blob: bb39977da3c0835561e5cc52c7f98daac34b2c51 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "chrome/browser/themes/browser_theme_pack.h"
#include <limits.h>
#include <stddef.h>
#include <limits>
#include <memory>
#include <utility>
#include "base/files/file.h"
#include "base/macros.h"
#include "base/memory/ptr_util.h"
#include "base/memory/ref_counted_memory.h"
#include "base/stl_util.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_util.h"
#include "base/strings/utf_string_conversions.h"
#include "base/threading/thread_restrictions.h"
#include "base/values.h"
#include "build/build_config.h"
#include "chrome/browser/themes/theme_properties.h"
#include "chrome/common/extensions/manifest_handlers/theme_handler.h"
#include "chrome/grit/theme_resources.h"
#include "components/crx_file/id_util.h"
#include "content/public/browser/browser_thread.h"
#include "third_party/skia/include/core/SkCanvas.h"
#include "ui/base/resource/data_pack.h"
#include "ui/gfx/canvas.h"
#include "ui/gfx/codec/png_codec.h"
#include "ui/gfx/geometry/safe_integer_conversions.h"
#include "ui/gfx/geometry/size_conversions.h"
#include "ui/gfx/image/canvas_image_source.h"
#include "ui/gfx/image/image.h"
#include "ui/gfx/image/image_skia.h"
#include "ui/gfx/image/image_skia_operations.h"
#include "ui/gfx/skia_util.h"
using content::BrowserThread;
using extensions::Extension;
namespace {
// Version number of the current theme pack. We just throw out and rebuild
// theme packs that aren't int-equal to this. Increment this number if you
// change default theme assets or if you need themes to recreate their generated
// images (which are cached).
const int kThemePackVersion = 48;
// IDs that are in the DataPack won't clash with the positive integer
// uint16_t. kHeaderID should always have the maximum value because we want the
// "header" to be written last. That way we can detect whether the pack was
// successfully written and ignore and regenerate if it was only partially
// written (i.e. chrome crashed on a different thread while writing the pack).
const int kMaxID = 0x0000FFFF; // Max unsigned 16-bit int.
const int kHeaderID = kMaxID - 1;
const int kTintsID = kMaxID - 2;
const int kColorsID = kMaxID - 3;
const int kDisplayPropertiesID = kMaxID - 4;
const int kSourceImagesID = kMaxID - 5;
const int kScaleFactorsID = kMaxID - 6;
// The sum of kFrameBorderThickness and kNonClientRestoredExtraThickness from
// OpaqueBrowserFrameView.
const int kRestoredTabVerticalOffset = 15;
// Persistent constants for the main images that we need. These have the same
// names as their IDR_* counterparts but these values will always stay the
// same.
const int PRS_THEME_FRAME = 1;
const int PRS_THEME_FRAME_INACTIVE = 2;
const int PRS_THEME_FRAME_INCOGNITO = 3;
const int PRS_THEME_FRAME_INCOGNITO_INACTIVE = 4;
const int PRS_THEME_TOOLBAR = 5;
const int PRS_THEME_TAB_BACKGROUND = 6;
const int PRS_THEME_TAB_BACKGROUND_INCOGNITO = 7;
const int PRS_THEME_TAB_BACKGROUND_V = 8;
const int PRS_THEME_NTP_BACKGROUND = 9;
const int PRS_THEME_FRAME_OVERLAY = 10;
const int PRS_THEME_FRAME_OVERLAY_INACTIVE = 11;
const int PRS_THEME_BUTTON_BACKGROUND = 12;
const int PRS_THEME_NTP_ATTRIBUTION = 13;
const int PRS_THEME_WINDOW_CONTROL_BACKGROUND = 14;
struct PersistingImagesTable {
// A non-changing integer ID meant to be saved in theme packs. This ID must
// not change between versions of chrome.
int persistent_id;
// The IDR that depends on the whims of GRIT and therefore changes whenever
// someone adds a new resource.
int idr_id;
// String to check for when parsing theme manifests or NULL if this isn't
// supposed to be changeable by the user.
const char* key;
};
// IDR_* resource names change whenever new resources are added; use persistent
// IDs when storing to a cached pack.
const PersistingImagesTable kPersistingImages[] = {
{PRS_THEME_FRAME, IDR_THEME_FRAME, "theme_frame"},
{PRS_THEME_FRAME_INACTIVE, IDR_THEME_FRAME_INACTIVE,
"theme_frame_inactive"},
{PRS_THEME_FRAME_INCOGNITO, IDR_THEME_FRAME_INCOGNITO,
"theme_frame_incognito"},
{PRS_THEME_FRAME_INCOGNITO_INACTIVE, IDR_THEME_FRAME_INCOGNITO_INACTIVE,
"theme_frame_incognito_inactive"},
{PRS_THEME_TOOLBAR, IDR_THEME_TOOLBAR, "theme_toolbar"},
{PRS_THEME_TAB_BACKGROUND, IDR_THEME_TAB_BACKGROUND,
"theme_tab_background"},
#if !defined(OS_MACOSX)
{PRS_THEME_TAB_BACKGROUND_INCOGNITO, IDR_THEME_TAB_BACKGROUND_INCOGNITO,
"theme_tab_background_incognito"},
#endif
{PRS_THEME_TAB_BACKGROUND_V, IDR_THEME_TAB_BACKGROUND_V,
"theme_tab_background_v"},
{PRS_THEME_NTP_BACKGROUND, IDR_THEME_NTP_BACKGROUND,
"theme_ntp_background"},
{PRS_THEME_FRAME_OVERLAY, IDR_THEME_FRAME_OVERLAY, "theme_frame_overlay"},
{PRS_THEME_FRAME_OVERLAY_INACTIVE, IDR_THEME_FRAME_OVERLAY_INACTIVE,
"theme_frame_overlay_inactive"},
{PRS_THEME_BUTTON_BACKGROUND, IDR_THEME_BUTTON_BACKGROUND,
"theme_button_background"},
{PRS_THEME_NTP_ATTRIBUTION, IDR_THEME_NTP_ATTRIBUTION,
"theme_ntp_attribution"},
{PRS_THEME_WINDOW_CONTROL_BACKGROUND, IDR_THEME_WINDOW_CONTROL_BACKGROUND,
"theme_window_control_background"},
};
const size_t kPersistingImagesLength = arraysize(kPersistingImages);
int GetPersistentIDByNameHelper(const std::string& key,
const PersistingImagesTable* image_table,
size_t image_table_size) {
for (size_t i = 0; i < image_table_size; ++i) {
if (image_table[i].key &&
base::LowerCaseEqualsASCII(key, image_table[i].key)) {
return image_table[i].persistent_id;
}
}
return -1;
}
int GetPersistentIDByName(const std::string& key) {
return GetPersistentIDByNameHelper(key,
kPersistingImages,
kPersistingImagesLength);
}
int GetPersistentIDByIDR(int idr) {
static std::map<int,int>* lookup_table = new std::map<int,int>();
if (lookup_table->empty()) {
for (size_t i = 0; i < kPersistingImagesLength; ++i) {
int idr = kPersistingImages[i].idr_id;
int prs_id = kPersistingImages[i].persistent_id;
(*lookup_table)[idr] = prs_id;
}
}
std::map<int,int>::iterator it = lookup_table->find(idr);
return (it == lookup_table->end()) ? -1 : it->second;
}
// Returns the maximum persistent id.
int GetMaxPersistentId() {
static int max_prs_id = -1;
if (max_prs_id == -1) {
for (size_t i = 0; i < kPersistingImagesLength; ++i) {
if (kPersistingImages[i].persistent_id > max_prs_id)
max_prs_id = kPersistingImages[i].persistent_id;
}
}
return max_prs_id;
}
// Returns true if the scales in |input| match those in |expected|.
