blob: 10065298c61c4bfa389c2ea3cf25a5930036fb8a [file] [log] [blame]
/*
* Copyright (C) 2000 Lars Knoll (knoll@kde.org)
* (C) 2000 Antti Koivisto (koivisto@kde.org)
* (C) 2000 Dirk Mueller (mueller@kde.org)
* (C) 2004 Allan Sandfeld Jensen (kde@carewolf.com)
* Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2012 Apple Inc.
* All rights reserved.
* Copyright (C) 2009 Google Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#ifndef LayoutObject_h
#define LayoutObject_h
#include "core/CoreExport.h"
#include "core/dom/Document.h"
#include "core/dom/DocumentLifecycle.h"
#include "core/editing/PositionWithAffinity.h"
#include "core/fetch/ImageResourceObserver.h"
#include "core/layout/LayoutObjectChildList.h"
#include "core/layout/PaintInvalidationState.h"
#include "core/layout/ScrollAlignment.h"
#include "core/layout/SubtreeLayoutScope.h"
#include "core/layout/api/HitTestAction.h"
#include "core/layout/api/SelectionState.h"
#include "core/layout/compositing/CompositingState.h"
#include "core/paint/PaintPhase.h"
#include "core/style/ComputedStyle.h"
#include "platform/geometry/FloatQuad.h"
#include "platform/geometry/LayoutRect.h"
#include "platform/graphics/CompositingReasons.h"
#include "platform/graphics/PaintInvalidationReason.h"
#include "platform/graphics/paint/DisplayItemClient.h"
#include "platform/transforms/TransformationMatrix.h"
#include "wtf/AutoReset.h"
namespace blink {
class AffineTransform;
class Cursor;
class HitTestLocation;
class HitTestRequest;
class HitTestResult;
class InlineBox;
class LayoutBoxModelObject;
class LayoutBlock;
class LayoutFlowThread;
class LayoutGeometryMap;
class LayoutMultiColumnSpannerPlaceholder;
class LayoutView;
class ObjectPaintProperties;
class PaintLayer;
class PseudoStyleRequest;
class TransformState;
struct PaintInfo;
struct PaintInvalidatorContext;
enum CursorDirective { SetCursorBasedOnStyle, SetCursor, DoNotSetCursor };
enum HitTestFilter { HitTestAll, HitTestSelf, HitTestDescendants };
enum MarkingBehavior {
MarkOnlyThis,
MarkContainerChain,
};
enum MapCoordinatesMode {
IsFixed = 1 << 0,
UseTransforms = 1 << 1,
// When walking up the containing block chain, applies a container flip for
// the first element found, if any, for which isFlippedBlocksWritingMode is
// true. This option should generally be used when mapping a source rect in
// the "physical coordinates with flipped block-flow" coordinate space (see
// LayoutBoxModelObject.h) to one in a physical destination space.
ApplyContainerFlip = 1 << 2,
TraverseDocumentBoundaries = 1 << 3,
// Applies to LayoutView::mapLocalToAncestor() and LayoutView::
// mapToVisualRectInAncestorSpace() only, to indicate the input point or rect
// is in frame coordinates instead of frame contents coordinates. This
// disables view clipping and scroll offset adjustment.
// TODO(wangxianzhu): Remove this when root-layer-scrolls launches.
InputIsInFrameCoordinates = 1 << 4,
};
typedef unsigned MapCoordinatesFlags;
enum ScheduleRelayoutBehavior { ScheduleRelayout, DontScheduleRelayout };
const LayoutUnit& caretWidth();
struct AnnotatedRegionValue {
DISALLOW_NEW_EXCEPT_PLACEMENT_NEW();
bool operator==(const AnnotatedRegionValue& o) const {
return draggable == o.draggable && bounds == o.bounds;
}
LayoutRect bounds;
bool draggable;
};
typedef WTF::HashMap<const PaintLayer*, Vector<LayoutRect>> LayerHitTestRects;
#ifndef NDEBUG
const int showTreeCharacterOffset = 39;
#endif
// LayoutObject is the base class for all layout tree objects.
//
// LayoutObjects form a tree structure that is a close mapping of the DOM tree.
// The root of the LayoutObject tree is the LayoutView, which is the
// LayoutObject associated with the Document.
//
// Some LayoutObjects don't have an associated Node and are called "anonymous"
// (see the constructor below). Anonymous LayoutObjects exist for several
// purposes but are usually required by CSS. A good example is anonymous table
// parts (see LayoutTable for the expected structure). Anonymous LayoutObjects
// are generated when a new child is added to the tree in addChild(). See the
// function for some important information on this.
//
// Also some Node don't have an associated LayoutObjects e.g. if display: none
// is set. For more detail, see LayoutObject::createObject that creates the
// right LayoutObject based on the style.
//
// Because the SVG and CSS classes both inherit from this object, functions can
// belong to either realm and sometimes to both.
//
// The purpose of the layout tree is to do layout (aka reflow) and store its
// results for painting and hit-testing. Layout is the process of sizing and
// positioning Nodes on the page. In Blink, layouts always start from a relayout
// boundary (see objectIsRelayoutBoundary in LayoutObject.cpp). As such, we
// need to mark the ancestors all the way to the enclosing relayout boundary in
// order to do a correct layout.
//
// Due to the high cost of layout, a lot of effort is done to avoid doing full
// layouts of nodes. This is why there are several types of layout available to
// bypass the complex operations. See the comments on the layout booleans in
// LayoutObjectBitfields below about the different layouts.
//
// To save memory, especially for the common child class LayoutText,
// LayoutObject doesn't provide storage for children. Descendant classes that do
// allow children have to have a LayoutObjectChildList member that stores the
// actual children and override virtualChildren().
//
// LayoutObject is an ImageResourceObserver, which means that it gets notified
// when associated images are changed. This is used for 2 main use cases:
// - reply to 'background-image' as we need to invalidate the background in this
// case.
// (See https://drafts.csswg.org/css-backgrounds-3/#the-background-image)
// - image (LayoutImage, LayoutSVGImage) or video (LayoutVideo) objects that are
// placeholders for displaying them.
//
//
// ***** LIFETIME *****
//
// LayoutObjects are fully owned by their associated DOM node. In other words,
// it's the DOM node's responsibility to free its LayoutObject, this is why
// LayoutObjects are not and SHOULD NOT be RefCounted.
//
// LayoutObjects are created during the DOM attachment. This phase computes
// the style and create the LayoutObject associated with the Node (see
// Node::attachLayoutTree). LayoutObjects are destructed during detachment (see
// Node::detachLayoutTree), which can happen when the DOM node is removed from
// the
// DOM tree, during page tear down or when the style is changed to contain
// 'display: none'.
//
// Anonymous LayoutObjects are owned by their enclosing DOM node. This means
// that if the DOM node is detached, it has to destroy any anonymous
// descendants. This is done in LayoutObject::destroy().
//
// Note that for correctness, destroy() is expected to clean any anonymous
// wrappers as sequences of insertion / removal could make them visible to
// the page. This is done by LayoutObject::destroyAndCleanupAnonymousWrappers()
// which is the preferred way to destroy an object.
//
//
// ***** INTRINSIC SIZES / PREFERRED LOGICAL WIDTHS *****
// The preferred logical widths are the intrinsic sizes of this element
// (https://drafts.csswg.org/css-sizing-3/#intrinsic). Intrinsic sizes depend
// mostly on the content and a limited set of style properties (e.g. any
// font-related property for text, 'min-width'/'max-width',
// 'min-height'/'max-height').
//
// Those widths are used to determine the final layout logical width, which
// depends on the layout algorithm used and the available logical width.
//
// LayoutObject only has getters for the widths (minPreferredLogicalWidth and
// maxPreferredLogicalWidth). However the storage for them is in LayoutBox
// (see m_minPreferredLogicalWidth and m_maxPreferredLogicalWidth). This is
// because only boxes implementing the full box model have a need for them.
// Because LayoutBlockFlow's intrinsic widths rely on the underlying text
// content, LayoutBlockFlow may call LayoutText::computePreferredLogicalWidths.
//
// The 2 widths are computed lazily during layout when the getters are called.
// The computation is done by calling computePreferredLogicalWidths() behind the
// scene. The boolean used to control the lazy recomputation is
// preferredLogicalWidthsDirty.
//
// See the individual getters below for more details about what each width is.
class CORE_EXPORT LayoutObject : public ImageResourceObserver,
public DisplayItemClient {
friend class LayoutObjectChildList;
friend class VisualRectMappingTest;
WTF_MAKE_NONCOPYABLE(LayoutObject);
public:
// Anonymous objects should pass the document as their node, and they will
// then automatically be marked as anonymous in the constructor.
explicit LayoutObject(Node*);
~LayoutObject() override;
// Returns the name of the layout object.
virtual const char* name() const = 0;
// Returns the decorated name used by run-layout-tests. The name contains the
// name of the object along with extra information about the layout object
// state (e.g. positioning).
String decoratedName() const;
// DisplayItemClient methods.
LayoutRect visualRect() const override;
String debugName() const final;
LayoutObject* parent() const { return m_parent; }
bool isDescendantOf(const LayoutObject*) const;
LayoutObject* previousSibling() const { return m_previous; }
LayoutObject* nextSibling() const { return m_next; }
DISABLE_CFI_PERF
LayoutObject* slowFirstChild() const {
if (const LayoutObjectChildList* children = virtualChildren())
return children->firstChild();
return nullptr;
}
LayoutObject* slowLastChild() const {
if (const LayoutObjectChildList* children = virtualChildren())
return children->lastChild();
return nullptr;
}
// See comment in the class description as to why there is no child.
virtual LayoutObjectChildList* virtualChildren() { return nullptr; }
virtual const LayoutObjectChildList* virtualChildren() const {
return nullptr;
}
LayoutObject* nextInPreOrder() const;
LayoutObject* nextInPreOrder(const LayoutObject* stayWithin) const;
LayoutObject* nextInPreOrderAfterChildren() const;
LayoutObject* nextInPreOrderAfterChildren(
const LayoutObject* stayWithin) const;
LayoutObject* previousInPreOrder() const;
LayoutObject* previousInPreOrder(const LayoutObject* stayWithin) const;
LayoutObject* childAt(unsigned) const;
LayoutObject* lastLeafChild() const;
// The following functions are used when the layout tree hierarchy changes to
// make sure layers get properly added and removed. Since containership can be
// implemented by any subclass, and since a hierarchy can contain a mixture of
// boxes and other object types, these functions need to be in the base class.
PaintLayer* enclosingLayer() const;
void addLayers(PaintLayer* parentLayer);
void removeLayers(PaintLayer* parentLayer);
void moveLayers(PaintLayer* oldParent, PaintLayer* newParent);
PaintLayer* findNextLayer(PaintLayer* parentLayer,
LayoutObject* startPoint,
bool checkParent = true);
// Returns the layer that will paint this object. If possible, use the faster
// PaintInvalidationState::paintingLayer() instead.
PaintLayer* paintingLayer() const;
// Scrolling is a LayoutBox concept, however some code just cares about
// recursively scrolling our enclosing ScrollableArea(s).
bool scrollRectToVisible(
const LayoutRect&,
const ScrollAlignment& alignX = ScrollAlignment::alignCenterIfNeeded,
const ScrollAlignment& alignY = ScrollAlignment::alignCenterIfNeeded,
ScrollType = ProgrammaticScroll,
bool makeVisibleInVisualViewport = true);
// Convenience function for getting to the nearest enclosing box of a
// LayoutObject.
LayoutBox* enclosingBox() const;
LayoutBoxModelObject* enclosingBoxModelObject() const;
LayoutBox* enclosingScrollableBox() const;
// Function to return our enclosing flow thread if we are contained inside
// one. This function follows the containing block chain.
LayoutFlowThread* flowThreadContainingBlock() const {
if (!isInsideFlowThread())
return nullptr;
return locateFlowThreadContainingBlock();
}
#if ENABLE(ASSERT)
void setHasAXObject(bool flag) { m_hasAXObject = flag; }
bool hasAXObject() const { return m_hasAXObject; }
// Helper class forbidding calls to setNeedsLayout() during its lifetime.
class SetLayoutNeededForbiddenScope {
public:
explicit SetLayoutNeededForbiddenScope(LayoutObject&);
~SetLayoutNeededForbiddenScope();
private:
LayoutObject& m_layoutObject;
bool m_preexistingForbidden;
};
void assertLaidOut() const {
#ifndef NDEBUG
if (needsLayout())
showLayoutTreeForThis();
#endif
ASSERT_WITH_SECURITY_IMPLICATION(!needsLayout());
}
void assertSubtreeIsLaidOut() const {
for (const LayoutObject* layoutObject = this; layoutObject;
layoutObject = layoutObject->nextInPreOrder())
layoutObject->assertLaidOut();
}
void assertClearedPaintInvalidationFlags() const {
#ifndef NDEBUG
if (paintInvalidationStateIsDirty()) {
showLayoutTreeForThis();
ASSERT_NOT_REACHED();
}
#endif
}
void assertSubtreeClearedPaintInvalidationFlags() const {
for (const LayoutObject* layoutObject = this; layoutObject;
layoutObject = layoutObject->nextInPreOrder())
layoutObject->assertClearedPaintInvalidationFlags();
}
#endif
// LayoutObject tree manipulation
//////////////////////////////////////////
DISABLE_CFI_PERF virtual bool canHaveChildren() const {
return virtualChildren();
}
virtual bool isChildAllowed(LayoutObject*, const ComputedStyle&) const {
return true;
}
// This function is called whenever a child is inserted under |this|.
