blob: 4f5e3370e65d42a9f0f3759c6077679d3e338a9d [file] [log] [blame]
// Copyright 2021 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/deoptimizer/translated-state.h"
#include <iomanip>
#include "src/base/memory.h"
#include "src/deoptimizer/deoptimizer.h"
#include "src/deoptimizer/materialized-object-store.h"
#include "src/deoptimizer/translation-opcode.h"
#include "src/diagnostics/disasm.h"
#include "src/execution/frames.h"
#include "src/execution/isolate.h"
#include "src/numbers/conversions.h"
#include "src/objects/arguments.h"
#include "src/objects/heap-number-inl.h"
#include "src/objects/oddball.h"
// Has to be the last include (doesn't have include guards)
#include "src/objects/object-macros.h"
namespace v8 {
using base::Memory;
using base::ReadUnalignedValue;
namespace internal {
void TranslationArrayPrintSingleFrame(std::ostream& os,
TranslationArray translation_array,
int translation_index,
FixedArray literal_array) {
DisallowGarbageCollection gc_oh_noes;
TranslationArrayIterator iterator(translation_array, translation_index);
disasm::NameConverter converter;
TranslationOpcode opcode = TranslationOpcodeFromInt(iterator.Next());
DCHECK(TranslationOpcode::BEGIN == opcode);
int frame_count = iterator.Next();
int jsframe_count = iterator.Next();
int update_feedback_count = iterator.Next();
os << " " << TranslationOpcodeToString(opcode)
<< " {frame count=" << frame_count << ", js frame count=" << jsframe_count
<< ", update_feedback_count=" << update_feedback_count << "}\n";
while (iterator.HasNext()) {
opcode = TranslationOpcodeFromInt(iterator.Next());
if (opcode == TranslationOpcode::BEGIN) break;
os << std::setw(31) << " " << TranslationOpcodeToString(opcode) << " ";
switch (opcode) {
case TranslationOpcode::BEGIN:
UNREACHABLE();
case TranslationOpcode::INTERPRETED_FRAME: {
DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 5);
int bytecode_offset = iterator.Next();
int shared_info_id = iterator.Next();
unsigned height = iterator.Next();
int return_value_offset = iterator.Next();
int return_value_count = iterator.Next();
Object shared_info = literal_array.get(shared_info_id);
os << "{bytecode_offset=" << bytecode_offset << ", function="
<< SharedFunctionInfo::cast(shared_info).DebugNameCStr().get()
<< ", height=" << height << ", retval=@" << return_value_offset
<< "(#" << return_value_count << ")}";
break;
}
case TranslationOpcode::CONSTRUCT_STUB_FRAME: {
DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 3);
int bailout_id = iterator.Next();
int shared_info_id = iterator.Next();
Object shared_info = literal_array.get(shared_info_id);
unsigned height = iterator.Next();
os << "{bailout_id=" << bailout_id << ", function="
<< SharedFunctionInfo::cast(shared_info).DebugNameCStr().get()
<< ", height=" << height << "}";
break;
}
case TranslationOpcode::BUILTIN_CONTINUATION_FRAME:
case TranslationOpcode::JAVA_SCRIPT_BUILTIN_CONTINUATION_FRAME:
case TranslationOpcode::
JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH_FRAME: {
DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 3);
int bailout_id = iterator.Next();
int shared_info_id = iterator.Next();
Object shared_info = literal_array.get(shared_info_id);
unsigned height = iterator.Next();
os << "{bailout_id=" << bailout_id << ", function="
<< SharedFunctionInfo::cast(shared_info).DebugNameCStr().get()
<< ", height=" << height << "}";
break;
}
#if V8_ENABLE_WEBASSEMBLY
case TranslationOpcode::JS_TO_WASM_BUILTIN_CONTINUATION_FRAME: {
DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 4);
int bailout_id = iterator.Next();
int shared_info_id = iterator.Next();
Object shared_info = literal_array.get(shared_info_id);
unsigned height = iterator.Next();
int wasm_return_type = iterator.Next();
os << "{bailout_id=" << bailout_id << ", function="
<< SharedFunctionInfo::cast(shared_info).DebugNameCStr().get()
<< ", height=" << height << ", wasm_return_type=" << wasm_return_type
<< "}";
break;
}
#endif // V8_ENABLE_WEBASSEMBLY
case TranslationOpcode::ARGUMENTS_ADAPTOR_FRAME: {
DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 2);
int shared_info_id = iterator.Next();
Object shared_info = literal_array.get(shared_info_id);
unsigned height = iterator.Next();
os << "{function="
<< SharedFunctionInfo::cast(shared_info).DebugNameCStr().get()
<< ", height=" << height << "}";
break;
}
case TranslationOpcode::REGISTER: {
DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 1);
int reg_code = iterator.Next();
os << "{input=" << converter.NameOfCPURegister(reg_code) << "}";
break;
}
case TranslationOpcode::INT32_REGISTER: {
DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 1);
int reg_code = iterator.Next();
os << "{input=" << converter.NameOfCPURegister(reg_code) << " (int32)}";
break;
}
case TranslationOpcode::INT64_REGISTER: {
DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 1);
int reg_code = iterator.Next();
os << "{input=" << converter.NameOfCPURegister(reg_code) << " (int64)}";
break;
}
case TranslationOpcode::UINT32_REGISTER: {
DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 1);
int reg_code = iterator.Next();
os << "{input=" << converter.NameOfCPURegister(reg_code)
<< " (uint32)}";
break;
}
case TranslationOpcode::BOOL_REGISTER: {
DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 1);
int reg_code = iterator.Next();
os << "{input=" << converter.NameOfCPURegister(reg_code) << " (bool)}";
break;
}
case TranslationOpcode::FLOAT_REGISTER: {
DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 1);
int reg_code = iterator.Next();
os << "{input=" << FloatRegister::from_code(reg_code) << "}";
break;
}
case TranslationOpcode::DOUBLE_REGISTER: {
DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 1);
int reg_code = iterator.Next();
os << "{input=" << DoubleRegister::from_code(reg_code) << "}";
break;
}
case TranslationOpcode::STACK_SLOT: {
DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 1);
int input_slot_index = iterator.Next();
os << "{input=" << input_slot_index << "}";
break;
}
case TranslationOpcode::INT32_STACK_SLOT: {
DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 1);
int input_slot_index = iterator.Next();
os << "{input=" << input_slot_index << " (int32)}";
break;
}
case TranslationOpcode::INT64_STACK_SLOT: {
DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 1);
int input_slot_index = iterator.Next();
os << "{input=" << input_slot_index << " (int64)}";
break;
}
case TranslationOpcode::UINT32_STACK_SLOT: {
DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 1);
int input_slot_index = iterator.Next();
os << "{input=" << input_slot_index << " (uint32)}";
break;
}
case TranslationOpcode::BOOL_STACK_SLOT: {
DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 1);
int input_slot_index = iterator.Next();
os << "{input=" << input_slot_index << " (bool)}";
break;
}
case TranslationOpcode::FLOAT_STACK_SLOT:
case TranslationOpcode::DOUBLE_STACK_SLOT: {
DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 1);
int input_slot_index = iterator.Next();
os << "{input=" << input_slot_index << "}";
break;
}
case TranslationOpcode::LITERAL: {
DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 1);
int literal_index = iterator.Next();
Object literal_value = literal_array.get(literal_index);
os << "{literal_id=" << literal_index << " (" << Brief(literal_value)
<< ")}";
break;
}
case TranslationOpcode::DUPLICATED_OBJECT: {
DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 1);
int object_index = iterator.Next();
os << "{object_index=" << object_index << "}";
break;
}
case TranslationOpcode::ARGUMENTS_ELEMENTS: {
DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 1);
CreateArgumentsType arguments_type =
static_cast<CreateArgumentsType>(iterator.Next());
os << "{arguments_type=" << arguments_type << "}";
break;
}
case TranslationOpcode::ARGUMENTS_LENGTH: {
DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 0);
os << "{arguments_length}";
break;
}
case TranslationOpcode::CAPTURED_OBJECT: {
DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 1);
int args_length = iterator.Next();
os << "{length=" << args_length << "}";
break;
}
case TranslationOpcode::UPDATE_FEEDBACK: {
DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 2);
int literal_index = iterator.Next();
FeedbackSlot slot(iterator.Next());
os << "{feedback={vector_index=" << literal_index << ", slot=" << slot
<< "}}";
break;
}
}
os << "\n";
}
}
// static
TranslatedValue TranslatedValue::NewDeferredObject(TranslatedState* container,
int length,
int object_index) {
TranslatedValue slot(container, kCapturedObject);
slot.materialization_info_ = {object_index, length};
return slot;
}
// static
TranslatedValue TranslatedValue::NewDuplicateObject(TranslatedState* container,
int id) {
TranslatedValue slot(container, kDuplicatedObject);
slot.materialization_info_ = {id, -1};
return slot;
}
// static
TranslatedValue TranslatedValue::NewFloat(TranslatedState* container,
Float32 value) {
TranslatedValue slot(container, kFloat);
slot.float_value_ = value;
return slot;
}
// static
TranslatedValue TranslatedValue::NewDouble(TranslatedState* container,
Float64 value) {
TranslatedValue slot(container, kDouble);
slot.double_value_ = value;
return slot;
}
// static
TranslatedValue TranslatedValue::NewInt32(TranslatedState* container,
int32_t value) {
TranslatedValue slot(container, kInt32);
slot.int32_value_ = value;
return slot;
}
// static
TranslatedValue TranslatedValue::NewInt64(TranslatedState* container,
int64_t value) {
TranslatedValue slot(container, kInt64);
slot.int64_value_ = value;
return slot;
}
// static
TranslatedValue TranslatedValue::NewInt64ToBigInt(TranslatedState* container,
int64_t value) {
TranslatedValue slot(container, kInt64ToBigInt);
slot.int64_value_ = value;
return slot;
}
// static
TranslatedValue TranslatedValue::NewUInt32(TranslatedState* container,
uint32_t value) {
TranslatedValue slot(container, kUInt32);
slot.uint32_value_ = value;
return slot;
}
// static
TranslatedValue TranslatedValue::NewBool(TranslatedState* container,
uint32_t value) {
TranslatedValue slot(container, kBoolBit);
slot.uint32_value_ = value;
return slot;
}
// static
TranslatedValue TranslatedValue::NewTagged(TranslatedState* container,
Object literal) {
TranslatedValue slot(container, kTagged);
slot.raw_literal_ = literal;
return slot;
}
// static
TranslatedValue TranslatedValue::NewInvalid(TranslatedState* container) {
return TranslatedValue(container, kInvalid);
}
Isolate* TranslatedValue::isolate() const { return container_->isolate(); }
Object TranslatedValue::raw_literal() const {
DCHECK_EQ(kTagged, kind());
return raw_literal_;
}
int32_t TranslatedValue::int32_value() const {
DCHECK_EQ(kInt32, kind());
return int32_value_;
}
int64_t TranslatedValue::int64_value() const {
DCHECK(kInt64 == kind() || kInt64ToBigInt == kind());
return int64_value_;
}
uint32_t TranslatedValue::uint32_value() const {
DCHECK(kind() == kUInt32 || kind() == kBoolBit);
return uint32_value_;
}
Float32 TranslatedValue::float_value() const {
DCHECK_EQ(kFloat, kind());
return float_value_;
}
Float64 TranslatedValue::double_value() const {
DCHECK_EQ(kDouble, kind());
return double_value_;
}
int TranslatedValue::object_length() const {
DCHECK_EQ(kind(), kCapturedObject);
return materialization_info_.length_;
}
int TranslatedValue::object_index() const {
DCHECK(kind() == kCapturedObject || kind() == kDuplicatedObject);
return materialization_info_.id_;
}
Object TranslatedValue::GetRawValue() const {
// If we have a value, return it.