// The order must match as the index is used in determining the raw id.
bool InputScalesValid(const base::StringPiece& input,
const std::vector<ui::ScaleFactor>& expected) {
if (input.size() != expected.size() * sizeof(float))
return false;
std::unique_ptr<float[]> scales(new float[expected.size()]);
// Do a memcpy to avoid misaligned memory access.
memcpy(scales.get(), input.data(), input.size());
for (size_t index = 0; index < expected.size(); ++index) {
if (scales[index] != ui::GetScaleForScaleFactor(expected[index]))
return false;
}
return true;
}
// Returns |scale_factors| as a string to be written to disk.
std::string GetScaleFactorsAsString(
const std::vector<ui::ScaleFactor>& scale_factors) {
std::unique_ptr<float[]> scales(new float[scale_factors.size()]);
for (size_t i = 0; i < scale_factors.size(); ++i)
scales[i] = ui::GetScaleForScaleFactor(scale_factors[i]);
std::string out_string = std::string(
reinterpret_cast<const char*>(scales.get()),
scale_factors.size() * sizeof(float));
return out_string;
}
struct StringToIntTable {
const char* key;
ThemeProperties::OverwritableByUserThemeProperty id;
};
// Strings used by themes to identify tints in the JSON.
const StringToIntTable kTintTable[] = {
{ "buttons", ThemeProperties::TINT_BUTTONS },
{ "frame", ThemeProperties::TINT_FRAME },
{ "frame_inactive", ThemeProperties::TINT_FRAME_INACTIVE },
{ "frame_incognito", ThemeProperties::TINT_FRAME_INCOGNITO },
{ "frame_incognito_inactive",
ThemeProperties::TINT_FRAME_INCOGNITO_INACTIVE },
{ "background_tab", ThemeProperties::TINT_BACKGROUND_TAB },
};
const size_t kTintTableLength = arraysize(kTintTable);
// Strings used by themes to identify colors in the JSON.
const StringToIntTable kColorTable[] = {
{ "frame", ThemeProperties::COLOR_FRAME },
{ "frame_inactive", ThemeProperties::COLOR_FRAME_INACTIVE },
{ "frame_incognito", ThemeProperties::COLOR_FRAME_INCOGNITO },
{ "frame_incognito_inactive",
ThemeProperties::COLOR_FRAME_INCOGNITO_INACTIVE },
{ "toolbar", ThemeProperties::COLOR_TOOLBAR },
{ "tab_text", ThemeProperties::COLOR_TAB_TEXT },
{ "tab_background_text", ThemeProperties::COLOR_BACKGROUND_TAB_TEXT },
{ "bookmark_text", ThemeProperties::COLOR_BOOKMARK_TEXT },
{ "ntp_background", ThemeProperties::COLOR_NTP_BACKGROUND },
{ "ntp_text", ThemeProperties::COLOR_NTP_TEXT },
{ "ntp_link", ThemeProperties::COLOR_NTP_LINK },
{ "ntp_header", ThemeProperties::COLOR_NTP_HEADER },
{ "button_background", ThemeProperties::COLOR_BUTTON_BACKGROUND },
};
const size_t kColorTableLength = arraysize(kColorTable);
// Strings used by themes to identify display properties keys in JSON.
const StringToIntTable kDisplayProperties[] = {
{ "ntp_background_alignment",
ThemeProperties::NTP_BACKGROUND_ALIGNMENT },
{ "ntp_background_repeat", ThemeProperties::NTP_BACKGROUND_TILING },
{ "ntp_logo_alternate", ThemeProperties::NTP_LOGO_ALTERNATE },
};
const size_t kDisplayPropertiesSize = arraysize(kDisplayProperties);
int GetIntForString(const std::string& key,
const StringToIntTable* table,
size_t table_length) {
for (size_t i = 0; i < table_length; ++i) {
if (base::LowerCaseEqualsASCII(key, table[i].key)) {
return table[i].id;
}
}
return -1;
}
struct IntToIntTable {
int key;
int value;
};
// Mapping used in CreateFrameImages() to associate frame images with the
// tint ID that should maybe be applied to it.
const IntToIntTable kFrameTintMap[] = {
{ PRS_THEME_FRAME, ThemeProperties::TINT_FRAME },
{ PRS_THEME_FRAME_INACTIVE, ThemeProperties::TINT_FRAME_INACTIVE },
{ PRS_THEME_FRAME_OVERLAY, ThemeProperties::TINT_FRAME },
{ PRS_THEME_FRAME_OVERLAY_INACTIVE,
ThemeProperties::TINT_FRAME_INACTIVE },
{ PRS_THEME_FRAME_INCOGNITO, ThemeProperties::TINT_FRAME_INCOGNITO },
{ PRS_THEME_FRAME_INCOGNITO_INACTIVE,
ThemeProperties::TINT_FRAME_INCOGNITO_INACTIVE },
};
// Mapping used in GenerateTabBackgroundImages() to associate what frame image
// goes with which tab background.
const IntToIntTable kTabBackgroundMap[] = {
{ PRS_THEME_TAB_BACKGROUND, PRS_THEME_FRAME },
{ PRS_THEME_TAB_BACKGROUND_INCOGNITO, PRS_THEME_FRAME_INCOGNITO },
};
struct CropEntry {
int prs_id;
// The maximum useful height of the image at |prs_id|.
int max_height;
// Whether cropping the image at |prs_id| should be skipped on OSes which
// have a frame border to the left and right of the web contents.
// This should be true for images which can be used to decorate the border to
// the left and the right of the web contents.
bool skip_if_frame_border;
};
// The images which should be cropped before being saved to the data pack. The
// maximum heights are meant to be conservative as to give room for the UI to
// change without the maximum heights having to be modified.
