blob: fea5d679a91cde427007519c11811ec2874db723 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/debug/liveedit.h"
#include "src/ast/scopes.h"
#include "src/code-stubs.h"
#include "src/compilation-cache.h"
#include "src/compiler.h"
#include "src/debug/debug.h"
#include "src/deoptimizer.h"
#include "src/frames-inl.h"
#include "src/global-handles.h"
#include "src/isolate-inl.h"
#include "src/messages.h"
#include "src/source-position-table.h"
#include "src/v8.h"
#include "src/v8memory.h"
namespace v8 {
namespace internal {
void SetElementSloppy(Handle<JSObject> object,
uint32_t index,
Handle<Object> value) {
// Ignore return value from SetElement. It can only be a failure if there
// are element setters causing exceptions and the debugger context has none
// of these.
Object::SetElement(object->GetIsolate(), object, index, value, SLOPPY)
.Assert();
}
// A simple implementation of dynamic programming algorithm. It solves
// the problem of finding the difference of 2 arrays. It uses a table of results
// of subproblems. Each cell contains a number together with 2-bit flag
// that helps building the chunk list.
class Differencer {
public:
explicit Differencer(Comparator::Input* input)
: input_(input), len1_(input->GetLength1()), len2_(input->GetLength2()) {
buffer_ = NewArray<int>(len1_ * len2_);
}
~Differencer() {
DeleteArray(buffer_);
}
void Initialize() {
int array_size = len1_ * len2_;
for (int i = 0; i < array_size; i++) {
buffer_[i] = kEmptyCellValue;
}
}
// Makes sure that result for the full problem is calculated and stored
// in the table together with flags showing a path through subproblems.
void FillTable() {
CompareUpToTail(0, 0);
}
void SaveResult(Comparator::Output* chunk_writer) {
ResultWriter writer(chunk_writer);
int pos1 = 0;
int pos2 = 0;
while (true) {
if (pos1 < len1_) {
if (pos2 < len2_) {
Direction dir = get_direction(pos1, pos2);
switch (dir) {
case EQ:
writer.eq();
pos1++;
pos2++;
break;
case SKIP1:
writer.skip1(1);
pos1++;
break;
case SKIP2:
case SKIP_ANY:
writer.skip2(1);
pos2++;
break;
default:
UNREACHABLE();
}
} else {
writer.skip1(len1_ - pos1);
break;
}
} else {
if (len2_ != pos2) {
writer.skip2(len2_ - pos2);
}
break;
}
}
writer.close();
}
private:
Comparator::Input* input_;
int* buffer_;
int len1_;
int len2_;
enum Direction {
EQ = 0,
SKIP1,
SKIP2,
SKIP_ANY,
MAX_DIRECTION_FLAG_VALUE = SKIP_ANY
};
// Computes result for a subtask and optionally caches it in the buffer table.
// All results values are shifted to make space for flags in the lower bits.
int CompareUpToTail(int pos1, int pos2) {
if (pos1 < len1_) {
if (pos2 < len2_) {
int cached_res = get_value4(pos1, pos2);
if (cached_res == kEmptyCellValue) {
Direction dir;
int res;
if (input_->Equals(pos1, pos2)) {
res = CompareUpToTail(pos1 + 1, pos2 + 1);
dir = EQ;
} else {
int res1 = CompareUpToTail(pos1 + 1, pos2) +
(1 << kDirectionSizeBits);
int res2 = CompareUpToTail(pos1, pos2 + 1) +
(1 << kDirectionSizeBits);
if (res1 == res2) {
res = res1;
dir = SKIP_ANY;
} else if (res1 < res2) {
res = res1;
dir = SKIP1;
} else {
res = res2;
dir = SKIP2;
}
}
set_value4_and_dir(pos1, pos2, res, dir);
cached_res = res;
}
return cached_res;
} else {
return (len1_ - pos1) << kDirectionSizeBits;
}
} else {
return (len2_ - pos2) << kDirectionSizeBits;
}
}
inline int& get_cell(int i1, int i2) {
return buffer_[i1 + i2 * len1_];
}
// Each cell keeps a value plus direction. Value is multiplied by 4.
void set_value4_and_dir(int i1, int i2, int value4, Direction dir) {
DCHECK((value4 & kDirectionMask) == 0);
get_cell(i1, i2) = value4 | dir;
}
int get_value4(int i1, int i2) {
return get_cell(i1, i2) & (kMaxUInt32 ^ kDirectionMask);
}
Direction get_direction(int i1, int i2) {
return static_cast<Direction>(get_cell(i1, i2) & kDirectionMask);
}
static const int kDirectionSizeBits = 2;
static const int kDirectionMask = (1 << kDirectionSizeBits) - 1;
static const int kEmptyCellValue = ~0u << kDirectionSizeBits;
// This method only holds static assert statement (unfortunately you cannot
// place one in class scope).
void StaticAssertHolder() {
STATIC_ASSERT(MAX_DIRECTION_FLAG_VALUE < (1 << kDirectionSizeBits));
}
class ResultWriter {
public:
explicit ResultWriter(Comparator::Output* chunk_writer)
: chunk_writer_(chunk_writer), pos1_(0), pos2_(0),
pos1_begin_(-1), pos2_begin_(-1), has_open_chunk_(false) {
}
void eq() {
FlushChunk();
pos1_++;
pos2_++;
}
void skip1(int len1) {
StartChunk();
pos1_ += len1;
}
void skip2(int len2) {
StartChunk();
pos2_ += len2;
}
void close() {
FlushChunk();
}
private:
Comparator::Output* chunk_writer_;
int pos1_;
int pos2_;
int pos1_begin_;
int pos2_begin_;
bool has_open_chunk_;
void StartChunk() {
if (!has_open_chunk_) {
pos1_begin_ = pos1_;
pos2_begin_ = pos2_;
has_open_chunk_ = true;
}
}
void FlushChunk() {
if (has_open_chunk_) {
chunk_writer_->AddChunk(pos1_begin_, pos2_begin_,
pos1_ - pos1_begin_, pos2_ - pos2_begin_);
has_open_chunk_ = false;
}
}
};
};
void Comparator::CalculateDifference(Comparator::Input* input,
Comparator::Output* result_writer) {
Differencer differencer(input);
differencer.Initialize();
differencer.FillTable();
differencer.SaveResult(result_writer);
}
static bool CompareSubstrings(Handle<String> s1, int pos1,
Handle<String> s2, int pos2, int len) {
for (int i = 0; i < len; i++) {
if (s1->Get(i + pos1) != s2->Get(i + pos2)) {
return false;
}
}
return true;
}
// Additional to Input interface. Lets switch Input range to subrange.
// More elegant way would be to wrap one Input as another Input object
// and translate positions there, but that would cost us additional virtual
// call per comparison.
class SubrangableInput : public Comparator::Input {
public:
virtual void SetSubrange1(int offset, int len) = 0;
virtual void SetSubrange2(int offset, int len) = 0;
};
class SubrangableOutput : public Comparator::Output {
public:
virtual void SetSubrange1(int offset, int len) = 0;
virtual void SetSubrange2(int offset, int len) = 0;
};
static int min(int a, int b) {
return a < b ? a : b;
}
// Finds common prefix and suffix in input. This parts shouldn't take space in
// linear programming table. Enable subranging in input and output.
static void NarrowDownInput(SubrangableInput* input,
SubrangableOutput* output) {
const int len1 = input->GetLength1();
const int len2 = input->GetLength2();
int common_prefix_len;
int common_suffix_len;
{
common_prefix_len = 0;
int prefix_limit = min(len1, len2);
while (common_prefix_len < prefix_limit &&
input->Equals(common_prefix_len, common_prefix_len)) {
common_prefix_len++;
}
common_suffix_len = 0;
int suffix_limit = min(len1 - common_prefix_len, len2 - common_prefix_len);
while (common_suffix_len < suffix_limit &&
input->Equals(len1 - common_suffix_len - 1,
len2 - common_suffix_len - 1)) {
common_suffix_len++;
}
}
if (common_prefix_len > 0 || common_suffix_len > 0) {
int new_len1 = len1 - common_suffix_len - common_prefix_len;
int new_len2 = len2 - common_suffix_len - common_prefix_len;
input->SetSubrange1(common_prefix_len, new_len1);
input->SetSubrange2(common_prefix_len, new_len2);
output->SetSubrange1(common_prefix_len, new_len1);
output->SetSubrange2(common_prefix_len, new_len2);
}
}
// A helper class that writes chunk numbers into JSArray.
