blob: 8437fbf3c60668867047b41c1ab62dfe6f0cc191 [file] [log] [blame]
/*
* Copyright (C) 2011 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "wtf/HashMap.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "wtf/PassRefPtr.h"
#include "wtf/PtrUtil.h"
#include "wtf/RefCounted.h"
#include "wtf/Vector.h"
#include <memory>
namespace WTF {
namespace {
using IntHashMap = HashMap<int, int>;
TEST(HashMapTest, IteratorComparison) {
IntHashMap map;
map.add(1, 2);
EXPECT_TRUE(map.begin() != map.end());
EXPECT_FALSE(map.begin() == map.end());
IntHashMap::const_iterator begin = map.begin();
EXPECT_TRUE(begin == map.begin());
EXPECT_TRUE(map.begin() == begin);
EXPECT_TRUE(begin != map.end());
EXPECT_TRUE(map.end() != begin);
EXPECT_FALSE(begin != map.begin());
EXPECT_FALSE(map.begin() != begin);
EXPECT_FALSE(begin == map.end());
EXPECT_FALSE(map.end() == begin);
}
struct TestDoubleHashTraits : HashTraits<double> {
static const unsigned minimumTableSize = 8;
};
using DoubleHashMap =
HashMap<double, int64_t, DefaultHash<double>::Hash, TestDoubleHashTraits>;
int bucketForKey(double key) {
return DefaultHash<double>::Hash::hash(key) &
(TestDoubleHashTraits::minimumTableSize - 1);
}
TEST(HashMapTest, DoubleHashCollisions) {
// The "clobber" key here is one that ends up stealing the bucket that the -0
// key originally wants to be in. This makes the 0 and -0 keys collide and
// the test then fails unless the FloatHash::equals() implementation can
// distinguish them.
const double clobberKey = 6;
const double zeroKey = 0;
const double negativeZeroKey = -zeroKey;
DoubleHashMap map;
map.add(clobberKey, 1);
map.add(zeroKey, 2);
map.add(negativeZeroKey, 3);
EXPECT_EQ(bucketForKey(clobberKey), bucketForKey(negativeZeroKey));
EXPECT_EQ(1, map.get(clobberKey));
EXPECT_EQ(2, map.get(zeroKey));
EXPECT_EQ(3, map.get(negativeZeroKey));
}
class DestructCounter {
public:
explicit DestructCounter(int i, int* destructNumber)
: m_i(i), m_destructNumber(destructNumber) {}
~DestructCounter() { ++(*m_destructNumber); }
int get() const { return m_i; }
private:
int m_i;
int* m_destructNumber;
};
using OwnPtrHashMap = HashMap<int, std::unique_ptr<DestructCounter>>;
TEST(HashMapTest, OwnPtrAsValue) {
int destructNumber = 0;
OwnPtrHashMap map;
map.add(1, wrapUnique(new DestructCounter(1, &destructNumber)));
map.add(2, wrapUnique(new DestructCounter(2, &destructNumber)));
DestructCounter* counter1 = map.get(1);
EXPECT_EQ(1, counter1->get());
DestructCounter* counter2 = map.get(2);
EXPECT_EQ(2, counter2->get());
EXPECT_EQ(0, destructNumber);
for (OwnPtrHashMap::iterator iter = map.begin(); iter != map.end(); ++iter) {
std::unique_ptr<DestructCounter>& ownCounter = iter->value;
EXPECT_EQ(iter->key, ownCounter->get());
}
ASSERT_EQ(0, destructNumber);
std::unique_ptr<DestructCounter> ownCounter1 = map.take(1);
EXPECT_EQ(ownCounter1.get(), counter1);
EXPECT_FALSE(map.contains(1));
EXPECT_EQ(0, destructNumber);
map.remove(2);
EXPECT_FALSE(map.contains(2));
EXPECT_EQ(0UL, map.size());
EXPECT_EQ(1, destructNumber);
ownCounter1.reset();
EXPECT_EQ(2, destructNumber);
}
class DummyRefCounted : public RefCounted<DummyRefCounted> {
public:
DummyRefCounted(bool& isDeleted) : m_isDeleted(isDeleted) {
m_isDeleted = false;
}
~DummyRefCounted() {
ASSERT(!m_isDeleted);
m_isDeleted = true;
}
void ref() {
ASSERT(!m_isDeleted);
WTF::RefCounted<DummyRefCounted>::ref();
++m_refInvokesCount;
}
void deref() {
ASSERT(!m_isDeleted);
WTF::RefCounted<DummyRefCounted>::deref();
}
static int m_refInvokesCount;
private:
bool& m_isDeleted;
};
int DummyRefCounted::m_refInvokesCount = 0;
TEST(HashMapTest, RefPtrAsKey) {
bool isDeleted = false;
DummyRefCounted::m_refInvokesCount = 0;
RefPtr<DummyRefCounted> ptr = adoptRef(new DummyRefCounted(isDeleted));
EXPECT_EQ(0, DummyRefCounted::m_refInvokesCount);
HashMap<RefPtr<DummyRefCounted>, int> map;
map.add(ptr, 1);
// Referenced only once (to store a copy in the container).