// |kThemePackVersion| must be incremented if any of the maximum heights below
// are modified.
const struct CropEntry kImagesToCrop[] = {
{ PRS_THEME_FRAME, 120, true },
{ PRS_THEME_FRAME_INACTIVE, 120, true },
{ PRS_THEME_FRAME_INCOGNITO, 120, true },
{ PRS_THEME_FRAME_INCOGNITO_INACTIVE, 120, true },
{ PRS_THEME_FRAME_OVERLAY, 120, true },
{ PRS_THEME_FRAME_OVERLAY_INACTIVE, 120, true },
{ PRS_THEME_TOOLBAR, 200, false },
{ PRS_THEME_BUTTON_BACKGROUND, 60, false },
{ PRS_THEME_WINDOW_CONTROL_BACKGROUND, 50, false },
};
// A list of images that don't need tinting or any other modification and can
// be byte-copied directly into the finished DataPack. This should contain the
// persistent IDs for all themeable image IDs that aren't in kFrameTintMap,
// kTabBackgroundMap or kImagesToCrop.
const int kPreloadIDs[] = {
PRS_THEME_NTP_BACKGROUND,
PRS_THEME_NTP_ATTRIBUTION,
};
// Returns true if this OS uses a browser frame which has a non zero width to
// the left and the right of the web contents.
bool HasFrameBorder() {
#if defined(OS_CHROMEOS) || defined(OS_MACOSX)
return false;
#else
return true;
#endif
}
// Returns a piece of memory with the contents of the file |path|.
scoped_refptr<base::RefCountedMemory> ReadFileData(const base::FilePath& path) {
if (!path.empty()) {
base::File file(path, base::File::FLAG_OPEN | base::File::FLAG_READ);
if (file.IsValid()) {
int64_t length = file.GetLength();
if (length > 0 && length < INT_MAX) {
int size = static_cast<int>(length);
std::vector<unsigned char> raw_data;
raw_data.resize(size);
char* data = reinterpret_cast<char*>(&(raw_data.front()));
if (file.ReadAtCurrentPos(data, size) == length)
return base::RefCountedBytes::TakeVector(&raw_data);
}
}
}
return nullptr;
}
// Shifts an image's HSL values. The caller is responsible for deleting
// the returned image.
gfx::Image CreateHSLShiftedImage(const gfx::Image& image,
const color_utils::HSL& hsl_shift) {
const gfx::ImageSkia* src_image = image.ToImageSkia();
return gfx::Image(gfx::ImageSkiaOperations::CreateHSLShiftedImage(
*src_image, hsl_shift));
}
// Computes a bitmap at one scale from a bitmap at a different scale.
SkBitmap CreateLowQualityResizedBitmap(const SkBitmap& source_bitmap,
ui::ScaleFactor source_scale_factor,
ui::ScaleFactor desired_scale_factor) {
gfx::Size scaled_size = gfx::ScaleToCeiledSize(
gfx::Size(source_bitmap.width(), source_bitmap.height()),
ui::GetScaleForScaleFactor(desired_scale_factor) /
ui::GetScaleForScaleFactor(source_scale_factor));
SkBitmap scaled_bitmap;
scaled_bitmap.allocN32Pixels(scaled_size.width(), scaled_size.height());
scaled_bitmap.eraseARGB(0, 0, 0, 0);
SkCanvas canvas(scaled_bitmap);
SkRect scaled_bounds = RectToSkRect(gfx::Rect(scaled_size));
// Note(oshima): The following scaling code doesn't work with
// a mask image.
canvas.drawBitmapRect(source_bitmap, scaled_bounds, NULL);
return scaled_bitmap;
}
// A ImageSkiaSource that scales 100P image to the target scale factor
// if the ImageSkiaRep for the target scale factor isn't available.
class ThemeImageSource: public gfx::ImageSkiaSource {
public:
explicit ThemeImageSource(const gfx::ImageSkia& source) : source_(source) {
}
~ThemeImageSource() override {}
gfx::ImageSkiaRep GetImageForScale(float scale) override {
if (source_.HasRepresentation(scale))
return source_.GetRepresentation(scale);
const gfx::ImageSkiaRep& rep_100p = source_.GetRepresentation(1.0f);
SkBitmap scaled_bitmap = CreateLowQualityResizedBitmap(
rep_100p.sk_bitmap(),
ui::SCALE_FACTOR_100P,
ui::GetSupportedScaleFactor(scale));
return gfx::ImageSkiaRep(scaled_bitmap, scale);
}
private:
const gfx::ImageSkia source_;
DISALLOW_COPY_AND_ASSIGN(ThemeImageSource);
};
// An ImageSkiaSource that delays decoding PNG data into bitmaps until
// needed. Missing data for a scale factor is computed by scaling data for an
// available scale factor. Computed bitmaps are stored for future look up.
class ThemeImagePngSource : public gfx::ImageSkiaSource {
public:
typedef std::map<ui::ScaleFactor,
scoped_refptr<base::RefCountedMemory> > PngMap;
explicit ThemeImagePngSource(const PngMap& png_map) : png_map_(png_map) {}
~ThemeImagePngSource() override {}
private:
gfx::ImageSkiaRep GetImageForScale(float scale) override {
ui::ScaleFactor scale_factor = ui::GetSupportedScaleFactor(scale);
// Look up the bitmap for |scale factor| in the bitmap map. If found
// return it.
BitmapMap::const_iterator exact_bitmap_it = bitmap_map_.find(scale_factor);
if (exact_bitmap_it != bitmap_map_.end())
return gfx::ImageSkiaRep(exact_bitmap_it->second, scale);
// Look up the raw PNG data for |scale_factor| in the png map. If found,
// decode it, store the result in the bitmap map and return it.
PngMap::const_iterator exact_png_it = png_map_.find(scale_factor);
if (exact_png_it != png_map_.end()) {
SkBitmap bitmap;
if (!gfx::PNGCodec::Decode(exact_png_it->second->front(),
exact_png_it->second->size(),
&bitmap)) {
NOTREACHED();
return gfx::ImageSkiaRep();
}
bitmap_map_[scale_factor] = bitmap;
return gfx::ImageSkiaRep(bitmap, scale);
}
// Find an available PNG for another scale factor. We want to use the
// highest available scale factor.
PngMap::const_iterator available_png_it = png_map_.end();
for (PngMap::const_iterator png_it = png_map_.begin();
png_it != png_map_.end(); ++png_it) {
if (available_png_it == png_map_.end() ||
ui::GetScaleForScaleFactor(png_it->first) >
ui::GetScaleForScaleFactor(available_png_it->first)) {
available_png_it = png_it;
}
}
if (available_png_it == png_map_.end())
return gfx::ImageSkiaRep();
ui::ScaleFactor available_scale_factor = available_png_it->first;
// Look up the bitmap for |available_scale_factor| in the bitmap map.
// If not found, decode the corresponging png data, store the result
// in the bitmap map.
BitmapMap::const_iterator available_bitmap_it =
bitmap_map_.find(available_scale_factor);
if (available_bitmap_it == bitmap_map_.end()) {
SkBitmap available_bitmap;
if (!gfx::PNGCodec::Decode(available_png_it->second->front(),
available_png_it->second->size(),
&available_bitmap)) {
NOTREACHED();
return gfx::ImageSkiaRep();
}
bitmap_map_[available_scale_factor] = available_bitmap;
available_bitmap_it = bitmap_map_.find(available_scale_factor);
}
// Scale the available bitmap to the desired scale factor, store the result
// in the bitmap map and return it.
