blob: c939359fe0d5e68b8ff1a3beb8e001dd22d0b083 [file] [log] [blame]
/*
* Copyright (C) 2005, 2006, 2007, 2008, 2011, 2012 Apple Inc. All rights
* reserved.
* Copyright (C) 2011, Benjamin Poulain <ikipou@gmail.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#ifndef WTF_ListHashSet_h
#define WTF_ListHashSet_h
#include "wtf/HashSet.h"
#include "wtf/allocator/PartitionAllocator.h"
#include <memory>
namespace WTF {
// ListHashSet: Just like HashSet, this class provides a Set interface - a
// collection of unique objects with O(1) insertion, removal and test for
// containership. However, it also has an order - iterating it will always give
// back values in the order in which they are added.
// Unlike iteration of most WTF Hash data structures, iteration is guaranteed
// safe against mutation of the ListHashSet, except for removal of the item
// currently pointed to by a given iterator.
template <typename Value,
size_t inlineCapacity,
typename HashFunctions,
typename Allocator>
class ListHashSet;
template <typename Set>
class ListHashSetIterator;
template <typename Set>
class ListHashSetConstIterator;
template <typename Set>
class ListHashSetReverseIterator;
template <typename Set>
class ListHashSetConstReverseIterator;
template <typename ValueArg>
class ListHashSetNodeBase;
template <typename ValueArg, typename Allocator>
class ListHashSetNode;
template <typename ValueArg, size_t inlineCapacity>
struct ListHashSetAllocator;
template <typename HashArg>
struct ListHashSetNodeHashFunctions;
template <typename HashArg>
struct ListHashSetTranslator;
// Note that for a ListHashSet you cannot specify the HashTraits as a template
// argument. It uses the default hash traits for the ValueArg type.
template <typename ValueArg,
size_t inlineCapacity = 256,
typename HashArg = typename DefaultHash<ValueArg>::Hash,
typename AllocatorArg =
ListHashSetAllocator<ValueArg, inlineCapacity>>
class ListHashSet
: public ConditionalDestructor<
ListHashSet<ValueArg, inlineCapacity, HashArg, AllocatorArg>,
AllocatorArg::isGarbageCollected> {
typedef AllocatorArg Allocator;
WTF_USE_ALLOCATOR(ListHashSet, Allocator);
typedef ListHashSetNode<ValueArg, Allocator> Node;
typedef HashTraits<Node*> NodeTraits;
typedef ListHashSetNodeHashFunctions<HashArg> NodeHash;
typedef ListHashSetTranslator<HashArg> BaseTranslator;
typedef HashTable<Node*,
Node*,
IdentityExtractor,
NodeHash,
NodeTraits,
NodeTraits,
typename Allocator::TableAllocator>
ImplType;
typedef HashTableIterator<Node*,
Node*,
IdentityExtractor,
NodeHash,
NodeTraits,
NodeTraits,
typename Allocator::TableAllocator>
ImplTypeIterator;
typedef HashTableConstIterator<Node*,
Node*,
IdentityExtractor,
NodeHash,
NodeTraits,
NodeTraits,
typename Allocator::TableAllocator>
ImplTypeConstIterator;
typedef HashArg HashFunctions;
public:
typedef ValueArg ValueType;
typedef HashTraits<ValueType> ValueTraits;
typedef typename ValueTraits::PeekInType ValuePeekInType;
typedef ListHashSetIterator<ListHashSet> iterator;
typedef ListHashSetConstIterator<ListHashSet> const_iterator;
friend class ListHashSetIterator<ListHashSet>;
friend class ListHashSetConstIterator<ListHashSet>;
typedef ListHashSetReverseIterator<ListHashSet> reverse_iterator;
typedef ListHashSetConstReverseIterator<ListHashSet> const_reverse_iterator;
friend class ListHashSetReverseIterator<ListHashSet>;
friend class ListHashSetConstReverseIterator<ListHashSet>;
struct AddResult final {
STACK_ALLOCATED();
friend class ListHashSet<ValueArg, inlineCapacity, HashArg, AllocatorArg>;
AddResult(Node* node, bool isNewEntry)
: storedValue(&node->m_value), isNewEntry(isNewEntry), m_node(node) {}
ValueType* storedValue;
bool isNewEntry;
private:
Node* m_node;
};
ListHashSet();
ListHashSet(const ListHashSet&);
ListHashSet(ListHashSet&&);
ListHashSet& operator=(const ListHashSet&);
ListHashSet& operator=(ListHashSet&&);
void finalize();
void swap(ListHashSet&);
unsigned size() const { return m_impl.size(); }
unsigned capacity() const { return m_impl.capacity(); }
bool isEmpty() const { return m_impl.isEmpty(); }
iterator begin() { return makeIterator(m_head); }
iterator end() { return makeIterator(0); }
const_iterator begin() const { return makeConstIterator(m_head); }
const_iterator end() const { return makeConstIterator(0); }
reverse_iterator rbegin() { return makeReverseIterator(m_tail); }
reverse_iterator rend() { return makeReverseIterator(0); }
const_reverse_iterator rbegin() const {
return makeConstReverseIterator(m_tail);
}
const_reverse_iterator rend() const { return makeConstReverseIterator(0); }
ValueType& first();
const ValueType& first() const;
void removeFirst();
ValueType& last();
const ValueType& last() const;
void removeLast();
iterator find(ValuePeekInType);
const_iterator find(ValuePeekInType) const;
bool contains(ValuePeekInType) const;
// An alternate version of find() that finds the object by hashing and
// comparing with some other type, to avoid the cost of type conversion.