// Each chunk is stored as 3 array elements: (pos1_begin, pos1_end, pos2_end).
class CompareOutputArrayWriter {
public:
explicit CompareOutputArrayWriter(Isolate* isolate)
: array_(isolate->factory()->NewJSArray(10)), current_size_(0) {}
Handle<JSArray> GetResult() {
return array_;
}
void WriteChunk(int char_pos1, int char_pos2, int char_len1, int char_len2) {
Isolate* isolate = array_->GetIsolate();
SetElementSloppy(array_,
current_size_,
Handle<Object>(Smi::FromInt(char_pos1), isolate));
SetElementSloppy(array_,
current_size_ + 1,
Handle<Object>(Smi::FromInt(char_pos1 + char_len1),
isolate));
SetElementSloppy(array_,
current_size_ + 2,
Handle<Object>(Smi::FromInt(char_pos2 + char_len2),
isolate));
current_size_ += 3;
}
private:
Handle<JSArray> array_;
int current_size_;
};
// Represents 2 strings as 2 arrays of tokens.
// TODO(LiveEdit): Currently it's actually an array of charactres.
// Make array of tokens instead.
class TokensCompareInput : public Comparator::Input {
public:
TokensCompareInput(Handle<String> s1, int offset1, int len1,
Handle<String> s2, int offset2, int len2)
: s1_(s1), offset1_(offset1), len1_(len1),
s2_(s2), offset2_(offset2), len2_(len2) {
}
virtual int GetLength1() {
return len1_;
}
virtual int GetLength2() {
return len2_;
}
bool Equals(int index1, int index2) {
return s1_->Get(offset1_ + index1) == s2_->Get(offset2_ + index2);
}
private:
Handle<String> s1_;
int offset1_;
int len1_;
Handle<String> s2_;
int offset2_;
int len2_;
};
// Stores compare result in JSArray. Converts substring positions
// to absolute positions.
class TokensCompareOutput : public Comparator::Output {
public:
TokensCompareOutput(CompareOutputArrayWriter* array_writer,
int offset1, int offset2)
: array_writer_(array_writer), offset1_(offset1), offset2_(offset2) {
}
void AddChunk(int pos1, int pos2, int len1, int len2) {
array_writer_->WriteChunk(pos1 + offset1_, pos2 + offset2_, len1, len2);
}
private:
CompareOutputArrayWriter* array_writer_;
int offset1_;
int offset2_;
};
// Wraps raw n-elements line_ends array as a list of n+1 lines. The last line
// never has terminating new line character.
class LineEndsWrapper {
public:
explicit LineEndsWrapper(Handle<String> string)
: ends_array_(String::CalculateLineEnds(string, false)),
string_len_(string->length()) {
}
int length() {
return ends_array_->length() + 1;
}
// Returns start for any line including start of the imaginary line after
// the last line.
int GetLineStart(int index) {
if (index == 0) {
return 0;
} else {
return GetLineEnd(index - 1);
}
}
int GetLineEnd(int index) {
if (index == ends_array_->length()) {
// End of the last line is always an end of the whole string.
// If the string ends with a new line character, the last line is an
// empty string after this character.
return string_len_;
} else {
return GetPosAfterNewLine(index);
}
}
private:
Handle<FixedArray> ends_array_;
int string_len_;
int GetPosAfterNewLine(int index) {
return Smi::cast(ends_array_->get(index))->value() + 1;
}
};
// Represents 2 strings as 2 arrays of lines.
class LineArrayCompareInput : public SubrangableInput {
public:
LineArrayCompareInput(Handle<String> s1, Handle<String> s2,
LineEndsWrapper line_ends1, LineEndsWrapper line_ends2)
: s1_(s1), s2_(s2), line_ends1_(line_ends1),
line_ends2_(line_ends2),
subrange_offset1_(0), subrange_offset2_(0),
subrange_len1_(line_ends1_.length()),
subrange_len2_(line_ends2_.length()) {
}
int GetLength1() {
return subrange_len1_;
}
int GetLength2() {
return subrange_len2_;
}
bool Equals(int index1, int index2) {
index1 += subrange_offset1_;
index2 += subrange_offset2_;
int line_start1 = line_ends1_.GetLineStart(index1);
int line_start2 = line_ends2_.GetLineStart(index2);
int line_end1 = line_ends1_.GetLineEnd(index1);
int line_end2 = line_ends2_.GetLineEnd(index2);
int len1 = line_end1 - line_start1;
int len2 = line_end2 - line_start2;
if (len1 != len2) {
return false;
}
return CompareSubstrings(s1_, line_start1, s2_, line_start2,
len1);
}
void SetSubrange1(int offset, int len) {
subrange_offset1_ = offset;
subrange_len1_ = len;
}
void SetSubrange2(int offset, int len) {
subrange_offset2_ = offset;
subrange_len2_ = len;
}
private:
Handle<String> s1_;
Handle<String> s2_;
LineEndsWrapper line_ends1_;
LineEndsWrapper line_ends2_;
int subrange_offset1_;
int subrange_offset2_;
int subrange_len1_;
int subrange_len2_;
};
// Stores compare result in JSArray. For each chunk tries to conduct
// a fine-grained nested diff token-wise.
class TokenizingLineArrayCompareOutput : public SubrangableOutput {
public:
TokenizingLineArrayCompareOutput(LineEndsWrapper line_ends1,
LineEndsWrapper line_ends2,
Handle<String> s1, Handle<String> s2)
: array_writer_(s1->GetIsolate()),
line_ends1_(line_ends1), line_ends2_(line_ends2), s1_(s1), s2_(s2),
subrange_offset1_(0), subrange_offset2_(0) {
}
void AddChunk(int line_pos1, int line_pos2, int line_len1, int line_len2) {
line_pos1 += subrange_offset1_;
line_pos2 += subrange_offset2_;
int char_pos1 = line_ends1_.GetLineStart(line_pos1);
int char_pos2 = line_ends2_.GetLineStart(line_pos2);
int char_len1 = line_ends1_.GetLineStart(line_pos1 + line_len1) - char_pos1;
int char_len2 = line_ends2_.GetLineStart(line_pos2 + line_len2) - char_pos2;
if (char_len1 < CHUNK_LEN_LIMIT && char_len2 < CHUNK_LEN_LIMIT) {
// Chunk is small enough to conduct a nested token-level diff.
HandleScope subTaskScope(s1_->GetIsolate());
TokensCompareInput tokens_input(s1_, char_pos1, char_len1,
s2_, char_pos2, char_len2);
TokensCompareOutput tokens_output(&array_writer_, char_pos1,
char_pos2);
Comparator::CalculateDifference(&tokens_input, &tokens_output);
} else {
array_writer_.WriteChunk(char_pos1, char_pos2, char_len1, char_len2);
}
}
void SetSubrange1(int offset, int len) {
subrange_offset1_ = offset;
}
void SetSubrange2(int offset, int len) {
subrange_offset2_ = offset;
}
Handle<JSArray> GetResult() {
return array_writer_.GetResult();
}
private:
static const int CHUNK_LEN_LIMIT = 800;
CompareOutputArrayWriter array_writer_;
LineEndsWrapper line_ends1_;
LineEndsWrapper line_ends2_;
Handle<String> s1_;
Handle<String> s2_;
int subrange_offset1_;
int subrange_offset2_;
};
Handle<JSArray> LiveEdit::CompareStrings(Handle<String> s1,
Handle<String> s2) {
s1 = String::Flatten(s1);
s2 = String::Flatten(s2);
LineEndsWrapper line_ends1(s1);
LineEndsWrapper line_ends2(s2);
LineArrayCompareInput input(s1, s2, line_ends1, line_ends2);
TokenizingLineArrayCompareOutput output(line_ends1, line_ends2, s1, s2);
NarrowDownInput(&input, &output);
Comparator::CalculateDifference(&input, &output);
return output.GetResult();
}
// Unwraps JSValue object, returning its field "value"
static Handle<Object> UnwrapJSValue(Handle<JSValue> jsValue) {
return Handle<Object>(jsValue->value(), jsValue->GetIsolate());
}
// Wraps any object into a OpaqueReference, that will hide the object
// from JavaScript.
