECT_EQ(OK, rv);
// Disable TLS False Start to ensure the handshake has completed.
SSLConfig ssl_config;
ssl_config.false_start_enabled = false;
std::unique_ptr<SSLClientSocket> sock(CreateSSLClientSocket(
std::move(transport), spawned_test_server()->host_port_pair(),
ssl_config));
rv = callback.GetResult(sock->Connect(callback.callback()));
EXPECT_EQ(OK, rv);
EXPECT_TRUE(sock->IsConnected());
raw_error_socket->SetNextReadError(0);
raw_transport->BlockReadResult();
scoped_refptr<IOBuffer> buf(new IOBuffer(4096));
rv = sock->Read(buf.get(), 4096, callback.callback());
EXPECT_EQ(ERR_IO_PENDING, rv);
raw_transport->UnblockReadResult();
rv = callback.GetResult(rv);
EXPECT_EQ(0, rv);
}
// Tests that fatal alerts from the peer are processed. This is a regression
// test for https://crbug.com/466303.
TEST_F(SSLClientSocketTest, Read_WithFatalAlert) {
SpawnedTestServer::SSLOptions ssl_options;
ssl_options.alert_after_handshake = true;
ASSERT_TRUE(StartTestServer(ssl_options));
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(SSLConfig(), &rv));
EXPECT_EQ(OK, rv);
// Receive the fatal alert.
TestCompletionCallback callback;
scoped_refptr<IOBuffer> buf(new IOBuffer(4096));
EXPECT_EQ(ERR_SSL_PROTOCOL_ERROR, callback.GetResult(sock_->Read(
buf.get(), 4096, callback.callback())));
}
TEST_F(SSLClientSocketTest, Read_SmallChunks) {
ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions()));
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(SSLConfig(), &rv));
EXPECT_EQ(OK, rv);
const char request_text[] = "GET / HTTP/1.0\r\n\r\n";
scoped_refptr<IOBuffer> request_buffer(
new IOBuffer(arraysize(request_text) - 1));
memcpy(request_buffer->data(), request_text, arraysize(request_text) - 1);
TestCompletionCallback callback;
rv = callback.GetResult(sock_->Write(
request_buffer.get(), arraysize(request_text) - 1, callback.callback()));
EXPECT_EQ(static_cast<int>(arraysize(request_text) - 1), rv);
scoped_refptr<IOBuffer> buf(new IOBuffer(1));
do {
rv = callback.GetResult(sock_->Read(buf.get(), 1, callback.callback()));
EXPECT_GE(rv, 0);
} while (rv > 0);
}
TEST_F(SSLClientSocketTest, Read_ManySmallRecords) {
ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions()));
TestCompletionCallback callback;
std::unique_ptr<StreamSocket> real_transport(
new TCPClientSocket(addr(), NULL, NULL, NetLog::Source()));
std::unique_ptr<ReadBufferingStreamSocket> transport(
new ReadBufferingStreamSocket(std::move(real_transport)));
ReadBufferingStreamSocket* raw_transport = transport.get();
int rv = callback.GetResult(transport->Connect(callback.callback()));
ASSERT_EQ(OK, rv);
std::unique_ptr<SSLClientSocket> sock(CreateSSLClientSocket(
std::move(transport), spawned_test_server()->host_port_pair(),
SSLConfig()));
rv = callback.GetResult(sock->Connect(callback.callback()));
ASSERT_EQ(OK, rv);
ASSERT_TRUE(sock->IsConnected());
const char request_text[] = "GET /ssl-many-small-records HTTP/1.0\r\n\r\n";
scoped_refptr<IOBuffer> request_buffer(
new IOBuffer(arraysize(request_text) - 1));
memcpy(request_buffer->data(), request_text, arraysize(request_text) - 1);
rv = callback.GetResult(sock->Write(
request_buffer.get(), arraysize(request_text) - 1, callback.callback()));
ASSERT_GT(rv, 0);
ASSERT_EQ(static_cast<int>(arraysize(request_text) - 1), rv);
// Note: This relies on SSLClientSocketNSS attempting to read up to 17K of
// data (the max SSL record size) at a time. Ensure that at least 15K worth
// of SSL data is buffered first. The 15K of buffered data is made up of
// many smaller SSL records (the TestServer writes along 1350 byte
// plaintext boundaries), although there may also be a few records that are
// smaller or larger, due to timing and SSL False Start.
// 15K was chosen because 15K is smaller than the 17K (max) read issued by
// the SSLClientSocket implementation, and larger than the minimum amount
// of ciphertext necessary to contain the 8K of plaintext requested below.
raw_transport->SetBufferSize(15000);
scoped_refptr<IOBuffer> buffer(new IOBuffer(8192));
rv = callback.GetResult(sock->Read(buffer.get(), 8192, callback.callback()));
ASSERT_EQ(rv, 8192);
}
TEST_F(SSLClientSocketTest, Read_Interrupted) {
ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions()));
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(SSLConfig(), &rv));
EXPECT_EQ(OK, rv);
const char request_text[] = "GET / HTTP/1.0\r\n\r\n";
scoped_refptr<IOBuffer> request_buffer(
new IOBuffer(arraysize(request_text) - 1));
memcpy(request_buffer->data(), request_text, arraysize(request_text) - 1);
TestCompletionCallback callback;
rv = callback.GetResult(sock_->Write(
request_buffer.get(), arraysize(request_text) - 1, callback.callback()));
EXPECT_EQ(static_cast<int>(arraysize(request_text) - 1), rv);
// Do a partial read and then exit. This test should not crash!
scoped_refptr<IOBuffer> buf(new IOBuffer(512));
rv = callback.GetResult(sock_->Read(buf.get(), 512, callback.callback()));
EXPECT_GT(rv, 0);
}
TEST_F(SSLClientSocketTest, Read_FullLogging) {
ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions()));
TestCompletionCallback callback;
TestNetLog log;
log.SetCaptureMode(NetLogCaptureMode::IncludeSocketBytes());
std::unique_ptr<StreamSocket> transport(
new TCPClientSocket(addr(), NULL, &log, NetLog::Source()));
int rv = callback.GetResult(transport->Connect(callback.callback()));
EXPECT_EQ(OK, rv);
std::unique_ptr<SSLClientSocket> sock(CreateSSLClientSocket(
std::move(transport), spawned_test_server()->host_port_pair(),
SSLConfig()));
rv = callback.GetResult(sock->Connect(callback.callback()));
EXPECT_EQ(OK, rv);
EXPECT_TRUE(sock->IsConnected());
const char request_text[] = "GET / HTTP/1.0\r\n\r\n";
scoped_refptr<IOBuffer> request_buffer(
new IOBuffer(arraysize(request_text) - 1));
memcpy(request_buffer->data(), request_text, arraysize(request_text) - 1);
rv = callback.GetResult(sock->Write(
request_buffer.get(), arraysize(request_text) - 1, callback.callback()));
EXPECT_EQ(static_cast<int>(arraysize(request_text) - 1), rv);
TestNetLogEntry::List entries;
log.GetEntries(&entries);
size_t last_index = ExpectLogContainsSomewhereAfter(
entries, 5, NetLog::TYPE_SSL_SOCKET_BYTES_SENT, NetLog::PHASE_NONE);
scoped_refptr<IOBuffer> buf(new IOBuffer(4096));
for (;;) {
rv = callback.GetResult(sock->Read(buf.get(), 4096, callback.callback()));
EXPECT_GE(rv, 0);
if (rv <= 0)
break;
log.GetEntries(&entries);
last_index =
ExpectLogContainsSomewhereAfter(entries,
last_index + 1,
NetLog::TYPE_SSL_SOCKET_BYTES_RECEIVED,
NetLog::PHASE_NONE);
}
}
// Regression test for http://crbug.com/42538
TEST_F(SSLClientSocketTest, PrematureApplicationData) {
ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions()));
static const unsigned char application_data[] = {
0x17, 0x03, 0x01, 0x00, 0x4a, 0x02, 0x00, 0x00, 0x46, 0x03, 0x01, 0x4b,
0xc2, 0xf8, 0xb2, 0xc1, 0x56, 0x42, 0xb9, 0x57, 0x7f, 0xde, 0x87, 0x46,
0xf7, 0xa3, 0x52, 0x42, 0x21, 0xf0, 0x13, 0x1c, 0x9c, 0x83, 0x88, 0xd6,
0x93, 0x0c, 0xf6, 0x36, 0x30, 0x05, 0x7e, 0x20, 0xb5, 0xb5, 0x73, 0x36,
0x53, 0x83, 0x0a, 0xfc, 0x17, 0x63, 0xbf, 0xa0, 0xe4, 0x42, 0x90, 0x0d,
0x2f, 0x18, 0x6d, 0x20, 0xd8, 0x36, 0x3f, 0xfc, 0xe6, 0x01, 0xfa, 0x0f,
0xa5, 0x75, 0x7f, 0x09, 0x00, 0x04, 0x00, 0x16, 0x03, 0x01, 0x11, 0x57,
0x0b, 0x00, 0x11, 0x53, 0x00, 0x11, 0x50, 0x00, 0x06, 0x22, 0x30, 0x82,
0x06, 0x1e, 0x30, 0x82, 0x05, 0x06, 0xa0, 0x03, 0x02, 0x01, 0x02, 0x02,
0x0a};
// All reads and writes complete synchronously (async=false).