// The HashTranslator interface is defined in HashSet.
template <typename HashTranslator, typename T>
iterator find(const T&);
template <typename HashTranslator, typename T>
const_iterator find(const T&) const;
template <typename HashTranslator, typename T>
bool contains(const T&) const;
// The return value of add is a pair of a pointer to the stored value, and a
// bool that is true if an new entry was added.
template <typename IncomingValueType>
AddResult add(IncomingValueType&&);
// Same as add() except that the return value is an iterator. Useful in
// cases where it's needed to have the same return value as find() and where
// it's not possible to use a pointer to the storedValue.
template <typename IncomingValueType>
iterator addReturnIterator(IncomingValueType&&);
// Add the value to the end of the collection. If the value was already in
// the list, it is moved to the end.
template <typename IncomingValueType>
AddResult appendOrMoveToLast(IncomingValueType&&);
// Add the value to the beginning of the collection. If the value was
// already in the list, it is moved to the beginning.
template <typename IncomingValueType>
AddResult prependOrMoveToFirst(IncomingValueType&&);
template <typename IncomingValueType>
AddResult insertBefore(ValuePeekInType beforeValue,
IncomingValueType&& newValue);
template <typename IncomingValueType>
AddResult insertBefore(iterator, IncomingValueType&&);
void remove(ValuePeekInType value) { return remove(find(value)); }
void remove(iterator);
void clear();
template <typename Collection>
void removeAll(const Collection& other) {
WTF::removeAll(*this, other);
}
ValueType take(iterator);
ValueType take(ValuePeekInType);
ValueType takeFirst();
template <typename VisitorDispatcher>
void trace(VisitorDispatcher);
private:
void unlink(Node*);
void unlinkAndDelete(Node*);
void appendNode(Node*);
void prependNode(Node*);
void insertNodeBefore(Node* beforeNode, Node* newNode);
void deleteAllNodes();
Allocator* getAllocator() const { return m_allocatorProvider.get(); }
void createAllocatorIfNeeded() {
m_allocatorProvider.createAllocatorIfNeeded();
}
void deallocate(Node* node) const { m_allocatorProvider.deallocate(node); }
iterator makeIterator(Node* position) { return iterator(this, position); }
const_iterator makeConstIterator(Node* position) const {
return const_iterator(this, position);
}
reverse_iterator makeReverseIterator(Node* position) {
return reverse_iterator(this, position);
}
const_reverse_iterator makeConstReverseIterator(Node* position) const {
return const_reverse_iterator(this, position);
}
ImplType m_impl;
Node* m_head;
Node* m_tail;
typename Allocator::AllocatorProvider m_allocatorProvider;
};
// ListHashSetNode has this base class to hold the members because the MSVC
// compiler otherwise gets into circular template dependencies when trying to do
// sizeof on a node.
template <typename ValueArg>
class ListHashSetNodeBase {
DISALLOW_NEW();
protected:
template <typename U>
explicit ListHashSetNodeBase(U&& value)
: m_value(std::forward<U>(value)),
m_prev(nullptr),
m_next(nullptr)
#if ENABLE(ASSERT)
,
m_isAllocated(true)
#endif
{
}
public:
ValueArg m_value;
ListHashSetNodeBase* m_prev;
ListHashSetNodeBase* m_next;
#if ENABLE(ASSERT)
bool m_isAllocated;
#endif
};
// This allocator is only used for non-Heap ListHashSets.