EXPECT_EQ(1, DummyRefCounted::m_refInvokesCount);
EXPECT_EQ(1, map.get(ptr));
DummyRefCounted* rawPtr = ptr.get();
EXPECT_TRUE(map.contains(rawPtr));
EXPECT_NE(map.end(), map.find(rawPtr));
EXPECT_TRUE(map.contains(ptr));
EXPECT_NE(map.end(), map.find(ptr));
EXPECT_EQ(1, DummyRefCounted::m_refInvokesCount);
ptr.clear();
EXPECT_FALSE(isDeleted);
map.remove(rawPtr);
EXPECT_EQ(1, DummyRefCounted::m_refInvokesCount);
EXPECT_TRUE(isDeleted);
EXPECT_TRUE(map.isEmpty());
}
TEST(HashMaptest, RemoveAdd) {
DummyRefCounted::m_refInvokesCount = 0;
bool isDeleted = false;
typedef HashMap<int, RefPtr<DummyRefCounted>> Map;
Map map;
RefPtr<DummyRefCounted> ptr = adoptRef(new DummyRefCounted(isDeleted));
EXPECT_EQ(0, DummyRefCounted::m_refInvokesCount);
map.add(1, ptr);
// Referenced only once (to store a copy in the container).
EXPECT_EQ(1, DummyRefCounted::m_refInvokesCount);
EXPECT_EQ(ptr, map.get(1));
ptr.clear();
EXPECT_FALSE(isDeleted);
map.remove(1);
EXPECT_EQ(1, DummyRefCounted::m_refInvokesCount);
EXPECT_TRUE(isDeleted);
EXPECT_TRUE(map.isEmpty());
// Add and remove until the deleted slot is reused.
for (int i = 1; i < 100; i++) {
bool isDeleted2 = false;
RefPtr<DummyRefCounted> ptr2 = adoptRef(new DummyRefCounted(isDeleted2));
map.add(i, ptr2);
EXPECT_FALSE(isDeleted2);
ptr2.clear();
EXPECT_FALSE(isDeleted2);
map.remove(i);
EXPECT_TRUE(isDeleted2);
}
}
class SimpleClass {
public:
explicit SimpleClass(int v) : m_v(v) {}
int v() { return m_v; }
private:
int m_v;
};
using IntSimpleMap = HashMap<int, std::unique_ptr<SimpleClass>>;
TEST(HashMapTest, AddResult) {
IntSimpleMap map;
IntSimpleMap::AddResult result = map.add(1, nullptr);
EXPECT_TRUE(result.isNewEntry);
EXPECT_EQ(1, result.storedValue->key);
EXPECT_EQ(0, result.storedValue->value.get());
SimpleClass* simple1 = new SimpleClass(1);
result.storedValue->value = wrapUnique(simple1);
EXPECT_EQ(simple1, map.get(1));
IntSimpleMap::AddResult result2 = map.add(1, wrapUnique(new SimpleClass(2)));
EXPECT_FALSE(result2.isNewEntry);
EXPECT_EQ(1, result.storedValue->key);
EXPECT_EQ(1, result.storedValue->value->v());
EXPECT_EQ(1, map.get(1)->v());
}
TEST(HashMapTest, AddResultVectorValue) {
using IntVectorMap = HashMap<int, Vector<int>>;
IntVectorMap map;
IntVectorMap::AddResult result = map.add(1, Vector<int>());
EXPECT_TRUE(result.isNewEntry);
EXPECT_EQ(1, result.storedValue->key);
EXPECT_EQ(0u, result.storedValue->value.size());
result.storedValue->value.append(11);
EXPECT_EQ(1u, map.find(1)->value.size());
EXPECT_EQ(11, map.find(1)->value.first());
IntVectorMap::AddResult result2 = map.add(1, Vector<int>());
EXPECT_FALSE(result2.isNewEntry);
EXPECT_EQ(1, result.storedValue->key);
EXPECT_EQ(1u, result.storedValue->value.size());
EXPECT_EQ(11, result.storedValue->value.first());
EXPECT_EQ(11, map.find(1)->value.first());
}
class InstanceCounter {
public:
InstanceCounter() { ++counter; }
InstanceCounter(const InstanceCounter& another) { ++counter; }
~InstanceCounter() { --counter; }
static int counter;
};
int InstanceCounter::counter = 0;
TEST(HashMapTest, ValueTypeDestructed) {
InstanceCounter::counter = 0;
HashMap<int, InstanceCounter> map;
map.set(1, InstanceCounter());
map.clear();
EXPECT_EQ(0, InstanceCounter::counter);
}
class MoveOnly {
public:
// kEmpty and kDeleted have special meanings when MoveOnly is used as the key
// of a hash table.