//
// The main purpose of this function is to generate a consistent layout
// tree, which means generating the missing anonymous objects. Most of the
// time there'll be no anonymous objects to generate.
//
// The following invariants are true on the input:
// - |newChild->node()| is a child of |this->node()|, if |this| is not
// anonymous. If |this| is anonymous, the invariant holds with the
// enclosing non-anonymous LayoutObject.
// - |beforeChild->node()| (if |beforeChild| is provided and not anonymous)
// is a sibling of |newChild->node()| (if |newChild| is not anonymous).
//
// The reason for these invariants is that insertions are performed on the
// DOM tree. Because the layout tree may insert extra anonymous renderers,
// the previous invariants are only guaranteed for the DOM tree. In
// particular, |beforeChild| may not be a direct child when it's wrapped in
// anonymous wrappers.
//
// Classes inserting anonymous LayoutObjects in the tree are expected to
// check for the anonymous wrapper case with:
// beforeChild->parent() != this
//
// The usage of |child/parent/sibling| in this comment actually means
// |child/parent/sibling| in a flat tree because a layout tree is generated
// from a structure of a flat tree if Shadow DOM is used.
// See LayoutTreeBuilderTraversal and FlatTreeTraversal.
//
// See LayoutTable::addChild and LayoutBlock::addChild.
// TODO(jchaffraix): |newChild| cannot be nullptr and should be a reference.
virtual void addChild(LayoutObject* newChild,
LayoutObject* beforeChild = nullptr);
virtual void addChildIgnoringContinuation(
LayoutObject* newChild,
LayoutObject* beforeChild = nullptr) {
return addChild(newChild, beforeChild);
}
virtual void removeChild(LayoutObject*);
virtual bool createsAnonymousWrapper() const { return false; }
//////////////////////////////////////////
// Sets the parent of this object but doesn't add it as a child of the parent.
void setDangerousOneWayParent(LayoutObject*);
// For SPv2 only. The ObjectPaintProperties structure holds references to the
// property tree nodes that are created by the layout object for painting.
// The property nodes are only updated during InUpdatePaintProperties phase
// of the document lifecycle and shall remain immutable during other phases.
const ObjectPaintProperties* objectPaintProperties() const;
private:
ObjectPaintProperties& ensureObjectPaintProperties();
private:
//////////////////////////////////////////
// Helper functions. Dangerous to use!
void setPreviousSibling(LayoutObject* previous) { m_previous = previous; }
void setNextSibling(LayoutObject* next) { m_next = next; }
void setParent(LayoutObject* parent) {
m_parent = parent;
// Only update if our flow thread state is different from our new parent and
// if we're not a LayoutFlowThread.
// A LayoutFlowThread is always considered to be inside itself, so it never
// has to change its state in response to parent changes.
bool insideFlowThread = parent && parent->isInsideFlowThread();
if (insideFlowThread != isInsideFlowThread() && !isLayoutFlowThread())
setIsInsideFlowThreadIncludingDescendants(insideFlowThread);
}
//////////////////////////////////////////
private:
#if ENABLE(ASSERT)
bool isSetNeedsLayoutForbidden() const { return m_setNeedsLayoutForbidden; }
void setNeedsLayoutIsForbidden(bool flag) {
m_setNeedsLayoutForbidden = flag;
}
#endif
void addAbsoluteRectForLayer(IntRect& result);
bool requiresAnonymousTableWrappers(const LayoutObject*) const;
// Gets pseudoStyle from Shadow host(in case of input elements)
// or from Parent element.
PassRefPtr<ComputedStyle> getUncachedPseudoStyleFromParentOrShadowHost()
const;
public:
#ifndef NDEBUG
void showTreeForThis() const;
void showLayoutTreeForThis() const;
void showLineTreeForThis() const;
void showLayoutObject() const;
// We don't make stringBuilder an optional parameter so that
// showLayoutObject can be called from gdb easily.
void showLayoutObject(StringBuilder&) const;
void showLayoutTreeAndMark(const LayoutObject* markedObject1 = nullptr,
const char* markedLabel1 = nullptr,
const LayoutObject* markedObject2 = nullptr,
const char* markedLabel2 = nullptr,
unsigned depth = 0) const;
#endif
// This function is used to create the appropriate LayoutObject based
// on the style, in particular 'display' and 'content'.
// "display: none" is the only time this function will return nullptr.
//
// For renderer creation, the inline-* values create the same renderer
// as the non-inline version. The difference is that inline-* sets
// m_isInline during initialization. This means that
// "display: inline-table" creates a LayoutTable, like "display: table".
//
// Ideally every Element::createLayoutObject would call this function to
// respond to 'display' but there are deep rooted assumptions about
// which LayoutObject is created on a fair number of Elements. This
// function also doesn't handle the default association between a tag
// and its renderer (e.g. <iframe> creates a LayoutIFrame even if the
// initial 'display' value is inline).
static LayoutObject* createObject(Element*, const ComputedStyle&);
// LayoutObjects are allocated out of the rendering partition.
void* operator new(size_t);
void operator delete(void*);
bool isPseudoElement() const { return node() && node()->isPseudoElement(); }
virtual bool isBoxModelObject() const { return false; }
bool isBR() const { return isOfType(LayoutObjectBr); }
bool isCanvas() const { return isOfType(LayoutObjectCanvas); }
bool isCounter() const { return isOfType(LayoutObjectCounter); }
bool isDetailsMarker() const { return isOfType(LayoutObjectDetailsMarker); }
bool isEmbeddedObject() const { return isOfType(LayoutObjectEmbeddedObject); }
bool isFieldset() const { return isOfType(LayoutObjectFieldset); }
bool isFileUploadControl() const {
return isOfType(LayoutObjectFileUploadControl);
}
bool isFrame() const { return isOfType(LayoutObjectFrame); }
bool isFrameSet() const { return isOfType(LayoutObjectFrameSet); }
bool isLayoutNGBlockFlow() const { return isOfType(LayoutObjectNGBlockFlow); }
bool isLayoutTableCol() const { return isOfType(LayoutObjectLayoutTableCol); }
bool isListBox() const { return isOfType(LayoutObjectListBox); }
bool isListItem() const { return isOfType(LayoutObjectListItem); }
bool isListMarker() const { return isOfType(LayoutObjectListMarker); }
bool isMedia() const { return isOfType(LayoutObjectMedia); }
bool isMenuList() const { return isOfType(LayoutObjectMenuList); }
bool isProgress() const { return isOfType(LayoutObjectProgress); }
bool isQuote() const { return isOfType(LayoutObjectQuote); }
bool isLayoutButton() const { return isOfType(LayoutObjectLayoutButton); }
bool isLayoutFullScreen() const {
return isOfType(LayoutObjectLayoutFullScreen);
}
bool isLayoutFullScreenPlaceholder() const {
return isOfType(LayoutObjectLayoutFullScreenPlaceholder);
}
bool isLayoutGrid() const { return isOfType(LayoutObjectLayoutGrid); }
bool isLayoutIFrame() const { return isOfType(LayoutObjectLayoutIFrame); }
bool isLayoutImage() const { return isOfType(LayoutObjectLayoutImage); }
bool isLayoutMultiColumnSet() const {
return isOfType(LayoutObjectLayoutMultiColumnSet);
}
bool isLayoutMultiColumnSpannerPlaceholder() const {
return isOfType(LayoutObjectLayoutMultiColumnSpannerPlaceholder);
}
bool isLayoutScrollbarPart() const {
return isOfType(LayoutObjectLayoutScrollbarPart);
}
bool isLayoutView() const { return isOfType(LayoutObjectLayoutView); }
bool isRuby() const { return isOfType(LayoutObjectRuby); }
bool isRubyBase() const { return isOfType(LayoutObjectRubyBase); }
bool isRubyRun() const { return isOfType(LayoutObjectRubyRun); }
bool isRubyText() const { return isOfType(LayoutObjectRubyText); }
bool isSlider() const { return isOfType(LayoutObjectSlider); }
bool isSliderThumb() const { return isOfType(LayoutObjectSliderThumb); }
bool isTable() const { return isOfType(LayoutObjectTable); }
bool isTableCaption() const { return isOfType(LayoutObjectTableCaption); }
bool isTableCell() const { return isOfType(LayoutObjectTableCell); }
bool isTableRow() const { return isOfType(LayoutObjectTableRow); }
bool isTableSection() const { return isOfType(LayoutObjectTableSection); }
bool isTextArea() const { return isOfType(LayoutObjectTextArea); }
bool isTextControl() const { return isOfType(LayoutObjectTextControl); }
bool isTextField() const { return isOfType(LayoutObjectTextField); }
bool isVideo() const { return isOfType(LayoutObjectVideo); }
bool isWidget() const { return isOfType(LayoutObjectWidget); }
virtual bool isImage() const { return false; }
virtual bool isInlineBlockOrInlineTable() const { return false; }
virtual bool isLayoutBlock() const { return false; }
virtual bool isLayoutBlockFlow() const { return false; }
virtual bool isLayoutFlowThread() const { return false; }
virtual bool isLayoutInline() const { return false; }
virtual bool isLayoutPart() const { return false; }
bool isDocumentElement() const {
return document().documentElement() == m_node;
}
// isBody is called from LayoutBox::styleWillChange and is thus quite hot.
bool isBody() const {
return node() && node()->hasTagName(HTMLNames::bodyTag);
}
bool isHR() const;
bool isLegend() const;
bool isTablePart() const {
return isTableCell() || isLayoutTableCol() || isTableCaption() ||
isTableRow() || isTableSection();
}
inline bool isBeforeContent() const;
inline bool isAfterContent() const;
inline bool isBeforeOrAfterContent() const;
static inline bool isAfterContent(const LayoutObject* obj) {
return obj && obj->isAfterContent();
}
bool hasCounterNodeMap() const { return m_bitfields.hasCounterNodeMap(); }
void setHasCounterNodeMap(bool hasCounterNodeMap) {
m_bitfields.setHasCounterNodeMap(hasCounterNodeMap);
}
bool everHadLayout() const { return m_bitfields.everHadLayout(); }
bool childrenInline() const { return m_bitfields.childrenInline(); }
void setChildrenInline(bool b) { m_bitfields.setChildrenInline(b); }
bool alwaysCreateLineBoxesForLayoutInline() const {
ASSERT(isLayoutInline());
return m_bitfields.alwaysCreateLineBoxesForLayoutInline();
}
void setAlwaysCreateLineBoxesForLayoutInline(bool alwaysCreateLineBoxes) {
ASSERT(isLayoutInline());
m_bitfields.setAlwaysCreateLineBoxesForLayoutInline(alwaysCreateLineBoxes);
}
bool ancestorLineBoxDirty() const {
return m_bitfields.ancestorLineBoxDirty();
}
void setAncestorLineBoxDirty(bool value = true) {
m_bitfields.setAncestorLineBoxDirty(value);
if (value)
setNeedsLayoutAndFullPaintInvalidation(
LayoutInvalidationReason::LineBoxesChanged);
}
void setIsInsideFlowThreadIncludingDescendants(bool);
bool isInsideFlowThread() const { return m_bitfields.isInsideFlowThread(); }
void setIsInsideFlowThread(bool insideFlowThread) {
m_bitfields.setIsInsideFlowThread(insideFlowThread);
}
// FIXME: Until all SVG layoutObjects can be subclasses of
// LayoutSVGModelObject we have to add SVG layoutObject methods to
// LayoutObject with an ASSERT_NOT_REACHED() default implementation.
bool isSVG() const { return isOfType(LayoutObjectSVG); }
bool isSVGRoot() const { return isOfType(LayoutObjectSVGRoot); }
bool isSVGContainer() const { return isOfType(LayoutObjectSVGContainer); }
bool isSVGTransformableContainer() const {
return isOfType(LayoutObjectSVGTransformableContainer);
}
bool isSVGViewportContainer() const {
return isOfType(LayoutObjectSVGViewportContainer);
}
bool isSVGGradientStop() const {
return isOfType(LayoutObjectSVGGradientStop);
}
bool isSVGHiddenContainer() const {
return isOfType(LayoutObjectSVGHiddenContainer);
}
bool isSVGShape() const { return isOfType(LayoutObjectSVGShape); }
bool isSVGText() const { return isOfType(LayoutObjectSVGText); }
bool isSVGTextPath() const { return isOfType(LayoutObjectSVGTextPath); }
bool isSVGInline() const { return isOfType(LayoutObjectSVGInline); }
bool isSVGInlineText() const { return isOfType(LayoutObjectSVGInlineText); }
bool isSVGImage() const { return isOfType(LayoutObjectSVGImage); }
bool isSVGForeignObject() const {
return isOfType(LayoutObjectSVGForeignObject);
}
bool isSVGResourceContainer() const {
return isOfType(LayoutObjectSVGResourceContainer);
}
bool isSVGResourceFilter() const {
return isOfType(LayoutObjectSVGResourceFilter);
}
bool isSVGResourceFilterPrimitive() const {
return isOfType(LayoutObjectSVGResourceFilterPrimitive);
}
// FIXME: Those belong into a SVG specific base-class for all layoutObjects
// (see above). Unfortunately we don't have such a class yet, because it's not
// possible for all layoutObjects to inherit from LayoutSVGObject ->
// LayoutObject (some need LayoutBlock inheritance for instance)
virtual void setNeedsTransformUpdate() {}
virtual void setNeedsBoundariesUpdate();
bool isBlendingAllowed() const {
return !isSVG() || (isSVGContainer() && !isSVGHiddenContainer()) ||
isSVGShape() || isSVGImage() || isSVGText();
}
virtual bool hasNonIsolatedBlendingDescendants() const { return false; }
enum DescendantIsolationState {
DescendantIsolationRequired,
DescendantIsolationNeedsUpdate,
};
virtual void descendantIsolationRequirementsChanged(
DescendantIsolationState) {}
// Per SVG 1.1 objectBoundingBox ignores clipping, masking, filter effects,
// opacity and stroke-width.