template <typename ValueArg, size_t inlineCapacity>
struct ListHashSetAllocator : public PartitionAllocator {
typedef PartitionAllocator TableAllocator;
typedef ListHashSetNode<ValueArg, ListHashSetAllocator> Node;
typedef ListHashSetNodeBase<ValueArg> NodeBase;
class AllocatorProvider {
DISALLOW_NEW();
public:
AllocatorProvider() : m_allocator(nullptr) {}
void createAllocatorIfNeeded() {
if (!m_allocator)
m_allocator = new ListHashSetAllocator;
}
void releaseAllocator() {
delete m_allocator;
m_allocator = nullptr;
}
void swap(AllocatorProvider& other) {
std::swap(m_allocator, other.m_allocator);
}
void deallocate(Node* node) const {
ASSERT(m_allocator);
m_allocator->deallocate(node);
}
ListHashSetAllocator* get() const {
ASSERT(m_allocator);
return m_allocator;
}
private:
// Not using std::unique_ptr as this pointer should be deleted at
// releaseAllocator() method rather than at destructor.
ListHashSetAllocator* m_allocator;
};
ListHashSetAllocator()
: m_freeList(pool()), m_isDoneWithInitialFreeList(false) {
memset(m_pool.buffer, 0, sizeof(m_pool.buffer));
}
Node* allocateNode() {
Node* result = m_freeList;
if (!result)
return static_cast<Node*>(WTF::Partitions::fastMalloc(
sizeof(NodeBase), WTF_HEAP_PROFILER_TYPE_NAME(Node)));
ASSERT(!result->m_isAllocated);
Node* next = result->next();
ASSERT(!next || !next->m_isAllocated);
if (!next && !m_isDoneWithInitialFreeList) {
next = result + 1;
if (next == pastPool()) {
m_isDoneWithInitialFreeList = true;
next = nullptr;
} else {
ASSERT(inPool(next));
ASSERT(!next->m_isAllocated);
}
}
m_freeList = next;
return result;
}
void deallocate(Node* node) {
if (inPool(node)) {
#if ENABLE(ASSERT)
node->m_isAllocated = false;
#endif
node->m_next = m_freeList;
m_freeList = node;
return;
}
WTF::Partitions::fastFree(node);
}
bool inPool(Node* node) { return node >= pool() && node < pastPool(); }
static void traceValue(typename PartitionAllocator::Visitor* visitor,
Node* node) {}
private:
Node* pool() { return reinterpret_cast_ptr<Node*>(m_pool.buffer); }
Node* pastPool() { return pool() + m_poolSize; }
Node* m_freeList;
bool m_isDoneWithInitialFreeList;
#if defined(MEMORY_SANITIZER_INITIAL_SIZE)
// The allocation pool for nodes is one big chunk that ASAN has no insight
// into, so it can cloak errors. Make it as small as possible to force nodes
// to be allocated individually where ASAN can see them.
static const size_t m_poolSize = 1;
#else
static const size_t m_poolSize = inlineCapacity;
#endif
AlignedBuffer<sizeof(NodeBase) * m_poolSize, WTF_ALIGN_OF(NodeBase)> m_pool;
};
template <typename ValueArg, typename AllocatorArg>
class ListHashSetNode : public ListHashSetNodeBase<ValueArg> {
public:
typedef AllocatorArg NodeAllocator;
typedef ValueArg Value;
template <typename U>
ListHashSetNode(U&& value)
: ListHashSetNodeBase<ValueArg>(std::forward<U>(value)) {}
void* operator new(size_t, NodeAllocator* allocator) {
static_assert(
sizeof(ListHashSetNode) == sizeof(ListHashSetNodeBase<ValueArg>),
"please add any fields to the base");
return allocator->allocateNode();
}
void setWasAlreadyDestructed() {
if (NodeAllocator::isGarbageCollected &&
!IsTriviallyDestructible<ValueArg>::value)
this->m_prev = unlinkedNodePointer();
}
bool wasAlreadyDestructed() const {
ASSERT(NodeAllocator::isGarbageCollected);
return this->m_prev == unlinkedNodePointer();
}
static void finalize(void* pointer) {
// No need to waste time calling finalize if it's not needed.