enum { kEmpty = 0, kDeleted = -1, kMovedOut = -2 };
explicit MoveOnly(int value = kEmpty) : m_value(value) {}
MoveOnly(MoveOnly&& other) : m_value(other.m_value) {
other.m_value = kMovedOut;
}
MoveOnly& operator=(MoveOnly&& other) {
m_value = other.m_value;
other.m_value = kMovedOut;
return *this;
}
int value() const { return m_value; }
private:
MoveOnly(const MoveOnly&) = delete;
MoveOnly& operator=(const MoveOnly&) = delete;
int m_value;
};
struct MoveOnlyHashTraits : public GenericHashTraits<MoveOnly> {
// This is actually true, but we pretend that it's false to disable the
// optimization.
static const bool emptyValueIsZero = false;
static const bool hasIsEmptyValueFunction = true;
static bool isEmptyValue(const MoveOnly& value) {
return value.value() == MoveOnly::kEmpty;
}
static void constructDeletedValue(MoveOnly& slot, bool) {
slot = MoveOnly(MoveOnly::kDeleted);
}
static bool isDeletedValue(const MoveOnly& value) {
return value.value() == MoveOnly::kDeleted;
}
};
struct MoveOnlyHash {
static unsigned hash(const MoveOnly& value) {
return DefaultHash<int>::Hash::hash(value.value());
}
static bool equal(const MoveOnly& left, const MoveOnly& right) {
return DefaultHash<int>::Hash::equal(left.value(), right.value());
}
static const bool safeToCompareToEmptyOrDeleted = true;
};
} // anonymous namespace
template <>
struct HashTraits<MoveOnly> : public MoveOnlyHashTraits {};
template <>
struct DefaultHash<MoveOnly> {
using Hash = MoveOnlyHash;
};
namespace {
TEST(HashMapTest, MoveOnlyValueType) {
using TheMap = HashMap<int, MoveOnly>;
TheMap map;
{
TheMap::AddResult addResult = map.add(1, MoveOnly(10));
EXPECT_TRUE(addResult.isNewEntry);
EXPECT_EQ(1, addResult.storedValue->key);
EXPECT_EQ(10, addResult.storedValue->value.value());
}
auto iter = map.find(1);
ASSERT_TRUE(iter != map.end());
EXPECT_EQ(1, iter->key);
EXPECT_EQ(10, iter->value.value());
iter = map.find(2);
EXPECT_TRUE(iter == map.end());
// Try to add more to trigger rehashing.
for (int i = 2; i < 32; ++i) {
TheMap::AddResult addResult = map.add(i, MoveOnly(i * 10));
EXPECT_TRUE(addResult.isNewEntry);
EXPECT_EQ(i, addResult.storedValue->key);
EXPECT_EQ(i * 10, addResult.storedValue->value.value());
}
iter = map.find(1);
ASSERT_TRUE(iter != map.end());
EXPECT_EQ(1, iter->key);
EXPECT_EQ(10, iter->value.value());
iter = map.find(7);
ASSERT_TRUE(iter != map.end());
EXPECT_EQ(7, iter->key);
EXPECT_EQ(70, iter->value.value());
{
TheMap::AddResult addResult = map.set(9, MoveOnly(999));
EXPECT_FALSE(addResult.isNewEntry);
EXPECT_EQ(9, addResult.storedValue->key);
EXPECT_EQ(999, addResult.storedValue->value.value());
}
map.remove(11);
iter = map.find(11);
EXPECT_TRUE(iter == map.end());
MoveOnly oneThirty(map.take(13));
EXPECT_EQ(130, oneThirty.value());
iter = map.find(13);
EXPECT_TRUE(iter == map.end());
map.clear();
}
TEST(HashMapTest, MoveOnlyKeyType) {
// The content of this test is similar to the test above, except that the
// types of key and value are swapped.