// This is used for all computation of objectBoundingBox relative units and by
// SVGLocatable::getBBox().
// NOTE: Markers are not specifically ignored here by SVG 1.1 spec, but we
// ignore them since stroke-width is ignored (and marker size can depend on
// stroke-width). objectBoundingBox is returned local coordinates.
// The name objectBoundingBox is taken from the SVG 1.1 spec.
virtual FloatRect objectBoundingBox() const;
virtual FloatRect strokeBoundingBox() const;
// Returns the smallest rectangle enclosing all of the painted content
// respecting clipping, masking, filters, opacity, stroke-width and markers
virtual FloatRect paintInvalidationRectInLocalSVGCoordinates() const;
// This only returns the transform="" value from the SVG element.
// Most callsites want localToParentTransform() instead.
virtual AffineTransform localSVGTransform() const;
// Returns the full transform mapping from local coordinates to local coords
// for the parent SVG layoutObject
// This includes any viewport transforms and x/y offsets as well as the
// transform="" value off the element.
virtual const AffineTransform& localToSVGParentTransform() const;
// SVG uses FloatPoint precise hit testing, and passes the point in parent
// coordinates instead of in paint invalidation container coordinates.
// Eventually the rest of the layout tree will move to a similar model.
virtual bool nodeAtFloatPoint(HitTestResult&,
const FloatPoint& pointInParent,
HitTestAction);
// End of SVG-specific methods.
bool isAnonymous() const { return m_bitfields.isAnonymous(); }
bool isAnonymousBlock() const {
// This function is kept in sync with anonymous block creation conditions in
// LayoutBlock::createAnonymousBlock(). This includes creating an anonymous
// LayoutBlock having a BLOCK or BOX display. Other classes such as
// LayoutTextFragment are not LayoutBlocks and will return false.
// See https://bugs.webkit.org/show_bug.cgi?id=56709.
return isAnonymous() && (style()->display() == EDisplay::Block ||
style()->display() == EDisplay::Box) &&
style()->styleType() == PseudoIdNone && isLayoutBlock() &&
!isListMarker() && !isLayoutFlowThread() &&
!isLayoutMultiColumnSet() && !isLayoutFullScreen() &&
!isLayoutFullScreenPlaceholder();
}
bool isElementContinuation() const {
return node() && node()->layoutObject() != this;
}
bool isInlineElementContinuation() const {
return isElementContinuation() && isInline();
}
virtual LayoutBoxModelObject* virtualContinuation() const { return nullptr; }
bool isFloating() const { return m_bitfields.floating(); }
bool isOutOfFlowPositioned() const {
return m_bitfields.isOutOfFlowPositioned();
} // absolute or fixed positioning
bool isInFlowPositioned() const {
return m_bitfields.isInFlowPositioned();
} // relative or sticky positioning
bool isRelPositioned() const {
return m_bitfields.isRelPositioned();
} // relative positioning
bool isStickyPositioned() const {
return m_bitfields.isStickyPositioned();
} // sticky positioning
bool isFixedPositioned() const {
return isOutOfFlowPositioned() && style()->position() == FixedPosition;
} // fixed positioning
bool isPositioned() const { return m_bitfields.isPositioned(); }
bool isText() const { return m_bitfields.isText(); }
bool isBox() const { return m_bitfields.isBox(); }
bool isInline() const { return m_bitfields.isInline(); } // inline object
bool isAtomicInlineLevel() const { return m_bitfields.isAtomicInlineLevel(); }
bool isHorizontalWritingMode() const {
return m_bitfields.horizontalWritingMode();
}
bool hasFlippedBlocksWritingMode() const {
return style()->isFlippedBlocksWritingMode();
}
bool hasLayer() const { return m_bitfields.hasLayer(); }
// This may be different from styleRef().hasBoxDecorationBackground() because
// some objects may have box decoration background other than from their own
// style.
bool hasBoxDecorationBackground() const {
return m_bitfields.hasBoxDecorationBackground();
}
bool backgroundIsKnownToBeObscured() const;
bool needsLayout() const {
return m_bitfields.selfNeedsLayout() ||
m_bitfields.normalChildNeedsLayout() ||
m_bitfields.posChildNeedsLayout() ||
m_bitfields.needsSimplifiedNormalFlowLayout() ||
m_bitfields.needsPositionedMovementLayout();
}
bool selfNeedsLayout() const { return m_bitfields.selfNeedsLayout(); }
bool needsPositionedMovementLayout() const {
return m_bitfields.needsPositionedMovementLayout();
}
bool posChildNeedsLayout() const { return m_bitfields.posChildNeedsLayout(); }
bool needsSimplifiedNormalFlowLayout() const {
return m_bitfields.needsSimplifiedNormalFlowLayout();
}
bool normalChildNeedsLayout() const {
return m_bitfields.normalChildNeedsLayout();
}
bool preferredLogicalWidthsDirty() const {
return m_bitfields.preferredLogicalWidthsDirty();
}
bool needsOverflowRecalcAfterStyleChange() const {
return m_bitfields.selfNeedsOverflowRecalcAfterStyleChange() ||
m_bitfields.childNeedsOverflowRecalcAfterStyleChange();
}
bool selfNeedsOverflowRecalcAfterStyleChange() const {
return m_bitfields.selfNeedsOverflowRecalcAfterStyleChange();
}
bool childNeedsOverflowRecalcAfterStyleChange() const {
return m_bitfields.childNeedsOverflowRecalcAfterStyleChange();
}
bool isSelectionBorder() const;
bool hasClip() const {
return isOutOfFlowPositioned() && !style()->hasAutoClip();
}
bool hasOverflowClip() const { return m_bitfields.hasOverflowClip(); }
bool hasClipRelatedProperty() const {
return hasClip() || hasOverflowClip() || style()->containsPaint();
}
bool hasTransformRelatedProperty() const {
return m_bitfields.hasTransformRelatedProperty();
}
bool isTransformApplicable() const { return isBox() || isSVG(); }
bool hasMask() const { return style() && style()->hasMask(); }
bool hasClipPath() const { return style() && style()->clipPath(); }
bool hasHiddenBackface() const {
return style() && style()->backfaceVisibility() == BackfaceVisibilityHidden;
}
bool hasBackdropFilter() const {
return style() && style()->hasBackdropFilter();
}
// Returns |true| if any property that renders using filter operations is
// used (including, but not limited to, 'filter' and 'box-reflect').
// Not calling style()->hasFilterInducingProperty because some objects force
// to ignore reflection style (e.g. LayoutInline).
bool hasFilterInducingProperty() const {
return (style() && style()->hasFilter()) || hasReflection();
}
bool hasShapeOutside() const { return style() && style()->shapeOutside(); }
inline bool preservesNewline() const;
// The pseudo element style can be cached or uncached. Use the cached method
// if the pseudo element doesn't respect any pseudo classes (and therefore
// has no concept of changing state).
ComputedStyle* getCachedPseudoStyle(
PseudoId,
const ComputedStyle* parentStyle = nullptr) const;
PassRefPtr<ComputedStyle> getUncachedPseudoStyle(
const PseudoStyleRequest&,
const ComputedStyle* parentStyle = nullptr,
const ComputedStyle* ownStyle = nullptr) const;
LayoutView* view() const { return document().layoutView(); }
FrameView* frameView() const { return document().view(); }
bool isRooted() const;
Node* node() const { return isAnonymous() ? nullptr : m_node; }
Node* nonPseudoNode() const { return isPseudoElement() ? nullptr : node(); }
void clearNode() { m_node = nullptr; }
// Returns the styled node that caused the generation of this layoutObject.
// This is the same as node() except for layoutObjects of :before, :after and
// :first-letter pseudo elements for which their parent node is returned.
Node* generatingNode() const {
return isPseudoElement() ? node()->parentOrShadowHostNode() : node();
}
Document& document() const {
ASSERT(m_node || parent()); // crbug.com/402056
return m_node ? m_node->document() : parent()->document();
}
LocalFrame* frame() const { return document().frame(); }
virtual LayoutMultiColumnSpannerPlaceholder* spannerPlaceholder() const {
return nullptr;
}
bool isColumnSpanAll() const {
return style()->getColumnSpan() == ColumnSpanAll && spannerPlaceholder();
}
// We include isLayoutButton() in this check, because buttons are
// implemented using flex box but should still support things like
// first-line, first-letter and text-overflow.
// The flex box and grid specs require that flex box and grid do not
// support first-line|first-letter, though.
// TODO(cbiesinger): Remove when buttons are implemented with align-items
// instead of flex box. crbug.com/226252.
bool behavesLikeBlockContainer() const {
return isLayoutBlockFlow() || isLayoutButton();
}
// This function returns the containing block of the object.
// Due to CSS being inconsistent, a containing block can be a relatively
// positioned inline, thus we can't return a LayoutBlock from this function.
//
// This method is extremely similar to containingBlock(), but with a few
// notable exceptions.
// (1) It can be used on orphaned subtrees, i.e., it can be called safely
// even when the object is not part of the primary document subtree yet.
// (2) For normal flow elements, it just returns the parent.
// (3) For absolute positioned elements, it will return a relative
// positioned inline. containingBlock() simply skips relpositioned inlines
// and lets an enclosing block handle the layout of the positioned object.
// This does mean that computePositionedLogicalWidth and
// computePositionedLogicalHeight have to use container().
//
// This function should be used for any invalidation as it would correctly
// walk the containing block chain. See e.g. markContainerChainForLayout.
// It is also used for correctly sizing absolutely positioned elements
// (point 3 above).
//
// If |ancestor| and |ancestorSkipped| are not null, on return
// *ancestorSkipped is true if the layoutObject returned is an ancestor of
// |ancestor|.
LayoutObject* container(const LayoutBoxModelObject* ancestor = nullptr,
bool* ancestorSkipped = nullptr,
bool* filterSkipped = nullptr) const;
// Finds the container as if this object is fixed-position.
LayoutBlock* containerForFixedPosition(
const LayoutBoxModelObject* ancestor = nullptr,
bool* ancestorSkipped = nullptr,
bool* filterSkipped = nullptr) const;
// Finds the containing block as if this object is absolute-position.