ASSERT(!IsTriviallyDestructible<ValueArg>::value);
ListHashSetNode* self = reinterpret_cast_ptr<ListHashSetNode*>(pointer);
// Check whether this node was already destructed before being unlinked
// from the collection.
if (self->wasAlreadyDestructed())
return;
self->m_value.~ValueArg();
}
void finalizeGarbageCollectedObject() { finalize(this); }
void destroy(NodeAllocator* allocator) {
this->~ListHashSetNode();
setWasAlreadyDestructed();
allocator->deallocate(this);
}
// This is not called in normal tracing, but it is called if we find a
// pointer to a node on the stack using conservative scanning. Since the
// original ListHashSet may no longer exist we make sure to mark the
// neighbours in the chain too.
template <typename VisitorDispatcher>
void trace(VisitorDispatcher visitor) {
// The conservative stack scan can find nodes that have been removed
// from the set and destructed. We don't need to trace these, and it
// would be wrong to do so, because the class will not expect the trace
// method to be called after the destructor. It's an error to remove a
// node from the ListHashSet while an iterator is positioned at that
// node, so there should be no valid pointers from the stack to a
// destructed node.
if (wasAlreadyDestructed())
return;
NodeAllocator::traceValue(visitor, this);
visitor->mark(next());
visitor->mark(prev());
}
ListHashSetNode* next() const {
return reinterpret_cast<ListHashSetNode*>(this->m_next);
}
ListHashSetNode* prev() const {
return reinterpret_cast<ListHashSetNode*>(this->m_prev);
}
// Don't add fields here, the ListHashSetNodeBase and this should have the
// same size.
static ListHashSetNode* unlinkedNodePointer() {
return reinterpret_cast<ListHashSetNode*>(-1);
}
template <typename HashArg>
friend struct ListHashSetNodeHashFunctions;
};
template <typename HashArg>
struct ListHashSetNodeHashFunctions {
STATIC_ONLY(ListHashSetNodeHashFunctions);
template <typename T>
static unsigned hash(const T& key) {
return HashArg::hash(key->m_value);
}
template <typename T>
static bool equal(const T& a, const T& b) {
return HashArg::equal(a->m_value, b->m_value);
}
static const bool safeToCompareToEmptyOrDeleted = false;
};
template <typename Set>
class ListHashSetIterator {
DISALLOW_NEW();
private:
typedef typename Set::const_iterator const_iterator;
typedef typename Set::Node Node;
typedef typename Set::ValueType ValueType;
typedef ValueType& ReferenceType;
typedef ValueType* PointerType;
ListHashSetIterator(const Set* set, Node* position)
: m_iterator(set, position) {}
public:
ListHashSetIterator() {}
// default copy, assignment and destructor are OK
PointerType get() const { return const_cast<PointerType>(m_iterator.get()); }
ReferenceType operator*() const { return *get(); }
PointerType operator->() const { return get(); }
ListHashSetIterator& operator++() {
++m_iterator;
return *this;
}
ListHashSetIterator& operator--() {
--m_iterator;
return *this;
}
// Postfix ++ and -- intentionally omitted.
// Comparison.
bool operator==(const ListHashSetIterator& other) const {
return m_iterator == other.m_iterator;
}
bool operator!=(const ListHashSetIterator& other) const {
return m_iterator != other.m_iterator;
}
operator const_iterator() const { return m_iterator; }
private:
Node* getNode() { return m_iterator.getNode(); }
const_iterator m_iterator;
template <typename T, size_t inlineCapacity, typename U, typename V>
friend class ListHashSet;
};
template <typename Set>
class ListHashSetConstIterator {
DISALLOW_NEW();
private:
typedef typename Set::const_iterator const_iterator;
typedef typename Set::Node Node;
typedef typename Set::ValueType ValueType;
typedef const ValueType& ReferenceType;
typedef const ValueType* PointerType;
friend class ListHashSetIterator<Set>;
ListHashSetConstIterator(const Set* set, Node* position)
: m_set(set), m_position(position) {}
public:
ListHashSetConstIterator() {}
PointerType get() const { return &m_position->m_value; }
ReferenceType operator*() const { return *get(); }
PointerType operator->() const { return get(); }
ListHashSetConstIterator& operator++() {
ASSERT(m_position != 0);
m_position = m_position->next();
return *this;
}
ListHashSetConstIterator& operator--() {
ASSERT(m_position != m_set->m_head);
if (!m_position)
m_position = m_set->m_tail;
else
m_position = m_position->prev();
return *this;
}
// Postfix ++ and -- intentionally omitted.