MockRead data_reads[] = {
MockRead(SYNCHRONOUS,
reinterpret_cast<const char*>(application_data),
arraysize(application_data)),
MockRead(SYNCHRONOUS, OK), };
StaticSocketDataProvider data(data_reads, arraysize(data_reads), NULL, 0);
TestCompletionCallback callback;
std::unique_ptr<StreamSocket> transport(
new MockTCPClientSocket(addr(), NULL, &data));
int rv = callback.GetResult(transport->Connect(callback.callback()));
EXPECT_EQ(OK, rv);
std::unique_ptr<SSLClientSocket> sock(CreateSSLClientSocket(
std::move(transport), spawned_test_server()->host_port_pair(),
SSLConfig()));
rv = callback.GetResult(sock->Connect(callback.callback()));
EXPECT_EQ(ERR_SSL_PROTOCOL_ERROR, rv);
}
TEST_F(SSLClientSocketTest, CipherSuiteDisables) {
// Rather than exhaustively disabling every AES_128_CBC ciphersuite defined at
// http://www.iana.org/assignments/tls-parameters/tls-parameters.xml, only
// disabling those cipher suites that the test server actually implements.
const uint16_t kCiphersToDisable[] = {
0x002f, // TLS_RSA_WITH_AES_128_CBC_SHA
0x0033, // TLS_DHE_RSA_WITH_AES_128_CBC_SHA
0xc013, // TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
};
SpawnedTestServer::SSLOptions ssl_options;
// Enable only AES_128_CBC on the test server.
ssl_options.bulk_ciphers = SpawnedTestServer::SSLOptions::BULK_CIPHER_AES128;
ASSERT_TRUE(StartTestServer(ssl_options));
SSLConfig ssl_config;
for (size_t i = 0; i < arraysize(kCiphersToDisable); ++i)
ssl_config.disabled_cipher_suites.push_back(kCiphersToDisable[i]);
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv));
EXPECT_EQ(ERR_SSL_VERSION_OR_CIPHER_MISMATCH, rv);
}
// When creating an SSLClientSocket, it is allowed to pass in a
// ClientSocketHandle that is not obtained from a client socket pool.
// Here we verify that such a simple ClientSocketHandle, not associated with any
// client socket pool, can be destroyed safely.
TEST_F(SSLClientSocketTest, ClientSocketHandleNotFromPool) {
ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions()));
TestCompletionCallback callback;
std::unique_ptr<StreamSocket> transport(
new TCPClientSocket(addr(), NULL, NULL, NetLog::Source()));
int rv = callback.GetResult(transport->Connect(callback.callback()));
EXPECT_EQ(OK, rv);
std::unique_ptr<ClientSocketHandle> socket_handle(new ClientSocketHandle());
socket_handle->SetSocket(std::move(transport));
std::unique_ptr<SSLClientSocket> sock(socket_factory_->CreateSSLClientSocket(
std::move(socket_handle), spawned_test_server()->host_port_pair(),
SSLConfig(), context_));
EXPECT_FALSE(sock->IsConnected());
rv = callback.GetResult(sock->Connect(callback.callback()));
EXPECT_EQ(OK, rv);
}
// Verifies that SSLClientSocket::ExportKeyingMaterial return a success
// code and different keying label results in different keying material.
TEST_F(SSLClientSocketTest, ExportKeyingMaterial) {
ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions()));
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(SSLConfig(), &rv));
EXPECT_EQ(OK, rv);
EXPECT_TRUE(sock_->IsConnected());
const int kKeyingMaterialSize = 32;
const char kKeyingLabel1[] = "client-socket-test-1";
const char kKeyingContext1[] = "";
unsigned char client_out1[kKeyingMaterialSize];
memset(client_out1, 0, sizeof(client_out1));
rv = sock_->ExportKeyingMaterial(kKeyingLabel1, false, kKeyingContext1,
client_out1, sizeof(client_out1));
EXPECT_EQ(rv, OK);
const char kKeyingLabel2[] = "client-socket-test-2";
unsigned char client_out2[kKeyingMaterialSize];
memset(client_out2, 0, sizeof(client_out2));
rv = sock_->ExportKeyingMaterial(kKeyingLabel2, false, kKeyingContext1,
client_out2, sizeof(client_out2));
EXPECT_EQ(rv, OK);
EXPECT_NE(memcmp(client_out1, client_out2, kKeyingMaterialSize), 0);
const char kKeyingContext2[] = "context";
rv = sock_->ExportKeyingMaterial(kKeyingLabel1, true, kKeyingContext2,
client_out2, sizeof(client_out2));
EXPECT_EQ(rv, OK);
EXPECT_NE(memcmp(client_out1, client_out2, kKeyingMaterialSize), 0);
// Using an empty context should give different key material from not using a
// context at all.
memset(client_out2, 0, sizeof(client_out2));
rv = sock_->ExportKeyingMaterial(kKeyingLabel1, true, kKeyingContext1,
client_out2, sizeof(client_out2));
EXPECT_EQ(rv, OK);
EXPECT_NE(memcmp(client_out1, client_out2, kKeyingMaterialSize), 0);
}
// Verifies that SSLClientSocket::ClearSessionCache can be called without
// explicit NSS initialization.
TEST(SSLClientSocket, ClearSessionCache) {
SSLClientSocket::ClearSessionCache();
}
TEST(SSLClientSocket, SerializeNextProtos) {
NextProtoVector next_protos;
next_protos.push_back(kProtoHTTP11);
next_protos.push_back(kProtoSPDY31);
static std::vector<uint8_t> serialized =
SSLClientSocket::SerializeNextProtos(next_protos);
ASSERT_EQ(18u, serialized.size());
EXPECT_EQ(8, serialized[0]); // length("http/1.1")
EXPECT_EQ('h', serialized[1]);
EXPECT_EQ('t', serialized[2]);
EXPECT_EQ('t', serialized[3]);
EXPECT_EQ('p', serialized[4]);
EXPECT_EQ('/', serialized[5]);
EXPECT_EQ('1', serialized[6]);
EXPECT_EQ('.', serialized[7]);
EXPECT_EQ('1', serialized[8]);
EXPECT_EQ(8, serialized[9]); // length("spdy/3.1")
EXPECT_EQ('s', serialized[10]);
EXPECT_EQ('p', serialized[11]);
EXPECT_EQ('d', serialized[12]);
EXPECT_EQ('y', serialized[13]);
EXPECT_EQ('/', serialized[14]);
EXPECT_EQ('3', serialized[15]);
EXPECT_EQ('.', serialized[16]);
EXPECT_EQ('1', serialized[17]);
}
// Test that the server certificates are properly retrieved from the underlying
// SSL stack.
TEST_F(SSLClientSocketTest, VerifyServerChainProperlyOrdered) {
// The connection does not have to be successful.
cert_verifier_->set_default_result(ERR_CERT_INVALID);
// Set up a test server with CERT_CHAIN_WRONG_ROOT.
// This makes the server present redundant-server-chain.pem, which contains
// intermediate certificates.
SpawnedTestServer::SSLOptions ssl_options(
SpawnedTestServer::SSLOptions::CERT_CHAIN_WRONG_ROOT);
ASSERT_TRUE(StartTestServer(ssl_options));
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(SSLConfig(), &rv));
EXPECT_EQ(ERR_CERT_INVALID, rv);
EXPECT_TRUE(sock_->IsConnected());
// When given option CERT_CHAIN_WRONG_ROOT, SpawnedTestServer will present
// certs from redundant-server-chain.pem.
CertificateList server_certs =
CreateCertificateListFromFile(GetTestCertsDirectory(),
"redundant-server-chain.pem",
X509Certificate::FORMAT_AUTO);
// Get the server certificate as received client side.
SSLInfo ssl_info;
ASSERT_TRUE(sock_->GetSSLInfo(&ssl_info));
scoped_refptr<X509Certificate> server_certificate = ssl_info.unverified_cert;
// Get the intermediates as received client side.
const X509Certificate::OSCertHandles& server_intermediates =
server_certificate->GetIntermediateCertificates();
// Check that the unverified server certificate chain is properly retrieved
// from the underlying ssl stack.
ASSERT_EQ(4U, server_certs.size());
EXPECT_TRUE(X509Certificate::IsSameOSCert(
server_certificate->os_cert_handle(), server_certs[0]->os_cert_handle()));
ASSERT_EQ(3U, server_intermediates.size());
EXPECT_TRUE(X509Certificate::IsSameOSCert(server_intermediates[0],
server_certs[1]->os_cert_handle()));
EXPECT_TRUE(X509Certificate::IsSameOSCert(server_intermediates[1],
server_certs[2]->os_cert_handle()));
EXPECT_TRUE(X509Certificate::IsSameOSCert(server_intermediates[2],
server_certs[3]->os_cert_handle()));
sock_->Disconnect();
EXPECT_FALSE(sock_->IsConnected());
}
// This tests that SSLInfo contains a properly re-constructed certificate
// chain. That, in turn, verifies that GetSSLInfo is giving us the chain as
// verified, not the chain as served by the server. (They may be different.)