LayoutBlock* containingBlockForAbsolutePosition() const;
virtual LayoutObject* hoverAncestor() const { return parent(); }
Element* offsetParent(const Element* = nullptr) const;
void markContainerChainForLayout(bool scheduleRelayout = true,
SubtreeLayoutScope* = nullptr);
void setNeedsLayout(LayoutInvalidationReasonForTracing,
MarkingBehavior = MarkContainerChain,
SubtreeLayoutScope* = nullptr);
void setNeedsLayoutAndFullPaintInvalidation(
LayoutInvalidationReasonForTracing,
MarkingBehavior = MarkContainerChain,
SubtreeLayoutScope* = nullptr);
void clearNeedsLayout();
void setChildNeedsLayout(MarkingBehavior = MarkContainerChain,
SubtreeLayoutScope* = nullptr);
void setNeedsPositionedMovementLayout();
void setPreferredLogicalWidthsDirty(MarkingBehavior = MarkContainerChain);
void clearPreferredLogicalWidthsDirty();
void setNeedsLayoutAndPrefWidthsRecalc(
LayoutInvalidationReasonForTracing reason) {
setNeedsLayout(reason);
setPreferredLogicalWidthsDirty();
}
void setNeedsLayoutAndPrefWidthsRecalcAndFullPaintInvalidation(
LayoutInvalidationReasonForTracing reason) {
setNeedsLayoutAndFullPaintInvalidation(reason);
setPreferredLogicalWidthsDirty();
}
void setPositionState(EPosition position) {
ASSERT((position != AbsolutePosition && position != FixedPosition) ||
isBox());
m_bitfields.setPositionedState(position);
}
void clearPositionedState() { m_bitfields.clearPositionedState(); }
void setFloating(bool isFloating) { m_bitfields.setFloating(isFloating); }
void setInline(bool isInline) { m_bitfields.setIsInline(isInline); }
void setHasBoxDecorationBackground(bool);
enum BackgroundObscurationState {
BackgroundObscurationStatusInvalid,
BackgroundKnownToBeObscured,
BackgroundMayBeVisible,
};
void invalidateBackgroundObscurationStatus();
virtual bool computeBackgroundIsKnownToBeObscured() const { return false; }
void setIsText() { m_bitfields.setIsText(true); }
void setIsBox() { m_bitfields.setIsBox(true); }
void setIsAtomicInlineLevel(bool isAtomicInlineLevel) {
m_bitfields.setIsAtomicInlineLevel(isAtomicInlineLevel);
}
void setHorizontalWritingMode(bool hasHorizontalWritingMode) {
m_bitfields.setHorizontalWritingMode(hasHorizontalWritingMode);
}
void setHasOverflowClip(bool hasOverflowClip) {
m_bitfields.setHasOverflowClip(hasOverflowClip);
}
void setHasLayer(bool hasLayer) { m_bitfields.setHasLayer(hasLayer); }
void setHasTransformRelatedProperty(bool hasTransform) {
m_bitfields.setHasTransformRelatedProperty(hasTransform);
}
void setHasReflection(bool hasReflection) {
m_bitfields.setHasReflection(hasReflection);
}
// paintOffset is the offset from the origin of the GraphicsContext at which
// to paint the current object.
virtual void paint(const PaintInfo&, const LayoutPoint& paintOffset) const;
// Subclasses must reimplement this method to compute the size and position
// of this object and all its descendants.
//
// By default, layout only lays out the children that are marked for layout.
// In some cases, layout has to force laying out more children. An example is
// when the width of the LayoutObject changes as this impacts children with
// 'width' set to auto.
virtual void layout() = 0;
virtual bool updateImageLoadingPriorities() { return false; }
void setHasPendingResourceUpdate(bool hasPendingResourceUpdate) {
m_bitfields.setHasPendingResourceUpdate(hasPendingResourceUpdate);
}
bool hasPendingResourceUpdate() const {
return m_bitfields.hasPendingResourceUpdate();
}
void handleSubtreeModifications();
virtual void subtreeDidChange() {}
// Flags used to mark if an object consumes subtree change notifications.
bool consumesSubtreeChangeNotification() const {
return m_bitfields.consumesSubtreeChangeNotification();
}
void setConsumesSubtreeChangeNotification() {
m_bitfields.setConsumesSubtreeChangeNotification(true);
}
// Flags used to mark if a descendant subtree of this object has changed.
void notifyOfSubtreeChange();
void notifyAncestorsOfSubtreeChange();
bool wasNotifiedOfSubtreeChange() const {
return m_bitfields.notifiedOfSubtreeChange();
}
// Flags used to signify that a layoutObject needs to be notified by its
// descendants that they have had their child subtree changed.
void registerSubtreeChangeListenerOnDescendants(bool);
bool hasSubtreeChangeListenerRegistered() const {
return m_bitfields.subtreeChangeListenerRegistered();
}
/* This function performs a layout only if one is needed. */
DISABLE_CFI_PERF void layoutIfNeeded() {
if (needsLayout())
layout();
}
void forceLayout();
void forceChildLayout();
// Used for element state updates that cannot be fixed with a paint
// invalidation and do not need a relayout.
virtual void updateFromElement() {}
virtual void addAnnotatedRegions(Vector<AnnotatedRegionValue>&);
CompositingState compositingState() const;
virtual CompositingReasons additionalCompositingReasons() const;
bool hitTest(HitTestResult&,
const HitTestLocation& locationInContainer,
const LayoutPoint& accumulatedOffset,
HitTestFilter = HitTestAll);
virtual void updateHitTestResult(HitTestResult&, const LayoutPoint&);
virtual bool nodeAtPoint(HitTestResult&,
const HitTestLocation& locationInContainer,
const LayoutPoint& accumulatedOffset,
HitTestAction);
virtual PositionWithAffinity positionForPoint(const LayoutPoint&);
PositionWithAffinity createPositionWithAffinity(int offset, TextAffinity);
PositionWithAffinity createPositionWithAffinity(int offset);
PositionWithAffinity createPositionWithAffinity(const Position&);
virtual void dirtyLinesFromChangedChild(
LayoutObject*,
MarkingBehavior markingBehaviour = MarkContainerChain);
// Set the style of the object and update the state of the object accordingly.
void setStyle(PassRefPtr<ComputedStyle>);
// Set the style of the object if it's generated content.
void setPseudoStyle(PassRefPtr<ComputedStyle>);
// Updates only the local style ptr of the object. Does not update the state
// of the object, and so only should be called when the style is known not to
// have changed (or from setStyle).
void setStyleInternal(PassRefPtr<ComputedStyle> style) { m_style = style; }
void setStyleWithWritingModeOf(PassRefPtr<ComputedStyle>,
LayoutObject* parent);
void setStyleWithWritingModeOfParent(PassRefPtr<ComputedStyle>);
void addChildWithWritingModeOfParent(LayoutObject* newChild,
LayoutObject* beforeChild);
void firstLineStyleDidChange(const ComputedStyle& oldStyle,
const ComputedStyle& newStyle);
void clearBaseComputedStyle();
// This function returns an enclosing non-anonymous LayoutBlock for this
// element. This function is not always returning the containing block as
// defined by CSS. In particular:
// - if the CSS containing block is a relatively positioned inline,
// the function returns the inline's enclosing non-anonymous LayoutBlock.
// This means that a LayoutInline would be skipped (expected as it's not a
// LayoutBlock) but so would be an inline LayoutTable or LayoutBlockFlow.
// TODO(jchaffraix): Is that REALLY what we want here?
// - if the CSS containing block is anonymous, we find its enclosing
// non-anonymous LayoutBlock.
// Note that in the previous examples, the returned LayoutBlock has no
// logical relationship to the original element.
//
// LayoutBlocks are the one that handle laying out positioned elements,
// thus this function is important during layout, to insert the positioned
// elements into the correct LayoutBlock.
//
// See container() for the function that returns the containing block.
// See LayoutBlock.h for some extra explanations on containing blocks.
LayoutBlock* containingBlock() const;
bool canContainAbsolutePositionObjects() const {
return m_style->canContainAbsolutePositionObjects() ||
canContainFixedPositionObjects();
}
bool canContainFixedPositionObjects() const {
return isLayoutView() || isSVGForeignObject() ||
(isLayoutBlock() && m_style->canContainFixedPositionObjects());
}
// Convert the given local point to absolute coordinates
// FIXME: Temporary. If UseTransforms is true, take transforms into account.
// Eventually localToAbsolute() will always be transform-aware.
FloatPoint localToAbsolute(const FloatPoint& localPoint = FloatPoint(),
MapCoordinatesFlags = 0) const;
// If the LayoutBoxModelObject ancestor is non-null, the input point is in the
// space of the ancestor.
// Otherwise:
// If TraverseDocumentBoundaries is specified, the input point is in the
// space of the local root frame.
// Otherwise, the input point is in the space of the containing frame.
FloatPoint ancestorToLocal(LayoutBoxModelObject*,
const FloatPoint&,
MapCoordinatesFlags = 0) const;
FloatPoint absoluteToLocal(const FloatPoint& point,
MapCoordinatesFlags mode = 0) const {
return ancestorToLocal(nullptr, point, mode);
}
// Convert a local quad to absolute coordinates, taking transforms into
// account.
FloatQuad localToAbsoluteQuad(const FloatQuad& quad,
MapCoordinatesFlags mode = 0) const {
return localToAncestorQuad(quad, nullptr, mode);
}
// Convert a quad in ancestor coordinates to local coordinates.
// If the LayoutBoxModelObject ancestor is non-null, the input quad is in the
// space of the ancestor.
// Otherwise:
// If TraverseDocumentBoundaries is specified, the input quad is in the
// space of the local root frame.
// Otherwise, the input quad is in the space of the containing frame.
FloatQuad ancestorToLocalQuad(LayoutBoxModelObject*,
const FloatQuad&,
MapCoordinatesFlags mode = 0) const;
FloatQuad absoluteToLocalQuad(const FloatQuad& quad,
MapCoordinatesFlags mode = 0) const {
return ancestorToLocalQuad(nullptr, quad, mode);
}
// Convert a local quad into the coordinate system of container, taking
// transforms into account.
// If the LayoutBoxModelObject ancestor is non-null, the result will be in the
// space of the ancestor.
// Otherwise:
// If TraverseDocumentBoundaries is specified, the result will be in the
// space of the local root frame.
// Otherwise, the result will be in the space of the containing frame.
FloatQuad localToAncestorQuad(const FloatQuad&,
const LayoutBoxModelObject* ancestor,
MapCoordinatesFlags = 0) const;
FloatPoint localToAncestorPoint(const FloatPoint&,
const LayoutBoxModelObject* ancestor,
MapCoordinatesFlags = 0) const;
void localToAncestorRects(Vector<LayoutRect>&,
const LayoutBoxModelObject* ancestor,
const LayoutPoint& preOffset,
const LayoutPoint& postOffset) const;
// Return the transformation matrix to map points from local to the coordinate
// system of a container, taking transforms into account.
// Passing null for |ancestor| behaves the same as localToAncestorQuad.
TransformationMatrix localToAncestorTransform(
const LayoutBoxModelObject* ancestor,
MapCoordinatesFlags = 0) const;
TransformationMatrix localToAbsoluteTransform(
MapCoordinatesFlags mode = 0) const {
return localToAncestorTransform(nullptr, mode);
}
// Convert a local point into the coordinate system of backing coordinates.
// Also returns the backing layer if needed.
FloatPoint localToInvalidationBackingPoint(
const LayoutPoint&,
PaintLayer** backingLayer = nullptr);
// Return the offset from the container() layoutObject (excluding transforms
// and multicol).
virtual LayoutSize offsetFromContainer(const LayoutObject*) const;
// Return the offset from an object up the container() chain. Asserts that
// none of the intermediate objects have transforms.
LayoutSize offsetFromAncestorContainer(const LayoutObject*) const;
virtual void absoluteRects(Vector<IntRect>&, const LayoutPoint&) const {}
FloatRect absoluteBoundingBoxFloatRect() const;
// This returns an IntRect enclosing this object. If this object has an
// integral size and the position has fractional values, the resultant
// IntRect can be larger than the integral size.
IntRect absoluteBoundingBoxRect() const;
// FIXME: This function should go away eventually
IntRect absoluteBoundingBoxRectIgnoringTransforms() const;
// Build an array of quads in absolute coords for line boxes
virtual void absoluteQuads(Vector<FloatQuad>&) const {}
static FloatRect absoluteBoundingBoxRectForRange(const Range*);
// The bounding box (see: absoluteBoundingBoxRect) including all descendant
// bounding boxes.
IntRect absoluteBoundingBoxRectIncludingDescendants() const;
// For accessibility, we want the bounding box rect of this element
// in local coordinates, which can then be converted to coordinates relative
// to any ancestor using, e.g., localToAncestorTransform.
virtual FloatRect localBoundingBoxRectForAccessibility() const = 0;
// This function returns the minimal logical width this object can have
// without overflowing. This means that all the opportunities for wrapping
// have been taken.
//
// See INTRINSIC SIZES / PREFERRED LOGICAL WIDTHS above.
//
// CSS 2.1 calls this width the "preferred minimum width" (thus this name)
// and "minimum content width" (for table).
// However CSS 3 calls it the "min-content inline size".
// https://drafts.csswg.org/css-sizing-3/#min-content-inline-size
// TODO(jchaffraix): We will probably want to rename it to match CSS 3.
virtual LayoutUnit minPreferredLogicalWidth() const { return LayoutUnit(); }
// This function returns the maximum logical width this object can have.
//
// See INTRINSIC SIZES / PREFERRED LOGICAL WIDTHS above.
//
// CSS 2.1 calls this width the "preferred width". However CSS 3 calls it
// the "max-content inline size".
// https://drafts.csswg.org/css-sizing-3/#max-content-inline-size
// TODO(jchaffraix): We will probably want to rename it to match CSS 3.
virtual LayoutUnit maxPreferredLogicalWidth() const { return LayoutUnit(); }
const ComputedStyle* style() const { return m_style.get(); }
ComputedStyle* mutableStyle() const { return m_style.get(); }
// m_style can only be nullptr before the first style is set, thus most
// callers will never see a nullptr style and should use styleRef().