SkBitmap scaled_bitmap = CreateLowQualityResizedBitmap(
available_bitmap_it->second,
available_scale_factor,
scale_factor);
bitmap_map_[scale_factor] = scaled_bitmap;
return gfx::ImageSkiaRep(scaled_bitmap, scale);
}
PngMap png_map_;
typedef std::map<ui::ScaleFactor, SkBitmap> BitmapMap;
BitmapMap bitmap_map_;
DISALLOW_COPY_AND_ASSIGN(ThemeImagePngSource);
};
class TabBackgroundImageSource: public gfx::CanvasImageSource {
public:
TabBackgroundImageSource(const gfx::ImageSkia& image_to_tint,
const gfx::ImageSkia& overlay,
const color_utils::HSL& hsl_shift,
int vertical_offset)
: gfx::CanvasImageSource(image_to_tint.size(), false),
image_to_tint_(image_to_tint),
overlay_(overlay),
hsl_shift_(hsl_shift),
vertical_offset_(vertical_offset) {
}
~TabBackgroundImageSource() override {}
// Overridden from CanvasImageSource:
void Draw(gfx::Canvas* canvas) override {
gfx::ImageSkia bg_tint =
gfx::ImageSkiaOperations::CreateHSLShiftedImage(image_to_tint_,
hsl_shift_);
canvas->TileImageInt(bg_tint, 0, vertical_offset_, 0, 0,
size().width(), size().height());
// If they've provided a custom image, overlay it.
if (!overlay_.isNull()) {
canvas->TileImageInt(overlay_, 0, 0, size().width(),
overlay_.height());
}
}
private:
const gfx::ImageSkia image_to_tint_;
const gfx::ImageSkia overlay_;
const color_utils::HSL hsl_shift_;
const int vertical_offset_;
DISALLOW_COPY_AND_ASSIGN(TabBackgroundImageSource);
};
} // namespace
BrowserThemePack::~BrowserThemePack() {
if (!data_pack_.get()) {
delete header_;
delete [] tints_;
delete [] colors_;
delete [] display_properties_;
delete [] source_images_;
}
}
// static
void BrowserThemePack::BuildFromExtension(
const extensions::Extension* extension,
scoped_refptr<BrowserThemePack> pack) {
DCHECK(extension);
DCHECK(extension->is_theme());
DCHECK(!pack->is_valid());
pack->BuildHeader(extension);
pack->BuildTintsFromJSON(extensions::ThemeInfo::GetTints(extension));
pack->BuildColorsFromJSON(extensions::ThemeInfo::GetColors(extension));
pack->BuildDisplayPropertiesFromJSON(
extensions::ThemeInfo::GetDisplayProperties(extension));
// Builds the images. (Image building is dependent on tints).
FilePathMap file_paths;
pack->ParseImageNamesFromJSON(
extensions::ThemeInfo::GetImages(extension),
extension->path(),
&file_paths);
pack->BuildSourceImagesArray(file_paths);
if (!pack->LoadRawBitmapsTo(file_paths, &pack->images_))
return;
pack->CreateImages(&pack->images_);
// Make sure the |images_on_file_thread_| has bitmaps for supported
// scale factors before passing to FILE thread.
pack->images_on_file_thread_ = pack->images_;
for (ImageCache::iterator it = pack->images_on_file_thread_.begin();
it != pack->images_on_file_thread_.end(); ++it) {
gfx::ImageSkia* image_skia =
const_cast<gfx::ImageSkia*>(it->second.ToImageSkia());
image_skia->MakeThreadSafe();
}
// Set ThemeImageSource on |images_| to resample the source
// image if a caller of BrowserThemePack::GetImageNamed() requests an
// ImageSkiaRep for a scale factor not specified by the theme author.
// Callers of BrowserThemePack::GetImageNamed() to be able to retrieve
// ImageSkiaReps for all supported scale factors.
for (ImageCache::iterator it = pack->images_.begin();
it != pack->images_.end(); ++it) {
const gfx::ImageSkia source_image_skia = it->second.AsImageSkia();
auto source = base::MakeUnique<ThemeImageSource>(source_image_skia);
gfx::ImageSkia image_skia(std::move(source), source_image_skia.size());
it->second = gfx::Image(image_skia);
}
// Generate raw images (for new-tab-page attribution and background) for
// any missing scale from an available scale image.
for (size_t i = 0; i < arraysize(kPreloadIDs); ++i) {
pack->GenerateRawImageForAllSupportedScales(kPreloadIDs[i]);
}
// The BrowserThemePack is now in a consistent state.
pack->is_valid_ = true;
}
// static
scoped_refptr<BrowserThemePack> BrowserThemePack::BuildFromDataPack(
const base::FilePath& path, const std::string& expected_id) {
DCHECK_CURRENTLY_ON(BrowserThread::UI);
// Allow IO on UI thread due to deep-seated theme design issues.
// (see http://crbug.com/80206)
base::ThreadRestrictions::ScopedAllowIO allow_io;
scoped_refptr<BrowserThemePack> pack(new BrowserThemePack);
// Scale factor parameter is moot as data pack has image resources for all
// supported scale factors.
pack->data_pack_.reset(
new ui::DataPack(ui::SCALE_FACTOR_NONE));
if (!pack->data_pack_->LoadFromPath(path)) {
LOG(ERROR) << "Failed to load theme data pack.";
return NULL;
}
base::StringPiece pointer;
if (!pack->data_pack_->GetStringPiece(kHeaderID, &pointer))
return NULL;
pack->header_ = reinterpret_cast<BrowserThemePackHeader*>(const_cast<char*>(
pointer.data()));
if (pack->header_->version != kThemePackVersion) {
DLOG(ERROR) << "BuildFromDataPack failure! Version mismatch!";
return NULL;
}
// TODO(erg): Check endianess once DataPack works on the other endian.
std::string theme_id(reinterpret_cast<char*>(pack->header_->theme_id),
crx_file::id_util::kIdSize);
std::string truncated_id = expected_id.substr(0, crx_file::id_util::kIdSize);
if (theme_id != truncated_id) {
DLOG(ERROR) << "Wrong id: " << theme_id << " vs " << expected_id;
return NULL;
}
if (!pack->data_pack_->GetStringPiece(kTintsID, &pointer))
return NULL;
pack->tints_ = reinterpret_cast<TintEntry*>(const_cast<char*>(
pointer.data()));
if (!pack->data_pack_->GetStringPiece(kColorsID, &pointer))
return NULL;
pack->colors_ =
reinterpret_cast<ColorPair*>(const_cast<char*>(pointer.data()));
if (!pack->data_pack_->GetStringPiece(kDisplayPropertiesID, &pointer))
return NULL;
pack->display_properties_ = reinterpret_cast<DisplayPropertyPair*>(
const_cast<char*>(pointer.data()));
if (!pack->data_pack_->GetStringPiece(kSourceImagesID, &pointer))
return NULL;
pack->source_images_ = reinterpret_cast<int*>(
const_cast<char*>(pointer.data()));
if (!pack->data_pack_->GetStringPiece(kScaleFactorsID, &pointer))
return NULL;
if (!InputScalesValid(pointer, pack->scale_factors_)) {
DLOG(ERROR) << "BuildFromDataPack failure! The pack scale factors differ "
<< "from those supported by platform.";
return NULL;
}
pack->is_valid_ = true;
return pack;
}
// static
bool BrowserThemePack::IsPersistentImageID(int id) {
for (size_t i = 0; i < kPersistingImagesLength; ++i)
if (kPersistingImages[i].idr_id == id)
return true;
return false;
}
BrowserThemePack::BrowserThemePack() : CustomThemeSupplier(EXTENSION) {
scale_factors_ = ui::GetSupportedScaleFactors();
// On Windows HiDPI SCALE_FACTOR_100P may not be supported by default.