//
// CERT_CHAIN_WRONG_ROOT is redundant-server-chain.pem. It contains A
// (end-entity) -> B -> C, and C is signed by D. redundant-validated-chain.pem
// contains a chain of A -> B -> C2, where C2 is the same public key as C, but
// a self-signed root. Such a situation can occur when a new root (C2) is
// cross-certified by an old root (D) and has two different versions of its
// floating around. Servers may supply C2 as an intermediate, but the
// SSLClientSocket should return the chain that was verified, from
// verify_result, instead.
TEST_F(SSLClientSocketTest, VerifyReturnChainProperlyOrdered) {
// By default, cause the CertVerifier to treat all certificates as
// expired.
cert_verifier_->set_default_result(ERR_CERT_DATE_INVALID);
CertificateList unverified_certs = CreateCertificateListFromFile(
GetTestCertsDirectory(), "redundant-server-chain.pem",
X509Certificate::FORMAT_AUTO);
ASSERT_EQ(4u, unverified_certs.size());
// We will expect SSLInfo to ultimately contain this chain.
CertificateList certs =
CreateCertificateListFromFile(GetTestCertsDirectory(),
"redundant-validated-chain.pem",
X509Certificate::FORMAT_AUTO);
ASSERT_EQ(3U, certs.size());
X509Certificate::OSCertHandles temp_intermediates;
temp_intermediates.push_back(certs[1]->os_cert_handle());
temp_intermediates.push_back(certs[2]->os_cert_handle());
CertVerifyResult verify_result;
verify_result.verified_cert = X509Certificate::CreateFromHandle(
certs[0]->os_cert_handle(), temp_intermediates);
// Add a rule that maps the server cert (A) to the chain of A->B->C2
// rather than A->B->C.
cert_verifier_->AddResultForCert(certs[0].get(), verify_result, OK);
// Load and install the root for the validated chain.
scoped_refptr<X509Certificate> root_cert = ImportCertFromFile(
GetTestCertsDirectory(), "redundant-validated-chain-root.pem");
ASSERT_NE(static_cast<X509Certificate*>(NULL), root_cert.get());
ScopedTestRoot scoped_root(root_cert.get());
// Set up a test server with CERT_CHAIN_WRONG_ROOT.
SpawnedTestServer::SSLOptions ssl_options(
SpawnedTestServer::SSLOptions::CERT_CHAIN_WRONG_ROOT);
ASSERT_TRUE(StartTestServer(ssl_options));
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(SSLConfig(), &rv));
EXPECT_EQ(OK, rv);
EXPECT_TRUE(sock_->IsConnected());
TestNetLogEntry::List entries;
log_.GetEntries(&entries);
EXPECT_TRUE(LogContainsEndEvent(entries, -1, NetLog::TYPE_SSL_CONNECT));
SSLInfo ssl_info;
sock_->GetSSLInfo(&ssl_info);
// Verify that SSLInfo contains the corrected re-constructed chain A -> B
// -> C2.
const X509Certificate::OSCertHandles& intermediates =
ssl_info.cert->GetIntermediateCertificates();
ASSERT_EQ(2U, intermediates.size());
EXPECT_TRUE(X509Certificate::IsSameOSCert(ssl_info.cert->os_cert_handle(),
certs[0]->os_cert_handle()));
EXPECT_TRUE(X509Certificate::IsSameOSCert(intermediates[0],
certs[1]->os_cert_handle()));
EXPECT_TRUE(X509Certificate::IsSameOSCert(intermediates[1],
certs[2]->os_cert_handle()));
// Verify that SSLInfo also contains the chain as received from the server.
const X509Certificate::OSCertHandles& served_intermediates =
ssl_info.unverified_cert->GetIntermediateCertificates();
ASSERT_EQ(3U, served_intermediates.size());
EXPECT_TRUE(X509Certificate::IsSameOSCert(
ssl_info.cert->os_cert_handle(), unverified_certs[0]->os_cert_handle()));
EXPECT_TRUE(X509Certificate::IsSameOSCert(
served_intermediates[0], unverified_certs[1]->os_cert_handle()));
EXPECT_TRUE(X509Certificate::IsSameOSCert(
served_intermediates[1], unverified_certs[2]->os_cert_handle()));
EXPECT_TRUE(X509Certificate::IsSameOSCert(
served_intermediates[2], unverified_certs[3]->os_cert_handle()));
sock_->Disconnect();
EXPECT_FALSE(sock_->IsConnected());
}
TEST_F(SSLClientSocketCertRequestInfoTest, NoAuthorities) {
SpawnedTestServer::SSLOptions ssl_options;
ssl_options.request_client_certificate = true;
scoped_refptr<SSLCertRequestInfo> request_info = GetCertRequest(ssl_options);
ASSERT_TRUE(request_info.get());
EXPECT_EQ(0u, request_info->cert_authorities.size());
}
TEST_F(SSLClientSocketCertRequestInfoTest, TwoAuthorities) {
const base::FilePath::CharType kThawteFile[] =
FILE_PATH_LITERAL("thawte.single.pem");
const unsigned char kThawteDN[] = {
0x30, 0x4c, 0x31, 0x0b, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x06, 0x13,
0x02, 0x5a, 0x41, 0x31, 0x25, 0x30, 0x23, 0x06, 0x03, 0x55, 0x04, 0x0a,
0x13, 0x1c, 0x54, 0x68, 0x61, 0x77, 0x74, 0x65, 0x20, 0x43, 0x6f, 0x6e,
0x73, 0x75, 0x6c, 0x74, 0x69, 0x6e, 0x67, 0x20, 0x28, 0x50, 0x74, 0x79,
0x29, 0x20, 0x4c, 0x74, 0x64, 0x2e, 0x31, 0x16, 0x30, 0x14, 0x06, 0x03,
0x55, 0x04, 0x03, 0x13, 0x0d, 0x54, 0x68, 0x61, 0x77, 0x74, 0x65, 0x20,
0x53, 0x47, 0x43, 0x20, 0x43, 0x41};
const size_t kThawteLen = sizeof(kThawteDN);
const base::FilePath::CharType kDiginotarFile[] =
FILE_PATH_LITERAL("diginotar_root_ca.pem");
const unsigned char kDiginotarDN[] = {
0x30, 0x5f, 0x31, 0x0b, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x06, 0x13,
0x02, 0x4e, 0x4c, 0x31, 0x12, 0x30, 0x10, 0x06, 0x03, 0x55, 0x04, 0x0a,
0x13, 0x09, 0x44, 0x69, 0x67, 0x69, 0x4e, 0x6f, 0x74, 0x61, 0x72, 0x31,
0x1a, 0x30, 0x18, 0x06, 0x03, 0x55, 0x04, 0x03, 0x13, 0x11, 0x44, 0x69,
0x67, 0x69, 0x4e, 0x6f, 0x74, 0x61, 0x72, 0x20, 0x52, 0x6f, 0x6f, 0x74,
0x20, 0x43, 0x41, 0x31, 0x20, 0x30, 0x1e, 0x06, 0x09, 0x2a, 0x86, 0x48,
0x86, 0xf7, 0x0d, 0x01, 0x09, 0x01, 0x16, 0x11, 0x69, 0x6e, 0x66, 0x6f,
0x40, 0x64, 0x69, 0x67, 0x69, 0x6e, 0x6f, 0x74, 0x61, 0x72, 0x2e, 0x6e,
0x6c};
const size_t kDiginotarLen = sizeof(kDiginotarDN);
SpawnedTestServer::SSLOptions ssl_options;
ssl_options.request_client_certificate = true;
ssl_options.client_authorities.push_back(
GetTestClientCertsDirectory().Append(kThawteFile));
ssl_options.client_authorities.push_back(
GetTestClientCertsDirectory().Append(kDiginotarFile));
scoped_refptr<SSLCertRequestInfo> request_info = GetCertRequest(ssl_options);
ASSERT_TRUE(request_info.get());
ASSERT_EQ(2u, request_info->cert_authorities.size());
EXPECT_EQ(std::string(reinterpret_cast<const char*>(kThawteDN), kThawteLen),
request_info->cert_authorities[0]);
EXPECT_EQ(
std::string(reinterpret_cast<const char*>(kDiginotarDN), kDiginotarLen),
request_info->cert_authorities[1]);
}
TEST_F(SSLClientSocketCertRequestInfoTest, CertKeyTypes) {
SpawnedTestServer::SSLOptions ssl_options;
ssl_options.request_client_certificate = true;
ssl_options.client_cert_types.push_back(CLIENT_CERT_RSA_SIGN);
ssl_options.client_cert_types.push_back(CLIENT_CERT_ECDSA_SIGN);
scoped_refptr<SSLCertRequestInfo> request_info = GetCertRequest(ssl_options);
ASSERT_TRUE(request_info.get());
ASSERT_EQ(2u, request_info->cert_key_types.size());
EXPECT_EQ(CLIENT_CERT_RSA_SIGN, request_info->cert_key_types[0]);
EXPECT_EQ(CLIENT_CERT_ECDSA_SIGN, request_info->cert_key_types[1]);
}
TEST_F(SSLClientSocketTest, ConnectSignedCertTimestampsEnabledTLSExtension) {
SpawnedTestServer::SSLOptions ssl_options;
ssl_options.signed_cert_timestamps_tls_ext = "test";
ASSERT_TRUE(StartTestServer(ssl_options));
SSLConfig ssl_config;
ssl_config.signed_cert_timestamps_enabled = true;
MockCTVerifier ct_verifier;
SetCTVerifier(&ct_verifier);
// Check that the SCT list is extracted as expected.