// FIXME: It would be better if style() returned a const reference.
const ComputedStyle& styleRef() const { return mutableStyleRef(); }
ComputedStyle& mutableStyleRef() const {
ASSERT(m_style);
return *m_style;
}
/* The following methods are inlined in LayoutObjectInlines.h */
inline const ComputedStyle* firstLineStyle() const;
inline const ComputedStyle& firstLineStyleRef() const;
inline const ComputedStyle* style(bool firstLine) const;
inline const ComputedStyle& styleRef(bool firstLine) const;
static inline Color resolveColor(const ComputedStyle& styleToUse,
int colorProperty) {
return styleToUse.visitedDependentColor(colorProperty);
}
inline Color resolveColor(int colorProperty) const {
return style()->visitedDependentColor(colorProperty);
}
// Used only by Element::pseudoStyleCacheIsInvalid to get a first line style
// based off of a given new style, without accessing the cache.
PassRefPtr<ComputedStyle> uncachedFirstLineStyle(ComputedStyle*) const;
virtual CursorDirective getCursor(const LayoutPoint&, Cursor&) const;
struct AppliedTextDecoration {
STACK_ALLOCATED();
Color color;
TextDecorationStyle style;
AppliedTextDecoration()
: color(Color::transparent), style(TextDecorationStyleSolid) {}
};
void getTextDecorations(unsigned decorations,
AppliedTextDecoration& underline,
AppliedTextDecoration& overline,
AppliedTextDecoration& linethrough,
bool quirksMode = false,
bool firstlineStyle = false);
// Return the LayoutBoxModelObject in the container chain which is responsible
// for painting this object. The function crosses frames boundaries so the
// returned value can be in a different document.
//
// This is the container that should be passed to the '*forPaintInvalidation'
// methods.
const LayoutBoxModelObject& containerForPaintInvalidation() const;
bool isPaintInvalidationContainer() const;
// Invalidate the paint of a specific subrectangle within a given object. The
// rect is in the object's coordinate space.
// If a DisplayItemClient is specified, that client is invalidated rather than
// |this|.
// Returns the visual rect that was invalidated (i.e, invalidation in the
// space of the GraphicsLayer backing this LayoutObject).
LayoutRect invalidatePaintRectangle(const LayoutRect&,
DisplayItemClient* = nullptr) const;
// Walk the tree after layout issuing paint invalidations for layoutObjects
// that have changed or moved, updating bounds that have changed, and clearing
// paint invalidation state.
virtual void invalidateTreeIfNeeded(const PaintInvalidationState&);
void setShouldDoFullPaintInvalidationIncludingNonCompositingDescendants();
// Returns true if the object itself will not generate any effective painted
// output no matter what size the object is. For example, this function can
// return false for an object whose size is currently 0x0 but would have
// effective painted output if it was set a non-empty size.
// It's used to skip unforced paint invalidation (which is when
// shouldDoFullPaintInvalidation is false, but mayNeedPaintInvalidation or
// childShouldCheckForPaintInvalidation is true) to avoid unnecessary paint
// invalidations of empty areas covered by such objects.
virtual bool paintedOutputOfObjectHasNoEffectRegardlessOfSize() const {
return false;
}
// Returns the rect that should have paint invalidated whenever this object
// changes. The rect is in the view's coordinate space. This method deals with
// outlines and overflow.
virtual LayoutRect absoluteClippedOverflowRect() const;
// Returns the rect that should have paint invalidated whenever this object
// changes. The rect is in the object's local coordinate space. This is for
// non-SVG objects and LayoutSVGRoot only.
// SVG objects (except LayoutSVGRoot) should use
// paintInvalidationRectInLocalSVGCoordinates() and map with SVG transforms
// instead.
virtual LayoutRect localOverflowRectForPaintInvalidation() const;
// Given a rect in the object's coordinate space, mutates the rect into one
// representing the size of its visual painted output as if |ancestor| was the
// root of the page: the rect is modified by any intervening clips, transforms
// and scrolls between |this| and |ancestor| (not inclusive of |ancestor|),
// but not any above |ancestor|.
// The output is in the physical, painted coordinate pixel space of
// |ancestor|.
// Overflow clipping, CSS clipping and scrolling is *not* applied for
// |ancestor| itself if |ancestor| scrolls overflow.
// The output rect is suitable for purposes such as paint invalidation.
//
// If visualRectFlags has the EdgeInclusive bit set, clipping operations will
// use/ LayoutRect::inclusiveIntersect, and the return value of
// inclusiveIntersect will be propagated to the return value of this method.
// Otherwise, clipping operations will use LayoutRect::intersect, and the
// return value will be true only if the clipped rect has non-zero area.
// See the documentation for LayoutRect::inclusiveIntersect for more
// information.
virtual bool mapToVisualRectInAncestorSpace(
const LayoutBoxModelObject* ancestor,
LayoutRect&,
VisualRectFlags = DefaultVisualRectFlags) const;
// Return the offset to the column in which the specified point (in
// flow-thread coordinates) lives. This is used to convert a flow-thread point
// to a point in the containing coordinate space.
virtual LayoutSize columnOffset(const LayoutPoint&) const {
return LayoutSize();
}
virtual unsigned length() const { return 1; }
bool isFloatingOrOutOfFlowPositioned() const {
return (isFloating() || isOutOfFlowPositioned());
}
bool isTransparent() const { return style()->hasOpacity(); }
float opacity() const { return style()->opacity(); }
bool hasReflection() const { return m_bitfields.hasReflection(); }
// The current selection state for an object. For blocks, the state refers to
// the state of the leaf descendants (as described above in the SelectionState
// enum declaration).
SelectionState getSelectionState() const {
return m_bitfields.getSelectionState();
}
virtual void setSelectionState(SelectionState state) {
m_bitfields.setSelectionState(state);
}
inline void setSelectionStateIfNeeded(SelectionState);
bool canUpdateSelectionOnRootLineBoxes() const;
// A single rectangle that encompasses all of the selected objects within this
// object. Used to determine the tightest possible bounding box for the
// selection. The rect returned is in the object's local coordinate space.
virtual LayoutRect localSelectionRect() const { return LayoutRect(); }
// View coordinates means the coordinate space of |view()|.
LayoutRect selectionRectInViewCoordinates() const;
virtual bool canBeSelectionLeaf() const { return false; }
bool hasSelectedChildren() const {
return getSelectionState() != SelectionNone;
}
bool isSelectable() const;
// Obtains the selection colors that should be used when painting a selection.
Color selectionBackgroundColor() const;
Color selectionForegroundColor(const GlobalPaintFlags) const;
Color selectionEmphasisMarkColor(const GlobalPaintFlags) const;
/**
* Returns the local coordinates of the caret within this layout object.
* @param caretOffset zero-based offset determining position within the
* layout object.
* @param extraWidthToEndOfLine optional out arg to give extra width to end
* of line -
* useful for character range rect computations
*/
virtual LayoutRect localCaretRect(
InlineBox*,
int caretOffset,
LayoutUnit* extraWidthToEndOfLine = nullptr);
// When performing a global document tear-down, the layoutObject of the
// document is cleared. We use this as a hook to detect the case of document
// destruction and don't waste time doing unnecessary work.
bool documentBeingDestroyed() const;
void destroyAndCleanupAnonymousWrappers();
// While the destroy() method is virtual, this should only be overriden in
// very rare circumstances.
// You want to override willBeDestroyed() instead unless you explicitly need
// to stop this object from being destroyed (for example, LayoutPart
// overrides destroy() for this purpose).
virtual void destroy();
// Virtual function helpers for the deprecated Flexible Box Layout (display:
// -webkit-box).
virtual bool isDeprecatedFlexibleBox() const { return false; }
// Virtual function helper for the new FlexibleBox Layout (display:
// -webkit-flex).
virtual bool isFlexibleBox() const { return false; }
bool isFlexibleBoxIncludingDeprecated() const {
return isFlexibleBox() || isDeprecatedFlexibleBox();
}
virtual bool isCombineText() const { return false; }
virtual int caretMinOffset() const;
virtual int caretMaxOffset() const;
// ImageResourceClient override.
void imageChanged(ImageResource*, const IntRect* = nullptr) final;
bool willRenderImage() final;
bool getImageAnimationPolicy(ImageAnimationPolicy&) final;
// Sub-classes that have an associated image need to override this function
// to get notified of any image change.
virtual void imageChanged(WrappedImagePtr, const IntRect* = nullptr) {}
void selectionStartEnd(int& spos, int& epos) const;
void remove() {
if (parent())
parent()->removeChild(this);
}
bool visibleToHitTestRequest(const HitTestRequest& request) const {
return style()->visibility() == EVisibility::Visible &&
(request.ignorePointerEventsNone() ||
style()->pointerEvents() != PE_NONE) &&
!isInert();
}
bool visibleToHitTesting() const {
return style()->visibility() == EVisibility::Visible &&
style()->pointerEvents() != PE_NONE && !isInert();
}
// Map points and quads through elements, potentially via 3d transforms. You
// should never need to call these directly; use localToAbsolute/
// absoluteToLocal methods instead.
virtual void mapLocalToAncestor(
const LayoutBoxModelObject* ancestor,
TransformState&,
MapCoordinatesFlags = ApplyContainerFlip) const;
// If the LayoutBoxModelObject ancestor is non-null, the input quad is in the
// space of the ancestor.
// Otherwise:
// If TraverseDocumentBoundaries is specified, the input quad is in the
// space of the local root frame.
// Otherwise, the input quad is in the space of the containing frame.
virtual void mapAncestorToLocal(
const LayoutBoxModelObject*,
TransformState&,
MapCoordinatesFlags = ApplyContainerFlip) const;
// Pushes state onto LayoutGeometryMap about how to map coordinates from this
// layoutObject to its container, or ancestorToStopAt (whichever is
// encountered first). Returns the layoutObject which was mapped to (container
// or ancestorToStopAt).
virtual const LayoutObject* pushMappingToContainer(
const LayoutBoxModelObject* ancestorToStopAt,
LayoutGeometryMap&) const;
bool shouldUseTransformFromContainer(const LayoutObject* container) const;
void getTransformFromContainer(const LayoutObject* container,
const LayoutSize& offsetInContainer,
TransformationMatrix&) const;
bool createsGroup() const {
return isTransparent() || hasMask() || hasFilterInducingProperty() ||
style()->hasBlendMode();
}
// Collects rectangles that the outline of this object would be drawing along
// the outside of, even if the object isn't styled with a outline for now. The
// rects also cover continuations.
enum IncludeBlockVisualOverflowOrNot {
DontIncludeBlockVisualOverflow,
IncludeBlockVisualOverflow,
};
virtual void addOutlineRects(Vector<LayoutRect>&,
const LayoutPoint& additionalOffset,
IncludeBlockVisualOverflowOrNot) const {}
// For history and compatibility reasons, we draw outline:auto (for focus
// rings) and normal style outline differently.
// Focus rings enclose block visual overflows (of line boxes and descendants),
// while normal outlines don't.
IncludeBlockVisualOverflowOrNot outlineRectsShouldIncludeBlockVisualOverflow()
const {
return styleRef().outlineStyleIsAuto() ? IncludeBlockVisualOverflow
: DontIncludeBlockVisualOverflow;
}
// Collects rectangles enclosing visual overflows of the DOM subtree under
// this object.
// The rects also cover continuations which may be not in the layout subtree
// of this object.
// TODO(crbug.com/614781): Currently the result rects don't cover list markers
// and outlines.
void addElementVisualOverflowRects(
Vector<LayoutRect>& rects,
const LayoutPoint& additionalOffset) const {
addOutlineRects(rects, additionalOffset, IncludeBlockVisualOverflow);
}
// Returns the rect enclosing united visual overflow of the DOM subtree under
// this object. It includes continuations which may be not in the layout
// subtree of this object.
virtual IntRect absoluteElementBoundingBoxRect() const;
// Compute a list of hit-test rectangles per layer rooted at this
// layoutObject.
virtual void computeLayerHitTestRects(LayerHitTestRects&) const;
static RespectImageOrientationEnum shouldRespectImageOrientation(
const LayoutObject*);
bool isRelayoutBoundaryForInspector() const;
// The previous paint invalidation rect, in the the space of the paint
// invalidation container (*not* the graphics layer that paints
// this object).