if (!base::ContainsValue(scale_factors_, ui::SCALE_FACTOR_100P))
scale_factors_.push_back(ui::SCALE_FACTOR_100P);
}
bool BrowserThemePack::WriteToDisk(const base::FilePath& path) const {
// Add resources for each of the property arrays.
RawDataForWriting resources;
resources[kHeaderID] = base::StringPiece(
reinterpret_cast<const char*>(header_), sizeof(BrowserThemePackHeader));
resources[kTintsID] = base::StringPiece(
reinterpret_cast<const char*>(tints_),
sizeof(TintEntry[kTintTableLength]));
resources[kColorsID] = base::StringPiece(
reinterpret_cast<const char*>(colors_),
sizeof(ColorPair[kColorTableLength]));
resources[kDisplayPropertiesID] = base::StringPiece(
reinterpret_cast<const char*>(display_properties_),
sizeof(DisplayPropertyPair[kDisplayPropertiesSize]));
int source_count = 1;
int* end = source_images_;
for (; *end != -1 ; end++)
source_count++;
resources[kSourceImagesID] = base::StringPiece(
reinterpret_cast<const char*>(source_images_),
source_count * sizeof(*source_images_));
// Store results of GetScaleFactorsAsString() in std::string as
// base::StringPiece does not copy data in constructor.
std::string scale_factors_string = GetScaleFactorsAsString(scale_factors_);
resources[kScaleFactorsID] = scale_factors_string;
AddRawImagesTo(image_memory_, &resources);
RawImages reencoded_images;
RepackImages(images_on_file_thread_, &reencoded_images);
AddRawImagesTo(reencoded_images, &resources);
return ui::DataPack::WritePack(path, resources, ui::DataPack::BINARY);
}
bool BrowserThemePack::GetTint(int id, color_utils::HSL* hsl) const {
if (tints_) {
for (size_t i = 0; i < kTintTableLength; ++i) {
if (tints_[i].id == id) {
hsl->h = tints_[i].h;
hsl->s = tints_[i].s;
hsl->l = tints_[i].l;
return true;
}
}
}
return false;
}
bool BrowserThemePack::GetColor(int id, SkColor* color) const {
if (colors_) {
for (size_t i = 0; i < kColorTableLength; ++i) {
if (colors_[i].id == id) {
*color = colors_[i].color;
// The theme provider is intentionally made to ignore alpha for toolbar
// color, as we don't want to allow transparent toolbars.
if (id == ThemeProperties::COLOR_TOOLBAR)
*color = SkColorSetA(*color, SK_AlphaOPAQUE);
return true;
}
}
}
return false;
}
bool BrowserThemePack::GetDisplayProperty(int id, int* result) const {
if (display_properties_) {
for (size_t i = 0; i < kDisplayPropertiesSize; ++i) {
if (display_properties_[i].id == id) {
*result = display_properties_[i].property;
return true;
}
}
}
return false;
}
gfx::Image BrowserThemePack::GetImageNamed(int idr_id) {
int prs_id = GetPersistentIDByIDR(idr_id);
if (prs_id == -1)
return gfx::Image();
// Check if the image is cached.
ImageCache::const_iterator image_iter = images_.find(prs_id);
if (image_iter != images_.end())
return image_iter->second;
ThemeImagePngSource::PngMap png_map;
for (size_t i = 0; i < scale_factors_.size(); ++i) {
scoped_refptr<base::RefCountedMemory> memory =
GetRawData(idr_id, scale_factors_[i]);
if (memory.get())
png_map[scale_factors_[i]] = memory;
}
if (!png_map.empty()) {
gfx::ImageSkia image_skia(base::MakeUnique<ThemeImagePngSource>(png_map),
1.0f);
gfx::Image ret = gfx::Image(image_skia);
images_[prs_id] = ret;
return ret;
}
return gfx::Image();
}
base::RefCountedMemory* BrowserThemePack::GetRawData(
int idr_id,
ui::ScaleFactor scale_factor) const {
base::RefCountedMemory* memory = NULL;
int prs_id = GetPersistentIDByIDR(idr_id);
int raw_id = GetRawIDByPersistentID(prs_id, scale_factor);
if (raw_id != -1) {
if (data_pack_.get()) {
memory = data_pack_->GetStaticMemory(raw_id);
} else {
RawImages::const_iterator it = image_memory_.find(raw_id);
if (it != image_memory_.end()) {
memory = it->second.get();
}
}
}
return memory;
}
bool BrowserThemePack::HasCustomImage(int idr_id) const {
int prs_id = GetPersistentIDByIDR(idr_id);
if (prs_id == -1)
return false;
int* img = source_images_;
for (; *img != -1; ++img) {
if (*img == prs_id)
return true;
}
return false;
}
// private:
void BrowserThemePack::BuildHeader(const Extension* extension) {
header_ = new BrowserThemePackHeader;
header_->version = kThemePackVersion;
// TODO(erg): Need to make this endian safe on other computers. Prerequisite
// is that ui::DataPack removes this same check.
#if defined(__BYTE_ORDER)
// Linux check
static_assert(__BYTE_ORDER == __LITTLE_ENDIAN,
"datapack assumes little endian");
#elif defined(__BIG_ENDIAN__)
// Mac check
#error DataPack assumes little endian
#endif
header_->little_endian = 1;
const std::string& id = extension->id();
memcpy(header_->theme_id, id.c_str(), crx_file::id_util::kIdSize);
}
void BrowserThemePack::BuildTintsFromJSON(
const base::DictionaryValue* tints_value) {
tints_ = new TintEntry[kTintTableLength];
for (size_t i = 0; i < kTintTableLength; ++i) {
tints_[i].id = -1;
tints_[i].h = -1;
tints_[i].s = -1;
tints_[i].l = -1;
}
if (!tints_value)
return;
// Parse the incoming data from |tints_value| into an intermediary structure.