static Handle<JSValue> WrapInJSValue(Handle<HeapObject> object) {
Isolate* isolate = object->GetIsolate();
Handle<JSFunction> constructor = isolate->opaque_reference_function();
Handle<JSValue> result =
Handle<JSValue>::cast(isolate->factory()->NewJSObject(constructor));
result->set_value(*object);
return result;
}
static Handle<SharedFunctionInfo> UnwrapSharedFunctionInfoFromJSValue(
Handle<JSValue> jsValue) {
Object* shared = jsValue->value();
CHECK(shared->IsSharedFunctionInfo());
return Handle<SharedFunctionInfo>(SharedFunctionInfo::cast(shared));
}
static int GetArrayLength(Handle<JSArray> array) {
Object* length = array->length();
CHECK(length->IsSmi());
return Smi::cast(length)->value();
}
void FunctionInfoWrapper::SetInitialProperties(
Handle<String> name, int start_position, int end_position, int param_num,
int literal_count, int parent_index, int function_literal_id) {
HandleScope scope(isolate());
this->SetField(kFunctionNameOffset_, name);
this->SetSmiValueField(kStartPositionOffset_, start_position);
this->SetSmiValueField(kEndPositionOffset_, end_position);
this->SetSmiValueField(kParamNumOffset_, param_num);
this->SetSmiValueField(kLiteralNumOffset_, literal_count);
this->SetSmiValueField(kParentIndexOffset_, parent_index);
this->SetSmiValueField(kFunctionLiteralIdOffset_, function_literal_id);
}
void FunctionInfoWrapper::SetSharedFunctionInfo(
Handle<SharedFunctionInfo> info) {
Handle<JSValue> info_holder = WrapInJSValue(info);
this->SetField(kSharedFunctionInfoOffset_, info_holder);
}
Handle<SharedFunctionInfo> FunctionInfoWrapper::GetSharedFunctionInfo() {
Handle<Object> element = this->GetField(kSharedFunctionInfoOffset_);
Handle<JSValue> value_wrapper = Handle<JSValue>::cast(element);
Handle<Object> raw_result = UnwrapJSValue(value_wrapper);
CHECK(raw_result->IsSharedFunctionInfo());
return Handle<SharedFunctionInfo>::cast(raw_result);
}
void SharedInfoWrapper::SetProperties(Handle<String> name,
int start_position,
int end_position,
Handle<SharedFunctionInfo> info) {
HandleScope scope(isolate());
this->SetField(kFunctionNameOffset_, name);
Handle<JSValue> info_holder = WrapInJSValue(info);
this->SetField(kSharedInfoOffset_, info_holder);
this->SetSmiValueField(kStartPositionOffset_, start_position);
this->SetSmiValueField(kEndPositionOffset_, end_position);
}
Handle<SharedFunctionInfo> SharedInfoWrapper::GetInfo() {
Handle<Object> element = this->GetField(kSharedInfoOffset_);
Handle<JSValue> value_wrapper = Handle<JSValue>::cast(element);
return UnwrapSharedFunctionInfoFromJSValue(value_wrapper);
}
void LiveEdit::InitializeThreadLocal(Debug* debug) {
debug->thread_local_.frame_drop_mode_ = LIVE_EDIT_FRAMES_UNTOUCHED;
}
bool LiveEdit::SetAfterBreakTarget(Debug* debug) {
Code* code = NULL;
Isolate* isolate = debug->isolate_;
switch (debug->thread_local_.frame_drop_mode_) {
case LIVE_EDIT_FRAMES_UNTOUCHED:
return false;
case LIVE_EDIT_FRAME_DROPPED_IN_DEBUG_SLOT_CALL:
// Debug break slot stub does not return normally, instead it manually
// cleans the stack and jumps. We should patch the jump address.
code = isolate->builtins()->builtin(Builtins::kFrameDropper_LiveEdit);
break;
case LIVE_EDIT_FRAME_DROPPED_IN_DIRECT_CALL:
// Nothing to do, after_break_target is not used here.
return true;
case LIVE_EDIT_FRAME_DROPPED_IN_RETURN_CALL:
code = isolate->builtins()->builtin(Builtins::kFrameDropper_LiveEdit);
break;
case LIVE_EDIT_CURRENTLY_SET_MODE:
UNREACHABLE();
break;
}
debug->after_break_target_ = code->entry();
return true;
}
MaybeHandle<JSArray> LiveEdit::GatherCompileInfo(Handle<Script> script,
Handle<String> source) {
Isolate* isolate = script->GetIsolate();
MaybeHandle<JSArray> infos;
Handle<Object> original_source =
Handle<Object>(script->source(), isolate);
script->set_source(*source);
{
// Creating verbose TryCatch from public API is currently the only way to
// force code save location. We do not use this the object directly.
v8::TryCatch try_catch(reinterpret_cast<v8::Isolate*>(isolate));
try_catch.SetVerbose(true);
// A logical 'try' section.
infos = Compiler::CompileForLiveEdit(script);
}
// A logical 'catch' section.
Handle<JSObject> rethrow_exception;
if (isolate->has_pending_exception()) {
Handle<Object> exception(isolate->pending_exception(), isolate);
MessageLocation message_location = isolate->GetMessageLocation();
isolate->clear_pending_message();
isolate->clear_pending_exception();
// If possible, copy positions from message object to exception object.
if (exception->IsJSObject() && !message_location.script().is_null()) {
rethrow_exception = Handle<JSObject>::cast(exception);
Factory* factory = isolate->factory();
Handle<String> start_pos_key = factory->InternalizeOneByteString(
STATIC_CHAR_VECTOR("startPosition"));
Handle<String> end_pos_key =
factory->InternalizeOneByteString(STATIC_CHAR_VECTOR("endPosition"));
Handle<String> script_obj_key =
factory->InternalizeOneByteString(STATIC_CHAR_VECTOR("scriptObject"));
Handle<Smi> start_pos(
Smi::FromInt(message_location.start_pos()), isolate);
Handle<Smi> end_pos(Smi::FromInt(message_location.end_pos()), isolate);
Handle<JSObject> script_obj =
Script::GetWrapper(message_location.script());
Object::SetProperty(rethrow_exception, start_pos_key, start_pos, SLOPPY)
.Assert();
Object::SetProperty(rethrow_exception, end_pos_key, end_pos, SLOPPY)
.Assert();
Object::SetProperty(rethrow_exception, script_obj_key, script_obj, SLOPPY)
.Assert();
}
}
// A logical 'finally' section.
script->set_source(*original_source);
if (rethrow_exception.is_null()) {
return infos.ToHandleChecked();
} else {
return isolate->Throw<JSArray>(rethrow_exception);
}
}
// Visitor that finds all references to a particular code object,
// including "CODE_TARGET" references in other code objects and replaces
// them on the fly.
class ReplacingVisitor : public ObjectVisitor {
public:
explicit ReplacingVisitor(Code* original, Code* substitution)
: original_(original), substitution_(substitution) {
}
void VisitPointers(Object** start, Object** end) override {
for (Object** p = start; p < end; p++) {
if (*p == original_) {
*p = substitution_;
}
}
}
void VisitCodeEntry(Address entry) override {
if (Code::GetObjectFromEntryAddress(entry) == original_) {
Address substitution_entry = substitution_->instruction_start();
Memory::Address_at(entry) = substitution_entry;
}
}
void VisitCodeTarget(RelocInfo* rinfo) override {
if (RelocInfo::IsCodeTarget(rinfo->rmode()) &&
Code::GetCodeFromTargetAddress(rinfo->target_address()) == original_) {
Address substitution_entry = substitution_->instruction_start();
rinfo->set_target_address(substitution_entry);
}
}
void VisitDebugTarget(RelocInfo* rinfo) override { VisitCodeTarget(rinfo); }
private:
Code* original_;
Code* substitution_;
};
// Finds all references to original and replaces them with substitution.
static void ReplaceCodeObject(Handle<Code> original,
Handle<Code> substitution) {
// Perform a full GC in order to ensure that we are not in the middle of an
// incremental marking phase when we are replacing the code object.