LayoutRect previousPaintInvalidationRectIncludingCompositedScrolling(
const LayoutBoxModelObject& paintInvalidationContainer) const;
// The returned rect does *not* account for composited scrolling.
const LayoutRect& previousPaintInvalidationRect() const {
return m_previousPaintInvalidationRect;
}
// Called when the previous paint invalidation rect(s) is no longer valid.
virtual void clearPreviousPaintInvalidationRects();
// Only adjusts if the paint invalidation container is not a composited
// scroller.
void adjustPreviousPaintInvalidationForScrollIfNeeded(
const DoubleSize& scrollDelta);
// The previous position of the top-left corner of the object in its previous
// paint backing.
const LayoutPoint& previousPositionFromPaintInvalidationBacking() const {
return m_previousPositionFromPaintInvalidationBacking;
}
void setPreviousPositionFromPaintInvalidationBacking(
const LayoutPoint& positionFromPaintInvalidationBacking) {
m_previousPositionFromPaintInvalidationBacking =
positionFromPaintInvalidationBacking;
}
PaintInvalidationReason fullPaintInvalidationReason() const {
return m_bitfields.fullPaintInvalidationReason();
}
bool shouldDoFullPaintInvalidation() const {
return m_bitfields.fullPaintInvalidationReason() != PaintInvalidationNone;
}
void setShouldDoFullPaintInvalidation(
PaintInvalidationReason = PaintInvalidationFull);
void clearShouldDoFullPaintInvalidation() {
m_bitfields.setFullPaintInvalidationReason(PaintInvalidationNone);
}
virtual void clearPaintInvalidationFlags();
bool mayNeedPaintInvalidation() const {
return m_bitfields.mayNeedPaintInvalidation();
}
void setMayNeedPaintInvalidation();
bool mayNeedPaintInvalidationSubtree() const {
return m_bitfields.mayNeedPaintInvalidationSubtree();
}
void setMayNeedPaintInvalidationSubtree();
bool mayNeedPaintInvalidationAnimatedBackgroundImage() const {
return m_bitfields.mayNeedPaintInvalidationAnimatedBackgroundImage();
}
void setMayNeedPaintInvalidationAnimatedBackgroundImage();
bool shouldInvalidateSelection() const {
return m_bitfields.shouldInvalidateSelection();
}
void setShouldInvalidateSelection();
bool shouldCheckForPaintInvalidation(
const PaintInvalidationState& paintInvalidationState) const {
return paintInvalidationState.hasForcedSubtreeInvalidationFlags() ||
shouldCheckForPaintInvalidationRegardlessOfPaintInvalidationState();
}
bool shouldCheckForPaintInvalidationRegardlessOfPaintInvalidationState()
const {
return mayNeedPaintInvalidation() || shouldDoFullPaintInvalidation() ||
shouldInvalidateSelection() ||
m_bitfields.childShouldCheckForPaintInvalidation();
}
virtual LayoutRect viewRect() const;
// New version to replace the above old version.
virtual PaintInvalidationReason invalidatePaintIfNeeded(
const PaintInvalidatorContext&) const;
// When this object is invalidated for paint, this method is called to
// invalidate any DisplayItemClients owned by this object, including the
// object itself, LayoutText/LayoutInline line boxes, etc.,
// not including children which will be invalidated normally during
// invalidateTreeIfNeeded() and parts which are invalidated separately (e.g.
// scrollbars). The caller should ensure the painting layer has been
// setNeedsRepaint before calling this function.
virtual void invalidateDisplayItemClients(PaintInvalidationReason) const;
virtual bool hasNonCompositedScrollbars() const { return false; }
// Called before anonymousChild.setStyle(). Override to set custom styles for
// the child.
virtual void updateAnonymousChildStyle(const LayoutObject& anonymousChild,
ComputedStyle& style) const {}
// Returns a rect corresponding to this LayoutObject's bounds for use in
// debugging output
virtual LayoutRect debugRect() const;
// Painters can use const methods only, except for these explicitly declared
// methods.
class MutableForPainting {
public:
void clearPaintInvalidationFlags() {
m_layoutObject.clearPaintInvalidationFlags();
}
void setShouldDoFullPaintInvalidation(PaintInvalidationReason reason) {
m_layoutObject.setShouldDoFullPaintInvalidation(reason);
}
void ensureIsReadyForPaintInvalidation() {
m_layoutObject.ensureIsReadyForPaintInvalidation();
}
void setPreviousPaintInvalidationRect(const LayoutRect& r) {
m_layoutObject.setPreviousPaintInvalidationRect(r);
}
void setPreviousPositionFromPaintInvalidationBacking(const LayoutPoint& p) {
m_layoutObject.setPreviousPositionFromPaintInvalidationBacking(p);
}
void setPreviousBackgroundObscured(bool b) {
m_layoutObject.setPreviousBackgroundObscured(b);
}
void clearPreviousPaintInvalidationRects() {
m_layoutObject.clearPreviousPaintInvalidationRects();
}
protected:
friend class PaintPropertyTreeBuilder;
// The following two functions can be called from PaintPropertyTreeBuilder
// only.
ObjectPaintProperties& ensureObjectPaintProperties() {
return m_layoutObject.ensureObjectPaintProperties();
}
ObjectPaintProperties* objectPaintProperties() {
return const_cast<ObjectPaintProperties*>(
m_layoutObject.objectPaintProperties());
}
friend class LayoutObject;
MutableForPainting(const LayoutObject& layoutObject)
: m_layoutObject(const_cast<LayoutObject&>(layoutObject)) {}
LayoutObject& m_layoutObject;
};
MutableForPainting getMutableForPainting() const {
return MutableForPainting(*this);
}
void setIsScrollAnchorObject() { m_bitfields.setIsScrollAnchorObject(true); }
// Clears the IsScrollAnchorObject bit, unless any ScrollAnchor still refers
// to us.
void maybeClearIsScrollAnchorObject();
bool scrollAnchorDisablingStyleChanged() {
return m_bitfields.scrollAnchorDisablingStyleChanged();
}
void setScrollAnchorDisablingStyleChanged(bool changed) {
m_bitfields.setScrollAnchorDisablingStyleChanged(changed);
}
void clearChildNeedsOverflowRecalcAfterStyleChange() {
m_bitfields.setChildNeedsOverflowRecalcAfterStyleChange(false);
}
bool compositedScrollsWithRespectTo(
const LayoutBoxModelObject& paintInvalidationContainer) const;
IntSize scrollAdjustmentForPaintInvalidation(
const LayoutBoxModelObject& paintInvalidationContainer) const;
bool previousBackgroundObscured() const {
return m_bitfields.previousBackgroundObscured();
}
void setPreviousBackgroundObscured(bool b) {
m_bitfields.setPreviousBackgroundObscured(b);
}
bool isBackgroundAttachmentFixedObject() const {
return m_bitfields.isBackgroundAttachmentFixedObject();
}
protected:
enum LayoutObjectType {
LayoutObjectBr,
LayoutObjectCanvas,
LayoutObjectFieldset,
LayoutObjectCounter,
LayoutObjectDetailsMarker,
LayoutObjectEmbeddedObject,
LayoutObjectFileUploadControl,
LayoutObjectFrame,
LayoutObjectFrameSet,
LayoutObjectLayoutTableCol,
LayoutObjectListBox,
LayoutObjectListItem,
LayoutObjectListMarker,
LayoutObjectMedia,
LayoutObjectMenuList,
LayoutObjectNGBlockFlow,
LayoutObjectProgress,
LayoutObjectQuote,
LayoutObjectLayoutButton,
LayoutObjectLayoutFlowThread,
LayoutObjectLayoutFullScreen,
LayoutObjectLayoutFullScreenPlaceholder,
LayoutObjectLayoutGrid,
LayoutObjectLayoutIFrame,
LayoutObjectLayoutImage,
LayoutObjectLayoutInline,
LayoutObjectLayoutMultiColumnSet,
LayoutObjectLayoutMultiColumnSpannerPlaceholder,
LayoutObjectLayoutPart,
LayoutObjectLayoutScrollbarPart,
LayoutObjectLayoutView,
LayoutObjectRuby,
LayoutObjectRubyBase,
LayoutObjectRubyRun,
LayoutObjectRubyText,
LayoutObjectSlider,
LayoutObjectSliderThumb,
LayoutObjectTable,
LayoutObjectTableCaption,
LayoutObjectTableCell,
LayoutObjectTableRow,
LayoutObjectTableSection,
LayoutObjectTextArea,
LayoutObjectTextControl,
LayoutObjectTextField,
LayoutObjectVideo,
LayoutObjectWidget,
LayoutObjectSVG, /* Keep by itself? */
LayoutObjectSVGRoot,
LayoutObjectSVGContainer,
LayoutObjectSVGTransformableContainer,
LayoutObjectSVGViewportContainer,
LayoutObjectSVGHiddenContainer,
LayoutObjectSVGGradientStop,
LayoutObjectSVGShape,
LayoutObjectSVGText,
LayoutObjectSVGTextPath,
LayoutObjectSVGInline,
LayoutObjectSVGInlineText,
LayoutObjectSVGImage,
LayoutObjectSVGForeignObject,
LayoutObjectSVGResourceContainer,
LayoutObjectSVGResourceFilter,
LayoutObjectSVGResourceFilterPrimitive,
};
virtual bool isOfType(LayoutObjectType type) const { return false; }
inline bool layerCreationAllowedForSubtree() const;
// Overrides should call the superclass at the end. m_style will be 0 the
// first time this function will be called.
virtual void styleWillChange(StyleDifference, const ComputedStyle& newStyle);
// Overrides should call the superclass at the start. |oldStyle| will be 0 the
// first time this function is called.
virtual void styleDidChange(StyleDifference, const ComputedStyle* oldStyle);
void propagateStyleToAnonymousChildren();
// Return true for objects that don't want style changes automatically
// propagated via propagateStyleToAnonymousChildren(), but rather rely on
// other custom mechanisms (if they need to be notified of parent style
// changes at all).
virtual bool anonymousHasStylePropagationOverride() { return false; }
protected:
// This function is called before calling the destructor so that some clean-up
// can happen regardless of whether they call a virtual function or not. As a
// rule of thumb, this function should be preferred to the destructor. See
// destroy() that is the one calling willBeDestroyed().
//
// There are 2 types of destructions: regular destructions and tree tear-down.
// Regular destructions happen when the renderer is not needed anymore (e.g.
// 'display' changed or the DOM Node was removed).
// Tree tear-down is when the whole tree destroyed during navigation. It is
// handled in the code by checking if documentBeingDestroyed() returns 'true'.
// In this case, the code skips some unneeded expensive operations as we know
// the tree is not reused (e.g. avoid clearing the containing block's line
// box).
virtual void willBeDestroyed();
virtual void insertedIntoTree();
virtual void willBeRemovedFromTree();
void setDocumentForAnonymous(Document* document) {
ASSERT(isAnonymous());
m_node = document;
}
// Add hit-test rects for the layout tree rooted at this node to the provided
// collection on a per-Layer basis.
// currentLayer must be the enclosing layer, and layerOffset is the current
// offset within this layer. Subclass implementations will add any offset for
// this layoutObject within it's container, so callers should provide only the
// offset of the container within it's layer.
// containerRect is a rect that has already been added for the currentLayer
// which is likely to be a container for child elements. Any rect wholly
// contained by containerRect can be skipped.
virtual void addLayerHitTestRects(LayerHitTestRects&,
const PaintLayer* currentLayer,
const LayoutPoint& layerOffset,
const LayoutRect& containerRect) const;
// Add hit-test rects for this layoutObject only to the provided list.
// layerOffset is the offset of this layoutObject within the current layer
// that should be used for each result.
virtual void computeSelfHitTestRects(Vector<LayoutRect>&,
const LayoutPoint& layerOffset) const {}
void setPreviousPaintInvalidationRect(const LayoutRect& rect) {
m_previousPaintInvalidationRect = rect;
}
#if ENABLE(ASSERT)
virtual bool paintInvalidationStateIsDirty() const {
return shouldCheckForPaintInvalidationRegardlessOfPaintInvalidationState();
}
#endif
// Called before paint invalidation.
virtual void ensureIsReadyForPaintInvalidation() { DCHECK(!needsLayout()); }
// This function walks the descendants of |this|, following a
// layout ordering.
//
// The ordering is important for PaintInvalidationState, as it requires to be
// called following a descendant/container relationship.
//
// The function is overridden to handle special children (e.g. percentage
// height descendants or reflections).
virtual void invalidatePaintOfSubtreesIfNeeded(
const PaintInvalidationState& childPaintInvalidationState);
// This function generates the invalidation for this object only.