EXPECT_CALL(ct_verifier, Verify(_, "", "test", _, _)).WillRepeatedly(
Return(ERR_CT_NO_SCTS_VERIFIED_OK));
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv));
EXPECT_EQ(OK, rv);
EXPECT_TRUE(sock_->signed_cert_timestamps_received_);
}
// Test that when an EV certificate is received, but no CT verifier
// or certificate policy enforcer are defined, then the EV status
// of the certificate is maintained.
TEST_F(SSLClientSocketTest, EVCertStatusMaintainedNoCTVerifier) {
SpawnedTestServer::SSLOptions ssl_options;
ASSERT_TRUE(StartTestServer(ssl_options));
SSLConfig ssl_config;
AddServerCertStatusToSSLConfig(CERT_STATUS_IS_EV, &ssl_config);
// No verifier to skip CT and policy checks.
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv));
EXPECT_EQ(OK, rv);
SSLInfo result;
ASSERT_TRUE(sock_->GetSSLInfo(&result));
EXPECT_TRUE(result.cert_status & CERT_STATUS_IS_EV);
}
// Test that when a CT verifier and a CTPolicyEnforcer are defined, and
// the EV certificate used conforms to the CT/EV policy, its EV status
// is maintained.
TEST_F(SSLClientSocketTest, EVCertStatusMaintainedForCompliantCert) {
SpawnedTestServer::SSLOptions ssl_options;
ASSERT_TRUE(StartTestServer(ssl_options));
SSLConfig ssl_config;
AddServerCertStatusToSSLConfig(CERT_STATUS_IS_EV, &ssl_config);
// To activate the CT/EV policy enforcement non-null CTVerifier and
// CTPolicyEnforcer are needed.
MockCTVerifier ct_verifier;
SetCTVerifier(&ct_verifier);
EXPECT_CALL(ct_verifier, Verify(_, "", "", _, _)).WillRepeatedly(Return(OK));
// Emulate compliance of the certificate to the policy.
MockCTPolicyEnforcer policy_enforcer;
SetCTPolicyEnforcer(&policy_enforcer);
EXPECT_CALL(policy_enforcer, DoesConformToCertPolicy(_, _, _))
.WillRepeatedly(
Return(ct::CertPolicyCompliance::CERT_POLICY_COMPLIES_VIA_SCTS));
EXPECT_CALL(policy_enforcer, DoesConformToCTEVPolicy(_, _, _, _))
.WillRepeatedly(
Return(ct::EVPolicyCompliance::EV_POLICY_COMPLIES_VIA_SCTS));
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv));
EXPECT_EQ(OK, rv);
SSLInfo result;
ASSERT_TRUE(sock_->GetSSLInfo(&result));
EXPECT_TRUE(result.cert_status & CERT_STATUS_IS_EV);
}
// Test that when a CT verifier and a CTPolicyEnforcer are defined, but
// the EV certificate used does not conform to the CT/EV policy, its EV status
// is removed.
TEST_F(SSLClientSocketTest, EVCertStatusRemovedForNonCompliantCert) {
SpawnedTestServer::SSLOptions ssl_options;
ASSERT_TRUE(StartTestServer(ssl_options));
SSLConfig ssl_config;
AddServerCertStatusToSSLConfig(CERT_STATUS_IS_EV, &ssl_config);
// To activate the CT/EV policy enforcement non-null CTVerifier and
// CTPolicyEnforcer are needed.
MockCTVerifier ct_verifier;
SetCTVerifier(&ct_verifier);
EXPECT_CALL(ct_verifier, Verify(_, "", "", _, _)).WillRepeatedly(Return(OK));
// Emulate non-compliance of the certificate to the policy.
MockCTPolicyEnforcer policy_enforcer;
SetCTPolicyEnforcer(&policy_enforcer);
EXPECT_CALL(policy_enforcer, DoesConformToCertPolicy(_, _, _))
.WillRepeatedly(
Return(ct::CertPolicyCompliance::CERT_POLICY_NOT_ENOUGH_SCTS));
EXPECT_CALL(policy_enforcer, DoesConformToCTEVPolicy(_, _, _, _))
.WillRepeatedly(
Return(ct::EVPolicyCompliance::EV_POLICY_NOT_ENOUGH_SCTS));
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv));
EXPECT_EQ(OK, rv);
SSLInfo result;
ASSERT_TRUE(sock_->GetSSLInfo(&result));
EXPECT_FALSE(result.cert_status & CERT_STATUS_IS_EV);
EXPECT_TRUE(result.cert_status & CERT_STATUS_CT_COMPLIANCE_FAILED);
}
namespace {
bool IsValidOCSPResponse(const base::StringPiece& input) {
der::Parser parser((der::Input(input)));
der::Parser sequence;
return parser.ReadSequence(&sequence) && !parser.HasMore() &&
sequence.SkipTag(der::kEnumerated) &&
sequence.SkipTag(der::kTagContextSpecific | der::kTagConstructed |
0) &&
!sequence.HasMore();
}
} // namespace
// Test that enabling Signed Certificate Timestamps enables OCSP stapling.
TEST_F(SSLClientSocketTest, ConnectSignedCertTimestampsEnabledOCSP) {
SpawnedTestServer::SSLOptions ssl_options;
ssl_options.staple_ocsp_response = true;
// The test server currently only knows how to generate OCSP responses
// for a freshly minted certificate.
ssl_options.server_certificate = SpawnedTestServer::SSLOptions::CERT_AUTO;
ASSERT_TRUE(StartTestServer(ssl_options));
SSLConfig ssl_config;
// Enabling Signed Cert Timestamps ensures we request OCSP stapling for
// Certificate Transparency verification regardless of whether the platform
// is able to process the OCSP status itself.
ssl_config.signed_cert_timestamps_enabled = true;
MockCTVerifier ct_verifier;
SetCTVerifier(&ct_verifier);
// Check that the OCSP response is extracted and well-formed. It should be the
// DER encoding of an OCSPResponse (RFC 2560), so check that it consists of a
// SEQUENCE of an ENUMERATED type and an element tagged with [0] EXPLICIT. In
// particular, it should not include the overall two-byte length prefix from
// TLS.
EXPECT_CALL(ct_verifier,
Verify(_, Truly(IsValidOCSPResponse), "", _, _)).WillRepeatedly(
Return(ERR_CT_NO_SCTS_VERIFIED_OK));
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv));
EXPECT_EQ(OK, rv);
EXPECT_TRUE(sock_->stapled_ocsp_response_received_);
}
TEST_F(SSLClientSocketTest, ConnectSignedCertTimestampsDisabled) {
SpawnedTestServer::SSLOptions ssl_options;
ssl_options.signed_cert_timestamps_tls_ext = "test";
ASSERT_TRUE(StartTestServer(ssl_options));
SSLConfig ssl_config;
ssl_config.signed_cert_timestamps_enabled = false;
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv));
EXPECT_EQ(OK, rv);
EXPECT_FALSE(sock_->signed_cert_timestamps_received_);
}
// Tests that IsConnectedAndIdle and WasEverUsed behave as expected.
TEST_F(SSLClientSocketTest, ReuseStates) {
ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions()));
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(SSLConfig(), &rv));
// The socket was just connected. It should be idle because it is speaking
// HTTP. Although the transport has been used for the handshake, WasEverUsed()
// returns false.
EXPECT_TRUE(sock_->IsConnected());
EXPECT_TRUE(sock_->IsConnectedAndIdle());
EXPECT_FALSE(sock_->WasEverUsed());
const char kRequestText[] = "GET / HTTP/1.0\r\n\r\n";
const size_t kRequestLen = arraysize(kRequestText) - 1;
scoped_refptr<IOBuffer> request_buffer(new IOBuffer(kRequestLen));
memcpy(request_buffer->data(), kRequestText, kRequestLen);
TestCompletionCallback callback;
rv = callback.GetResult(
sock_->Write(request_buffer.get(), kRequestLen, callback.callback()));
EXPECT_EQ(static_cast<int>(kRequestLen), rv);
// The socket has now been used.
EXPECT_TRUE(sock_->WasEverUsed());
// TODO(davidben): Read one byte to ensure the test server has responded and
// then assert IsConnectedAndIdle is false. This currently doesn't work
// because SSLClientSocketImpl doesn't check the implementation's internal
// buffer. Call SSL_pending.
}
// Tests that IsConnectedAndIdle treats a socket as idle even if a Write hasn't
// been flushed completely out of SSLClientSocket's internal buffers. This is a
// regression test for https://crbug.com/466147.