// Comparison.
bool operator==(const ListHashSetConstIterator& other) const {
return m_position == other.m_position;
}
bool operator!=(const ListHashSetConstIterator& other) const {
return m_position != other.m_position;
}
private:
Node* getNode() { return m_position; }
const Set* m_set;
Node* m_position;
template <typename T, size_t inlineCapacity, typename U, typename V>
friend class ListHashSet;
};
template <typename Set>
class ListHashSetReverseIterator {
DISALLOW_NEW();
private:
typedef typename Set::const_reverse_iterator const_reverse_iterator;
typedef typename Set::Node Node;
typedef typename Set::ValueType ValueType;
typedef ValueType& ReferenceType;
typedef ValueType* PointerType;
ListHashSetReverseIterator(const Set* set, Node* position)
: m_iterator(set, position) {}
public:
ListHashSetReverseIterator() {}
// default copy, assignment and destructor are OK
PointerType get() const { return const_cast<PointerType>(m_iterator.get()); }
ReferenceType operator*() const { return *get(); }
PointerType operator->() const { return get(); }
ListHashSetReverseIterator& operator++() {
++m_iterator;
return *this;
}
ListHashSetReverseIterator& operator--() {
--m_iterator;
return *this;
}
// Postfix ++ and -- intentionally omitted.
// Comparison.
bool operator==(const ListHashSetReverseIterator& other) const {
return m_iterator == other.m_iterator;
}
bool operator!=(const ListHashSetReverseIterator& other) const {
return m_iterator != other.m_iterator;
}
operator const_reverse_iterator() const { return m_iterator; }
private:
Node* getNode() { return m_iterator.node(); }
const_reverse_iterator m_iterator;
template <typename T, size_t inlineCapacity, typename U, typename V>
friend class ListHashSet;
};
template <typename Set>
class ListHashSetConstReverseIterator {
DISALLOW_NEW();
private:
typedef typename Set::reverse_iterator reverse_iterator;
typedef typename Set::Node Node;
typedef typename Set::ValueType ValueType;
typedef const ValueType& ReferenceType;
typedef const ValueType* PointerType;
friend class ListHashSetReverseIterator<Set>;
ListHashSetConstReverseIterator(const Set* set, Node* position)
: m_set(set), m_position(position) {}
public:
ListHashSetConstReverseIterator() {}
PointerType get() const { return &m_position->m_value; }
ReferenceType operator*() const { return *get(); }
PointerType operator->() const { return get(); }
ListHashSetConstReverseIterator& operator++() {
ASSERT(m_position != 0);
m_position = m_position->prev();
return *this;
}
ListHashSetConstReverseIterator& operator--() {
ASSERT(m_position != m_set->m_tail);
if (!m_position)
m_position = m_set->m_head;
else
m_position = m_position->next();
return *this;
}
// Postfix ++ and -- intentionally omitted.
// Comparison.
bool operator==(const ListHashSetConstReverseIterator& other) const {
return m_position == other.m_position;
}
bool operator!=(const ListHashSetConstReverseIterator& other) const {
return m_position != other.m_position;
}
private:
Node* getNode() { return m_position; }
const Set* m_set;
Node* m_position;
template <typename T, size_t inlineCapacity, typename U, typename V>
friend class ListHashSet;
};
template <typename HashFunctions>
struct ListHashSetTranslator {
STATIC_ONLY(ListHashSetTranslator);
template <typename T>
static unsigned hash(const T& key) {
return HashFunctions::hash(key);
}
template <typename T, typename U>
static bool equal(const T& a, const U& b) {
return HashFunctions::equal(a->m_value, b);
}
template <typename T, typename U, typename V>
static void translate(T*& location, U&& key, const V& allocator) {
location = new (const_cast<V*>(&allocator)) T(std::forward<U>(key));
}
};
template <typename T, size_t inlineCapacity, typename U, typename V>
inline ListHashSet<T, inlineCapacity, U, V>::ListHashSet()
: m_head(nullptr), m_tail(nullptr) {}
template <typename T, size_t inlineCapacity, typename U, typename V>
inline ListHashSet<T, inlineCapacity, U, V>::ListHashSet(