// It doesn't recurse into other object, as this is handled by
// invalidatePaintOfSubtreesIfNeeded.
virtual PaintInvalidationReason invalidatePaintIfNeeded(
const PaintInvalidationState&);
void setIsBackgroundAttachmentFixedObject(bool);
void clearSelfNeedsOverflowRecalcAfterStyleChange() {
m_bitfields.setSelfNeedsOverflowRecalcAfterStyleChange(false);
}
void setEverHadLayout() { m_bitfields.setEverHadLayout(true); }
// Remove this object and all descendants from the containing
// LayoutFlowThread.
void removeFromLayoutFlowThread();
bool containsInlineWithOutlineAndContinuation() const {
return m_bitfields.containsInlineWithOutlineAndContinuation();
}
void setContainsInlineWithOutlineAndContinuation(bool b) {
m_bitfields.setContainsInlineWithOutlineAndContinuation(b);
}
private:
// Adjusts a paint invalidation rect in the space of
// |m_previousPaintInvalidationRect| and
// |m_previousPositionFromPaintInvalidationBacking|
// to be in the space of the |paintInvalidationContainer|, if needed. They can
// be different only if |paintInvalidationContainer| is a composited scroller.
void adjustInvalidationRectForCompositedScrolling(
LayoutRect&,
const LayoutBoxModelObject& paintInvalidationContainer) const;
void clearLayoutRootIfNeeded() const;
bool isInert() const;
void updateImage(StyleImage*, StyleImage*);
void scheduleRelayout();
void updateShapeImage(const ShapeValue*, const ShapeValue*);
void updateFillImages(const FillLayer* oldLayers, const FillLayer& newLayers);
void updateCursorImages(const CursorList* oldCursors,
const CursorList* newCursors);
void setNeedsOverflowRecalcAfterStyleChange();
// Walk up the parent chain and find the first scrolling block to disable
// scroll anchoring on.
void setScrollAnchorDisablingStyleChangedOnAncestor();
// FIXME: This should be 'markContaingBoxChainForOverflowRecalc when we make
// LayoutBox recomputeOverflow-capable. crbug.com/437012 and crbug.com/434700.
inline void markAncestorsForOverflowRecalcIfNeeded();
inline void markAncestorsForPaintInvalidation();
inline void invalidateContainerPreferredLogicalWidths();
void invalidatePaintIncludingNonSelfPaintingLayerDescendantsInternal(
const LayoutBoxModelObject& paintInvalidationContainer);
LayoutObject* containerForAbsolutePosition(
const LayoutBoxModelObject* ancestor = nullptr,
bool* ancestorSkipped = nullptr,
bool* filterSkipped = nullptr) const;
const LayoutBoxModelObject* enclosingCompositedContainer() const;
LayoutFlowThread* locateFlowThreadContainingBlock() const;
void removeFromLayoutFlowThreadRecursive(LayoutFlowThread*);
ComputedStyle* cachedFirstLineStyle() const;
StyleDifference adjustStyleDifference(StyleDifference) const;
Color selectionColor(int colorProperty, const GlobalPaintFlags) const;
void removeShapeImageClient(ShapeValue*);
void removeCursorImageClient(const CursorList*);
#if ENABLE(ASSERT)
void checkBlockPositionedObjectsNeedLayout();
#endif
bool isTextOrSVGChild() const {
return isText() || (isSVG() && !isSVGRoot());
}
static bool isAllowedToModifyLayoutTreeStructure(Document&);
// Returns the parent for paint invalidation.
// - For LayoutView, returns the owner layout object in the containing frame
// if any or nullptr;
// - For multi-column spanner, returns the spanner placeholder;
// - Otherwise returns parent().
LayoutObject* paintInvalidationParent() const;
RefPtr<ComputedStyle> m_style;
// Oilpan: This untraced pointer to the owning Node is considered safe.
UntracedMember<Node> m_node;
LayoutObject* m_parent;
LayoutObject* m_previous;
LayoutObject* m_next;
#if ENABLE(ASSERT)
unsigned m_hasAXObject : 1;
unsigned m_setNeedsLayoutForbidden : 1;
#endif
#define ADD_BOOLEAN_BITFIELD(name, Name) \
private: \
unsigned m_##name : 1; \
\
public: \
bool name() const { return m_##name; } \
void set##Name(bool name) { m_##name = name; }
class LayoutObjectBitfields {
enum PositionedState {
IsStaticallyPositioned = 0,
IsRelativelyPositioned = 1,
IsOutOfFlowPositioned = 2,
IsStickyPositioned = 3,
};
public:
// LayoutObjectBitfields holds all the boolean values for LayoutObject.
//
// This is done to promote better packing on LayoutObject (at the expense of
// preventing bit field packing for the subclasses). Classes concerned about
// packing and memory use should hoist their boolean to this class. See
// below the field from sub-classes (e.g. childrenInline).
//
// Some of those booleans are caches of ComputedStyle values (e.g.
// positionState). This enables better memory locality and thus better
// performance.
//
// This class is an artifact of the WebKit era where LayoutObject wasn't
// allowed to grow and each sub-class was strictly monitored for memory
// increase. Our measurements indicate that the size of LayoutObject and
// subsequent classes do not impact memory or speed in a significant
// manner. This is based on growing LayoutObject in
// https://codereview.chromium.org/44673003 and subsequent relaxations
// of the memory constraints on layout objects.
LayoutObjectBitfields(Node* node)
: m_selfNeedsLayout(false),
m_needsPositionedMovementLayout(false),
m_normalChildNeedsLayout(false),
m_posChildNeedsLayout(false),
m_needsSimplifiedNormalFlowLayout(false),
m_selfNeedsOverflowRecalcAfterStyleChange(false),
m_childNeedsOverflowRecalcAfterStyleChange(false),
m_preferredLogicalWidthsDirty(false),
m_childShouldCheckForPaintInvalidation(false),
m_mayNeedPaintInvalidation(false),
m_mayNeedPaintInvalidationSubtree(false),
m_mayNeedPaintInvalidationAnimatedBackgroundImage(false),
m_shouldInvalidateSelection(false),
m_floating(false),
m_isAnonymous(!node),
m_isText(false),
m_isBox(false),
m_isInline(true),
m_isAtomicInlineLevel(false),
m_horizontalWritingMode(true),
m_hasLayer(false),
m_hasOverflowClip(false),
m_hasTransformRelatedProperty(false),
m_hasReflection(false),
m_hasCounterNodeMap(false),
m_everHadLayout(false),
m_ancestorLineBoxDirty(false),
m_hasPendingResourceUpdate(false),
m_isInsideFlowThread(false),
m_subtreeChangeListenerRegistered(false),
m_notifiedOfSubtreeChange(false),
m_consumesSubtreeChangeNotification(false),
m_childrenInline(false),
m_containsInlineWithOutlineAndContinuation(false),
m_alwaysCreateLineBoxesForLayoutInline(false),
m_previousBackgroundObscured(false),
m_isBackgroundAttachmentFixedObject(false),
m_isScrollAnchorObject(false),
m_scrollAnchorDisablingStyleChanged(false),
m_hasBoxDecorationBackground(false),
m_positionedState(IsStaticallyPositioned),
m_selectionState(SelectionNone),
m_backgroundObscurationState(BackgroundObscurationStatusInvalid),
m_fullPaintInvalidationReason(PaintInvalidationNone) {}
// 32 bits have been used in the first word, and 18 in the second.
// Self needs layout means that this layout object is marked for a full
// layout. This is the default layout but it is expensive as it recomputes
// everything. For CSS boxes, this includes the width (laying out the line
// boxes again), the margins (due to block collapsing margins), the
// positions, the height and the potential overflow.
ADD_BOOLEAN_BITFIELD(selfNeedsLayout, SelfNeedsLayout);
// A positioned movement layout is a specialized type of layout used on
// positioned objects that only visually moved. This layout is used when
// changing 'top'/'left' on a positioned element or margins on an
// out-of-flow one. Because the following operations don't impact the size
// of the object or sibling LayoutObjects, this layout is very lightweight.
//
// Positioned movement layout is implemented in
// LayoutBlock::simplifiedLayout.
ADD_BOOLEAN_BITFIELD(needsPositionedMovementLayout,
NeedsPositionedMovementLayout);
// This boolean is set when a normal flow ('position' == static || relative)
// child requires layout (but this object doesn't). Due to the nature of
// CSS, laying out a child can cause the parent to resize (e.g., if 'height'
// is auto).
ADD_BOOLEAN_BITFIELD(normalChildNeedsLayout, NormalChildNeedsLayout);
// This boolean is set when an out-of-flow positioned ('position' == fixed
// || absolute) child requires layout (but this object doesn't).
ADD_BOOLEAN_BITFIELD(posChildNeedsLayout, PosChildNeedsLayout);
// Simplified normal flow layout only relayouts the normal flow children,
// ignoring the out-of-flow descendants.
//
// The implementation of this layout is in
// LayoutBlock::simplifiedNormalFlowLayout.
ADD_BOOLEAN_BITFIELD(needsSimplifiedNormalFlowLayout,
NeedsSimplifiedNormalFlowLayout);
// Some properties only have a visual impact and don't impact the actual
// layout position and sizes of the object. An example of this is the
// 'transform' property, who doesn't modify the layout but gets applied at
// paint time. Setting this flag only recomputes the overflow information.
ADD_BOOLEAN_BITFIELD(selfNeedsOverflowRecalcAfterStyleChange,
SelfNeedsOverflowRecalcAfterStyleChange);
// This flag is set on the ancestor of a LayoutObject needing
// selfNeedsOverflowRecalcAfterStyleChange. This is needed as a descendant
// overflow can bleed into its containing block's so we have to recompute it
// in some cases.
ADD_BOOLEAN_BITFIELD(childNeedsOverflowRecalcAfterStyleChange,
ChildNeedsOverflowRecalcAfterStyleChange);
// This boolean marks preferred logical widths for lazy recomputation.
//
// See INTRINSIC SIZES / PREFERRED LOGICAL WIDTHS above about those
// widths.
ADD_BOOLEAN_BITFIELD(preferredLogicalWidthsDirty,
PreferredLogicalWidthsDirty);
ADD_BOOLEAN_BITFIELD(childShouldCheckForPaintInvalidation,
ChildShouldCheckForPaintInvalidation);
ADD_BOOLEAN_BITFIELD(mayNeedPaintInvalidation, MayNeedPaintInvalidation);
ADD_BOOLEAN_BITFIELD(mayNeedPaintInvalidationSubtree,
MayNeedPaintInvalidationSubtree);
ADD_BOOLEAN_BITFIELD(mayNeedPaintInvalidationAnimatedBackgroundImage,
MayNeedPaintInvalidationAnimatedBackgroundImage);
ADD_BOOLEAN_BITFIELD(shouldInvalidateSelection, ShouldInvalidateSelection);
// This boolean is the cached value of 'float'
// (see ComputedStyle::isFloating).
ADD_BOOLEAN_BITFIELD(floating, Floating);
ADD_BOOLEAN_BITFIELD(isAnonymous, IsAnonymous);
ADD_BOOLEAN_BITFIELD(isText, IsText);
ADD_BOOLEAN_BITFIELD(isBox, IsBox);
// This boolean represents whether the LayoutObject is 'inline-level'
// (a CSS concept). Inline-level boxes are laid out inside a line. If
// unset, the box is 'block-level' and thus stack on top of its
// siblings (think of paragraphs).
ADD_BOOLEAN_BITFIELD(isInline, IsInline);
// This boolean is set if the element is an atomic inline-level box.
//
// In CSS, atomic inline-level boxes are laid out on a line but they
// are opaque from the perspective of line layout. This means that they
// can't be split across lines like normal inline boxes (LayoutInline).
// Examples of atomic inline-level elements: inline tables, inline
// blocks and replaced inline elements.
// See http://www.w3.org/TR/CSS2/visuren.html#inline-boxes.
//
// Our code is confused about the use of this boolean and confuses it
// with being replaced (see LayoutReplaced about this).
// TODO(jchaffraix): We should inspect callers and clarify their use.
// TODO(jchaffraix): We set this boolean for replaced elements that are
// not inline but shouldn't (crbug.com/567964). This should be enforced.
ADD_BOOLEAN_BITFIELD(isAtomicInlineLevel, IsAtomicInlineLevel);
ADD_BOOLEAN_BITFIELD(horizontalWritingMode, HorizontalWritingMode);
ADD_BOOLEAN_BITFIELD(hasLayer, HasLayer);
// This boolean is set if overflow != 'visible'.
// This means that this object may need an overflow clip to be applied
// at paint time to its visual overflow (see OverflowModel for more
// details). Only set for LayoutBoxes and descendants.
ADD_BOOLEAN_BITFIELD(hasOverflowClip, HasOverflowClip);
// This boolean is the cached value from
// ComputedStyle::hasTransformRelatedProperty.
ADD_BOOLEAN_BITFIELD(hasTransformRelatedProperty,
HasTransformRelatedProperty);
ADD_BOOLEAN_BITFIELD(hasReflection, HasReflection);
// This boolean is used to know if this LayoutObject has one (or more)
// associated CounterNode(s).
// See class comment in LayoutCounter.h for more detail.
ADD_BOOLEAN_BITFIELD(hasCounterNodeMap, HasCounterNodeMap);
ADD_BOOLEAN_BITFIELD(everHadLayout, EverHadLayout);
ADD_BOOLEAN_BITFIELD(ancestorLineBoxDirty, AncestorLineBoxDirty);
ADD_BOOLEAN_BITFIELD(hasPendingResourceUpdate, HasPendingResourceUpdate);
ADD_BOOLEAN_BITFIELD(isInsideFlowThread, IsInsideFlowThread);
ADD_BOOLEAN_BITFIELD(subtreeChangeListenerRegistered,
SubtreeChangeListenerRegistered);
ADD_BOOLEAN_BITFIELD(notifiedOfSubtreeChange, NotifiedOfSubtreeChange);
ADD_BOOLEAN_BITFIELD(consumesSubtreeChangeNotification,
ConsumesSubtreeChangeNotification);
// from LayoutBlock
ADD_BOOLEAN_BITFIELD(childrenInline, ChildrenInline);
// from LayoutBlockFlow
ADD_BOOLEAN_BITFIELD(containsInlineWithOutlineAndContinuation,
ContainsInlineWithOutlineAndContinuation);
// from LayoutInline
ADD_BOOLEAN_BITFIELD(alwaysCreateLineBoxesForLayoutInline,
AlwaysCreateLineBoxesForLayoutInline);
// Background obscuration status of the previous frame.