using TheMap = HashMap<MoveOnly, int>;
TheMap map;
{
TheMap::AddResult addResult = map.add(MoveOnly(1), 10);
EXPECT_TRUE(addResult.isNewEntry);
EXPECT_EQ(1, addResult.storedValue->key.value());
EXPECT_EQ(10, addResult.storedValue->value);
}
auto iter = map.find(MoveOnly(1));
ASSERT_TRUE(iter != map.end());
EXPECT_EQ(1, iter->key.value());
EXPECT_EQ(10, iter->value);
iter = map.find(MoveOnly(2));
EXPECT_TRUE(iter == map.end());
for (int i = 2; i < 32; ++i) {
TheMap::AddResult addResult = map.add(MoveOnly(i), i * 10);
EXPECT_TRUE(addResult.isNewEntry);
EXPECT_EQ(i, addResult.storedValue->key.value());
EXPECT_EQ(i * 10, addResult.storedValue->value);
}
iter = map.find(MoveOnly(1));
ASSERT_TRUE(iter != map.end());
EXPECT_EQ(1, iter->key.value());
EXPECT_EQ(10, iter->value);
iter = map.find(MoveOnly(7));
ASSERT_TRUE(iter != map.end());
EXPECT_EQ(7, iter->key.value());
EXPECT_EQ(70, iter->value);
{
TheMap::AddResult addResult = map.set(MoveOnly(9), 999);
EXPECT_FALSE(addResult.isNewEntry);
EXPECT_EQ(9, addResult.storedValue->key.value());
EXPECT_EQ(999, addResult.storedValue->value);
}
map.remove(MoveOnly(11));
iter = map.find(MoveOnly(11));
EXPECT_TRUE(iter == map.end());
int oneThirty = map.take(MoveOnly(13));
EXPECT_EQ(130, oneThirty);
iter = map.find(MoveOnly(13));
EXPECT_TRUE(iter == map.end());
map.clear();
}
class CountCopy final {
public:
CountCopy() : m_counter(nullptr) {}
explicit CountCopy(int& counter) : m_counter(&counter) {}
CountCopy(const CountCopy& other) : m_counter(other.m_counter) {
if (m_counter)
++*m_counter;
}
CountCopy& operator=(const CountCopy& other) {
m_counter = other.m_counter;
if (m_counter)
++*m_counter;
return *this;
}
private:
int* m_counter;
};
TEST(HashMapTest, MoveShouldNotMakeCopy) {
HashMap<int, CountCopy> map;
int counter = 0;
map.add(1, CountCopy(counter));
HashMap<int, CountCopy> other(map);
counter = 0;
map = std::move(other);
EXPECT_EQ(0, counter);
counter = 0;
HashMap<int, CountCopy> yetAnother(std::move(map));
EXPECT_EQ(0, counter);
}
TEST(HashMapTest, UniquePtrAsKey) {
using Pointer = std::unique_ptr<int>;
using Map = HashMap<Pointer, int>;
Map map;
int* onePointer = new int(1);
{
Map::AddResult addResult = map.add(Pointer(onePointer), 1);
EXPECT_TRUE(addResult.isNewEntry);
EXPECT_EQ(onePointer, addResult.storedValue->key.get());
EXPECT_EQ(1, *addResult.storedValue->key);
EXPECT_EQ(1, addResult.storedValue->value);
}
auto iter = map.find(onePointer);
ASSERT_TRUE(iter != map.end());
EXPECT_EQ(onePointer, iter->key.get());
EXPECT_EQ(1, iter->value);
Pointer nonexistent(new int(42));
iter = map.find(nonexistent.get());
EXPECT_TRUE(iter == map.end());
// Insert more to cause a rehash.
for (int i = 2; i < 32; ++i) {
Map::AddResult addResult = map.add(Pointer(new int(i)), i);
EXPECT_TRUE(addResult.isNewEntry);
EXPECT_EQ(i, *addResult.storedValue->key);
EXPECT_EQ(i, addResult.storedValue->value);
}
iter = map.find(onePointer);
ASSERT_TRUE(iter != map.end());
EXPECT_EQ(onePointer, iter->key.get());
EXPECT_EQ(1, iter->value);
EXPECT_EQ(1, map.take(onePointer));
// From now on, |onePointer| is a dangling pointer.