const ListHashSet& other)
: m_head(nullptr), m_tail(nullptr) {
const_iterator end = other.end();
for (const_iterator it = other.begin(); it != end; ++it)
add(*it);
}
template <typename T, size_t inlineCapacity, typename U, typename V>
inline ListHashSet<T, inlineCapacity, U, V>::ListHashSet(ListHashSet&& other)
: m_head(nullptr), m_tail(nullptr) {
swap(other);
}
template <typename T, size_t inlineCapacity, typename U, typename V>
inline ListHashSet<T, inlineCapacity, U, V>&
ListHashSet<T, inlineCapacity, U, V>::operator=(const ListHashSet& other) {
ListHashSet tmp(other);
swap(tmp);
return *this;
}
template <typename T, size_t inlineCapacity, typename U, typename V>
inline ListHashSet<T, inlineCapacity, U, V>&
ListHashSet<T, inlineCapacity, U, V>::operator=(ListHashSet&& other) {
swap(other);
return *this;
}
template <typename T, size_t inlineCapacity, typename U, typename V>
inline void ListHashSet<T, inlineCapacity, U, V>::swap(ListHashSet& other) {
m_impl.swap(other.m_impl);
std::swap(m_head, other.m_head);
std::swap(m_tail, other.m_tail);
m_allocatorProvider.swap(other.m_allocatorProvider);
}
template <typename T, size_t inlineCapacity, typename U, typename V>
inline void ListHashSet<T, inlineCapacity, U, V>::finalize() {
static_assert(!Allocator::isGarbageCollected,
"heap allocated ListHashSet should never call finalize()");
deleteAllNodes();
m_allocatorProvider.releaseAllocator();
}
template <typename T, size_t inlineCapacity, typename U, typename V>
inline T& ListHashSet<T, inlineCapacity, U, V>::first() {
ASSERT(!isEmpty());
return m_head->m_value;
}
template <typename T, size_t inlineCapacity, typename U, typename V>
inline void ListHashSet<T, inlineCapacity, U, V>::removeFirst() {
ASSERT(!isEmpty());
m_impl.remove(m_head);
unlinkAndDelete(m_head);
}
template <typename T, size_t inlineCapacity, typename U, typename V>
inline const T& ListHashSet<T, inlineCapacity, U, V>::first() const {
ASSERT(!isEmpty());
return m_head->m_value;
}
template <typename T, size_t inlineCapacity, typename U, typename V>
inline T& ListHashSet<T, inlineCapacity, U, V>::last() {
ASSERT(!isEmpty());
return m_tail->m_value;
}
template <typename T, size_t inlineCapacity, typename U, typename V>
inline const T& ListHashSet<T, inlineCapacity, U, V>::last() const {
ASSERT(!isEmpty());
return m_tail->m_value;
}
template <typename T, size_t inlineCapacity, typename U, typename V>
inline void ListHashSet<T, inlineCapacity, U, V>::removeLast() {
ASSERT(!isEmpty());
m_impl.remove(m_tail);
unlinkAndDelete(m_tail);
}
template <typename T, size_t inlineCapacity, typename U, typename V>
inline typename ListHashSet<T, inlineCapacity, U, V>::iterator
ListHashSet<T, inlineCapacity, U, V>::find(ValuePeekInType value) {
ImplTypeIterator it = m_impl.template find<BaseTranslator>(value);
if (it == m_impl.end())
return end();
return makeIterator(*it);
}
template <typename T, size_t inlineCapacity, typename U, typename V>
inline typename ListHashSet<T, inlineCapacity, U, V>::const_iterator
ListHashSet<T, inlineCapacity, U, V>::find(ValuePeekInType value) const {
ImplTypeConstIterator it = m_impl.template find<BaseTranslator>(value);
if (it == m_impl.end())
return end();
return makeConstIterator(*it);
}
template <typename Translator>
struct ListHashSetTranslatorAdapter {
STATIC_ONLY(ListHashSetTranslatorAdapter);
template <typename T>
static unsigned hash(const T& key) {
return Translator::hash(key);
}
template <typename T, typename U>
static bool equal(const T& a, const U& b) {
return Translator::equal(a->m_value, b);
}
};
template <typename ValueType, size_t inlineCapacity, typename U, typename V>
template <typename HashTranslator, typename T>
inline typename ListHashSet<ValueType, inlineCapacity, U, V>::iterator
ListHashSet<ValueType, inlineCapacity, U, V>::find(const T& value) {
ImplTypeConstIterator it =
m_impl.template find<ListHashSetTranslatorAdapter<HashTranslator>>(value);