std::map<int, color_utils::HSL> temp_tints;
for (base::DictionaryValue::Iterator iter(*tints_value); !iter.IsAtEnd();
iter.Advance()) {
const base::ListValue* tint_list;
if (iter.value().GetAsList(&tint_list) &&
(tint_list->GetSize() == 3)) {
color_utils::HSL hsl = { -1, -1, -1 };
if (tint_list->GetDouble(0, &hsl.h) &&
tint_list->GetDouble(1, &hsl.s) &&
tint_list->GetDouble(2, &hsl.l)) {
MakeHSLShiftValid(&hsl);
int id = GetIntForString(iter.key(), kTintTable, kTintTableLength);
if (id != -1) {
temp_tints[id] = hsl;
}
}
}
}
// Copy data from the intermediary data structure to the array.
size_t count = 0;
for (std::map<int, color_utils::HSL>::const_iterator it =
temp_tints.begin();
it != temp_tints.end() && count < kTintTableLength;
++it, ++count) {
tints_[count].id = it->first;
tints_[count].h = it->second.h;
tints_[count].s = it->second.s;
tints_[count].l = it->second.l;
}
}
void BrowserThemePack::BuildColorsFromJSON(
const base::DictionaryValue* colors_value) {
colors_ = new ColorPair[kColorTableLength];
for (size_t i = 0; i < kColorTableLength; ++i) {
colors_[i].id = -1;
colors_[i].color = SkColorSetRGB(0, 0, 0);
}
std::map<int, SkColor> temp_colors;
if (colors_value)
ReadColorsFromJSON(colors_value, &temp_colors);
GenerateMissingColors(&temp_colors);
// Copy data from the intermediary data structure to the array.
size_t count = 0;
for (std::map<int, SkColor>::const_iterator it = temp_colors.begin();
it != temp_colors.end() && count < kColorTableLength; ++it, ++count) {
colors_[count].id = it->first;
colors_[count].color = it->second;
}
}
void BrowserThemePack::ReadColorsFromJSON(
const base::DictionaryValue* colors_value,
std::map<int, SkColor>* temp_colors) {
// Parse the incoming data from |colors_value| into an intermediary structure.
for (base::DictionaryValue::Iterator iter(*colors_value); !iter.IsAtEnd();
iter.Advance()) {
const base::ListValue* color_list;
if (iter.value().GetAsList(&color_list) &&
((color_list->GetSize() == 3) || (color_list->GetSize() == 4))) {
SkColor color = SK_ColorWHITE;
int r, g, b;
if (color_list->GetInteger(0, &r) && r >= 0 && r <= 255 &&
color_list->GetInteger(1, &g) && g >= 0 && g <= 255 &&
color_list->GetInteger(2, &b) && b >= 0 && b <= 255) {
if (color_list->GetSize() == 4) {
double alpha;
int alpha_int;
if (color_list->GetDouble(3, &alpha) && alpha >= 0 && alpha <= 1) {
color = SkColorSetARGB(gfx::ToRoundedInt(alpha * 255), r, g, b);
} else if (color_list->GetInteger(3, &alpha_int) &&
(alpha_int == 0 || alpha_int == 1)) {
color = SkColorSetARGB(alpha_int ? 255 : 0, r, g, b);
} else {
// Invalid entry for part 4.
continue;
}
} else {
color = SkColorSetRGB(r, g, b);
}
if (iter.key() == "ntp_section") {
// We no longer use ntp_section, but to support legacy
// themes we still need to use it as a fallback for
// ntp_header.
if (!temp_colors->count(ThemeProperties::COLOR_NTP_HEADER))
(*temp_colors)[ThemeProperties::COLOR_NTP_HEADER] = color;
} else {
int id = GetIntForString(iter.key(), kColorTable, kColorTableLength);
if (id != -1)
(*temp_colors)[id] = color;
}
}
}
}
}
void BrowserThemePack::GenerateMissingColors(
std::map<int, SkColor>* colors) {
// Generate frame colors, if missing. (See GenerateFrameColors()).
SkColor frame;
std::map<int, SkColor>::const_iterator it =
colors->find(ThemeProperties::COLOR_FRAME);
if (it != colors->end()) {
frame = it->second;
} else {
frame =
ThemeProperties::GetDefaultColor(ThemeProperties::COLOR_FRAME, false);
}
if (!colors->count(ThemeProperties::COLOR_FRAME)) {
(*colors)[ThemeProperties::COLOR_FRAME] =
HSLShift(frame, GetTintInternal(ThemeProperties::TINT_FRAME));
}
if (!colors->count(ThemeProperties::COLOR_FRAME_INACTIVE)) {
(*colors)[ThemeProperties::COLOR_FRAME_INACTIVE] =
HSLShift(frame, GetTintInternal(
ThemeProperties::TINT_FRAME_INACTIVE));
}
if (!colors->count(ThemeProperties::COLOR_FRAME_INCOGNITO)) {
(*colors)[ThemeProperties::COLOR_FRAME_INCOGNITO] =
HSLShift(frame, GetTintInternal(
ThemeProperties::TINT_FRAME_INCOGNITO));
}
if (!colors->count(ThemeProperties::COLOR_FRAME_INCOGNITO_INACTIVE)) {
(*colors)[ThemeProperties::COLOR_FRAME_INCOGNITO_INACTIVE] =
HSLShift(frame, GetTintInternal(
ThemeProperties::TINT_FRAME_INCOGNITO_INACTIVE));
}
}
void BrowserThemePack::BuildDisplayPropertiesFromJSON(
const base::DictionaryValue* display_properties_value) {
display_properties_ = new DisplayPropertyPair[kDisplayPropertiesSize];
for (size_t i = 0; i < kDisplayPropertiesSize; ++i) {
display_properties_[i].id = -1;
display_properties_[i].property = 0;
}
if (!display_properties_value)
return;
std::map<int, int> temp_properties;
for (base::DictionaryValue::Iterator iter(*display_properties_value);
!iter.IsAtEnd(); iter.Advance()) {
int property_id = GetIntForString(iter.key(), kDisplayProperties,
kDisplayPropertiesSize);
switch (property_id) {
case ThemeProperties::NTP_BACKGROUND_ALIGNMENT: {
std::string val;
if (iter.value().GetAsString(&val)) {
temp_properties[ThemeProperties::NTP_BACKGROUND_ALIGNMENT] =
ThemeProperties::StringToAlignment(val);
}
break;
}
case ThemeProperties::NTP_BACKGROUND_TILING: {
std::string val;
if (iter.value().GetAsString(&val)) {
temp_properties[ThemeProperties::NTP_BACKGROUND_TILING] =
ThemeProperties::StringToTiling(val);
}
break;
}
case ThemeProperties::NTP_LOGO_ALTERNATE: {
int val = 0;
if (iter.value().GetAsInteger(&val))
temp_properties[ThemeProperties::NTP_LOGO_ALTERNATE] = val;
break;
}
}
}
// Copy data from the intermediary data structure to the array.