if (materialization_state() == kFinished) {
int smi;
if (storage_->IsHeapNumber() &&
DoubleToSmiInteger(storage_->Number(), &smi)) {
return Smi::FromInt(smi);
}
return *storage_;
}
// Otherwise, do a best effort to get the value without allocation.
switch (kind()) {
case kTagged:
return raw_literal();
case kInt32: {
bool is_smi = Smi::IsValid(int32_value());
if (is_smi) {
return Smi::FromInt(int32_value());
}
break;
}
case kInt64: {
bool is_smi = (int64_value() >= static_cast<int64_t>(Smi::kMinValue) &&
int64_value() <= static_cast<int64_t>(Smi::kMaxValue));
if (is_smi) {
return Smi::FromIntptr(static_cast<intptr_t>(int64_value()));
}
break;
}
case kInt64ToBigInt:
// Return the arguments marker.
break;
case kUInt32: {
bool is_smi = (uint32_value() <= static_cast<uintptr_t>(Smi::kMaxValue));
if (is_smi) {
return Smi::FromInt(static_cast<int32_t>(uint32_value()));
}
break;
}
case kBoolBit: {
if (uint32_value() == 0) {
return ReadOnlyRoots(isolate()).false_value();
} else {
CHECK_EQ(1U, uint32_value());
return ReadOnlyRoots(isolate()).true_value();
}
}
case kFloat: {
int smi;
if (DoubleToSmiInteger(float_value().get_scalar(), &smi)) {
return Smi::FromInt(smi);
}
break;
}
case kDouble: {
int smi;
if (DoubleToSmiInteger(double_value().get_scalar(), &smi)) {
return Smi::FromInt(smi);
}
break;
}
default:
break;
}
// If we could not get the value without allocation, return the arguments
// marker.
return ReadOnlyRoots(isolate()).arguments_marker();
}
void TranslatedValue::set_initialized_storage(Handle<HeapObject> storage) {
DCHECK_EQ(kUninitialized, materialization_state());
storage_ = storage;
materialization_state_ = kFinished;
}
Handle<Object> TranslatedValue::GetValue() {
Handle<Object> value(GetRawValue(), isolate());
if (materialization_state() == kFinished) return value;
if (value->IsSmi()) {
// Even though stored as a Smi, this number might instead be needed as a
// HeapNumber when materializing a JSObject with a field of HeapObject
// representation. Since we don't have this information available here, we
// just always allocate a HeapNumber and later extract the Smi again if we
// don't need a HeapObject.
set_initialized_storage(
isolate()->factory()->NewHeapNumber(value->Number()));
return value;
}
if (*value != ReadOnlyRoots(isolate()).arguments_marker()) {
set_initialized_storage(Handle<HeapObject>::cast(value));
return storage_;
}
// Otherwise we have to materialize.
if (kind() == TranslatedValue::kCapturedObject ||
kind() == TranslatedValue::kDuplicatedObject) {
// We need to materialize the object (or possibly even object graphs).
// To make the object verifier happy, we materialize in two steps.
// 1. Allocate storage for reachable objects. This makes sure that for
// each object we have allocated space on heap. The space will be
// a byte array that will be later initialized, or a fully
// initialized object if it is safe to allocate one that will
// pass the verifier.
container_->EnsureObjectAllocatedAt(this);
// Finish any sweeping so that it becomes safe to overwrite the ByteArray
// headers.
// TODO(hpayer): Find a cleaner way to support a group of
// non-fully-initialized objects.
isolate()->heap()->mark_compact_collector()->EnsureSweepingCompleted();
// 2. Initialize the objects. If we have allocated only byte arrays
// for some objects, we now overwrite the byte arrays with the
// correct object fields. Note that this phase does not allocate
// any new objects, so it does not trigger the object verifier.
return container_->InitializeObjectAt(this);
}
double number = 0;
Handle<HeapObject> heap_object;
switch (kind()) {
case TranslatedValue::kInt32:
number = int32_value();
heap_object = isolate()->factory()->NewHeapNumber(number);
break;
case TranslatedValue::kInt64:
number = int64_value();
heap_object = isolate()->factory()->NewHeapNumber(number);
break;
case TranslatedValue::kInt64ToBigInt:
heap_object = BigInt::FromInt64(isolate(), int64_value());
break;
case TranslatedValue::kUInt32:
number = uint32_value();
heap_object = isolate()->factory()->NewHeapNumber(number);
break;
case TranslatedValue::kFloat:
number = float_value().get_scalar();
heap_object = isolate()->factory()->NewHeapNumber(number);
break;
case TranslatedValue::kDouble:
number = double_value().get_scalar();
heap_object = isolate()->factory()->NewHeapNumber(number);
break;
default:
UNREACHABLE();
}
DCHECK(!IsSmiDouble(number) || kind() == TranslatedValue::kInt64ToBigInt);
set_initialized_storage(heap_object);
return storage_;
}
bool TranslatedValue::IsMaterializedObject() const {
switch (kind()) {
case kCapturedObject:
case kDuplicatedObject:
return true;
default:
return false;
}
}
bool TranslatedValue::IsMaterializableByDebugger() const {
// At the moment, we only allow materialization of doubles.