if (it == m_impl.end())
return end();
return makeIterator(*it);
}
template <typename ValueType, size_t inlineCapacity, typename U, typename V>
template <typename HashTranslator, typename T>
inline typename ListHashSet<ValueType, inlineCapacity, U, V>::const_iterator
ListHashSet<ValueType, inlineCapacity, U, V>::find(const T& value) const {
ImplTypeConstIterator it =
m_impl.template find<ListHashSetTranslatorAdapter<HashTranslator>>(value);
if (it == m_impl.end())
return end();
return makeConstIterator(*it);
}
template <typename ValueType, size_t inlineCapacity, typename U, typename V>
template <typename HashTranslator, typename T>
inline bool ListHashSet<ValueType, inlineCapacity, U, V>::contains(
const T& value) const {
return m_impl.template contains<ListHashSetTranslatorAdapter<HashTranslator>>(
value);
}
template <typename T, size_t inlineCapacity, typename U, typename V>
inline bool ListHashSet<T, inlineCapacity, U, V>::contains(
ValuePeekInType value) const {
return m_impl.template contains<BaseTranslator>(value);
}
template <typename T, size_t inlineCapacity, typename U, typename V>
template <typename IncomingValueType>
typename ListHashSet<T, inlineCapacity, U, V>::AddResult
ListHashSet<T, inlineCapacity, U, V>::add(IncomingValueType&& value) {
createAllocatorIfNeeded();
// The second argument is a const ref. This is useful for the HashTable
// because it lets it take lvalues by reference, but for our purposes it's
// inconvenient, since it constrains us to be const, whereas the allocator
// actually changes when it does allocations.
auto result = m_impl.template add<BaseTranslator>(
std::forward<IncomingValueType>(value), *this->getAllocator());
if (result.isNewEntry)
appendNode(*result.storedValue);
return AddResult(*result.storedValue, result.isNewEntry);
}
template <typename T, size_t inlineCapacity, typename U, typename V>
template <typename IncomingValueType>
typename ListHashSet<T, inlineCapacity, U, V>::iterator
ListHashSet<T, inlineCapacity, U, V>::addReturnIterator(
IncomingValueType&& value) {
return makeIterator(add(std::forward<IncomingValueType>(value)).m_node);
}
template <typename T, size_t inlineCapacity, typename U, typename V>
template <typename IncomingValueType>
typename ListHashSet<T, inlineCapacity, U, V>::AddResult
ListHashSet<T, inlineCapacity, U, V>::appendOrMoveToLast(
IncomingValueType&& value) {
createAllocatorIfNeeded();
auto result = m_impl.template add<BaseTranslator>(
std::forward<IncomingValueType>(value), *this->getAllocator());
Node* node = *result.storedValue;
if (!result.isNewEntry)
unlink(node);
appendNode(node);
return AddResult(*result.storedValue, result.isNewEntry);
}
template <typename T, size_t inlineCapacity, typename U, typename V>
template <typename IncomingValueType>
typename ListHashSet<T, inlineCapacity, U, V>::AddResult
ListHashSet<T, inlineCapacity, U, V>::prependOrMoveToFirst(
IncomingValueType&& value) {
createAllocatorIfNeeded();
auto result = m_impl.template add<BaseTranslator>(
std::forward<IncomingValueType>(value), *this->getAllocator());
Node* node = *result.storedValue;
if (!result.isNewEntry)
unlink(node);
prependNode(node);
return AddResult(*result.storedValue, result.isNewEntry);
}
template <typename T, size_t inlineCapacity, typename U, typename V>
template <typename IncomingValueType>
typename ListHashSet<T, inlineCapacity, U, V>::AddResult
ListHashSet<T, inlineCapacity, U, V>::insertBefore(
iterator it,
IncomingValueType&& newValue) {
createAllocatorIfNeeded();
auto result = m_impl.template add<BaseTranslator>(
std::forward<IncomingValueType>(newValue), *this->getAllocator());
if (result.isNewEntry)
insertNodeBefore(it.getNode(), *result.storedValue);
return AddResult(*result.storedValue, result.isNewEntry);
}
template <typename T, size_t inlineCapacity, typename U, typename V>
template <typename IncomingValueType>
typename ListHashSet<T, inlineCapacity, U, V>::AddResult