size_t count = 0;
for (std::map<int, int>::const_iterator it = temp_properties.begin();
it != temp_properties.end() && count < kDisplayPropertiesSize;
++it, ++count) {
display_properties_[count].id = it->first;
display_properties_[count].property = it->second;
}
}
void BrowserThemePack::ParseImageNamesFromJSON(
const base::DictionaryValue* images_value,
const base::FilePath& images_path,
FilePathMap* file_paths) const {
if (!images_value)
return;
for (base::DictionaryValue::Iterator iter(*images_value); !iter.IsAtEnd();
iter.Advance()) {
if (iter.value().is_dict()) {
const base::DictionaryValue* inner_value = NULL;
if (iter.value().GetAsDictionary(&inner_value)) {
for (base::DictionaryValue::Iterator inner_iter(*inner_value);
!inner_iter.IsAtEnd();
inner_iter.Advance()) {
std::string name;
ui::ScaleFactor scale_factor = ui::SCALE_FACTOR_NONE;
if (GetScaleFactorFromManifestKey(inner_iter.key(), &scale_factor) &&
inner_iter.value().is_string() &&
inner_iter.value().GetAsString(&name)) {
AddFileAtScaleToMap(iter.key(),
scale_factor,
images_path.AppendASCII(name),
file_paths);
}
}
}
} else if (iter.value().is_string()) {
std::string name;
if (iter.value().GetAsString(&name)) {
AddFileAtScaleToMap(iter.key(),
ui::SCALE_FACTOR_100P,
images_path.AppendASCII(name),
file_paths);
}
}
}
}
void BrowserThemePack::AddFileAtScaleToMap(const std::string& image_name,
ui::ScaleFactor scale_factor,
const base::FilePath& image_path,
FilePathMap* file_paths) const {
int id = GetPersistentIDByName(image_name);
if (id != -1)
(*file_paths)[id][scale_factor] = image_path;
}
void BrowserThemePack::BuildSourceImagesArray(const FilePathMap& file_paths) {
std::vector<int> ids;
for (FilePathMap::const_iterator it = file_paths.begin();
it != file_paths.end(); ++it) {
ids.push_back(it->first);
}
source_images_ = new int[ids.size() + 1];
std::copy(ids.begin(), ids.end(), source_images_);
source_images_[ids.size()] = -1;
}
bool BrowserThemePack::LoadRawBitmapsTo(
const FilePathMap& file_paths,
ImageCache* image_cache) {
// Themes should be loaded on the file thread, not the UI thread.
// http://crbug.com/61838
base::ThreadRestrictions::ScopedAllowIO allow_io;
for (FilePathMap::const_iterator it = file_paths.begin();
it != file_paths.end(); ++it) {
int prs_id = it->first;
// Some images need to go directly into |image_memory_|. No modification is
// necessary or desirable.
bool is_copyable = false;
for (size_t i = 0; i < arraysize(kPreloadIDs); ++i) {
if (kPreloadIDs[i] == prs_id) {
is_copyable = true;
break;
}
}
gfx::ImageSkia image_skia;
for (int pass = 0; pass < 2; ++pass) {
// Two passes: In the first pass, we process only scale factor
// 100% and in the second pass all other scale factors. We
// process scale factor 100% first because the first image added
// in image_skia.AddRepresentation() determines the DIP size for
// all representations.
for (ScaleFactorToFileMap::const_iterator s2f = it->second.begin();
s2f != it->second.end(); ++s2f) {
ui::ScaleFactor scale_factor = s2f->first;
if ((pass == 0 && scale_factor != ui::SCALE_FACTOR_100P) ||
(pass == 1 && scale_factor == ui::SCALE_FACTOR_100P)) {
continue;
}
scoped_refptr<base::RefCountedMemory> raw_data(
ReadFileData(s2f->second));
if (!raw_data.get() || !raw_data->size()) {
LOG(ERROR) << "Could not load theme image"
<< " prs_id=" << prs_id
<< " scale_factor_enum=" << scale_factor
<< " file=" << s2f->second.value()
<< (raw_data.get() ? " (zero size)" : " (read error)");
return false;
}
if (is_copyable) {
int raw_id = GetRawIDByPersistentID(prs_id, scale_factor);
image_memory_[raw_id] = raw_data;
} else {
SkBitmap bitmap;
if (gfx::PNGCodec::Decode(raw_data->front(), raw_data->size(),
&bitmap)) {
image_skia.AddRepresentation(
gfx::ImageSkiaRep(bitmap,
ui::GetScaleForScaleFactor(scale_factor)));
} else {
NOTREACHED() << "Unable to decode theme image resource "
<< it->first;
}
}
}
}
if (!is_copyable && !image_skia.isNull())
(*image_cache)[prs_id] = gfx::Image(image_skia);
}
return true;
}
void BrowserThemePack::CreateImages(ImageCache* images) const {
CropImages(images);
CreateFrameImages(images);
CreateTabBackgroundImages(images);
}
void BrowserThemePack::CropImages(ImageCache* images) const {
bool has_frame_border = HasFrameBorder();
for (size_t i = 0; i < arraysize(kImagesToCrop); ++i) {
if (has_frame_border && kImagesToCrop[i].skip_if_frame_border)
continue;
int prs_id = kImagesToCrop[i].prs_id;
ImageCache::iterator it = images->find(prs_id);
if (it == images->end())
continue;
int crop_height = kImagesToCrop[i].max_height;
gfx::ImageSkia image_skia = it->second.AsImageSkia();
(*images)[prs_id] = gfx::Image(gfx::ImageSkiaOperations::ExtractSubset(
image_skia, gfx::Rect(0, 0, image_skia.width(), crop_height)));
}
}
void BrowserThemePack::CreateFrameImages(ImageCache* images) const {
// Create all the output images in a separate cache and move them back into
// the input images because there can be name collisions.
ImageCache temp_output;
for (size_t i = 0; i < arraysize(kFrameTintMap); ++i) {
int prs_id = kFrameTintMap[i].key;
if (!images->count(prs_id)) {
// Fall back from inactive incognito to active incognito.
if (prs_id == PRS_THEME_FRAME_INCOGNITO_INACTIVE)
prs_id = PRS_THEME_FRAME_INCOGNITO;
// From there, fall back to the normal frame.
if (!images->count(prs_id))
prs_id = PRS_THEME_FRAME;
// Fall back from inactive overlay to overlay, but stop there.
if (prs_id == PRS_THEME_FRAME_OVERLAY_INACTIVE)
prs_id = PRS_THEME_FRAME_OVERLAY;
}
// Note that if the original ID and all the fallbacks are absent, the caller
// will rely on the frame colors instead.
if (images->count(prs_id)) {
temp_output[kFrameTintMap[i].key] = CreateHSLShiftedImage(
(*images)[prs_id], GetTintInternal(kFrameTintMap[i].value));
}
}
MergeImageCaches(temp_output, images);
}
void BrowserThemePack::CreateTabBackgroundImages(ImageCache* images) const {
ImageCache temp_output;
for (size_t i = 0; i < arraysize(kTabBackgroundMap); ++i) {
int prs_id = kTabBackgroundMap[i].key;
int prs_base_id = kTabBackgroundMap[i].value;
// We only need to generate the background tab images if we were provided
// with a PRS_THEME_FRAME.