TEST_F(SSLClientSocketTest, ReusableAfterWrite) {
ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions()));
TestCompletionCallback callback;
std::unique_ptr<StreamSocket> real_transport(
new TCPClientSocket(addr(), NULL, NULL, NetLog::Source()));
std::unique_ptr<FakeBlockingStreamSocket> transport(
new FakeBlockingStreamSocket(std::move(real_transport)));
FakeBlockingStreamSocket* raw_transport = transport.get();
ASSERT_EQ(OK, callback.GetResult(transport->Connect(callback.callback())));
std::unique_ptr<SSLClientSocket> sock(CreateSSLClientSocket(
std::move(transport), spawned_test_server()->host_port_pair(),
SSLConfig()));
ASSERT_EQ(OK, callback.GetResult(sock->Connect(callback.callback())));
// Block any application data from reaching the network.
raw_transport->BlockWrite();
// Write a partial HTTP request.
const char kRequestText[] = "GET / HTTP/1.0";
const size_t kRequestLen = arraysize(kRequestText) - 1;
scoped_refptr<IOBuffer> request_buffer(new IOBuffer(kRequestLen));
memcpy(request_buffer->data(), kRequestText, kRequestLen);
// Although transport writes are blocked, SSLClientSocketImpl completes the
// outer Write operation.
EXPECT_EQ(static_cast<int>(kRequestLen),
callback.GetResult(sock->Write(request_buffer.get(), kRequestLen,
callback.callback())));
// The Write operation is complete, so the socket should be treated as
// reusable, in case the server returns an HTTP response before completely
// consuming the request body. In this case, we assume the server will
// properly drain the request body before trying to read the next request.
EXPECT_TRUE(sock->IsConnectedAndIdle());
}
// Tests that basic session resumption works.
TEST_F(SSLClientSocketTest, SessionResumption) {
SpawnedTestServer::SSLOptions ssl_options;
ASSERT_TRUE(StartTestServer(ssl_options));
// First, perform a full handshake.
SSLConfig ssl_config;
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv));
ASSERT_EQ(OK, rv);
SSLInfo ssl_info;
ASSERT_TRUE(sock_->GetSSLInfo(&ssl_info));
EXPECT_EQ(SSLInfo::HANDSHAKE_FULL, ssl_info.handshake_type);
// The next connection should resume.
ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv));
ASSERT_EQ(OK, rv);
ASSERT_TRUE(sock_->GetSSLInfo(&ssl_info));
EXPECT_EQ(SSLInfo::HANDSHAKE_RESUME, ssl_info.handshake_type);
sock_.reset();
// Using a different HostPortPair uses a different session cache key.
std::unique_ptr<StreamSocket> transport(
new TCPClientSocket(addr(), NULL, &log_, NetLog::Source()));
TestCompletionCallback callback;
ASSERT_EQ(OK, callback.GetResult(transport->Connect(callback.callback())));
std::unique_ptr<SSLClientSocket> sock = CreateSSLClientSocket(
std::move(transport), HostPortPair("example.com", 443), ssl_config);
ASSERT_EQ(OK, callback.GetResult(sock->Connect(callback.callback())));
ASSERT_TRUE(sock->GetSSLInfo(&ssl_info));
EXPECT_EQ(SSLInfo::HANDSHAKE_FULL, ssl_info.handshake_type);
sock.reset();
SSLClientSocket::ClearSessionCache();
// After clearing the session cache, the next handshake doesn't resume.
ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv));
ASSERT_EQ(OK, rv);
ASSERT_TRUE(sock_->GetSSLInfo(&ssl_info));
EXPECT_EQ(SSLInfo::HANDSHAKE_FULL, ssl_info.handshake_type);
}
// Tests that connections with certificate errors do not add entries to the
// session cache.
TEST_F(SSLClientSocketTest, CertificateErrorNoResume) {
SpawnedTestServer::SSLOptions ssl_options;
ASSERT_TRUE(StartTestServer(ssl_options));
cert_verifier_->set_default_result(ERR_CERT_COMMON_NAME_INVALID);
SSLConfig ssl_config;
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv));
ASSERT_EQ(ERR_CERT_COMMON_NAME_INVALID, rv);
cert_verifier_->set_default_result(OK);
// The next connection should perform a full handshake.
ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv));
ASSERT_EQ(OK, rv);
SSLInfo ssl_info;
ASSERT_TRUE(sock_->GetSSLInfo(&ssl_info));
EXPECT_EQ(SSLInfo::HANDSHAKE_FULL, ssl_info.handshake_type);
}
// Tests that session caches are sharded by max_version.
TEST_F(SSLClientSocketTest, FallbackShardSessionCache) {
ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions()));
// Prepare a normal and fallback SSL config.
SSLConfig ssl_config;
SSLConfig fallback_ssl_config;
fallback_ssl_config.version_max = SSL_PROTOCOL_VERSION_TLS1;
fallback_ssl_config.version_fallback_min = SSL_PROTOCOL_VERSION_TLS1;
fallback_ssl_config.version_fallback = true;
// Connect with a fallback config from the test server to add an entry to the
// session cache.
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(fallback_ssl_config, &rv));
EXPECT_EQ(OK, rv);
SSLInfo ssl_info;
EXPECT_TRUE(sock_->GetSSLInfo(&ssl_info));
EXPECT_EQ(SSLInfo::HANDSHAKE_FULL, ssl_info.handshake_type);
EXPECT_EQ(SSL_CONNECTION_VERSION_TLS1,
SSLConnectionStatusToVersion(ssl_info.connection_status));
// A non-fallback connection needs a full handshake.
ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv));
EXPECT_EQ(OK, rv);
EXPECT_TRUE(sock_->GetSSLInfo(&ssl_info));
EXPECT_EQ(SSLInfo::HANDSHAKE_FULL, ssl_info.handshake_type);
EXPECT_EQ(SSL_CONNECTION_VERSION_TLS1_2,
SSLConnectionStatusToVersion(ssl_info.connection_status));
// Note: if the server (correctly) declines to resume a TLS 1.0 session at TLS
// 1.2, the above test would not be sufficient to prove the session caches are
// sharded. Implementations vary here, so, to avoid being sensitive to this,
// attempt to resume with two more connections.
// The non-fallback connection added a > TLS 1.0 entry to the session cache.
ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv));
EXPECT_EQ(OK, rv);
EXPECT_TRUE(sock_->GetSSLInfo(&ssl_info));
EXPECT_EQ(SSLInfo::HANDSHAKE_RESUME, ssl_info.handshake_type);
// This does not check for equality because TLS 1.2 support is conditional on
// system NSS features.
EXPECT_LT(SSL_CONNECTION_VERSION_TLS1,
SSLConnectionStatusToVersion(ssl_info.connection_status));
// The fallback connection still resumes from its session cache. It cannot
// offer the > TLS 1.0 session, so this must have been the session from the
// first fallback connection.
ASSERT_TRUE(CreateAndConnectSSLClientSocket(fallback_ssl_config, &rv));
EXPECT_EQ(OK, rv);
EXPECT_TRUE(sock_->GetSSLInfo(&ssl_info));
EXPECT_EQ(SSLInfo::HANDSHAKE_RESUME, ssl_info.handshake_type);
EXPECT_EQ(SSL_CONNECTION_VERSION_TLS1,
SSLConnectionStatusToVersion(ssl_info.connection_status));
}
// Test that DHE is removed but gives a dedicated error. Also test that the
// dhe_enabled option can restore it.
TEST_F(SSLClientSocketTest, DHE) {
SpawnedTestServer::SSLOptions ssl_options;
ssl_options.key_exchanges =
SpawnedTestServer::SSLOptions::KEY_EXCHANGE_DHE_RSA;
ASSERT_TRUE(StartTestServer(ssl_options));
// Normal handshakes with DHE do not work, with or without DHE enabled.
SSLConfig ssl_config;
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv));
EXPECT_EQ(ERR_SSL_VERSION_OR_CIPHER_MISMATCH, rv);
ssl_config.dhe_enabled = true;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv));
EXPECT_EQ(ERR_SSL_VERSION_OR_CIPHER_MISMATCH, rv);
// Enabling deprecated ciphers gives DHE a dedicated error code.
ssl_config.dhe_enabled = false;
ssl_config.deprecated_cipher_suites_enabled = true;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv));
EXPECT_EQ(ERR_SSL_OBSOLETE_CIPHER, rv);
// Enabling both deprecated ciphers and DHE restores it.
ssl_config.dhe_enabled = true;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv));
EXPECT_EQ(OK, rv);
}
// Tests that enabling deprecated ciphers shards the session cache.
TEST_F(SSLClientSocketTest, DeprecatedShardSessionCache) {
ASSERT_TRUE(StartTestServer(SpawnedTestServer::SSLOptions()));
// Prepare a normal and deprecated SSL config.
SSLConfig ssl_config;
SSLConfig deprecated_ssl_config;
deprecated_ssl_config.deprecated_cipher_suites_enabled = true;
// Connect with deprecated ciphers enabled to warm the session cache cache.
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(deprecated_ssl_config, &rv));
EXPECT_EQ(OK, rv);
SSLInfo ssl_info;
EXPECT_TRUE(sock_->GetSSLInfo(&ssl_info));
EXPECT_EQ(SSLInfo::HANDSHAKE_FULL, ssl_info.handshake_type);
// Test that re-connecting with deprecated ciphers enabled still resumes.