ADD_BOOLEAN_BITFIELD(previousBackgroundObscured,
PreviousBackgroundObscured);
ADD_BOOLEAN_BITFIELD(isBackgroundAttachmentFixedObject,
IsBackgroundAttachmentFixedObject);
ADD_BOOLEAN_BITFIELD(isScrollAnchorObject, IsScrollAnchorObject);
// Whether changes in this LayoutObject's CSS properties since the last
// layout should suppress any adjustments that would be made during the next
// layout by ScrollAnchor objects for which this LayoutObject is on the path
// from the anchor node to the scroller.
// See http://bit.ly/sanaclap for more info.
ADD_BOOLEAN_BITFIELD(scrollAnchorDisablingStyleChanged,
ScrollAnchorDisablingStyleChanged);
ADD_BOOLEAN_BITFIELD(hasBoxDecorationBackground,
HasBoxDecorationBackground);
private:
// This is the cached 'position' value of this object
// (see ComputedStyle::position).
unsigned m_positionedState : 2; // PositionedState
unsigned m_selectionState : 3; // SelectionState
// Mutable for getter which lazily update this field.
mutable unsigned
m_backgroundObscurationState : 2; // BackgroundObscurationState
unsigned m_fullPaintInvalidationReason : 5; // PaintInvalidationReason
public:
bool isOutOfFlowPositioned() const {
return m_positionedState == IsOutOfFlowPositioned;
}
bool isRelPositioned() const {
return m_positionedState == IsRelativelyPositioned;
}
bool isStickyPositioned() const {
return m_positionedState == IsStickyPositioned;
}
bool isInFlowPositioned() const {
return m_positionedState == IsRelativelyPositioned ||
m_positionedState == IsStickyPositioned;
}
bool isPositioned() const {
return m_positionedState != IsStaticallyPositioned;
}
void setPositionedState(int positionState) {
// This mask maps FixedPosition and AbsolutePosition to
// IsOutOfFlowPositioned, saving one bit.
m_positionedState = static_cast<PositionedState>(positionState & 0x3);
}
void clearPositionedState() { m_positionedState = StaticPosition; }
ALWAYS_INLINE SelectionState getSelectionState() const {
return static_cast<SelectionState>(m_selectionState);
}
ALWAYS_INLINE void setSelectionState(SelectionState selectionState) {
m_selectionState = selectionState;
}
ALWAYS_INLINE BackgroundObscurationState
getBackgroundObscurationState() const {
return static_cast<BackgroundObscurationState>(
m_backgroundObscurationState);
}
ALWAYS_INLINE void setBackgroundObscurationState(
BackgroundObscurationState s) const {
m_backgroundObscurationState = s;
}
PaintInvalidationReason fullPaintInvalidationReason() const {
return static_cast<PaintInvalidationReason>(
m_fullPaintInvalidationReason);
}
void setFullPaintInvalidationReason(PaintInvalidationReason reason) {
m_fullPaintInvalidationReason = reason;
}
};
#undef ADD_BOOLEAN_BITFIELD
LayoutObjectBitfields m_bitfields;
void setSelfNeedsLayout(bool b) { m_bitfields.setSelfNeedsLayout(b); }
void setNeedsPositionedMovementLayout(bool b) {
m_bitfields.setNeedsPositionedMovementLayout(b);
}
void setNormalChildNeedsLayout(bool b) {
m_bitfields.setNormalChildNeedsLayout(b);
}
void setPosChildNeedsLayout(bool b) { m_bitfields.setPosChildNeedsLayout(b); }
void setNeedsSimplifiedNormalFlowLayout(bool b) {
m_bitfields.setNeedsSimplifiedNormalFlowLayout(b);
}
void setSelfNeedsOverflowRecalcAfterStyleChange() {
m_bitfields.setSelfNeedsOverflowRecalcAfterStyleChange(true);
}
void setChildNeedsOverflowRecalcAfterStyleChange() {
m_bitfields.setChildNeedsOverflowRecalcAfterStyleChange(true);
}
private:
// Store state between styleWillChange and styleDidChange
static bool s_affectsParentBlock;
// This stores the paint invalidation rect from the previous frame. This rect
// does *not* account for composited scrolling. See
// adjustInvalidationRectForCompositedScrolling().
LayoutRect m_previousPaintInvalidationRect;
// This stores the position in the paint invalidation backing's coordinate.
// It is used to detect layoutObject shifts that forces a full invalidation.
// This point does *not* account for composited scrolling. See
// adjustInvalidationRectForCompositedScrolling().
LayoutPoint m_previousPositionFromPaintInvalidationBacking;
};
// FIXME: remove this once the layout object lifecycle ASSERTS are no longer
// hit.
class DeprecatedDisableModifyLayoutTreeStructureAsserts {
STACK_ALLOCATED();
WTF_MAKE_NONCOPYABLE(DeprecatedDisableModifyLayoutTreeStructureAsserts);
public:
DeprecatedDisableModifyLayoutTreeStructureAsserts();
static bool canModifyLayoutTreeStateInAnyState();
private:
AutoReset<bool> m_disabler;
};
// Allow equality comparisons of LayoutObjects by reference or pointer,
// interchangeably.
DEFINE_COMPARISON_OPERATORS_WITH_REFERENCES(LayoutObject)
inline bool LayoutObject::documentBeingDestroyed() const {
return document().lifecycle().state() >= DocumentLifecycle::Stopping;
}
inline bool LayoutObject::isBeforeContent() const {
if (style()->styleType() != PseudoIdBefore)
return false;
// Text nodes don't have their own styles, so ignore the style on a text node.
if (isText() && !isBR())
return false;
return true;
}
inline bool LayoutObject::isAfterContent() const {
if (style()->styleType() != PseudoIdAfter)
return false;
// Text nodes don't have their own styles, so ignore the style on a text node.
if (isText() && !isBR())
return false;
return true;
}
inline bool LayoutObject::isBeforeOrAfterContent() const {
return isBeforeContent() || isAfterContent();
}
// setNeedsLayout() won't cause full paint invalidations as
// setNeedsLayoutAndFullPaintInvalidation() does. Otherwise the two methods are
// identical.
inline void LayoutObject::setNeedsLayout(
LayoutInvalidationReasonForTracing reason,
MarkingBehavior markParents,
SubtreeLayoutScope* layouter) {
ASSERT(!isSetNeedsLayoutForbidden());
bool alreadyNeededLayout = m_bitfields.selfNeedsLayout();
setSelfNeedsLayout(true);
if (!alreadyNeededLayout) {
TRACE_EVENT_INSTANT1(
TRACE_DISABLED_BY_DEFAULT("devtools.timeline.invalidationTracking"),
"LayoutInvalidationTracking", TRACE_EVENT_SCOPE_THREAD, "data",
InspectorLayoutInvalidationTrackingEvent::data(this, reason));
if (markParents == MarkContainerChain &&
(!layouter || layouter->root() != this))
markContainerChainForLayout(!layouter, layouter);
}
}
inline void LayoutObject::setNeedsLayoutAndFullPaintInvalidation(
LayoutInvalidationReasonForTracing reason,
MarkingBehavior markParents,
SubtreeLayoutScope* layouter) {
setNeedsLayout(reason, markParents, layouter);
setShouldDoFullPaintInvalidation();
}
inline void LayoutObject::clearNeedsLayout() {
// Set flags for later stages/cycles.
setEverHadLayout();
setMayNeedPaintInvalidation();
// Clear needsLayout flags.
setSelfNeedsLayout(false);
setPosChildNeedsLayout(false);
setNeedsSimplifiedNormalFlowLayout(false);
setNormalChildNeedsLayout(false);
setNeedsPositionedMovementLayout(false);
setAncestorLineBoxDirty(false);
#if ENABLE(ASSERT)
checkBlockPositionedObjectsNeedLayout();
#endif
setScrollAnchorDisablingStyleChanged(false);
}
inline void LayoutObject::setChildNeedsLayout(MarkingBehavior markParents,
SubtreeLayoutScope* layouter) {
ASSERT(!isSetNeedsLayoutForbidden());
bool alreadyNeededLayout = normalChildNeedsLayout();
setNormalChildNeedsLayout(true);
// FIXME: Replace MarkOnlyThis with the SubtreeLayoutScope code path and
// remove the MarkingBehavior argument entirely.
if (!alreadyNeededLayout && markParents == MarkContainerChain &&
(!layouter || layouter->root() != this))
markContainerChainForLayout(!layouter, layouter);
}
inline void LayoutObject::setNeedsPositionedMovementLayout() {
bool alreadyNeededLayout = needsPositionedMovementLayout();
setNeedsPositionedMovementLayout(true);
ASSERT(!isSetNeedsLayoutForbidden());
if (!alreadyNeededLayout)
markContainerChainForLayout();
}
inline bool LayoutObject::preservesNewline() const {
if (isSVGInlineText())
return false;
return style()->preserveNewline();
}
inline bool LayoutObject::layerCreationAllowedForSubtree() const {
LayoutObject* parentLayoutObject = parent();
while (parentLayoutObject) {
if (parentLayoutObject->isSVGHiddenContainer())
return false;
parentLayoutObject = parentLayoutObject->parent();
}
return true;
}
inline void LayoutObject::setSelectionStateIfNeeded(SelectionState state) {
if (getSelectionState() == state)
return;
setSelectionState(state);
}
inline void LayoutObject::setHasBoxDecorationBackground(bool b) {
if (b == m_bitfields.hasBoxDecorationBackground())
return;
m_bitfields.setHasBoxDecorationBackground(b);
invalidateBackgroundObscurationStatus();
}
inline void LayoutObject::invalidateBackgroundObscurationStatus() {
m_bitfields.setBackgroundObscurationState(BackgroundObscurationStatusInvalid);
}
DISABLE_CFI_PERF
inline bool LayoutObject::backgroundIsKnownToBeObscured() const {
if (m_bitfields.getBackgroundObscurationState() ==
BackgroundObscurationStatusInvalid) {
BackgroundObscurationState state = computeBackgroundIsKnownToBeObscured()
? BackgroundKnownToBeObscured
: BackgroundMayBeVisible;
m_bitfields.setBackgroundObscurationState(state);
}
return m_bitfields.getBackgroundObscurationState() ==
BackgroundKnownToBeObscured;
}
inline void makeMatrixRenderable(TransformationMatrix& matrix,
bool has3DRendering) {
if (!has3DRendering)
matrix.makeAffine();
}
inline int adjustForAbsoluteZoom(int value, LayoutObject* layoutObject) {
return adjustForAbsoluteZoom(value, layoutObject->style());
}
inline LayoutUnit adjustLayoutUnitForAbsoluteZoom(LayoutUnit value,
LayoutObject& layoutObject) {
ASSERT(layoutObject.style());
return adjustLayoutUnitForAbsoluteZoom(value, *layoutObject.style());
}
inline void adjustFloatQuadForAbsoluteZoom(FloatQuad& quad,
LayoutObject& layoutObject) {
float zoom = layoutObject.style()->effectiveZoom();
if (zoom != 1)
quad.scale(1 / zoom, 1 / zoom);
}
inline void adjustFloatRectForAbsoluteZoom(FloatRect& rect,
LayoutObject& layoutObject) {
float zoom = layoutObject.style()->effectiveZoom();
if (zoom != 1)
rect.scale(1 / zoom, 1 / zoom);
}
inline double adjustScrollForAbsoluteZoom(double value,
LayoutObject& layoutObject) {
ASSERT(layoutObject.style());
return adjustScrollForAbsoluteZoom(value, *layoutObject.style());
}
#define DEFINE_LAYOUT_OBJECT_TYPE_CASTS(thisType, predicate) \
DEFINE_TYPE_CASTS(thisType, LayoutObject, object, object->predicate, \
object.predicate)
} // namespace blink
#ifndef NDEBUG
// Outside the blink namespace for ease of invocation from gdb.
CORE_EXPORT void showTree(const blink::LayoutObject*);
CORE_EXPORT void showLineTree(const blink::LayoutObject*);
CORE_EXPORT void showLayoutTree(const blink::LayoutObject* object1);
// We don't make object2 an optional parameter so that showLayoutTree
// can be called from gdb easily.
CORE_EXPORT void showLayoutTree(const blink::LayoutObject* object1,
const blink::LayoutObject* object2);
#endif
#endif // LayoutObject_h