return (kind() == kDouble);
}
int TranslatedValue::GetChildrenCount() const {
if (kind() == kCapturedObject) {
return object_length();
} else {
return 0;
}
}
uint64_t TranslatedState::GetUInt64Slot(Address fp, int slot_offset) {
#if V8_TARGET_ARCH_32_BIT
return ReadUnalignedValue<uint64_t>(fp + slot_offset);
#else
return Memory<uint64_t>(fp + slot_offset);
#endif
}
uint32_t TranslatedState::GetUInt32Slot(Address fp, int slot_offset) {
Address address = fp + slot_offset;
#if V8_TARGET_BIG_ENDIAN && V8_HOST_ARCH_64_BIT
return Memory<uint32_t>(address + kIntSize);
#else
return Memory<uint32_t>(address);
#endif
}
Float32 TranslatedState::GetFloatSlot(Address fp, int slot_offset) {
#if !V8_TARGET_ARCH_S390X && !V8_TARGET_ARCH_PPC64
return Float32::FromBits(GetUInt32Slot(fp, slot_offset));
#else
return Float32::FromBits(Memory<uint32_t>(fp + slot_offset));
#endif
}
Float64 TranslatedState::GetDoubleSlot(Address fp, int slot_offset) {
return Float64::FromBits(GetUInt64Slot(fp, slot_offset));
}
void TranslatedValue::Handlify() {
if (kind() == kTagged && raw_literal().IsHeapObject()) {
set_initialized_storage(
Handle<HeapObject>(HeapObject::cast(raw_literal()), isolate()));
raw_literal_ = Object();
}
}
TranslatedFrame TranslatedFrame::UnoptimizedFrame(
BytecodeOffset bytecode_offset, SharedFunctionInfo shared_info, int height,
int return_value_offset, int return_value_count) {
TranslatedFrame frame(kUnoptimizedFunction, shared_info, height,
return_value_offset, return_value_count);
frame.bytecode_offset_ = bytecode_offset;
return frame;
}
TranslatedFrame TranslatedFrame::ArgumentsAdaptorFrame(
SharedFunctionInfo shared_info, int height) {
return TranslatedFrame(kArgumentsAdaptor, shared_info, height);
}
TranslatedFrame TranslatedFrame::ConstructStubFrame(
BytecodeOffset bytecode_offset, SharedFunctionInfo shared_info,
int height) {
TranslatedFrame frame(kConstructStub, shared_info, height);
frame.bytecode_offset_ = bytecode_offset;
return frame;
}
TranslatedFrame TranslatedFrame::BuiltinContinuationFrame(
BytecodeOffset bytecode_offset, SharedFunctionInfo shared_info,
int height) {
TranslatedFrame frame(kBuiltinContinuation, shared_info, height);
frame.bytecode_offset_ = bytecode_offset;
return frame;
}
#if V8_ENABLE_WEBASSEMBLY
TranslatedFrame TranslatedFrame::JSToWasmBuiltinContinuationFrame(
BytecodeOffset bytecode_offset, SharedFunctionInfo shared_info, int height,
base::Optional<wasm::ValueKind> return_kind) {
TranslatedFrame frame(kJSToWasmBuiltinContinuation, shared_info, height);
frame.bytecode_offset_ = bytecode_offset;
frame.return_kind_ = return_kind;
return frame;
}
#endif // V8_ENABLE_WEBASSEMBLY
TranslatedFrame TranslatedFrame::JavaScriptBuiltinContinuationFrame(
BytecodeOffset bytecode_offset, SharedFunctionInfo shared_info,
int height) {
TranslatedFrame frame(kJavaScriptBuiltinContinuation, shared_info, height);
frame.bytecode_offset_ = bytecode_offset;
return frame;
}
TranslatedFrame TranslatedFrame::JavaScriptBuiltinContinuationWithCatchFrame(
BytecodeOffset bytecode_offset, SharedFunctionInfo shared_info,
int height) {
TranslatedFrame frame(kJavaScriptBuiltinContinuationWithCatch, shared_info,
height);
frame.bytecode_offset_ = bytecode_offset;
return frame;
}
namespace {
uint16_t InternalFormalParameterCountWithReceiver(SharedFunctionInfo sfi) {
static constexpr int kTheReceiver = 1;
return sfi.internal_formal_parameter_count() + kTheReceiver;
}
} // namespace
int TranslatedFrame::GetValueCount() {
// The function is added to all frame state descriptors in
// InstructionSelector::AddInputsToFrameStateDescriptor.
static constexpr int kTheFunction = 1;
switch (kind()) {
case kUnoptimizedFunction: {
int parameter_count =
InternalFormalParameterCountWithReceiver(raw_shared_info_);
static constexpr int kTheContext = 1;
static constexpr int kTheAccumulator = 1;
return height() + parameter_count + kTheContext + kTheFunction +
kTheAccumulator;
}
case kArgumentsAdaptor:
return height() + kTheFunction;
case kConstructStub:
case kBuiltinContinuation:
#if V8_ENABLE_WEBASSEMBLY
case kJSToWasmBuiltinContinuation:
#endif // V8_ENABLE_WEBASSEMBLY
case kJavaScriptBuiltinContinuation:
case kJavaScriptBuiltinContinuationWithCatch: {
static constexpr int kTheContext = 1;
return height() + kTheContext + kTheFunction;
}
case kInvalid:
UNREACHABLE();
}
UNREACHABLE();
}
void TranslatedFrame::Handlify() {
if (!raw_shared_info_.is_null()) {
shared_info_ = Handle<SharedFunctionInfo>(raw_shared_info_,
raw_shared_info_.GetIsolate());
raw_shared_info_ = SharedFunctionInfo();
}
for (auto& value : values_) {
value.Handlify();
}
}
TranslatedFrame TranslatedState::CreateNextTranslatedFrame(
TranslationArrayIterator* iterator, FixedArray literal_array, Address fp,
FILE* trace_file) {
TranslationOpcode opcode = TranslationOpcodeFromInt(iterator->Next());
switch (opcode) {
case TranslationOpcode::INTERPRETED_FRAME: {
BytecodeOffset bytecode_offset = BytecodeOffset(iterator->Next());
SharedFunctionInfo shared_info =
SharedFunctionInfo::cast(literal_array.get(iterator->Next()));
int height = iterator->Next();
int return_value_offset = iterator->Next();
int return_value_count = iterator->Next();
if (trace_file != nullptr) {
std::unique_ptr<char[]> name = shared_info.DebugNameCStr();
PrintF(trace_file, " reading input frame %s", name.get());
int arg_count = InternalFormalParameterCountWithReceiver(shared_info);
PrintF(trace_file,
" => bytecode_offset=%d, args=%d, height=%d, retval=%i(#%i); "
"inputs:\n",
bytecode_offset.ToInt(), arg_count, height, return_value_offset,
return_value_count);
}
return TranslatedFrame::UnoptimizedFrame(bytecode_offset, shared_info,
height, return_value_offset,
return_value_count);
}
case TranslationOpcode::ARGUMENTS_ADAPTOR_FRAME: {
SharedFunctionInfo shared_info =
SharedFunctionInfo::cast(literal_array.get(iterator->Next()));
int height = iterator->Next();
if (trace_file != nullptr) {
std::unique_ptr<char[]> name = shared_info.DebugNameCStr();
PrintF(trace_file, " reading arguments adaptor frame %s", name.get());
PrintF(trace_file, " => height=%d; inputs:\n", height);
}
return TranslatedFrame::ArgumentsAdaptorFrame(shared_info, height);
}
case TranslationOpcode::CONSTRUCT_STUB_FRAME: {
BytecodeOffset bytecode_offset = BytecodeOffset(iterator->Next());
SharedFunctionInfo shared_info =
SharedFunctionInfo::cast(literal_array.get(iterator->Next()));
int height = iterator->Next();
if (trace_file != nullptr) {
std::unique_ptr<char[]> name = shared_info.DebugNameCStr();
PrintF(trace_file, " reading construct stub frame %s", name.get());
PrintF(trace_file, " => bytecode_offset=%d, height=%d; inputs:\n",
bytecode_offset.ToInt(), height);
}
return TranslatedFrame::ConstructStubFrame(bytecode_offset, shared_info,
height);
}
case TranslationOpcode::BUILTIN_CONTINUATION_FRAME: {
BytecodeOffset bytecode_offset = BytecodeOffset(iterator->Next());
SharedFunctionInfo shared_info =
SharedFunctionInfo::cast(literal_array.get(iterator->Next()));
int height = iterator->Next();
if (trace_file != nullptr) {
std::unique_ptr<char[]> name = shared_info.DebugNameCStr();
PrintF(trace_file, " reading builtin continuation frame %s",
name.get());
PrintF(trace_file, " => bytecode_offset=%d, height=%d; inputs:\n",
bytecode_offset.ToInt(), height);
}
return TranslatedFrame::BuiltinContinuationFrame(bytecode_offset,
shared_info, height);
}
#if V8_ENABLE_WEBASSEMBLY
case TranslationOpcode::JS_TO_WASM_BUILTIN_CONTINUATION_FRAME: {
BytecodeOffset bailout_id = BytecodeOffset(iterator->Next());
SharedFunctionInfo shared_info =
SharedFunctionInfo::cast(literal_array.get(iterator->Next()));
int height = iterator->Next();
int return_kind_code = iterator->Next();
base::Optional<wasm::ValueKind> return_kind;
if (return_kind_code != kNoWasmReturnKind) {
return_kind = static_cast<wasm::ValueKind>(return_kind_code);
}
if (trace_file != nullptr) {
std::unique_ptr<char[]> name = shared_info.DebugNameCStr();
PrintF(trace_file, " reading JS to Wasm builtin continuation frame %s",
name.get());
PrintF(trace_file,
" => bailout_id=%d, height=%d return_type=%d; inputs:\n",
bailout_id.ToInt(), height,
return_kind.has_value() ? return_kind.value() : -1);
}
return TranslatedFrame::JSToWasmBuiltinContinuationFrame(
bailout_id, shared_info, height, return_kind);
}
#endif // V8_ENABLE_WEBASSEMBLY
case TranslationOpcode::JAVA_SCRIPT_BUILTIN_CONTINUATION_FRAME: {
BytecodeOffset bytecode_offset = BytecodeOffset(iterator->Next());
SharedFunctionInfo shared_info =
SharedFunctionInfo::cast(literal_array.get(iterator->Next()));
int height = iterator->Next();
if (trace_file != nullptr) {
std::unique_ptr<char[]> name = shared_info.DebugNameCStr();
PrintF(trace_file, " reading JavaScript builtin continuation frame %s",
name.get());
PrintF(trace_file, " => bytecode_offset=%d, height=%d; inputs:\n",
bytecode_offset.ToInt(), height);
}
return TranslatedFrame::JavaScriptBuiltinContinuationFrame(
bytecode_offset, shared_info, height);
}
case TranslationOpcode::JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH_FRAME: {
BytecodeOffset bytecode_offset = BytecodeOffset(iterator->Next());
SharedFunctionInfo shared_info =
SharedFunctionInfo::cast(literal_array.get(iterator->Next()));
int height = iterator->Next();
if (trace_file != nullptr) {
std::unique_ptr<char[]> name = shared_info.DebugNameCStr();
PrintF(trace_file,
" reading JavaScript builtin continuation frame with catch %s",
name.get());
PrintF(trace_file, " => bytecode_offset=%d, height=%d; inputs:\n",
bytecode_offset.ToInt(), height);
}
return TranslatedFrame::JavaScriptBuiltinContinuationWithCatchFrame(
bytecode_offset, shared_info, height);
}
case TranslationOpcode::UPDATE_FEEDBACK:
case TranslationOpcode::BEGIN:
case TranslationOpcode::DUPLICATED_OBJECT:
case TranslationOpcode::ARGUMENTS_ELEMENTS:
case TranslationOpcode::ARGUMENTS_LENGTH:
case TranslationOpcode::CAPTURED_OBJECT:
case TranslationOpcode::REGISTER:
case TranslationOpcode::INT32_REGISTER:
case TranslationOpcode::INT64_REGISTER:
case TranslationOpcode::UINT32_REGISTER:
case TranslationOpcode::BOOL_REGISTER:
case TranslationOpcode::FLOAT_REGISTER:
case TranslationOpcode::DOUBLE_REGISTER:
case TranslationOpcode::STACK_SLOT:
case TranslationOpcode::INT32_STACK_SLOT:
case TranslationOpcode::INT64_STACK_SLOT:
case TranslationOpcode::UINT32_STACK_SLOT:
case TranslationOpcode::BOOL_STACK_SLOT:
case TranslationOpcode::FLOAT_STACK_SLOT:
case TranslationOpcode::DOUBLE_STACK_SLOT:
case TranslationOpcode::LITERAL:
break;
}
UNREACHABLE();
}
// static
void TranslatedFrame::AdvanceIterator(
std::deque<TranslatedValue>::iterator* iter) {
int values_to_skip = 1;
while (values_to_skip > 0) {
// Consume the current element.