iter = map.find(onePointer);
EXPECT_TRUE(iter == map.end());
}
TEST(HashMapTest, UniquePtrAsValue) {
using Pointer = std::unique_ptr<int>;
using Map = HashMap<int, Pointer>;
Map map;
{
Map::AddResult addResult = map.add(1, Pointer(new int(1)));
EXPECT_TRUE(addResult.isNewEntry);
EXPECT_EQ(1, addResult.storedValue->key);
EXPECT_EQ(1, *addResult.storedValue->value);
}
auto iter = map.find(1);
ASSERT_TRUE(iter != map.end());
EXPECT_EQ(1, iter->key);
EXPECT_EQ(1, *iter->value);
int* onePointer = map.get(1);
EXPECT_TRUE(onePointer);
EXPECT_EQ(1, *onePointer);
iter = map.find(42);
EXPECT_TRUE(iter == map.end());
for (int i = 2; i < 32; ++i) {
Map::AddResult addResult = map.add(i, Pointer(new int(i)));
EXPECT_TRUE(addResult.isNewEntry);
EXPECT_EQ(i, addResult.storedValue->key);
EXPECT_EQ(i, *addResult.storedValue->value);
}
iter = map.find(1);
ASSERT_TRUE(iter != map.end());
EXPECT_EQ(1, iter->key);
EXPECT_EQ(1, *iter->value);
Pointer one(map.take(1));
ASSERT_TRUE(one);
EXPECT_EQ(1, *one);
Pointer empty(map.take(42));
EXPECT_TRUE(!empty);
iter = map.find(1);
EXPECT_TRUE(iter == map.end());
{
Map::AddResult addResult = map.add(1, std::move(one));
EXPECT_TRUE(addResult.isNewEntry);
EXPECT_EQ(1, addResult.storedValue->key);
EXPECT_EQ(1, *addResult.storedValue->value);
}
}
TEST(HashMapTest, MoveOnlyPairKeyType) {
using Pair = std::pair<MoveOnly, int>;
using TheMap = HashMap<Pair, int>;
TheMap map;
{
TheMap::AddResult addResult = map.add(Pair(MoveOnly(1), -1), 10);
EXPECT_TRUE(addResult.isNewEntry);
EXPECT_EQ(1, addResult.storedValue->key.first.value());
EXPECT_EQ(-1, addResult.storedValue->key.second);
EXPECT_EQ(10, addResult.storedValue->value);
}
auto iter = map.find(Pair(MoveOnly(1), -1));
ASSERT_TRUE(iter != map.end());
EXPECT_EQ(1, iter->key.first.value());
EXPECT_EQ(-1, iter->key.second);
EXPECT_EQ(10, iter->value);
iter = map.find(Pair(MoveOnly(1), 0));
EXPECT_TRUE(iter == map.end());
for (int i = 2; i < 32; ++i) {
TheMap::AddResult addResult = map.add(Pair(MoveOnly(i), -i), i * 10);
EXPECT_TRUE(addResult.isNewEntry);
EXPECT_EQ(i, addResult.storedValue->key.first.value());
EXPECT_EQ(-i, addResult.storedValue->key.second);
EXPECT_EQ(i * 10, addResult.storedValue->value);
}
iter = map.find(Pair(MoveOnly(1), -1));
ASSERT_TRUE(iter != map.end());
EXPECT_EQ(1, iter->key.first.value());
EXPECT_EQ(-1, iter->key.second);
EXPECT_EQ(10, iter->value);
iter = map.find(Pair(MoveOnly(7), -7));
ASSERT_TRUE(iter != map.end());
EXPECT_EQ(7, iter->key.first.value());
EXPECT_EQ(-7, iter->key.second);
EXPECT_EQ(70, iter->value);
{
TheMap::AddResult addResult = map.set(Pair(MoveOnly(9), -9), 999);
EXPECT_FALSE(addResult.isNewEntry);
EXPECT_EQ(9, addResult.storedValue->key.first.value());
EXPECT_EQ(-9, addResult.storedValue->key.second);
EXPECT_EQ(999, addResult.storedValue->value);
}
map.remove(Pair(MoveOnly(11), -11));
iter = map.find(Pair(MoveOnly(11), -11));
EXPECT_TRUE(iter == map.end());
int oneThirty = map.take(Pair(MoveOnly(13), -13));
EXPECT_EQ(130, oneThirty);
iter = map.find(Pair(MoveOnly(13), -13));
EXPECT_TRUE(iter == map.end());
map.clear();
}
} // anonymous namespace
} // namespace WTF