// Since we are not in an incremental marking phase we can write pointers
// to code objects (that are never in new space) without worrying about
// write barriers.
Heap* heap = original->GetHeap();
HeapIterator iterator(heap);
DCHECK(!heap->InNewSpace(*substitution));
ReplacingVisitor visitor(*original, *substitution);
// Iterate over all roots. Stack frames may have pointer into original code,
// so temporary replace the pointers with offset numbers
// in prologue/epilogue.
heap->IterateRoots(&visitor, VISIT_ALL);
// Now iterate over all pointers of all objects, including code_target
// implicit pointers.
for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) {
obj->Iterate(&visitor);
}
}
// Patch function literals.
// Name 'literals' is a misnomer. Rather it's a cache for complex object
// boilerplates and for a native context. We must clean cached values.
// Additionally we may need to allocate a new array if number of literals
// changed.
class LiteralFixer {
public:
static void PatchLiterals(FunctionInfoWrapper* compile_info_wrapper,
Handle<SharedFunctionInfo> shared_info,
Isolate* isolate) {
int new_literal_count = compile_info_wrapper->GetLiteralCount();
// Recreate the literal array and type feedback vector.
// Since the feedback vector roots literal arrays for nested functions,
// we can't simply leave it in place because those nested literal
// array and feedback vectors may have changed structure.
Handle<FixedArray> function_instances =
CollectJSFunctions(shared_info, isolate);
Handle<TypeFeedbackMetadata> feedback_metadata(
shared_info->feedback_metadata());
for (int i = 0; i < function_instances->length(); i++) {
Handle<JSFunction> fun(JSFunction::cast(function_instances->get(i)));
Handle<TypeFeedbackVector> vector =
TypeFeedbackVector::New(isolate, feedback_metadata);
Handle<LiteralsArray> new_literals =
LiteralsArray::New(isolate, vector, new_literal_count);
Handle<LiteralsArray> old_literals(fun->literals(), isolate);
fun->set_literals(*new_literals);
// The literals are rooted in a containing feedback vector.
// Replace them there, so new closures have the correct literals.
ReplaceRoots(old_literals, new_literals);
}
shared_info->set_num_literals(new_literal_count);
}
private:
// Iterates all function instances in the HEAP that refers to the
// provided shared_info.
template<typename Visitor>
static void IterateJSFunctions(Handle<SharedFunctionInfo> shared_info,
Visitor* visitor) {
HeapIterator iterator(shared_info->GetHeap());
for (HeapObject* obj = iterator.next(); obj != NULL;
obj = iterator.next()) {
if (obj->IsJSFunction()) {
JSFunction* function = JSFunction::cast(obj);
if (function->shared() == *shared_info) {
visitor->visit(function);
}
}
}
}
template <typename Visitor>
static void IterateAllJSFunctions(Heap* heap, Visitor* visitor) {
HeapIterator iterator(heap);
for (HeapObject* obj = iterator.next(); obj != NULL;
obj = iterator.next()) {
if (obj->IsJSFunction()) {
JSFunction* function = JSFunction::cast(obj);
visitor->visit(function);
}
}
}
class ReplaceRootsVisitor {
public:
ReplaceRootsVisitor(Handle<LiteralsArray> old_literals,
Handle<LiteralsArray> new_literals)
: old_literals_(old_literals), new_literals_(new_literals) {}
void visit(JSFunction* fun) {
if (!fun->shared()->is_compiled()) return;
// Look in the type feedback vector for a copy of literals.
TypeFeedbackVector* vector = fun->feedback_vector();
// Note: it's important to get the feedback metadata from the
// type feedback vector, because there may be a new metadata
// object in the SharedFunctionInfo (with a different slot
// configuration).
TypeFeedbackMetadataIterator iter(vector->metadata());
while (iter.HasNext()) {
FeedbackVectorSlot slot = iter.Next();
FeedbackVectorSlotKind kind = iter.kind();
if (kind == FeedbackVectorSlotKind::CREATE_CLOSURE) {
Object* obj = vector->Get(slot);
if (obj == *old_literals_) {
vector->Set(slot, *new_literals_);
}
}
}
}
Handle<LiteralsArray> old_literals_;
Handle<LiteralsArray> new_literals_;
};
static void ReplaceRoots(Handle<LiteralsArray> old_literals,
Handle<LiteralsArray> new_literals) {
ReplaceRootsVisitor replace_visitor(old_literals, new_literals);
IterateAllJSFunctions(old_literals->GetHeap(), &replace_visitor);
}
// Finds all instances of JSFunction that refers to the provided shared_info
// and returns array with them.
static Handle<FixedArray> CollectJSFunctions(
Handle<SharedFunctionInfo> shared_info, Isolate* isolate) {
CountVisitor count_visitor;
count_visitor.count = 0;
IterateJSFunctions(shared_info, &count_visitor);
int size = count_visitor.count;
Handle<FixedArray> result = isolate->factory()->NewFixedArray(size);
if (size > 0) {
CollectVisitor collect_visitor(result);
IterateJSFunctions(shared_info, &collect_visitor);
}
return result;
}
class ClearValuesVisitor {
public:
void visit(JSFunction* fun) {
LiteralsArray* literals = fun->literals();
int len = literals->literals_count();
for (int j = 0; j < len; j++) {
literals->set_literal_undefined(j);
}
}
};
class CountVisitor {
public:
void visit(JSFunction* fun) {
count++;
}
int count;
};
class CollectVisitor {
public:
explicit CollectVisitor(Handle<FixedArray> output)
: m_output(output), m_pos(0) {}
void visit(JSFunction* fun) {
m_output->set(m_pos, fun);
m_pos++;
}
private:
Handle<FixedArray> m_output;
int m_pos;
};
};
// Marks code that shares the same shared function info or has inlined
// code that shares the same function info.
class DependentFunctionMarker: public OptimizedFunctionVisitor {
public:
SharedFunctionInfo* shared_info_;
bool found_;
explicit DependentFunctionMarker(SharedFunctionInfo* shared_info)
: shared_info_(shared_info), found_(false) { }
virtual void EnterContext(Context* context) { } // Don't care.
virtual void LeaveContext(Context* context) { } // Don't care.
virtual void VisitFunction(JSFunction* function) {
// It should be guaranteed by the iterator that everything is optimized.
DCHECK(function->code()->kind() == Code::OPTIMIZED_FUNCTION);
if (function->Inlines(shared_info_)) {
// Mark the code for deoptimization.
function->code()->set_marked_for_deoptimization(true);
found_ = true;
}
}
};
static void DeoptimizeDependentFunctions(SharedFunctionInfo* function_info) {
DisallowHeapAllocation no_allocation;
DependentFunctionMarker marker(function_info);
// TODO(titzer): need to traverse all optimized code to find OSR code here.
Deoptimizer::VisitAllOptimizedFunctions(function_info->GetIsolate(), &marker);
if (marker.found_) {
// Only go through with the deoptimization if something was found.
Deoptimizer::DeoptimizeMarkedCode(function_info->GetIsolate());
}
}
void LiveEdit::ReplaceFunctionCode(
Handle<JSArray> new_compile_info_array,
Handle<JSArray> shared_info_array) {
Isolate* isolate = new_compile_info_array->GetIsolate();
FunctionInfoWrapper compile_info_wrapper(new_compile_info_array);
SharedInfoWrapper shared_info_wrapper(shared_info_array);
Handle<SharedFunctionInfo> shared_info = shared_info_wrapper.GetInfo();
Handle<SharedFunctionInfo> new_shared_info =
compile_info_wrapper.GetSharedFunctionInfo();
if (shared_info->is_compiled()) {
// Take whatever code we can get from the new shared function info. We
// expect activations of neither the old bytecode nor old FCG code, since
// the lowest activation is going to be restarted.