values_to_skip--;
// Add all the children.
values_to_skip += (*iter)->GetChildrenCount();
(*iter)++;
}
}
// Creates translated values for an arguments backing store, or the backing
// store for rest parameters depending on the given {type}. The TranslatedValue
// objects for the fields are not read from the TranslationArrayIterator, but
// instead created on-the-fly based on dynamic information in the optimized
// frame.
void TranslatedState::CreateArgumentsElementsTranslatedValues(
int frame_index, Address input_frame_pointer, CreateArgumentsType type,
FILE* trace_file) {
TranslatedFrame& frame = frames_[frame_index];
int length =
type == CreateArgumentsType::kRestParameter
? std::max(0, actual_argument_count_ - formal_parameter_count_)
: actual_argument_count_;
int object_index = static_cast<int>(object_positions_.size());
int value_index = static_cast<int>(frame.values_.size());
if (trace_file != nullptr) {
PrintF(trace_file, "arguments elements object #%d (type = %d, length = %d)",
object_index, static_cast<uint8_t>(type), length);
}
object_positions_.push_back({frame_index, value_index});
frame.Add(TranslatedValue::NewDeferredObject(
this, length + FixedArray::kHeaderSize / kTaggedSize, object_index));
ReadOnlyRoots roots(isolate_);
frame.Add(TranslatedValue::NewTagged(this, roots.fixed_array_map()));
frame.Add(TranslatedValue::NewInt32(this, length));
int number_of_holes = 0;
if (type == CreateArgumentsType::kMappedArguments) {
// If the actual number of arguments is less than the number of formal
// parameters, we have fewer holes to fill to not overshoot the length.
number_of_holes = std::min(formal_parameter_count_, length);
}
for (int i = 0; i < number_of_holes; ++i) {
frame.Add(TranslatedValue::NewTagged(this, roots.the_hole_value()));
}
int argc = length - number_of_holes;
int start_index = number_of_holes;
if (type == CreateArgumentsType::kRestParameter) {
start_index = std::max(0, formal_parameter_count_);
}
for (int i = 0; i < argc; i++) {
// Skip the receiver.
int offset = i + start_index + 1;
Address arguments_frame = offset > formal_parameter_count_
? stack_frame_pointer_
: input_frame_pointer;
Address argument_slot = arguments_frame +
CommonFrameConstants::kFixedFrameSizeAboveFp +
offset * kSystemPointerSize;
frame.Add(TranslatedValue::NewTagged(this, *FullObjectSlot(argument_slot)));
}
}
// We can't intermix stack decoding and allocations because the deoptimization
// infrastracture is not GC safe.
// Thus we build a temporary structure in malloced space.
// The TranslatedValue objects created correspond to the static translation
// instructions from the TranslationArrayIterator, except for
// TranslationOpcode::ARGUMENTS_ELEMENTS, where the number and values of the
// FixedArray elements depend on dynamic information from the optimized frame.
// Returns the number of expected nested translations from the
// TranslationArrayIterator.
int TranslatedState::CreateNextTranslatedValue(
int frame_index, TranslationArrayIterator* iterator,
FixedArray literal_array, Address fp, RegisterValues* registers,
FILE* trace_file) {
disasm::NameConverter converter;
TranslatedFrame& frame = frames_[frame_index];
int value_index = static_cast<int>(frame.values_.size());
TranslationOpcode opcode = TranslationOpcodeFromInt(iterator->Next());
switch (opcode) {
case TranslationOpcode::BEGIN:
case TranslationOpcode::INTERPRETED_FRAME:
case TranslationOpcode::ARGUMENTS_ADAPTOR_FRAME:
case TranslationOpcode::CONSTRUCT_STUB_FRAME:
case TranslationOpcode::JAVA_SCRIPT_BUILTIN_CONTINUATION_FRAME:
case TranslationOpcode::JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH_FRAME:
case TranslationOpcode::BUILTIN_CONTINUATION_FRAME:
#if V8_ENABLE_WEBASSEMBLY
case TranslationOpcode::JS_TO_WASM_BUILTIN_CONTINUATION_FRAME:
#endif // V8_ENABLE_WEBASSEMBLY
case TranslationOpcode::UPDATE_FEEDBACK:
// Peeled off before getting here.
break;
case TranslationOpcode::DUPLICATED_OBJECT: {
int object_id = iterator->Next();
if (trace_file != nullptr) {
PrintF(trace_file, "duplicated object #%d", object_id);
}
object_positions_.push_back(object_positions_[object_id]);
TranslatedValue translated_value =
TranslatedValue::NewDuplicateObject(this, object_id);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case TranslationOpcode::ARGUMENTS_ELEMENTS: {
CreateArgumentsType arguments_type =
static_cast<CreateArgumentsType>(iterator->Next());
CreateArgumentsElementsTranslatedValues(frame_index, fp, arguments_type,
trace_file);
return 0;
}
case TranslationOpcode::ARGUMENTS_LENGTH: {
if (trace_file != nullptr) {
PrintF(trace_file, "arguments length field (length = %d)",
actual_argument_count_);
}
frame.Add(TranslatedValue::NewInt32(this, actual_argument_count_));
return 0;
}
case TranslationOpcode::CAPTURED_OBJECT: {
int field_count = iterator->Next();
int object_index = static_cast<int>(object_positions_.size());
if (trace_file != nullptr) {
PrintF(trace_file, "captured object #%d (length = %d)", object_index,
field_count);
}
object_positions_.push_back({frame_index, value_index});
TranslatedValue translated_value =
TranslatedValue::NewDeferredObject(this, field_count, object_index);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case TranslationOpcode::REGISTER: {
int input_reg = iterator->Next();
if (registers == nullptr) {
TranslatedValue translated_value = TranslatedValue::NewInvalid(this);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
intptr_t value = registers->GetRegister(input_reg);
Address uncompressed_value = DecompressIfNeeded(value);
if (trace_file != nullptr) {
PrintF(trace_file, V8PRIxPTR_FMT " ; %s ", uncompressed_value,
converter.NameOfCPURegister(input_reg));
Object(uncompressed_value).ShortPrint(trace_file);
}
TranslatedValue translated_value =
TranslatedValue::NewTagged(this, Object(uncompressed_value));
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case TranslationOpcode::INT32_REGISTER: {
int input_reg = iterator->Next();
if (registers == nullptr) {
TranslatedValue translated_value = TranslatedValue::NewInvalid(this);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
intptr_t value = registers->GetRegister(input_reg);
if (trace_file != nullptr) {
PrintF(trace_file, "%" V8PRIdPTR " ; %s (int32)", value,
converter.NameOfCPURegister(input_reg));
}
TranslatedValue translated_value =
TranslatedValue::NewInt32(this, static_cast<int32_t>(value));
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case TranslationOpcode::INT64_REGISTER: {
int input_reg = iterator->Next();
if (registers == nullptr) {
TranslatedValue translated_value = TranslatedValue::NewInvalid(this);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
intptr_t value = registers->GetRegister(input_reg);
if (trace_file != nullptr) {
PrintF(trace_file, "%" V8PRIdPTR " ; %s (int64)", value,
converter.NameOfCPURegister(input_reg));
}
TranslatedValue translated_value =
TranslatedValue::NewInt64(this, static_cast<int64_t>(value));
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case TranslationOpcode::UINT32_REGISTER: {
int input_reg = iterator->Next();
if (registers == nullptr) {
TranslatedValue translated_value = TranslatedValue::NewInvalid(this);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
intptr_t value = registers->GetRegister(input_reg);
if (trace_file != nullptr) {
PrintF(trace_file, "%" V8PRIuPTR " ; %s (uint32)", value,
converter.NameOfCPURegister(input_reg));
}
TranslatedValue translated_value =
TranslatedValue::NewUInt32(this, static_cast<uint32_t>(value));
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case TranslationOpcode::BOOL_REGISTER: {
int input_reg = iterator->Next();
if (registers == nullptr) {
TranslatedValue translated_value = TranslatedValue::NewInvalid(this);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
intptr_t value = registers->GetRegister(input_reg);
if (trace_file != nullptr) {
PrintF(trace_file, "%" V8PRIdPTR " ; %s (bool)", value,
converter.NameOfCPURegister(input_reg));
}
TranslatedValue translated_value =
TranslatedValue::NewBool(this, static_cast<uint32_t>(value));
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case TranslationOpcode::FLOAT_REGISTER: {
int input_reg = iterator->Next();
if (registers == nullptr) {
TranslatedValue translated_value = TranslatedValue::NewInvalid(this);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
Float32 value = registers->GetFloatRegister(input_reg);
if (trace_file != nullptr) {
PrintF(trace_file, "%e ; %s (float)", value.get_scalar(),
RegisterName(FloatRegister::from_code(input_reg)));
}
TranslatedValue translated_value = TranslatedValue::NewFloat(this, value);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case TranslationOpcode::DOUBLE_REGISTER: {
int input_reg = iterator->Next();
if (registers == nullptr) {
TranslatedValue translated_value = TranslatedValue::NewInvalid(this);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
Float64 value = registers->GetDoubleRegister(input_reg);
if (trace_file != nullptr) {
PrintF(trace_file, "%e ; %s (double)", value.get_scalar(),