ImageCache::const_iterator it = images->find(prs_base_id);
if (it != images->end()) {
gfx::ImageSkia image_to_tint = (it->second).AsImageSkia();
color_utils::HSL hsl_shift = GetTintInternal(
ThemeProperties::TINT_BACKGROUND_TAB);
int vertical_offset = images->count(prs_id)
? kRestoredTabVerticalOffset : 0;
gfx::ImageSkia overlay;
ImageCache::const_iterator overlay_it = images->find(prs_id);
if (overlay_it != images->end())
overlay = overlay_it->second.AsImageSkia();
auto source = base::MakeUnique<TabBackgroundImageSource>(
image_to_tint, overlay, hsl_shift, vertical_offset);
temp_output[prs_id] =
gfx::Image(gfx::ImageSkia(std::move(source), image_to_tint.size()));
}
}
MergeImageCaches(temp_output, images);
}
void BrowserThemePack::RepackImages(const ImageCache& images,
RawImages* reencoded_images) const {
for (ImageCache::const_iterator it = images.begin();
it != images.end(); ++it) {
gfx::ImageSkia image_skia = *it->second.ToImageSkia();
typedef std::vector<gfx::ImageSkiaRep> ImageSkiaReps;
ImageSkiaReps image_reps = image_skia.image_reps();
if (image_reps.empty()) {
NOTREACHED() << "No image reps for resource " << it->first << ".";
}
for (ImageSkiaReps::iterator rep_it = image_reps.begin();
rep_it != image_reps.end(); ++rep_it) {
std::vector<unsigned char> bitmap_data;
if (!gfx::PNGCodec::EncodeBGRASkBitmap(rep_it->sk_bitmap(), false,
&bitmap_data)) {
NOTREACHED() << "Image file for resource " << it->first
<< " could not be encoded.";
}
int raw_id = GetRawIDByPersistentID(
it->first,
ui::GetSupportedScaleFactor(rep_it->scale()));
(*reencoded_images)[raw_id] =
base::RefCountedBytes::TakeVector(&bitmap_data);
}
}
}
void BrowserThemePack::MergeImageCaches(
const ImageCache& source, ImageCache* destination) const {
for (ImageCache::const_iterator it = source.begin(); it != source.end();
++it) {
(*destination)[it->first] = it->second;
}
}
void BrowserThemePack::AddRawImagesTo(const RawImages& images,
RawDataForWriting* out) const {
for (RawImages::const_iterator it = images.begin(); it != images.end();
++it) {
(*out)[it->first] = base::StringPiece(
it->second->front_as<char>(), it->second->size());
}
}
color_utils::HSL BrowserThemePack::GetTintInternal(int id) const {
color_utils::HSL hsl;
if (GetTint(id, &hsl))
return hsl;
int original_id = id;
if (id == ThemeProperties::TINT_FRAME_INCOGNITO)
original_id = ThemeProperties::TINT_FRAME;
else if (id == ThemeProperties::TINT_FRAME_INCOGNITO_INACTIVE)
original_id = ThemeProperties::TINT_FRAME_INACTIVE;
return ThemeProperties::GetDefaultTint(original_id, original_id != id);
}
int BrowserThemePack::GetRawIDByPersistentID(
int prs_id,
ui::ScaleFactor scale_factor) const {
if (prs_id < 0)
return -1;
for (size_t i = 0; i < scale_factors_.size(); ++i) {
if (scale_factors_[i] == scale_factor)
return ((GetMaxPersistentId() + 1) * i) + prs_id;
}
return -1;
}
bool BrowserThemePack::GetScaleFactorFromManifestKey(
const std::string& key,
ui::ScaleFactor* scale_factor) const {
int percent = 0;
if (base::StringToInt(key, &percent)) {
float scale = static_cast<float>(percent) / 100.0f;
for (size_t i = 0; i < scale_factors_.size(); ++i) {
if (fabs(ui::GetScaleForScaleFactor(scale_factors_[i]) - scale)
< 0.001) {
*scale_factor = scale_factors_[i];
return true;
}
}
}
return false;
}
void BrowserThemePack::GenerateRawImageForAllSupportedScales(int prs_id) {
// Compute (by scaling) bitmaps for |prs_id| for any scale factors
// for which the theme author did not provide a bitmap. We compute
// the bitmaps using the highest scale factor that theme author
// provided.
// Note: We use only supported scale factors. For example, if scale
// factor 2x is supported by the current system, but 1.8x is not and
// if the theme author did not provide an image for 2x but one for
// 1.8x, we will not use the 1.8x image here. Here we will only use
// images provided for scale factors supported by the current system.
// See if any image is missing. If not, we're done.
bool image_missing = false;
for (size_t i = 0; i < scale_factors_.size(); ++i) {
int raw_id = GetRawIDByPersistentID(prs_id, scale_factors_[i]);
if (image_memory_.find(raw_id) == image_memory_.end()) {
image_missing = true;
break;
}
}
if (!image_missing)
return;
// Find available scale factor with highest scale.
ui::ScaleFactor available_scale_factor = ui::SCALE_FACTOR_NONE;
for (size_t i = 0; i < scale_factors_.size(); ++i) {
int raw_id = GetRawIDByPersistentID(prs_id, scale_factors_[i]);
if ((available_scale_factor == ui::SCALE_FACTOR_NONE ||
(ui::GetScaleForScaleFactor(scale_factors_[i]) >
ui::GetScaleForScaleFactor(available_scale_factor))) &&
image_memory_.find(raw_id) != image_memory_.end()) {
available_scale_factor = scale_factors_[i];
}
}
// If no scale factor is available, we're done.
if (available_scale_factor == ui::SCALE_FACTOR_NONE)
return;
// Get bitmap for the available scale factor.
int available_raw_id = GetRawIDByPersistentID(prs_id, available_scale_factor);
RawImages::const_iterator it = image_memory_.find(available_raw_id);
SkBitmap available_bitmap;
if (!gfx::PNGCodec::Decode(it->second->front(),
it->second->size(),
&available_bitmap)) {
NOTREACHED() << "Unable to decode theme image for prs_id="
<< prs_id << " for scale_factor=" << available_scale_factor;
return;
}
// Fill in all missing scale factors by scaling the available bitmap.
for (size_t i = 0; i < scale_factors_.size(); ++i) {
int scaled_raw_id = GetRawIDByPersistentID(prs_id, scale_factors_[i]);
if (image_memory_.find(scaled_raw_id) != image_memory_.end())
continue;
SkBitmap scaled_bitmap =
CreateLowQualityResizedBitmap(available_bitmap,
available_scale_factor,
scale_factors_[i]);
std::vector<unsigned char> bitmap_data;
if (!gfx::PNGCodec::EncodeBGRASkBitmap(scaled_bitmap,
false,
&bitmap_data)) {
NOTREACHED() << "Unable to encode theme image for prs_id="
<< prs_id << " for scale_factor=" << scale_factors_[i];
break;
}
image_memory_[scaled_raw_id] =
base::RefCountedBytes::TakeVector(&bitmap_data);
}
}