ASSERT_TRUE(CreateAndConnectSSLClientSocket(deprecated_ssl_config, &rv));
EXPECT_EQ(OK, rv);
EXPECT_TRUE(sock_->GetSSLInfo(&ssl_info));
EXPECT_EQ(SSLInfo::HANDSHAKE_RESUME, ssl_info.handshake_type);
// However, a normal connection needs a full handshake.
ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv));
EXPECT_EQ(OK, rv);
EXPECT_TRUE(sock_->GetSSLInfo(&ssl_info));
EXPECT_EQ(SSLInfo::HANDSHAKE_FULL, ssl_info.handshake_type);
// Clear the session cache for the inverse test.
SSLClientSocket::ClearSessionCache();
// Now make a normal connection to prime the session cache.
ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv));
EXPECT_EQ(OK, rv);
EXPECT_TRUE(sock_->GetSSLInfo(&ssl_info));
EXPECT_EQ(SSLInfo::HANDSHAKE_FULL, ssl_info.handshake_type);
// A normal connection should be able to resume.
ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv));
EXPECT_EQ(OK, rv);
EXPECT_TRUE(sock_->GetSSLInfo(&ssl_info));
EXPECT_EQ(SSLInfo::HANDSHAKE_RESUME, ssl_info.handshake_type);
// However, enabling deprecated ciphers connects fresh.
ASSERT_TRUE(CreateAndConnectSSLClientSocket(deprecated_ssl_config, &rv));
EXPECT_EQ(OK, rv);
EXPECT_TRUE(sock_->GetSSLInfo(&ssl_info));
EXPECT_EQ(SSLInfo::HANDSHAKE_FULL, ssl_info.handshake_type);
}
TEST_F(SSLClientSocketTest, RequireECDHE) {
// Run test server without ECDHE.
SpawnedTestServer::SSLOptions ssl_options;
ssl_options.key_exchanges = SpawnedTestServer::SSLOptions::KEY_EXCHANGE_RSA;
ASSERT_TRUE(StartTestServer(ssl_options));
SSLConfig config;
config.require_ecdhe = true;
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(config, &rv));
EXPECT_EQ(ERR_SSL_VERSION_OR_CIPHER_MISMATCH, rv);
}
TEST_F(SSLClientSocketTest, TokenBindingEnabled) {
SpawnedTestServer::SSLOptions ssl_options;
ssl_options.supported_token_binding_params.push_back(TB_PARAM_ECDSAP256);
ASSERT_TRUE(StartTestServer(ssl_options));
SSLConfig ssl_config;
ssl_config.token_binding_params.push_back(TB_PARAM_ECDSAP256);
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv));
EXPECT_EQ(OK, rv);
SSLInfo info;
EXPECT_TRUE(sock_->GetSSLInfo(&info));
EXPECT_TRUE(info.token_binding_negotiated);
EXPECT_EQ(TB_PARAM_ECDSAP256, info.token_binding_key_param);
}
TEST_F(SSLClientSocketTest, TokenBindingFailsWithEmsDisabled) {
SpawnedTestServer::SSLOptions ssl_options;
ssl_options.supported_token_binding_params.push_back(TB_PARAM_ECDSAP256);
ssl_options.disable_extended_master_secret = true;
ASSERT_TRUE(StartTestServer(ssl_options));
SSLConfig ssl_config;
ssl_config.token_binding_params.push_back(TB_PARAM_ECDSAP256);
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv));
EXPECT_EQ(ERR_SSL_PROTOCOL_ERROR, rv);
}
TEST_F(SSLClientSocketTest, TokenBindingEnabledWithoutServerSupport) {
SpawnedTestServer::SSLOptions ssl_options;
ASSERT_TRUE(StartTestServer(ssl_options));
SSLConfig ssl_config;
ssl_config.token_binding_params.push_back(TB_PARAM_ECDSAP256);
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv));
EXPECT_EQ(OK, rv);
SSLInfo info;
EXPECT_TRUE(sock_->GetSSLInfo(&info));
EXPECT_FALSE(info.token_binding_negotiated);
}
// In tests requiring NPN, client_config.alpn_protos and
// client_config.npn_protos both need to be set when using NSS, otherwise NPN is
// disabled due to quirks of the implementation.
TEST_F(SSLClientSocketFalseStartTest, FalseStartEnabled) {
// False Start requires NPN/ALPN, ECDHE, and an AEAD.
SpawnedTestServer::SSLOptions server_options;
server_options.key_exchanges =
SpawnedTestServer::SSLOptions::KEY_EXCHANGE_ECDHE_RSA;
server_options.bulk_ciphers =
SpawnedTestServer::SSLOptions::BULK_CIPHER_AES128GCM;
server_options.npn_protocols.push_back(std::string("http/1.1"));
SSLConfig client_config;
client_config.npn_protos.push_back(kProtoHTTP11);
ASSERT_NO_FATAL_FAILURE(
TestFalseStart(server_options, client_config, true));
}
// Test that False Start is disabled without NPN.
TEST_F(SSLClientSocketFalseStartTest, NoNPN) {
SpawnedTestServer::SSLOptions server_options;
server_options.key_exchanges =
SpawnedTestServer::SSLOptions::KEY_EXCHANGE_ECDHE_RSA;
server_options.bulk_ciphers =
SpawnedTestServer::SSLOptions::BULK_CIPHER_AES128GCM;
SSLConfig client_config;
client_config.alpn_protos.clear();
client_config.npn_protos.clear();
ASSERT_NO_FATAL_FAILURE(
TestFalseStart(server_options, client_config, false));
}
// Test that False Start is disabled with plain RSA ciphers.
TEST_F(SSLClientSocketFalseStartTest, RSA) {
SpawnedTestServer::SSLOptions server_options;
server_options.key_exchanges =
SpawnedTestServer::SSLOptions::KEY_EXCHANGE_RSA;
server_options.bulk_ciphers =
SpawnedTestServer::SSLOptions::BULK_CIPHER_AES128GCM;
server_options.npn_protocols.push_back(std::string("http/1.1"));
SSLConfig client_config;
client_config.npn_protos.push_back(kProtoHTTP11);
ASSERT_NO_FATAL_FAILURE(
TestFalseStart(server_options, client_config, false));
}
// Test that False Start is disabled with DHE_RSA ciphers.
TEST_F(SSLClientSocketFalseStartTest, DHE_RSA) {
SpawnedTestServer::SSLOptions server_options;
server_options.key_exchanges =
SpawnedTestServer::SSLOptions::KEY_EXCHANGE_DHE_RSA;
server_options.bulk_ciphers =
SpawnedTestServer::SSLOptions::BULK_CIPHER_AES128GCM;
server_options.npn_protocols.push_back(std::string("http/1.1"));
SSLConfig client_config;
client_config.npn_protos.push_back(kProtoHTTP11);
// DHE is only advertised when deprecated ciphers are enabled.
client_config.deprecated_cipher_suites_enabled = true;
ASSERT_NO_FATAL_FAILURE(TestFalseStart(server_options, client_config, false));
}
// Test that False Start is disabled without an AEAD.
TEST_F(SSLClientSocketFalseStartTest, NoAEAD) {
SpawnedTestServer::SSLOptions server_options;
server_options.key_exchanges =
SpawnedTestServer::SSLOptions::KEY_EXCHANGE_ECDHE_RSA;
server_options.bulk_ciphers =
SpawnedTestServer::SSLOptions::BULK_CIPHER_AES128;
server_options.npn_protocols.push_back(std::string("http/1.1"));
SSLConfig client_config;
client_config.npn_protos.push_back(kProtoHTTP11);
ASSERT_NO_FATAL_FAILURE(TestFalseStart(server_options, client_config, false));
}
// Test that sessions are resumable after receiving the server Finished message.
TEST_F(SSLClientSocketFalseStartTest, SessionResumption) {
// Start a server.
SpawnedTestServer::SSLOptions server_options;
server_options.key_exchanges =
SpawnedTestServer::SSLOptions::KEY_EXCHANGE_ECDHE_RSA;
server_options.bulk_ciphers =
SpawnedTestServer::SSLOptions::BULK_CIPHER_AES128GCM;
server_options.npn_protocols.push_back(std::string("http/1.1"));
SSLConfig client_config;
client_config.npn_protos.push_back(kProtoHTTP11);
// Let a full handshake complete with False Start.
ASSERT_NO_FATAL_FAILURE(
TestFalseStart(server_options, client_config, true));
// Make a second connection.
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(client_config, &rv));
EXPECT_EQ(OK, rv);
// It should resume the session.
SSLInfo ssl_info;
EXPECT_TRUE(sock_->GetSSLInfo(&ssl_info));
EXPECT_EQ(SSLInfo::HANDSHAKE_RESUME, ssl_info.handshake_type);
}
// Test that False Started sessions are not resumable before receiving the
// server Finished message.
TEST_F(SSLClientSocketFalseStartTest, NoSessionResumptionBeforeFinished) {
// Start a server.