RegisterName(DoubleRegister::from_code(input_reg)));
}
TranslatedValue translated_value =
TranslatedValue::NewDouble(this, value);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case TranslationOpcode::STACK_SLOT: {
int slot_offset =
OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
intptr_t value = *(reinterpret_cast<intptr_t*>(fp + slot_offset));
Address uncompressed_value = DecompressIfNeeded(value);
if (trace_file != nullptr) {
PrintF(trace_file, V8PRIxPTR_FMT " ; [fp %c %3d] ",
uncompressed_value, slot_offset < 0 ? '-' : '+',
std::abs(slot_offset));
Object(uncompressed_value).ShortPrint(trace_file);
}
TranslatedValue translated_value =
TranslatedValue::NewTagged(this, Object(uncompressed_value));
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case TranslationOpcode::INT32_STACK_SLOT: {
int slot_offset =
OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
uint32_t value = GetUInt32Slot(fp, slot_offset);
if (trace_file != nullptr) {
PrintF(trace_file, "%d ; (int32) [fp %c %3d] ",
static_cast<int32_t>(value), slot_offset < 0 ? '-' : '+',
std::abs(slot_offset));
}
TranslatedValue translated_value = TranslatedValue::NewInt32(this, value);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case TranslationOpcode::INT64_STACK_SLOT: {
int slot_offset =
OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
uint64_t value = GetUInt64Slot(fp, slot_offset);
if (trace_file != nullptr) {
PrintF(trace_file, "%" V8PRIdPTR " ; (int64) [fp %c %3d] ",
static_cast<intptr_t>(value), slot_offset < 0 ? '-' : '+',
std::abs(slot_offset));
}
TranslatedValue translated_value = TranslatedValue::NewInt64(this, value);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case TranslationOpcode::UINT32_STACK_SLOT: {
int slot_offset =
OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
uint32_t value = GetUInt32Slot(fp, slot_offset);
if (trace_file != nullptr) {
PrintF(trace_file, "%u ; (uint32) [fp %c %3d] ", value,
slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
}
TranslatedValue translated_value =
TranslatedValue::NewUInt32(this, value);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case TranslationOpcode::BOOL_STACK_SLOT: {
int slot_offset =
OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
uint32_t value = GetUInt32Slot(fp, slot_offset);
if (trace_file != nullptr) {
PrintF(trace_file, "%u ; (bool) [fp %c %3d] ", value,
slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
}
TranslatedValue translated_value = TranslatedValue::NewBool(this, value);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case TranslationOpcode::FLOAT_STACK_SLOT: {
int slot_offset =
OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
Float32 value = GetFloatSlot(fp, slot_offset);
if (trace_file != nullptr) {
PrintF(trace_file, "%e ; (float) [fp %c %3d] ", value.get_scalar(),
slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
}
TranslatedValue translated_value = TranslatedValue::NewFloat(this, value);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case TranslationOpcode::DOUBLE_STACK_SLOT: {
int slot_offset =
OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
Float64 value = GetDoubleSlot(fp, slot_offset);
if (trace_file != nullptr) {
PrintF(trace_file, "%e ; (double) [fp %c %d] ", value.get_scalar(),
slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
}
TranslatedValue translated_value =
TranslatedValue::NewDouble(this, value);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case TranslationOpcode::LITERAL: {
int literal_index = iterator->Next();
Object value = literal_array.get(literal_index);
if (trace_file != nullptr) {
PrintF(trace_file, V8PRIxPTR_FMT " ; (literal %2d) ", value.ptr(),
literal_index);
value.ShortPrint(trace_file);
}
TranslatedValue translated_value =
TranslatedValue::NewTagged(this, value);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
}
FATAL("We should never get here - unexpected deopt info.");
}
Address TranslatedState::DecompressIfNeeded(intptr_t value) {
if (COMPRESS_POINTERS_BOOL) {
return DecompressTaggedAny(isolate(), static_cast<uint32_t>(value));
} else {
return value;
}
}
TranslatedState::TranslatedState(const JavaScriptFrame* frame)
: purpose_(kFrameInspection) {
int deopt_index = Safepoint::kNoDeoptimizationIndex;
DeoptimizationData data =
static_cast<const OptimizedFrame*>(frame)->GetDeoptimizationData(
&deopt_index);
DCHECK(!data.is_null() && deopt_index != Safepoint::kNoDeoptimizationIndex);
TranslationArrayIterator it(data.TranslationByteArray(),
data.TranslationIndex(deopt_index).value());
int actual_argc = frame->GetActualArgumentCount();
Init(frame->isolate(), frame->fp(), frame->fp(), &it, data.LiteralArray(),
nullptr /* registers */, nullptr /* trace file */,
frame->function().shared().internal_formal_parameter_count(),
actual_argc);
}
void TranslatedState::Init(Isolate* isolate, Address input_frame_pointer,
Address stack_frame_pointer,
TranslationArrayIterator* iterator,
FixedArray literal_array, RegisterValues* registers,
FILE* trace_file, int formal_parameter_count,
int actual_argument_count) {
DCHECK(frames_.empty());
stack_frame_pointer_ = stack_frame_pointer;
formal_parameter_count_ = formal_parameter_count;
actual_argument_count_ = actual_argument_count;
isolate_ = isolate;
// Read out the 'header' translation.
TranslationOpcode opcode = TranslationOpcodeFromInt(iterator->Next());
CHECK(opcode == TranslationOpcode::BEGIN);
int count = iterator->Next();
frames_.reserve(count);
iterator->Next(); // Drop JS frames count.
int update_feedback_count = iterator->Next();
CHECK_GE(update_feedback_count, 0);
CHECK_LE(update_feedback_count, 1);
if (update_feedback_count == 1) {
ReadUpdateFeedback(iterator, literal_array, trace_file);
}
std::stack<int> nested_counts;
// Read the frames
for (int frame_index = 0; frame_index < count; frame_index++) {
// Read the frame descriptor.
frames_.push_back(CreateNextTranslatedFrame(
iterator, literal_array, input_frame_pointer, trace_file));
TranslatedFrame& frame = frames_.back();
// Read the values.
int values_to_process = frame.GetValueCount();
while (values_to_process > 0 || !nested_counts.empty()) {
if (trace_file != nullptr) {
if (nested_counts.empty()) {
// For top level values, print the value number.
PrintF(trace_file,
" %3i: ", frame.GetValueCount() - values_to_process);
} else {
// Take care of indenting for nested values.
PrintF(trace_file, " ");
for (size_t j = 0; j < nested_counts.size(); j++) {
PrintF(trace_file, " ");
}
}
}
int nested_count =
CreateNextTranslatedValue(frame_index, iterator, literal_array,
input_frame_pointer, registers, trace_file);
if (trace_file != nullptr) {
PrintF(trace_file, "\n");
}
// Update the value count and resolve the nesting.
values_to_process--;
if (nested_count > 0) {
nested_counts.push(values_to_process);
values_to_process = nested_count;
} else {
while (values_to_process == 0 && !nested_counts.empty()) {
values_to_process = nested_counts.top();
nested_counts.pop();
}
}
}
}
CHECK(!iterator->HasNext() ||
TranslationOpcodeFromInt(iterator->Next()) == TranslationOpcode::BEGIN);
}
void TranslatedState::Prepare(Address stack_frame_pointer) {
for (auto& frame : frames_) frame.Handlify();
if (!feedback_vector_.is_null()) {
feedback_vector_handle_ =
Handle<FeedbackVector>(feedback_vector_, isolate());
feedback_vector_ = FeedbackVector();
}
stack_frame_pointer_ = stack_frame_pointer;
UpdateFromPreviouslyMaterializedObjects();
}
TranslatedValue* TranslatedState::GetValueByObjectIndex(int object_index) {
CHECK_LT(static_cast<size_t>(object_index), object_positions_.size());
TranslatedState::ObjectPosition pos = object_positions_[object_index];
return &(frames_[pos.frame_index_].values_[pos.value_index_]);
}
Handle<HeapObject> TranslatedState::InitializeObjectAt(TranslatedValue* slot) {
DisallowGarbageCollection no_gc;
slot = ResolveCapturedObject(slot);
if (slot->materialization_state() != TranslatedValue::kFinished) {
std::stack<int> worklist;
worklist.push(slot->object_index());
slot->mark_finished();
while (!worklist.empty()) {
int index = worklist.top();
worklist.pop();
InitializeCapturedObjectAt(index, &worklist, no_gc);
}
}
return slot->storage();
}
void TranslatedState::InitializeCapturedObjectAt(
int object_index, std::stack<int>* worklist,
const DisallowGarbageCollection& no_gc) {
CHECK_LT(static_cast<size_t>(object_index), object_positions_.size());
TranslatedState::ObjectPosition pos = object_positions_[object_index];
int value_index = pos.value_index_;
TranslatedFrame* frame = &(frames_[pos.frame_index_]);
TranslatedValue* slot = &(frame->values_[value_index]);
value_index++;
CHECK_EQ(TranslatedValue::kFinished, slot->materialization_state());
CHECK_EQ(TranslatedValue::kCapturedObject, slot->kind());
// Ensure all fields are initialized.
int children_init_index = value_index;
for (int i = 0; i < slot->GetChildrenCount(); i++) {
// If the field is an object that has not been initialized yet, queue it
// for initialization (and mark it as such).