Handle<Code> old_code(shared_info->code());
Handle<Code> new_code(new_shared_info->code());
// Clear old bytecode. This will trigger self-healing if we do not install
// new bytecode.
shared_info->ClearBytecodeArray();
if (!shared_info->HasBaselineCode()) {
// Every function from this SFI is interpreted.
if (!new_shared_info->HasBaselineCode()) {
// We have newly compiled bytecode. Simply replace the old one.
shared_info->set_bytecode_array(new_shared_info->bytecode_array());
} else {
// Rely on self-healing for places that used to run bytecode.
shared_info->ReplaceCode(*new_code);
}
} else {
// Functions from this SFI can be either interpreted or running FCG.
DCHECK(old_code->kind() == Code::FUNCTION);
if (new_shared_info->HasBytecodeArray()) {
// Start using new bytecode everywhere.
shared_info->set_bytecode_array(new_shared_info->bytecode_array());
ReplaceCodeObject(old_code,
isolate->builtins()->InterpreterEntryTrampoline());
} else {
// Start using new FCG code everywhere.
// Rely on self-healing for places that used to run bytecode.
DCHECK(new_code->kind() == Code::FUNCTION);
ReplaceCodeObject(old_code, new_code);
}
}
if (shared_info->HasDebugInfo()) {
// Existing break points will be re-applied. Reset the debug info here.
isolate->debug()->RemoveDebugInfoAndClearFromShared(
handle(shared_info->GetDebugInfo()));
}
shared_info->set_scope_info(new_shared_info->scope_info());
shared_info->set_outer_scope_info(new_shared_info->outer_scope_info());
shared_info->DisableOptimization(kLiveEdit);
// Update the type feedback vector, if needed.
Handle<TypeFeedbackMetadata> new_feedback_metadata(
new_shared_info->feedback_metadata());
shared_info->set_feedback_metadata(*new_feedback_metadata);
}
int start_position = compile_info_wrapper.GetStartPosition();
int end_position = compile_info_wrapper.GetEndPosition();
shared_info->set_start_position(start_position);
shared_info->set_end_position(end_position);
LiteralFixer::PatchLiterals(&compile_info_wrapper, shared_info, isolate);
DeoptimizeDependentFunctions(*shared_info);
isolate->compilation_cache()->Remove(shared_info);
}
void LiveEdit::FunctionSourceUpdated(Handle<JSArray> shared_info_array,
int new_function_literal_id) {
SharedInfoWrapper shared_info_wrapper(shared_info_array);
Handle<SharedFunctionInfo> shared_info = shared_info_wrapper.GetInfo();
shared_info->set_function_literal_id(new_function_literal_id);
DeoptimizeDependentFunctions(*shared_info);
shared_info_array->GetIsolate()->compilation_cache()->Remove(shared_info);
}
void LiveEdit::FixupScript(Handle<Script> script, int max_function_literal_id) {
Isolate* isolate = script->GetIsolate();
Handle<FixedArray> old_infos(script->shared_function_infos(), isolate);
Handle<FixedArray> new_infos(
isolate->factory()->NewFixedArray(max_function_literal_id + 1));
script->set_shared_function_infos(*new_infos);
SharedFunctionInfo::ScriptIterator iterator(isolate, old_infos);
while (SharedFunctionInfo* shared = iterator.Next()) {
// We can't use SharedFunctionInfo::SetScript(info, undefined_value()) here,
// as we severed the link from the Script to the SharedFunctionInfo above.
Handle<SharedFunctionInfo> info(shared, isolate);
info->set_script(isolate->heap()->undefined_value());
Handle<Object> new_noscript_list = WeakFixedArray::Add(
isolate->factory()->noscript_shared_function_infos(), info);
isolate->heap()->SetRootNoScriptSharedFunctionInfos(*new_noscript_list);
// Put the SharedFunctionInfo at its new, correct location.
SharedFunctionInfo::SetScript(info, script);
}
}
void LiveEdit::SetFunctionScript(Handle<JSValue> function_wrapper,
Handle<Object> script_handle) {
Handle<SharedFunctionInfo> shared_info =
UnwrapSharedFunctionInfoFromJSValue(function_wrapper);
Isolate* isolate = function_wrapper->GetIsolate();
CHECK(script_handle->IsScript() || script_handle->IsUndefined(isolate));
SharedFunctionInfo::SetScript(shared_info, script_handle);
shared_info->DisableOptimization(kLiveEdit);
function_wrapper->GetIsolate()->compilation_cache()->Remove(shared_info);
}
namespace {
// For a script text change (defined as position_change_array), translates
// position in unchanged text to position in changed text.
// Text change is a set of non-overlapping regions in text, that have changed
// their contents and length. It is specified as array of groups of 3 numbers:
// (change_begin, change_end, change_end_new_position).
// Each group describes a change in text; groups are sorted by change_begin.
// Only position in text beyond any changes may be successfully translated.
// If a positions is inside some region that changed, result is currently
// undefined.
static int TranslatePosition(int original_position,
Handle<JSArray> position_change_array) {
int position_diff = 0;
int array_len = GetArrayLength(position_change_array);
Isolate* isolate = position_change_array->GetIsolate();
// TODO(635): binary search may be used here
for (int i = 0; i < array_len; i += 3) {
HandleScope scope(isolate);
Handle<Object> element =
JSReceiver::GetElement(isolate, position_change_array, i)
.ToHandleChecked();
CHECK(element->IsSmi());
int chunk_start = Handle<Smi>::cast(element)->value();
if (original_position < chunk_start) {
break;
}
element = JSReceiver::GetElement(isolate, position_change_array, i + 1)
.ToHandleChecked();
CHECK(element->IsSmi());
int chunk_end = Handle<Smi>::cast(element)->value();
// Position mustn't be inside a chunk.
DCHECK(original_position >= chunk_end);
element = JSReceiver::GetElement(isolate, position_change_array, i + 2)
.ToHandleChecked();
CHECK(element->IsSmi());
int chunk_changed_end = Handle<Smi>::cast(element)->value();
position_diff = chunk_changed_end - chunk_end;
}
return original_position + position_diff;
}
void TranslateSourcePositionTable(Handle<AbstractCode> code,
Handle<JSArray> position_change_array) {
Isolate* isolate = code->GetIsolate();
Zone zone(isolate->allocator(), ZONE_NAME);
SourcePositionTableBuilder builder(&zone);
Handle<ByteArray> source_position_table(code->source_position_table());
for (SourcePositionTableIterator iterator(*source_position_table);
!iterator.done(); iterator.Advance()) {
SourcePosition position = iterator.source_position();
position.SetScriptOffset(
TranslatePosition(position.ScriptOffset(), position_change_array));
builder.AddPosition(iterator.code_offset(), position,
iterator.is_statement());
}
Handle<ByteArray> new_source_position_table(
builder.ToSourcePositionTable(isolate, code));
code->set_source_position_table(*new_source_position_table);
}
} // namespace
void LiveEdit::PatchFunctionPositions(Handle<JSArray> shared_info_array,
Handle<JSArray> position_change_array) {
SharedInfoWrapper shared_info_wrapper(shared_info_array);
Handle<SharedFunctionInfo> info = shared_info_wrapper.GetInfo();
int old_function_start = info->start_position();
int new_function_start = TranslatePosition(old_function_start,
position_change_array);
int new_function_end = TranslatePosition(info->end_position(),
position_change_array);
int new_function_token_pos =
TranslatePosition(info->function_token_position(), position_change_array);
info->set_start_position(new_function_start);
info->set_end_position(new_function_end);
info->set_function_token_position(new_function_token_pos);
if (info->HasBytecodeArray()) {
TranslateSourcePositionTable(
Handle<AbstractCode>(AbstractCode::cast(info->bytecode_array())),
position_change_array);
}
if (info->code()->kind() == Code::FUNCTION) {
TranslateSourcePositionTable(
Handle<AbstractCode>(AbstractCode::cast(info->code())),
position_change_array);
}
if (info->HasDebugInfo()) {
// Existing break points will be re-applied. Reset the debug info here.