SpawnedTestServer::SSLOptions server_options;
server_options.key_exchanges =
SpawnedTestServer::SSLOptions::KEY_EXCHANGE_ECDHE_RSA;
server_options.bulk_ciphers =
SpawnedTestServer::SSLOptions::BULK_CIPHER_AES128GCM;
server_options.npn_protocols.push_back(std::string("http/1.1"));
ASSERT_TRUE(StartTestServer(server_options));
SSLConfig client_config;
client_config.npn_protos.push_back(kProtoHTTP11);
// Start a handshake up to the server Finished message.
TestCompletionCallback callback;
FakeBlockingStreamSocket* raw_transport1 = NULL;
std::unique_ptr<SSLClientSocket> sock1;
ASSERT_NO_FATAL_FAILURE(CreateAndConnectUntilServerFinishedReceived(
client_config, &callback, &raw_transport1, &sock1));
// Although raw_transport1 has the server Finished blocked, the handshake
// still completes.
EXPECT_EQ(OK, callback.WaitForResult());
// Continue to block the client (|sock1|) from processing the Finished
// message, but allow it to arrive on the socket. This ensures that, from the
// server's point of view, it has completed the handshake and added the
// session to its session cache.
//
// The actual read on |sock1| will not complete until the Finished message is
// processed; however, pump the underlying transport so that it is read from
// the socket. NOTE: This may flakily pass if the server's final flight
// doesn't come in one Read.
scoped_refptr<IOBuffer> buf(new IOBuffer(4096));
int rv = sock1->Read(buf.get(), 4096, callback.callback());
EXPECT_EQ(ERR_IO_PENDING, rv);
raw_transport1->WaitForReadResult();
// Drop the old socket. This is needed because the Python test server can't
// service two sockets in parallel.
sock1.reset();
// Start a second connection.
ASSERT_TRUE(CreateAndConnectSSLClientSocket(client_config, &rv));
EXPECT_EQ(OK, rv);
// No session resumption because the first connection never received a server
// Finished message.
SSLInfo ssl_info;
EXPECT_TRUE(sock_->GetSSLInfo(&ssl_info));
EXPECT_EQ(SSLInfo::HANDSHAKE_FULL, ssl_info.handshake_type);
}
// Test that False Started sessions are not resumable if the server Finished
// message was bad.
TEST_F(SSLClientSocketFalseStartTest, NoSessionResumptionBadFinished) {
// Start a server.
SpawnedTestServer::SSLOptions server_options;
server_options.key_exchanges =
SpawnedTestServer::SSLOptions::KEY_EXCHANGE_ECDHE_RSA;
server_options.bulk_ciphers =
SpawnedTestServer::SSLOptions::BULK_CIPHER_AES128GCM;
server_options.npn_protocols.push_back(std::string("http/1.1"));
ASSERT_TRUE(StartTestServer(server_options));
SSLConfig client_config;
client_config.npn_protos.push_back(kProtoHTTP11);
// Start a handshake up to the server Finished message.
TestCompletionCallback callback;
FakeBlockingStreamSocket* raw_transport1 = NULL;
std::unique_ptr<SSLClientSocket> sock1;
ASSERT_NO_FATAL_FAILURE(CreateAndConnectUntilServerFinishedReceived(
client_config, &callback, &raw_transport1, &sock1));
// Although raw_transport1 has the server Finished blocked, the handshake
// still completes.
EXPECT_EQ(OK, callback.WaitForResult());
// Continue to block the client (|sock1|) from processing the Finished
// message, but allow it to arrive on the socket. This ensures that, from the
// server's point of view, it has completed the handshake and added the
// session to its session cache.
//
// The actual read on |sock1| will not complete until the Finished message is
// processed; however, pump the underlying transport so that it is read from
// the socket.
scoped_refptr<IOBuffer> buf(new IOBuffer(4096));
int rv = sock1->Read(buf.get(), 4096, callback.callback());
EXPECT_EQ(ERR_IO_PENDING, rv);
raw_transport1->WaitForReadResult();
// The server's second leg, or part of it, is now received but not yet sent to
// |sock1|. Before doing so, break the server's second leg.
int bytes_read = raw_transport1->pending_read_result();
ASSERT_LT(0, bytes_read);
raw_transport1->pending_read_buf()->data()[bytes_read - 1]++;
// Unblock the Finished message. |sock1->Read| should now fail.
raw_transport1->UnblockReadResult();
EXPECT_EQ(ERR_SSL_PROTOCOL_ERROR, callback.GetResult(rv));
// Drop the old socket. This is needed because the Python test server can't
// service two sockets in parallel.
sock1.reset();
// Start a second connection.
ASSERT_TRUE(CreateAndConnectSSLClientSocket(client_config, &rv));
EXPECT_EQ(OK, rv);
// No session resumption because the first connection never received a server
// Finished message.
SSLInfo ssl_info;
EXPECT_TRUE(sock_->GetSSLInfo(&ssl_info));
EXPECT_EQ(SSLInfo::HANDSHAKE_FULL, ssl_info.handshake_type);
}
// Connect to a server using channel id. It should allow the connection.
TEST_F(SSLClientSocketChannelIDTest, SendChannelID) {
SpawnedTestServer::SSLOptions ssl_options;
ASSERT_TRUE(StartTestServer(ssl_options));
EnableChannelID();
SSLConfig ssl_config;
ssl_config.channel_id_enabled = true;
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv));
EXPECT_EQ(OK, rv);
EXPECT_TRUE(sock_->IsConnected());
SSLInfo ssl_info;
ASSERT_TRUE(sock_->GetSSLInfo(&ssl_info));
EXPECT_TRUE(ssl_info.channel_id_sent);
sock_->Disconnect();
EXPECT_FALSE(sock_->IsConnected());
}
// Connect to a server using Channel ID but failing to look up the Channel
// ID. It should fail.
TEST_F(SSLClientSocketChannelIDTest, FailingChannelID) {
SpawnedTestServer::SSLOptions ssl_options;
ASSERT_TRUE(StartTestServer(ssl_options));
EnableFailingChannelID();
SSLConfig ssl_config;
ssl_config.channel_id_enabled = true;
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv));
// TODO(haavardm@opera.com): Due to differences in threading, Linux returns
// ERR_UNEXPECTED while Mac and Windows return ERR_PROTOCOL_ERROR. Accept all
// error codes for now.
// http://crbug.com/373670
EXPECT_NE(OK, rv);
EXPECT_FALSE(sock_->IsConnected());
}
// Connect to a server using Channel ID but asynchronously failing to look up
// the Channel ID. It should fail.
TEST_F(SSLClientSocketChannelIDTest, FailingChannelIDAsync) {
SpawnedTestServer::SSLOptions ssl_options;
ASSERT_TRUE(StartTestServer(ssl_options));
EnableAsyncFailingChannelID();
SSLConfig ssl_config;
ssl_config.channel_id_enabled = true;
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv));
EXPECT_EQ(ERR_UNEXPECTED, rv);
EXPECT_FALSE(sock_->IsConnected());
}
// Tests that session caches are sharded by whether Channel ID is enabled.
TEST_F(SSLClientSocketChannelIDTest, ChannelIDShardSessionCache) {
SpawnedTestServer::SSLOptions ssl_options;
ASSERT_TRUE(StartTestServer(ssl_options));
EnableChannelID();
// Connect without Channel ID.
SSLConfig ssl_config;
ssl_config.channel_id_enabled = false;
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv));
SSLInfo ssl_info;
EXPECT_TRUE(sock_->GetSSLInfo(&ssl_info));
EXPECT_EQ(SSLInfo::HANDSHAKE_FULL, ssl_info.handshake_type);
EXPECT_FALSE(ssl_info.channel_id_sent);
// Enable Channel ID and connect again. This needs a full handshake to assert
// Channel ID.
ssl_config.channel_id_enabled = true;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv));
EXPECT_TRUE(sock_->GetSSLInfo(&ssl_info));
EXPECT_EQ(SSLInfo::HANDSHAKE_FULL, ssl_info.handshake_type);
EXPECT_TRUE(ssl_info.channel_id_sent);
}
TEST_F(SSLClientSocketTest, NPN) {
SpawnedTestServer::SSLOptions server_options;
server_options.npn_protocols.push_back(std::string("spdy/3.1"));
server_options.npn_protocols.push_back(std::string("h2"));
ASSERT_TRUE(StartTestServer(server_options));
SSLConfig client_config;
client_config.npn_protos.push_back(kProtoHTTP2);
client_config.npn_protos.push_back(kProtoHTTP11);
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(client_config, &rv));
EXPECT_EQ(OK, rv);
std::string proto;
EXPECT_EQ(SSLClientSocket::kNextProtoNegotiated, sock_->GetNextProto(&proto));
EXPECT_EQ("h2", proto);
}
// In case of no overlap between client and server list, SSLClientSocket should
// fall back to last one on the client list.
TEST_F(SSLClientSocketTest, NPNNoOverlap) {
SpawnedTestServer::SSLOptions server_options;
server_options.npn_protocols.push_back(std::string("http/1.1"));
ASSERT_TRUE(StartTestServer(server_options));
SSLConfig client_config;
client_config.npn_protos.push_back(kProtoSPDY31);
client_config.npn_protos.push_back(kProtoHTTP2);
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(client_config, &rv));
EXPECT_EQ(OK, rv);
std::string proto;
EXPECT_EQ(SSLClientSocket::kNextProtoNoOverlap, sock_->GetNextProto(&proto));
EXPECT_EQ("h2", proto);
}
// Server preference should be respected. The list is in decreasing order of
// preference.