TranslatedValue* child_slot = frame->ValueAt(children_init_index);
if (child_slot->kind() == TranslatedValue::kCapturedObject ||
child_slot->kind() == TranslatedValue::kDuplicatedObject) {
child_slot = ResolveCapturedObject(child_slot);
if (child_slot->materialization_state() != TranslatedValue::kFinished) {
DCHECK_EQ(TranslatedValue::kAllocated,
child_slot->materialization_state());
worklist->push(child_slot->object_index());
child_slot->mark_finished();
}
}
SkipSlots(1, frame, &children_init_index);
}
// Read the map.
// The map should never be materialized, so let us check we already have
// an existing object here.
CHECK_EQ(frame->values_[value_index].kind(), TranslatedValue::kTagged);
Handle<Map> map = Handle<Map>::cast(frame->values_[value_index].GetValue());
CHECK(map->IsMap());
value_index++;
// Handle the special cases.
switch (map->instance_type()) {
case HEAP_NUMBER_TYPE:
case FIXED_DOUBLE_ARRAY_TYPE:
return;
case FIXED_ARRAY_TYPE:
case AWAIT_CONTEXT_TYPE:
case BLOCK_CONTEXT_TYPE:
case CATCH_CONTEXT_TYPE:
case DEBUG_EVALUATE_CONTEXT_TYPE:
case EVAL_CONTEXT_TYPE:
case FUNCTION_CONTEXT_TYPE:
case MODULE_CONTEXT_TYPE:
case NATIVE_CONTEXT_TYPE:
case SCRIPT_CONTEXT_TYPE:
case WITH_CONTEXT_TYPE:
case OBJECT_BOILERPLATE_DESCRIPTION_TYPE:
case HASH_TABLE_TYPE:
case ORDERED_HASH_MAP_TYPE:
case ORDERED_HASH_SET_TYPE:
case NAME_DICTIONARY_TYPE:
case GLOBAL_DICTIONARY_TYPE:
case NUMBER_DICTIONARY_TYPE:
case SIMPLE_NUMBER_DICTIONARY_TYPE:
case PROPERTY_ARRAY_TYPE:
case SCRIPT_CONTEXT_TABLE_TYPE:
case SLOPPY_ARGUMENTS_ELEMENTS_TYPE:
InitializeObjectWithTaggedFieldsAt(frame, &value_index, slot, map, no_gc);
break;
default:
CHECK(map->IsJSObjectMap());
InitializeJSObjectAt(frame, &value_index, slot, map, no_gc);
break;
}
CHECK_EQ(value_index, children_init_index);
}
void TranslatedState::EnsureObjectAllocatedAt(TranslatedValue* slot) {
slot = ResolveCapturedObject(slot);
if (slot->materialization_state() == TranslatedValue::kUninitialized) {
std::stack<int> worklist;
worklist.push(slot->object_index());
slot->mark_allocated();
while (!worklist.empty()) {
int index = worklist.top();
worklist.pop();
EnsureCapturedObjectAllocatedAt(index, &worklist);
}
}
}
int TranslatedValue::GetSmiValue() const {
Object value = GetRawValue();
CHECK(value.IsSmi());
return Smi::cast(value).value();
}
void TranslatedState::MaterializeFixedDoubleArray(TranslatedFrame* frame,
int* value_index,
TranslatedValue* slot,
Handle<Map> map) {
int length = frame->values_[*value_index].GetSmiValue();
(*value_index)++;
Handle<FixedDoubleArray> array = Handle<FixedDoubleArray>::cast(
isolate()->factory()->NewFixedDoubleArray(length));
CHECK_GT(length, 0);
for (int i = 0; i < length; i++) {
CHECK_NE(TranslatedValue::kCapturedObject,
frame->values_[*value_index].kind());
Handle<Object> value = frame->values_[*value_index].GetValue();
if (value->IsNumber()) {
array->set(i, value->Number());
} else {
CHECK(value.is_identical_to(isolate()->factory()->the_hole_value()));
array->set_the_hole(isolate(), i);
}
(*value_index)++;
}
slot->set_storage(array);
}
void TranslatedState::MaterializeHeapNumber(TranslatedFrame* frame,
int* value_index,
TranslatedValue* slot) {
CHECK_NE(TranslatedValue::kCapturedObject,
frame->values_[*value_index].kind());
Handle<Object> value = frame->values_[*value_index].GetValue();
CHECK(value->IsNumber());
Handle<HeapNumber> box = isolate()->factory()->NewHeapNumber(value->Number());
(*value_index)++;
slot->set_storage(box);
}
namespace {
enum StorageKind : uint8_t {
kStoreTagged,
kStoreHeapObject
};
} // namespace
void TranslatedState::SkipSlots(int slots_to_skip, TranslatedFrame* frame,
int* value_index) {
while (slots_to_skip > 0) {
TranslatedValue* slot = &(frame->values_[*value_index]);
(*value_index)++;
slots_to_skip--;
if (slot->kind() == TranslatedValue::kCapturedObject) {
slots_to_skip += slot->GetChildrenCount();
}
}
}
void TranslatedState::EnsureCapturedObjectAllocatedAt(
int object_index, std::stack<int>* worklist) {
CHECK_LT(static_cast<size_t>(object_index), object_positions_.size());
TranslatedState::ObjectPosition pos = object_positions_[object_index];
int value_index = pos.value_index_;
TranslatedFrame* frame = &(frames_[pos.frame_index_]);
TranslatedValue* slot = &(frame->values_[value_index]);
value_index++;
CHECK_EQ(TranslatedValue::kAllocated, slot->materialization_state());
CHECK_EQ(TranslatedValue::kCapturedObject, slot->kind());
// Read the map.
// The map should never be materialized, so let us check we already have
// an existing object here.
CHECK_EQ(frame->values_[value_index].kind(), TranslatedValue::kTagged);
Handle<Map> map = Handle<Map>::cast(frame->values_[value_index].GetValue());
CHECK(map->IsMap());
value_index++;
// Handle the special cases.
switch (map->instance_type()) {
case FIXED_DOUBLE_ARRAY_TYPE:
// Materialize (i.e. allocate&initialize) the array and return since
// there is no need to process the children.
return MaterializeFixedDoubleArray(frame, &value_index, slot, map);
case HEAP_NUMBER_TYPE:
// Materialize (i.e. allocate&initialize) the heap number and return.
// There is no need to process the children.
return MaterializeHeapNumber(frame, &value_index, slot);
case FIXED_ARRAY_TYPE:
case SCRIPT_CONTEXT_TABLE_TYPE:
case AWAIT_CONTEXT_TYPE:
case BLOCK_CONTEXT_TYPE:
case CATCH_CONTEXT_TYPE:
case DEBUG_EVALUATE_CONTEXT_TYPE:
case EVAL_CONTEXT_TYPE:
case FUNCTION_CONTEXT_TYPE:
case MODULE_CONTEXT_TYPE:
case NATIVE_CONTEXT_TYPE:
case SCRIPT_CONTEXT_TYPE:
case WITH_CONTEXT_TYPE:
case HASH_TABLE_TYPE:
case ORDERED_HASH_MAP_TYPE:
case ORDERED_HASH_SET_TYPE:
case NAME_DICTIONARY_TYPE:
case GLOBAL_DICTIONARY_TYPE:
case NUMBER_DICTIONARY_TYPE:
case SIMPLE_NUMBER_DICTIONARY_TYPE: {
// Check we have the right size.
int array_length = frame->values_[value_index].GetSmiValue();
int instance_size = FixedArray::SizeFor(array_length);
CHECK_EQ(instance_size, slot->GetChildrenCount() * kTaggedSize);
// Canonicalize empty fixed array.
if (*map == ReadOnlyRoots(isolate()).empty_fixed_array().map() &&
array_length == 0) {
slot->set_storage(isolate()->factory()->empty_fixed_array());
} else {
slot->set_storage(AllocateStorageFor(slot));
}
// Make sure all the remaining children (after the map) are allocated.
return EnsureChildrenAllocated(slot->GetChildrenCount() - 1, frame,
&value_index, worklist);
}
case SLOPPY_ARGUMENTS_ELEMENTS_TYPE: {
// Verify that the arguments size is correct.
int args_length = frame->values_[value_index].GetSmiValue();
int args_size = SloppyArgumentsElements::SizeFor(args_length);
CHECK_EQ(args_size, slot->GetChildrenCount() * kTaggedSize);
slot->set_storage(AllocateStorageFor(slot));
// Make sure all the remaining children (after the map) are allocated.
return EnsureChildrenAllocated(slot->GetChildrenCount() - 1, frame,
&value_index, worklist);
}
case PROPERTY_ARRAY_TYPE: {
// Check we have the right size.
int length_or_hash = frame->values_[value_index].GetSmiValue();
int array_length = PropertyArray::LengthField::decode(length_or_hash);
int instance_size = PropertyArray::SizeFor(array_length);
CHECK_EQ(instance_size, slot->GetChildrenCount() * kTaggedSize);
slot->set_storage(AllocateStorageFor(slot));
// Make sure all the remaining children (after the map) are allocated.
return EnsureChildrenAllocated(slot->GetChildrenCount() - 1, frame,
&value_index, worklist);
}
default:
EnsureJSObjectAllocated(slot, map);
int remaining_children_count = slot->GetChildrenCount() - 1;
TranslatedValue* properties_slot = frame->ValueAt(value_index);
value_index++, remaining_children_count--;
if (properties_slot->kind() == TranslatedValue::kCapturedObject) {
// We are materializing the property array, so make sure we put the
// mutable heap numbers at the right places.