info->GetIsolate()->debug()->RemoveDebugInfoAndClearFromShared(
handle(info->GetDebugInfo()));
}
}
static Handle<Script> CreateScriptCopy(Handle<Script> original) {
Isolate* isolate = original->GetIsolate();
Handle<String> original_source(String::cast(original->source()));
Handle<Script> copy = isolate->factory()->NewScript(original_source);
copy->set_name(original->name());
copy->set_line_offset(original->line_offset());
copy->set_column_offset(original->column_offset());
copy->set_type(original->type());
copy->set_context_data(original->context_data());
copy->set_eval_from_shared(original->eval_from_shared());
copy->set_eval_from_position(original->eval_from_position());
Handle<FixedArray> infos(isolate->factory()->NewFixedArray(
original->shared_function_infos()->length()));
copy->set_shared_function_infos(*infos);
// Copy all the flags, but clear compilation state.
copy->set_flags(original->flags());
copy->set_compilation_state(Script::COMPILATION_STATE_INITIAL);
return copy;
}
Handle<Object> LiveEdit::ChangeScriptSource(Handle<Script> original_script,
Handle<String> new_source,
Handle<Object> old_script_name) {
Isolate* isolate = original_script->GetIsolate();
Handle<Object> old_script_object;
if (old_script_name->IsString()) {
Handle<Script> old_script = CreateScriptCopy(original_script);
old_script->set_name(String::cast(*old_script_name));
old_script_object = old_script;
isolate->debug()->OnAfterCompile(old_script);
} else {
old_script_object = isolate->factory()->null_value();
}
original_script->set_source(*new_source);
// Drop line ends so that they will be recalculated.
original_script->set_line_ends(isolate->heap()->undefined_value());
return old_script_object;
}
void LiveEdit::ReplaceRefToNestedFunction(
Handle<JSValue> parent_function_wrapper,
Handle<JSValue> orig_function_wrapper,
Handle<JSValue> subst_function_wrapper) {
Handle<SharedFunctionInfo> parent_shared =
UnwrapSharedFunctionInfoFromJSValue(parent_function_wrapper);
Handle<SharedFunctionInfo> orig_shared =
UnwrapSharedFunctionInfoFromJSValue(orig_function_wrapper);
Handle<SharedFunctionInfo> subst_shared =
UnwrapSharedFunctionInfoFromJSValue(subst_function_wrapper);
for (RelocIterator it(parent_shared->code()); !it.done(); it.next()) {
if (it.rinfo()->rmode() == RelocInfo::EMBEDDED_OBJECT) {
if (it.rinfo()->target_object() == *orig_shared) {
it.rinfo()->set_target_object(*subst_shared);
}
}
}
}
// Check an activation against list of functions. If there is a function
// that matches, its status in result array is changed to status argument value.
static bool CheckActivation(Handle<JSArray> shared_info_array,
Handle<JSArray> result,
StackFrame* frame,
LiveEdit::FunctionPatchabilityStatus status) {
if (!frame->is_java_script()) return false;
Handle<JSFunction> function(JavaScriptFrame::cast(frame)->function());
Isolate* isolate = shared_info_array->GetIsolate();
int len = GetArrayLength(shared_info_array);
for (int i = 0; i < len; i++) {
HandleScope scope(isolate);
Handle<Object> element =
JSReceiver::GetElement(isolate, shared_info_array, i).ToHandleChecked();
Handle<JSValue> jsvalue = Handle<JSValue>::cast(element);
Handle<SharedFunctionInfo> shared =
UnwrapSharedFunctionInfoFromJSValue(jsvalue);
if (function->Inlines(*shared)) {
SetElementSloppy(result, i, Handle<Smi>(Smi::FromInt(status), isolate));
return true;
}
}
return false;
}
// Iterates over handler chain and removes all elements that are inside
// frames being dropped.
static bool FixTryCatchHandler(StackFrame* top_frame,
StackFrame* bottom_frame) {
Address* pointer_address =
&Memory::Address_at(top_frame->isolate()->get_address_from_id(
Isolate::kHandlerAddress));
while (*pointer_address < top_frame->sp()) {
pointer_address = &Memory::Address_at(*pointer_address);
}
Address* above_frame_address = pointer_address;
while (*pointer_address < bottom_frame->fp()) {
pointer_address = &Memory::Address_at(*pointer_address);
}
bool change = *above_frame_address != *pointer_address;
*above_frame_address = *pointer_address;
return change;
}
// Initializes an artificial stack frame. The data it contains is used for:
// a. successful work of frame dropper code which eventually gets control,
// b. being compatible with a typed frame structure for various stack
// iterators.
// Frame structure (conforms to InternalFrame structure):
// -- function
// -- code
// -- SMI marker
// -- frame base
static void SetUpFrameDropperFrame(StackFrame* bottom_js_frame,
Handle<Code> code) {
DCHECK(bottom_js_frame->is_java_script());
Address fp = bottom_js_frame->fp();
Memory::Object_at(fp + FrameDropperFrameConstants::kFunctionOffset) =
Memory::Object_at(fp + StandardFrameConstants::kFunctionOffset);
Memory::Object_at(fp + FrameDropperFrameConstants::kFrameTypeOffset) =
Smi::FromInt(StackFrame::INTERNAL);
Memory::Object_at(fp + FrameDropperFrameConstants::kCodeOffset) = *code;
}
// Removes specified range of frames from stack. There may be 1 or more
// frames in range. Anyway the bottom frame is restarted rather than dropped,
// and therefore has to be a JavaScript frame.
// Returns error message or NULL.
static const char* DropFrames(Vector<StackFrame*> frames, int top_frame_index,
int bottom_js_frame_index,
LiveEditFrameDropMode* mode) {
if (!LiveEdit::kFrameDropperSupported) {
return "Stack manipulations are not supported in this architecture.";
}
StackFrame* pre_top_frame = frames[top_frame_index - 1];
StackFrame* top_frame = frames[top_frame_index];
StackFrame* bottom_js_frame = frames[bottom_js_frame_index];
DCHECK(bottom_js_frame->is_java_script());
// Check the nature of the top frame.
Isolate* isolate = bottom_js_frame->isolate();
Code* pre_top_frame_code = pre_top_frame->LookupCode();
bool frame_has_padding = true;
if (pre_top_frame_code ==
isolate->builtins()->builtin(Builtins::kSlot_DebugBreak)) {
// OK, we can drop debug break slot.
*mode = LIVE_EDIT_FRAME_DROPPED_IN_DEBUG_SLOT_CALL;
} else if (pre_top_frame_code ==
isolate->builtins()->builtin(Builtins::kFrameDropper_LiveEdit)) {
// OK, we can drop our own code.
pre_top_frame = frames[top_frame_index - 2];
top_frame = frames[top_frame_index - 1];
*mode = LIVE_EDIT_CURRENTLY_SET_MODE;
frame_has_padding = false;
} else if (pre_top_frame_code ==
isolate->builtins()->builtin(Builtins::kReturn_DebugBreak)) {
*mode = LIVE_EDIT_FRAME_DROPPED_IN_RETURN_CALL;
} else if (pre_top_frame_code->kind() == Code::STUB &&
CodeStub::GetMajorKey(pre_top_frame_code) == CodeStub::CEntry) {
// Entry from our unit tests on 'debugger' statement.
// It's fine, we support this case.
*mode = LIVE_EDIT_FRAME_DROPPED_IN_DIRECT_CALL;
// We don't have a padding from 'debugger' statement call.
// Here the stub is CEntry, it's not debug-only and can't be padded.
// If anyone would complain, a proxy padded stub could be added.
frame_has_padding = false;
} else if (pre_top_frame->type() == StackFrame::ARGUMENTS_ADAPTOR) {
// This must be adaptor that remain from the frame dropping that
// is still on stack. A frame dropper frame must be above it.
DCHECK(frames[top_frame_index - 2]->LookupCode() ==
isolate->builtins()->builtin(Builtins::kFrameDropper_LiveEdit));
pre_top_frame = frames[top_frame_index - 3];
top_frame = frames[top_frame_index - 2];
*mode = LIVE_EDIT_CURRENTLY_SET_MODE;
frame_has_padding = false;
} else if (pre_top_frame_code->kind() == Code::BYTECODE_HANDLER) {
// Interpreted bytecode takes up two stack frames, one for the bytecode
// handler and one for the interpreter entry trampoline. Therefore we shift
// up by one frame.