ListHashSet<T, inlineCapacity, U, V>::insertBefore(
ValuePeekInType beforeValue,
IncomingValueType&& newValue) {
createAllocatorIfNeeded();
return insertBefore(find(beforeValue),
std::forward<IncomingValueType>(newValue));
}
template <typename T, size_t inlineCapacity, typename U, typename V>
inline void ListHashSet<T, inlineCapacity, U, V>::remove(iterator it) {
if (it == end())
return;
m_impl.remove(it.getNode());
unlinkAndDelete(it.getNode());
}
template <typename T, size_t inlineCapacity, typename U, typename V>
inline void ListHashSet<T, inlineCapacity, U, V>::clear() {
deleteAllNodes();
m_impl.clear();
m_head = nullptr;
m_tail = nullptr;
}
template <typename T, size_t inlineCapacity, typename U, typename V>
auto ListHashSet<T, inlineCapacity, U, V>::take(iterator it) -> ValueType {
if (it == end())
return ValueTraits::emptyValue();
m_impl.remove(it.getNode());
ValueType result = std::move(it.getNode()->m_value);
unlinkAndDelete(it.getNode());
return result;
}
template <typename T, size_t inlineCapacity, typename U, typename V>
auto ListHashSet<T, inlineCapacity, U, V>::take(ValuePeekInType value)
-> ValueType {
return take(find(value));
}
template <typename T, size_t inlineCapacity, typename U, typename V>
auto ListHashSet<T, inlineCapacity, U, V>::takeFirst() -> ValueType {
ASSERT(!isEmpty());
m_impl.remove(m_head);
ValueType result = std::move(m_head->m_value);
unlinkAndDelete(m_head);
return result;
}
template <typename T, size_t inlineCapacity, typename U, typename Allocator>
void ListHashSet<T, inlineCapacity, U, Allocator>::unlink(Node* node) {
if (!node->m_prev) {
ASSERT(node == m_head);
m_head = node->next();
} else {
ASSERT(node != m_head);
node->m_prev->m_next = node->m_next;
}
if (!node->m_next) {
ASSERT(node == m_tail);
m_tail = node->prev();
} else {
ASSERT(node != m_tail);
node->m_next->m_prev = node->m_prev;
}
}
template <typename T, size_t inlineCapacity, typename U, typename V>
void ListHashSet<T, inlineCapacity, U, V>::unlinkAndDelete(Node* node) {
unlink(node);
node->destroy(this->getAllocator());
}
template <typename T, size_t inlineCapacity, typename U, typename V>
void ListHashSet<T, inlineCapacity, U, V>::appendNode(Node* node) {
node->m_prev = m_tail;
node->m_next = nullptr;
if (m_tail) {
ASSERT(m_head);
m_tail->m_next = node;
} else {
ASSERT(!m_head);
m_head = node;
}
m_tail = node;
}
template <typename T, size_t inlineCapacity, typename U, typename V>
void ListHashSet<T, inlineCapacity, U, V>::prependNode(Node* node) {
node->m_prev = nullptr;
node->m_next = m_head;
if (m_head)
m_head->m_prev = node;
else
m_tail = node;
m_head = node;
}
template <typename T, size_t inlineCapacity, typename U, typename V>
void ListHashSet<T, inlineCapacity, U, V>::insertNodeBefore(Node* beforeNode,
Node* newNode) {
if (!beforeNode)
return appendNode(newNode);
newNode->m_next = beforeNode;
newNode->m_prev = beforeNode->m_prev;
if (beforeNode->m_prev)
beforeNode->m_prev->m_next = newNode;
beforeNode->m_prev = newNode;
if (!newNode->m_prev)
m_head = newNode;
}
template <typename T, size_t inlineCapacity, typename U, typename V>
void ListHashSet<T, inlineCapacity, U, V>::deleteAllNodes() {
if (!m_head)
return;
for (Node *node = m_head, *next = m_head->next(); node;
node = next, next = node ? node->next() : 0)
node->destroy(this->getAllocator());
}
template <typename T, size_t inlineCapacity, typename U, typename V>
template <typename VisitorDispatcher>
void ListHashSet<T, inlineCapacity, U, V>::trace(VisitorDispatcher visitor) {
static_assert(HashTraits<T>::weakHandlingFlag == NoWeakHandlingInCollections,
"HeapListHashSet does not support weakness, consider using "
"HeapLinkedHashSet instead.");
// This marks all the nodes and their contents live that can be accessed
// through the HashTable. That includes m_head and m_tail so we do not have
// to explicitly trace them here.
m_impl.trace(visitor);
}
} // namespace WTF
using WTF::ListHashSet;
#endif // WTF_ListHashSet_h