EnsurePropertiesAllocatedAndMarked(properties_slot, map);
EnsureChildrenAllocated(properties_slot->GetChildrenCount(), frame,
&value_index, worklist);
} else {
CHECK_EQ(properties_slot->kind(), TranslatedValue::kTagged);
}
TranslatedValue* elements_slot = frame->ValueAt(value_index);
value_index++, remaining_children_count--;
if (elements_slot->kind() == TranslatedValue::kCapturedObject ||
!map->IsJSArrayMap()) {
// Handle this case with the other remaining children below.
value_index--, remaining_children_count++;
} else {
CHECK_EQ(elements_slot->kind(), TranslatedValue::kTagged);
elements_slot->GetValue();
if (purpose_ == kFrameInspection) {
// We are materializing a JSArray for the purpose of frame inspection.
// If we were to construct it with the above elements value then an
// actual deopt later on might create another JSArray instance with
// the same elements store. That would violate the key assumption
// behind left-trimming.
elements_slot->ReplaceElementsArrayWithCopy();
}
}
// Make sure all the remaining children (after the map, properties store,
// and possibly elements store) are allocated.
return EnsureChildrenAllocated(remaining_children_count, frame,
&value_index, worklist);
}
UNREACHABLE();
}
void TranslatedValue::ReplaceElementsArrayWithCopy() {
DCHECK_EQ(kind(), TranslatedValue::kTagged);
DCHECK_EQ(materialization_state(), TranslatedValue::kFinished);
auto elements = Handle<FixedArrayBase>::cast(GetValue());
DCHECK(elements->IsFixedArray() || elements->IsFixedDoubleArray());
if (elements->IsFixedDoubleArray()) {
DCHECK(!elements->IsCowArray());
set_storage(isolate()->factory()->CopyFixedDoubleArray(
Handle<FixedDoubleArray>::cast(elements)));
} else if (!elements->IsCowArray()) {
set_storage(isolate()->factory()->CopyFixedArray(
Handle<FixedArray>::cast(elements)));
}
}
void TranslatedState::EnsureChildrenAllocated(int count, TranslatedFrame* frame,
int* value_index,
std::stack<int>* worklist) {
// Ensure all children are allocated.
for (int i = 0; i < count; i++) {
// If the field is an object that has not been allocated yet, queue it
// for initialization (and mark it as such).
TranslatedValue* child_slot = frame->ValueAt(*value_index);
if (child_slot->kind() == TranslatedValue::kCapturedObject ||
child_slot->kind() == TranslatedValue::kDuplicatedObject) {
child_slot = ResolveCapturedObject(child_slot);
if (child_slot->materialization_state() ==
TranslatedValue::kUninitialized) {
worklist->push(child_slot->object_index());
child_slot->mark_allocated();
}
} else {
// Make sure the simple values (heap numbers, etc.) are properly
// initialized.
child_slot->GetValue();
}
SkipSlots(1, frame, value_index);
}
}
void TranslatedState::EnsurePropertiesAllocatedAndMarked(
TranslatedValue* properties_slot, Handle<Map> map) {
CHECK_EQ(TranslatedValue::kUninitialized,
properties_slot->materialization_state());
Handle<ByteArray> object_storage = AllocateStorageFor(properties_slot);
properties_slot->mark_allocated();
properties_slot->set_storage(object_storage);
// Set markers for out-of-object properties.
Handle<DescriptorArray> descriptors(map->instance_descriptors(isolate()),
isolate());
for (InternalIndex i : map->IterateOwnDescriptors()) {
FieldIndex index = FieldIndex::ForDescriptor(*map, i);
Representation representation = descriptors->GetDetails(i).representation();
if (!index.is_inobject() &&
(representation.IsDouble() || representation.IsHeapObject())) {
int outobject_index = index.outobject_array_index();
int array_index = outobject_index * kTaggedSize;
object_storage->set(array_index, kStoreHeapObject);
}
}
}
Handle<ByteArray> TranslatedState::AllocateStorageFor(TranslatedValue* slot) {
int allocate_size =
ByteArray::LengthFor(slot->GetChildrenCount() * kTaggedSize);
// It is important to allocate all the objects tenured so that the marker
// does not visit them.
Handle<ByteArray> object_storage =
isolate()->factory()->NewByteArray(allocate_size, AllocationType::kOld);
for (int i = 0; i < object_storage->length(); i++) {
object_storage->set(i, kStoreTagged);
}
return object_storage;
}
void TranslatedState::EnsureJSObjectAllocated(TranslatedValue* slot,
Handle<Map> map) {
CHECK(map->IsJSObjectMap());
CHECK_EQ(map->instance_size(), slot->GetChildrenCount() * kTaggedSize);
Handle<ByteArray> object_storage = AllocateStorageFor(slot);
// Now we handle the interesting (JSObject) case.
Handle<DescriptorArray> descriptors(map->instance_descriptors(isolate()),
isolate());
// Set markers for in-object properties.
for (InternalIndex i : map->IterateOwnDescriptors()) {
FieldIndex index = FieldIndex::ForDescriptor(*map, i);
Representation representation = descriptors->GetDetails(i).representation();
if (index.is_inobject() &&
(representation.IsDouble() || representation.IsHeapObject())) {
CHECK_GE(index.index(), FixedArray::kHeaderSize / kTaggedSize);
int array_index = index.index() * kTaggedSize - FixedArray::kHeaderSize;
object_storage->set(array_index, kStoreHeapObject);
}
}
slot->set_storage(object_storage);
}
TranslatedValue* TranslatedState::GetResolvedSlot(TranslatedFrame* frame,
int value_index) {
TranslatedValue* slot = frame->ValueAt(value_index);
if (slot->kind() == TranslatedValue::kDuplicatedObject) {
slot = ResolveCapturedObject(slot);
}
CHECK_NE(slot->materialization_state(), TranslatedValue::kUninitialized);
return slot;
}
TranslatedValue* TranslatedState::GetResolvedSlotAndAdvance(
TranslatedFrame* frame, int* value_index) {
TranslatedValue* slot = GetResolvedSlot(frame, *value_index);
SkipSlots(1, frame, value_index);
return slot;
}
Handle<Object> TranslatedState::GetValueAndAdvance(TranslatedFrame* frame,
int* value_index) {
TranslatedValue* slot = GetResolvedSlot(frame, *value_index);
SkipSlots(1, frame, value_index);
return slot->GetValue();
}
void TranslatedState::InitializeJSObjectAt(
TranslatedFrame* frame, int* value_index, TranslatedValue* slot,
Handle<Map> map, const DisallowGarbageCollection& no_gc) {
Handle<HeapObject> object_storage = Handle<HeapObject>::cast(slot->storage_);
DCHECK_EQ(TranslatedValue::kCapturedObject, slot->kind());
// The object should have at least a map and some payload.
CHECK_GE(slot->GetChildrenCount(), 2);
// Notify the concurrent marker about the layout change.
isolate()->heap()->NotifyObjectLayoutChange(*object_storage, no_gc);
// Fill the property array field.
{
Handle<Object> properties = GetValueAndAdvance(frame, value_index);
WRITE_FIELD(*object_storage, JSObject::kPropertiesOrHashOffset,
*properties);
WRITE_BARRIER(*object_storage, JSObject::kPropertiesOrHashOffset,
*properties);
}
// For all the other fields we first look at the fixed array and check the
// marker to see if we store an unboxed double.