*mode = LIVE_EDIT_FRAME_DROPPED_IN_DIRECT_CALL;
pre_top_frame = frames[top_frame_index - 2];
top_frame = frames[top_frame_index - 1];
} else {
return "Unknown structure of stack above changing function";
}
Address unused_stack_top = top_frame->sp();
Address unused_stack_bottom =
bottom_js_frame->fp() - FrameDropperFrameConstants::kFixedFrameSize +
2 * kPointerSize; // Bigger address end is exclusive.
Address* top_frame_pc_address = top_frame->pc_address();
// top_frame may be damaged below this point. Do not used it.
DCHECK(!(top_frame = NULL));
if (unused_stack_top > unused_stack_bottom) {
if (frame_has_padding) {
int shortage_bytes =
static_cast<int>(unused_stack_top - unused_stack_bottom);
Address padding_start =
pre_top_frame->fp() -
(FrameDropperFrameConstants::kFixedFrameSize - kPointerSize);
Address padding_pointer = padding_start;
Smi* padding_object = Smi::FromInt(LiveEdit::kFramePaddingValue);
while (Memory::Object_at(padding_pointer) == padding_object) {
padding_pointer -= kPointerSize;
}
int padding_counter =
Smi::cast(Memory::Object_at(padding_pointer))->value();
if (padding_counter * kPointerSize < shortage_bytes) {
return "Not enough space for frame dropper frame "
"(even with padding frame)";
}
Memory::Object_at(padding_pointer) =
Smi::FromInt(padding_counter - shortage_bytes / kPointerSize);
StackFrame* pre_pre_frame = frames[top_frame_index - 2];
MemMove(padding_start + kPointerSize - shortage_bytes,
padding_start + kPointerSize,
FrameDropperFrameConstants::kFixedFrameSize - kPointerSize);
pre_top_frame->UpdateFp(pre_top_frame->fp() - shortage_bytes);
pre_pre_frame->SetCallerFp(pre_top_frame->fp());
unused_stack_top -= shortage_bytes;
STATIC_ASSERT(sizeof(Address) == kPointerSize);
top_frame_pc_address -= shortage_bytes / kPointerSize;
} else {
return "Not enough space for frame dropper frame";
}
}
// Committing now. After this point we should return only NULL value.
FixTryCatchHandler(pre_top_frame, bottom_js_frame);
// Make sure FixTryCatchHandler is idempotent.
DCHECK(!FixTryCatchHandler(pre_top_frame, bottom_js_frame));
Handle<Code> code = isolate->builtins()->FrameDropper_LiveEdit();
*top_frame_pc_address = code->entry();
pre_top_frame->SetCallerFp(bottom_js_frame->fp());
SetUpFrameDropperFrame(bottom_js_frame, code);
for (Address a = unused_stack_top;
a < unused_stack_bottom;
a += kPointerSize) {
Memory::Object_at(a) = Smi::kZero;
}
return NULL;
}
// Describes a set of call frames that execute any of listed functions.
// Finding no such frames does not mean error.
class MultipleFunctionTarget {
public:
MultipleFunctionTarget(Handle<JSArray> old_shared_array,
Handle<JSArray> new_shared_array,
Handle<JSArray> result)
: old_shared_array_(old_shared_array),
new_shared_array_(new_shared_array),
result_(result) {}
bool MatchActivation(StackFrame* frame,
LiveEdit::FunctionPatchabilityStatus status) {
return CheckActivation(old_shared_array_, result_, frame, status);
}
const char* GetNotFoundMessage() const {
return NULL;
}
bool FrameUsesNewTarget(StackFrame* frame) {
if (!frame->is_java_script()) return false;
JavaScriptFrame* jsframe = JavaScriptFrame::cast(frame);
Handle<SharedFunctionInfo> old_shared(jsframe->function()->shared());
Isolate* isolate = old_shared->GetIsolate();
int len = GetArrayLength(old_shared_array_);
// Find corresponding new shared function info and return whether it
// references new.target.
for (int i = 0; i < len; i++) {
HandleScope scope(isolate);
Handle<Object> old_element =
JSReceiver::GetElement(isolate, old_shared_array_, i)
.ToHandleChecked();
if (!old_shared.is_identical_to(UnwrapSharedFunctionInfoFromJSValue(
Handle<JSValue>::cast(old_element)))) {
continue;
}
Handle<Object> new_element =
JSReceiver::GetElement(isolate, new_shared_array_, i)
.ToHandleChecked();
if (new_element->IsUndefined(isolate)) return false;
Handle<SharedFunctionInfo> new_shared =
UnwrapSharedFunctionInfoFromJSValue(
Handle<JSValue>::cast(new_element));
if (new_shared->scope_info()->HasNewTarget()) {
SetElementSloppy(
result_, i,
Handle<Smi>(
Smi::FromInt(
LiveEdit::FUNCTION_BLOCKED_NO_NEW_TARGET_ON_RESTART),
isolate));
return true;
}
return false;
}
return false;
}
void set_status(LiveEdit::FunctionPatchabilityStatus status) {
Isolate* isolate = old_shared_array_->GetIsolate();
int len = GetArrayLength(old_shared_array_);
for (int i = 0; i < len; ++i) {
Handle<Object> old_element =
JSReceiver::GetElement(isolate, result_, i).ToHandleChecked();
if (!old_element->IsSmi() ||
Smi::cast(*old_element)->value() ==
LiveEdit::FUNCTION_AVAILABLE_FOR_PATCH) {
SetElementSloppy(result_, i,
Handle<Smi>(Smi::FromInt(status), isolate));
}
}
}
private:
Handle<JSArray> old_shared_array_;
Handle<JSArray> new_shared_array_;
Handle<JSArray> result_;
};
// Drops all call frame matched by target and all frames above them.
template <typename TARGET>
static const char* DropActivationsInActiveThreadImpl(Isolate* isolate,
TARGET& target, // NOLINT
bool do_drop) {
Debug* debug = isolate->debug();
Zone zone(isolate->allocator(), ZONE_NAME);
Vector<StackFrame*> frames = CreateStackMap(isolate, &zone);
int top_frame_index = -1;
int frame_index = 0;
for (; frame_index < frames.length(); frame_index++) {
StackFrame* frame = frames[frame_index];
if (frame->id() == debug->break_frame_id()) {
top_frame_index = frame_index;
break;
}
if (target.MatchActivation(
frame, LiveEdit::FUNCTION_BLOCKED_UNDER_NATIVE_CODE)) {
// We are still above break_frame. It is not a target frame,
// it is a problem.
return "Debugger mark-up on stack is not found";
}
}
if (top_frame_index == -1) {
// We haven't found break frame, but no function is blocking us anyway.
return target.GetNotFoundMessage();
}
bool target_frame_found = false;
int bottom_js_frame_index = top_frame_index;
bool non_droppable_frame_found = false;
LiveEdit::FunctionPatchabilityStatus non_droppable_reason;
for (; frame_index < frames.length(); frame_index++) {
StackFrame* frame = frames[frame_index];
if (frame->is_exit() || frame->is_builtin_exit()) {
non_droppable_frame_found = true;
non_droppable_reason = LiveEdit::FUNCTION_BLOCKED_UNDER_NATIVE_CODE;
break;
}
if (frame->is_java_script()) {
SharedFunctionInfo* shared =
JavaScriptFrame::cast(frame)->function()->shared();
if (IsResumableFunction(shared->kind())) {
non_droppable_frame_found = true;
non_droppable_reason = LiveEdit::FUNCTION_BLOCKED_UNDER_GENERATOR;
break;
}
}
if (target.MatchActivation(
frame, LiveEdit::FUNCTION_BLOCKED_ON_ACTIVE_STACK)) {
target_frame_found = true;
bottom_js_frame_index = frame_index;
}
}
if (non_droppable_frame_found) {
// There is a C or generator frame on stack. We can't drop C frames, and we
// can't restart generators. Check that there are no target frames below
// them.
for (; frame_index < frames.length(); frame_index++) {
StackFrame* frame = frames[frame_index];
if (frame->is_java_script()) {
if (target.MatchActivation(frame, non_droppable_reason)) {
// Fail.
return NULL;
}
if (non_droppable_reason ==
LiveEdit::FUNCTION_BLOCKED_UNDER_GENERATOR &&
!target_frame_found) {
// Fail.
target.set_status(non_droppable_reason);
return NULL;
}
}
}
}
// We cannot restart a frame that uses new.target.
if (target.FrameUsesNewTarget(frames[bottom_js_frame_index])) return NULL;
if (!do_drop) {
// We are in check-only mode.
return NULL;
}
if (!target_frame_found) {
// Nothing to drop.
return target.GetNotFoundMessage();
}
LiveEditFrameDropMode drop_mode = LIVE_EDIT_FRAMES_UNTOUCHED;
const char* error_message =
DropFrames(frames, top_frame_index, bottom_js_frame_index, &drop_mode);
if (error_message != NULL) {
return error_message;
}
// Adjust break_frame after some frames has been dropped.