TEST_F(SSLClientSocketTest, NPNServerPreference) {
SpawnedTestServer::SSLOptions server_options;
server_options.npn_protocols.push_back(std::string("spdy/3.1"));
server_options.npn_protocols.push_back(std::string("h2"));
ASSERT_TRUE(StartTestServer(server_options));
SSLConfig client_config;
client_config.npn_protos.push_back(kProtoHTTP2);
client_config.npn_protos.push_back(kProtoSPDY31);
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(client_config, &rv));
EXPECT_EQ(OK, rv);
std::string proto;
EXPECT_EQ(SSLClientSocket::kNextProtoNegotiated, sock_->GetNextProto(&proto));
EXPECT_EQ("spdy/3.1", proto);
}
// If npn_protos.empty(), then NPN should be disabled, even if
// !alpn_protos.empty(). Tlslite does not support ALPN, therefore if NPN is
// disabled in the client, no protocol should be negotiated.
TEST_F(SSLClientSocketTest, NPNClientDisabled) {
SpawnedTestServer::SSLOptions server_options;
server_options.npn_protocols.push_back(std::string("http/1.1"));
ASSERT_TRUE(StartTestServer(server_options));
SSLConfig client_config;
client_config.alpn_protos.push_back(kProtoHTTP11);
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(client_config, &rv));
EXPECT_EQ(OK, rv);
std::string proto;
EXPECT_EQ(SSLClientSocket::kNextProtoUnsupported,
sock_->GetNextProto(&proto));
}
TEST_F(SSLClientSocketTest, NPNServerDisabled) {
SpawnedTestServer::SSLOptions server_options;
ASSERT_TRUE(StartTestServer(server_options));
SSLConfig client_config;
client_config.npn_protos.push_back(kProtoHTTP11);
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(client_config, &rv));
EXPECT_EQ(OK, rv);
std::string proto;
EXPECT_EQ(SSLClientSocket::kNextProtoUnsupported,
sock_->GetNextProto(&proto));
}
namespace {
// Loads a PEM-encoded private key file into a SSLPrivateKey object.
// |filepath| is the private key file path.
// Returns the new SSLPrivateKey.
scoped_refptr<SSLPrivateKey> LoadPrivateKeyOpenSSL(
const base::FilePath& filepath) {
std::string data;
if (!base::ReadFileToString(filepath, &data)) {
LOG(ERROR) << "Could not read private key file: " << filepath.value();
return nullptr;
}
crypto::ScopedBIO bio(BIO_new_mem_buf(const_cast<char*>(data.data()),
static_cast<int>(data.size())));
if (!bio) {
LOG(ERROR) << "Could not allocate BIO for buffer?";
return nullptr;
}
crypto::ScopedEVP_PKEY result(
PEM_read_bio_PrivateKey(bio.get(), nullptr, nullptr, nullptr));
if (!result) {
LOG(ERROR) << "Could not decode private key file: " << filepath.value();
return nullptr;
}
return WrapOpenSSLPrivateKey(std::move(result));
}
} // namespace
// Connect to a server requesting client authentication, do not send
// any client certificates. It should refuse the connection.
TEST_F(SSLClientSocketTest, NoCert) {
SpawnedTestServer::SSLOptions ssl_options;
ssl_options.request_client_certificate = true;
ASSERT_TRUE(StartTestServer(ssl_options));
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(SSLConfig(), &rv));
EXPECT_EQ(ERR_SSL_CLIENT_AUTH_CERT_NEEDED, rv);
EXPECT_FALSE(sock_->IsConnected());
}
// Connect to a server requesting client authentication, and send it
// an empty certificate.
TEST_F(SSLClientSocketTest, SendEmptyCert) {
SpawnedTestServer::SSLOptions ssl_options;
ssl_options.request_client_certificate = true;
ssl_options.client_authorities.push_back(
GetTestClientCertsDirectory().AppendASCII("client_1_ca.pem"));
ASSERT_TRUE(StartTestServer(ssl_options));
SSLConfig ssl_config;
ssl_config.send_client_cert = true;
ssl_config.client_cert = nullptr;
ssl_config.client_private_key = nullptr;
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv));
EXPECT_EQ(OK, rv);
EXPECT_TRUE(sock_->IsConnected());
SSLInfo ssl_info;
ASSERT_TRUE(sock_->GetSSLInfo(&ssl_info));
EXPECT_FALSE(ssl_info.client_cert_sent);
}
// Connect to a server requesting client authentication. Send it a
// matching certificate. It should allow the connection.
TEST_F(SSLClientSocketTest, SendGoodCert) {
SpawnedTestServer::SSLOptions ssl_options;
ssl_options.request_client_certificate = true;
ssl_options.client_authorities.push_back(
GetTestClientCertsDirectory().AppendASCII("client_1_ca.pem"));
ASSERT_TRUE(StartTestServer(ssl_options));
base::FilePath certs_dir = GetTestCertsDirectory();
SSLConfig ssl_config;
ssl_config.send_client_cert = true;
ssl_config.client_cert = ImportCertFromFile(certs_dir, "client_1.pem");
// This is required to ensure that signing works with the client
// certificate's private key.
ssl_config.client_private_key =
LoadPrivateKeyOpenSSL(certs_dir.AppendASCII("client_1.key"));
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv));
EXPECT_EQ(OK, rv);
EXPECT_TRUE(sock_->IsConnected());
SSLInfo ssl_info;
ASSERT_TRUE(sock_->GetSSLInfo(&ssl_info));
EXPECT_TRUE(ssl_info.client_cert_sent);
sock_->Disconnect();
EXPECT_FALSE(sock_->IsConnected());
}
HashValueVector MakeHashValueVector(uint8_t value) {
HashValueVector out;
HashValue hash(HASH_VALUE_SHA256);
memset(hash.data(), value, hash.size());
out.push_back(hash);
return out;
}
// Test that |ssl_info.pkp_bypassed| is set when a local trust anchor causes
// pinning to be bypassed.
TEST_F(SSLClientSocketTest, PKPBypassedSet) {
SpawnedTestServer::SSLOptions ssl_options;
ASSERT_TRUE(StartTestServer(ssl_options));
scoped_refptr<X509Certificate> server_cert =
spawned_test_server()->GetCertificate();
// The certificate needs to be trusted, but chain to a local root with
// different public key hashes than specified in the pin.
CertVerifyResult verify_result;
verify_result.is_issued_by_known_root = false;
verify_result.verified_cert = server_cert;
verify_result.public_key_hashes = MakeHashValueVector(0);
cert_verifier_->AddResultForCert(server_cert.get(), verify_result, OK);
// Set up HPKP
HashValueVector expected_hashes = MakeHashValueVector(1);
context_.transport_security_state->AddHPKP(
spawned_test_server()->host_port_pair().host(),
base::Time::Now() + base::TimeDelta::FromSeconds(10000), true,
expected_hashes, GURL());
SSLConfig ssl_config;
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv));
SSLInfo ssl_info;
ASSERT_TRUE(sock_->GetSSLInfo(&ssl_info));
EXPECT_EQ(OK, rv);
EXPECT_TRUE(sock_->IsConnected());
EXPECT_TRUE(ssl_info.pkp_bypassed);
EXPECT_FALSE(ssl_info.cert_status & CERT_STATUS_PINNED_KEY_MISSING);
}
TEST_F(SSLClientSocketTest, PKPEnforced) {
SpawnedTestServer::SSLOptions ssl_options;
ASSERT_TRUE(StartTestServer(ssl_options));
scoped_refptr<X509Certificate> server_cert =
spawned_test_server()->GetCertificate();
// Certificate is trusted, but chains to a public root that doesn't match the
// pin hashes.
CertVerifyResult verify_result;
verify_result.is_issued_by_known_root = true;
verify_result.verified_cert = server_cert;
verify_result.public_key_hashes = MakeHashValueVector(0);
cert_verifier_->AddResultForCert(server_cert.get(), verify_result, OK);
// Set up HPKP
HashValueVector expected_hashes = MakeHashValueVector(1);
context_.transport_security_state->AddHPKP(
spawned_test_server()->host_port_pair().host(),
base::Time::Now() + base::TimeDelta::FromSeconds(10000), true,
expected_hashes, GURL());
SSLConfig ssl_config;
int rv;
ASSERT_TRUE(CreateAndConnectSSLClientSocket(ssl_config, &rv));
SSLInfo ssl_info;
ASSERT_TRUE(sock_->GetSSLInfo(&ssl_info));
EXPECT_EQ(ERR_SSL_PINNED_KEY_NOT_IN_CERT_CHAIN, rv);
EXPECT_TRUE(ssl_info.cert_status & CERT_STATUS_PINNED_KEY_MISSING);
EXPECT_TRUE(sock_->IsConnected());
EXPECT_FALSE(ssl_info.pkp_bypassed);
}
} // namespace net