DCHECK_EQ(kTaggedSize, JSObject::kPropertiesOrHashOffset);
for (int i = 2; i < slot->GetChildrenCount(); i++) {
TranslatedValue* slot = GetResolvedSlotAndAdvance(frame, value_index);
// Read out the marker and ensure the field is consistent with
// what the markers in the storage say (note that all heap numbers
// should be fully initialized by now).
int offset = i * kTaggedSize;
uint8_t marker = object_storage->ReadField<uint8_t>(offset);
if (marker == kStoreHeapObject) {
Handle<HeapObject> field_value = slot->storage();
WRITE_FIELD(*object_storage, offset, *field_value);
WRITE_BARRIER(*object_storage, offset, *field_value);
} else {
CHECK_EQ(kStoreTagged, marker);
Handle<Object> field_value = slot->GetValue();
DCHECK_IMPLIES(field_value->IsHeapNumber(),
!IsSmiDouble(field_value->Number()));
WRITE_FIELD(*object_storage, offset, *field_value);
WRITE_BARRIER(*object_storage, offset, *field_value);
}
}
object_storage->set_map(*map, kReleaseStore);
}
void TranslatedState::InitializeObjectWithTaggedFieldsAt(
TranslatedFrame* frame, int* value_index, TranslatedValue* slot,
Handle<Map> map, const DisallowGarbageCollection& no_gc) {
Handle<HeapObject> object_storage = Handle<HeapObject>::cast(slot->storage_);
// Skip the writes if we already have the canonical empty fixed array.
if (*object_storage == ReadOnlyRoots(isolate()).empty_fixed_array()) {
CHECK_EQ(2, slot->GetChildrenCount());
Handle<Object> length_value = GetValueAndAdvance(frame, value_index);
CHECK_EQ(*length_value, Smi::FromInt(0));
return;
}
// Notify the concurrent marker about the layout change.
isolate()->heap()->NotifyObjectLayoutChange(*object_storage, no_gc);
// Write the fields to the object.
for (int i = 1; i < slot->GetChildrenCount(); i++) {
TranslatedValue* slot = GetResolvedSlotAndAdvance(frame, value_index);
int offset = i * kTaggedSize;
uint8_t marker = object_storage->ReadField<uint8_t>(offset);
Handle<Object> field_value;
if (i > 1 && marker == kStoreHeapObject) {
field_value = slot->storage();
} else {
CHECK(marker == kStoreTagged || i == 1);
field_value = slot->GetValue();
DCHECK_IMPLIES(field_value->IsHeapNumber(),
!IsSmiDouble(field_value->Number()));
}
WRITE_FIELD(*object_storage, offset, *field_value);
WRITE_BARRIER(*object_storage, offset, *field_value);
}
object_storage->set_map(*map, kReleaseStore);
}
TranslatedValue* TranslatedState::ResolveCapturedObject(TranslatedValue* slot) {
while (slot->kind() == TranslatedValue::kDuplicatedObject) {
slot = GetValueByObjectIndex(slot->object_index());
}
CHECK_EQ(TranslatedValue::kCapturedObject, slot->kind());
return slot;
}
TranslatedFrame* TranslatedState::GetFrameFromJSFrameIndex(int jsframe_index) {
for (size_t i = 0; i < frames_.size(); i++) {
if (frames_[i].kind() == TranslatedFrame::kUnoptimizedFunction ||
frames_[i].kind() == TranslatedFrame::kJavaScriptBuiltinContinuation ||
frames_[i].kind() ==
TranslatedFrame::kJavaScriptBuiltinContinuationWithCatch) {
if (jsframe_index > 0) {
jsframe_index--;
} else {
return &(frames_[i]);
}
}
}
return nullptr;
}
TranslatedFrame* TranslatedState::GetArgumentsInfoFromJSFrameIndex(
int jsframe_index, int* args_count) {
for (size_t i = 0; i < frames_.size(); i++) {
if (frames_[i].kind() == TranslatedFrame::kUnoptimizedFunction ||
frames_[i].kind() == TranslatedFrame::kJavaScriptBuiltinContinuation ||
frames_[i].kind() ==
TranslatedFrame::kJavaScriptBuiltinContinuationWithCatch) {
if (jsframe_index > 0) {
jsframe_index--;
} else {
// We have the JS function frame, now check if it has arguments
// adaptor.
if (i > 0 &&
frames_[i - 1].kind() == TranslatedFrame::kArgumentsAdaptor) {
*args_count = frames_[i - 1].height();
return &(frames_[i - 1]);
}
// JavaScriptBuiltinContinuation frames that are not preceeded by
// a arguments adapter frame are currently only used by C++ API calls
// from TurboFan. Calls to C++ API functions from TurboFan need
// a special marker frame state, otherwise the API call wouldn't
// be shown in a stack trace.
if (frames_[i].kind() ==
TranslatedFrame::kJavaScriptBuiltinContinuation &&
frames_[i].shared_info()->internal_formal_parameter_count() ==
kDontAdaptArgumentsSentinel) {
DCHECK(frames_[i].shared_info()->IsApiFunction());
// The argument count for this special case is always the second
// to last value in the TranslatedFrame. It should also always be
// {1}, as the GenericLazyDeoptContinuation builtin only has one
// argument (the receiver).
static constexpr int kTheContext = 1;
const int height = frames_[i].height() + kTheContext;
*args_count = frames_[i].ValueAt(height - 1)->GetSmiValue();
DCHECK_EQ(*args_count, 1);
} else {
*args_count = InternalFormalParameterCountWithReceiver(
*frames_[i].shared_info());
}
return &(frames_[i]);
}
}
}
return nullptr;
}
void TranslatedState::StoreMaterializedValuesAndDeopt(JavaScriptFrame* frame) {
MaterializedObjectStore* materialized_store =
isolate_->materialized_object_store();
Handle<FixedArray> previously_materialized_objects =
materialized_store->Get(stack_frame_pointer_);
Handle<Object> marker = isolate_->factory()->arguments_marker();
int length = static_cast<int>(object_positions_.size());
bool new_store = false;
if (previously_materialized_objects.is_null()) {
previously_materialized_objects =
isolate_->factory()->NewFixedArray(length, AllocationType::kOld);
for (int i = 0; i < length; i++) {
previously_materialized_objects->set(i, *marker);
}
new_store = true;
}
CHECK_EQ(length, previously_materialized_objects->length());
bool value_changed = false;
for (int i = 0; i < length; i++) {
TranslatedState::ObjectPosition pos = object_positions_[i];
TranslatedValue* value_info =
&(frames_[pos.frame_index_].values_[pos.value_index_]);
CHECK(value_info->IsMaterializedObject());
// Skip duplicate objects (i.e., those that point to some other object id).
if (value_info->object_index() != i) continue;
Handle<Object> previous_value(previously_materialized_objects->get(i),
isolate_);
Handle<Object> value(value_info->GetRawValue(), isolate_);
if (value.is_identical_to(marker)) {
DCHECK_EQ(*previous_value, *marker);
} else {
if (*previous_value == *marker) {
if (value->IsSmi()) {
value = isolate()->factory()->NewHeapNumber(value->Number());
}
previously_materialized_objects->set(i, *value);
value_changed = true;
} else {
CHECK(*previous_value == *value ||
(previous_value->IsHeapNumber() && value->IsSmi() &&
previous_value->Number() == value->Number()));
}
}
}
if (new_store && value_changed) {
materialized_store->Set(stack_frame_pointer_,
previously_materialized_objects);
CHECK_EQ(frames_[0].kind(), TranslatedFrame::kUnoptimizedFunction);
CHECK_EQ(frame->function(), frames_[0].front().GetRawValue());
Deoptimizer::DeoptimizeFunction(frame->function(), frame->LookupCode());
}
}
void TranslatedState::UpdateFromPreviouslyMaterializedObjects() {
MaterializedObjectStore* materialized_store =
isolate_->materialized_object_store();
Handle<FixedArray> previously_materialized_objects =
materialized_store->Get(stack_frame_pointer_);
// If we have no previously materialized objects, there is nothing to do.
if (previously_materialized_objects.is_null()) return;
Handle<Object> marker = isolate_->factory()->arguments_marker();
int length = static_cast<int>(object_positions_.size());
CHECK_EQ(length, previously_materialized_objects->length());
for (int i = 0; i < length; i++) {
// For a previously materialized objects, inject their value into the
// translated values.
if (previously_materialized_objects->get(i) != *marker) {
TranslatedState::ObjectPosition pos = object_positions_[i];
TranslatedValue* value_info =
&(frames_[pos.frame_index_].values_[pos.value_index_]);
CHECK(value_info->IsMaterializedObject());
if (value_info->kind() == TranslatedValue::kCapturedObject) {
Handle<Object> object(previously_materialized_objects->get(i),
isolate_);
CHECK(object->IsHeapObject());
value_info->set_initialized_storage(Handle<HeapObject>::cast(object));
}
}
}
}
void TranslatedState::VerifyMaterializedObjects() {
#if VERIFY_HEAP
int length = static_cast<int>(object_positions_.size());
for (int i = 0; i < length; i++) {
TranslatedValue* slot = GetValueByObjectIndex(i);
if (slot->kind() == TranslatedValue::kCapturedObject) {
CHECK_EQ(slot, GetValueByObjectIndex(slot->object_index()));
if (slot->materialization_state() == TranslatedValue::kFinished) {
slot->storage()->ObjectVerify(isolate());
} else {
CHECK_EQ(slot->materialization_state(),
TranslatedValue::kUninitialized);
}
}
}
#endif
}
bool TranslatedState::DoUpdateFeedback() {
if (!feedback_vector_handle_.is_null()) {
CHECK(!feedback_slot_.IsInvalid());
isolate()->CountUsage(v8::Isolate::kDeoptimizerDisableSpeculation);
FeedbackNexus nexus(feedback_vector_handle_, feedback_slot_);
nexus.SetSpeculationMode(SpeculationMode::kDisallowSpeculation);
return true;
}
return false;
}
void TranslatedState::ReadUpdateFeedback(TranslationArrayIterator* iterator,
FixedArray literal_array,
FILE* trace_file) {
CHECK_EQ(TranslationOpcode::UPDATE_FEEDBACK,
TranslationOpcodeFromInt(iterator->Next()));
feedback_vector_ = FeedbackVector::cast(literal_array.get(iterator->Next()));
feedback_slot_ = FeedbackSlot(iterator->Next());
if (trace_file != nullptr) {
PrintF(trace_file, " reading FeedbackVector (slot %d)\n",
feedback_slot_.ToInt());
}
}
} // namespace internal
} // namespace v8
// Undefine the heap manipulation macros.
#include "src/objects/object-macros-undef.h"