StackFrame::Id new_id = StackFrame::NO_ID;
for (int i = bottom_js_frame_index + 1; i < frames.length(); i++) {
if (frames[i]->type() == StackFrame::JAVA_SCRIPT ||
frames[i]->type() == StackFrame::INTERPRETED) {
new_id = frames[i]->id();
break;
}
}
debug->FramesHaveBeenDropped(new_id, drop_mode);
return NULL;
}
// Fills result array with statuses of functions. Modifies the stack
// removing all listed function if possible and if do_drop is true.
static const char* DropActivationsInActiveThread(
Handle<JSArray> old_shared_array, Handle<JSArray> new_shared_array,
Handle<JSArray> result, bool do_drop) {
MultipleFunctionTarget target(old_shared_array, new_shared_array, result);
Isolate* isolate = old_shared_array->GetIsolate();
const char* message =
DropActivationsInActiveThreadImpl(isolate, target, do_drop);
if (message) {
return message;
}
int array_len = GetArrayLength(old_shared_array);
// Replace "blocked on active" with "replaced on active" status.
for (int i = 0; i < array_len; i++) {
Handle<Object> obj =
JSReceiver::GetElement(isolate, result, i).ToHandleChecked();
if (*obj == Smi::FromInt(LiveEdit::FUNCTION_BLOCKED_ON_ACTIVE_STACK)) {
Handle<Object> replaced(
Smi::FromInt(LiveEdit::FUNCTION_REPLACED_ON_ACTIVE_STACK), isolate);
SetElementSloppy(result, i, replaced);
}
}
return NULL;
}
bool LiveEdit::FindActiveGenerators(Handle<FixedArray> shared_info_array,
Handle<FixedArray> result,
int len) {
Isolate* isolate = shared_info_array->GetIsolate();
bool found_suspended_activations = false;
DCHECK_LE(len, result->length());
FunctionPatchabilityStatus active = FUNCTION_BLOCKED_ACTIVE_GENERATOR;
Heap* heap = isolate->heap();
HeapIterator iterator(heap);
HeapObject* obj = NULL;
while ((obj = iterator.next()) != NULL) {
if (!obj->IsJSGeneratorObject()) continue;
JSGeneratorObject* gen = JSGeneratorObject::cast(obj);
if (gen->is_closed()) continue;
HandleScope scope(isolate);
for (int i = 0; i < len; i++) {
Handle<JSValue> jsvalue = Handle<JSValue>::cast(
FixedArray::get(*shared_info_array, i, isolate));
Handle<SharedFunctionInfo> shared =
UnwrapSharedFunctionInfoFromJSValue(jsvalue);
if (gen->function()->shared() == *shared) {
result->set(i, Smi::FromInt(active));
found_suspended_activations = true;
}
}
}
return found_suspended_activations;
}
class InactiveThreadActivationsChecker : public ThreadVisitor {
public:
InactiveThreadActivationsChecker(Handle<JSArray> old_shared_array,
Handle<JSArray> result)
: old_shared_array_(old_shared_array),
result_(result),
has_blocked_functions_(false) {}
void VisitThread(Isolate* isolate, ThreadLocalTop* top) {
for (StackFrameIterator it(isolate, top); !it.done(); it.Advance()) {
has_blocked_functions_ |=
CheckActivation(old_shared_array_, result_, it.frame(),
LiveEdit::FUNCTION_BLOCKED_ON_OTHER_STACK);
}
}
bool HasBlockedFunctions() {
return has_blocked_functions_;
}
private:
Handle<JSArray> old_shared_array_;
Handle<JSArray> result_;
bool has_blocked_functions_;
};
Handle<JSArray> LiveEdit::CheckAndDropActivations(
Handle<JSArray> old_shared_array, Handle<JSArray> new_shared_array,
bool do_drop) {
Isolate* isolate = old_shared_array->GetIsolate();
int len = GetArrayLength(old_shared_array);
DCHECK(old_shared_array->HasFastElements());
Handle<FixedArray> old_shared_array_elements(
FixedArray::cast(old_shared_array->elements()));
Handle<JSArray> result = isolate->factory()->NewJSArray(len);
result->set_length(Smi::FromInt(len));
JSObject::EnsureWritableFastElements(result);
Handle<FixedArray> result_elements =
handle(FixedArray::cast(result->elements()), isolate);
// Fill the default values.
for (int i = 0; i < len; i++) {
FunctionPatchabilityStatus status = FUNCTION_AVAILABLE_FOR_PATCH;
result_elements->set(i, Smi::FromInt(status));
}
// Scan the heap for active generators -- those that are either currently
// running (as we wouldn't want to restart them, because we don't know where
// to restart them from) or suspended. Fail if any one corresponds to the set
// of functions being edited.
if (FindActiveGenerators(old_shared_array_elements, result_elements, len)) {
return result;
}
// Check inactive threads. Fail if some functions are blocked there.
InactiveThreadActivationsChecker inactive_threads_checker(old_shared_array,
result);
isolate->thread_manager()->IterateArchivedThreads(
&inactive_threads_checker);
if (inactive_threads_checker.HasBlockedFunctions()) {
return result;
}
// Try to drop activations from the current stack.
const char* error_message = DropActivationsInActiveThread(
old_shared_array, new_shared_array, result, do_drop);
if (error_message != NULL) {
// Add error message as an array extra element.
Handle<String> str =
isolate->factory()->NewStringFromAsciiChecked(error_message);
SetElementSloppy(result, len, str);
}
return result;
}
// Describes a single callframe a target. Not finding this frame
// means an error.
class SingleFrameTarget {
public:
explicit SingleFrameTarget(JavaScriptFrame* frame)
: m_frame(frame),
m_saved_status(LiveEdit::FUNCTION_AVAILABLE_FOR_PATCH) {}
bool MatchActivation(StackFrame* frame,
LiveEdit::FunctionPatchabilityStatus status) {
if (frame->fp() == m_frame->fp()) {
m_saved_status = status;
return true;
}
return false;
}
const char* GetNotFoundMessage() const {
return "Failed to found requested frame";
}
LiveEdit::FunctionPatchabilityStatus saved_status() {
return m_saved_status;
}
void set_status(LiveEdit::FunctionPatchabilityStatus status) {
m_saved_status = status;
}
bool FrameUsesNewTarget(StackFrame* frame) {
if (!frame->is_java_script()) return false;
JavaScriptFrame* jsframe = JavaScriptFrame::cast(frame);
Handle<SharedFunctionInfo> shared(jsframe->function()->shared());
return shared->scope_info()->HasNewTarget();
}
private:
JavaScriptFrame* m_frame;
LiveEdit::FunctionPatchabilityStatus m_saved_status;
};
// Finds a drops required frame and all frames above.
// Returns error message or NULL.
const char* LiveEdit::RestartFrame(JavaScriptFrame* frame) {
SingleFrameTarget target(frame);
const char* result =
DropActivationsInActiveThreadImpl(frame->isolate(), target, true);
if (result != NULL) {
return result;
}
if (target.saved_status() == LiveEdit::FUNCTION_BLOCKED_UNDER_NATIVE_CODE) {
return "Function is blocked under native code";
}
if (target.saved_status() == LiveEdit::FUNCTION_BLOCKED_UNDER_GENERATOR) {
return "Function is blocked under a generator activation";
}
return NULL;
}
Handle<JSArray> LiveEditFunctionTracker::Collect(FunctionLiteral* node,
Handle<Script> script,
Zone* zone, Isolate* isolate) {
LiveEditFunctionTracker visitor(script, zone, isolate);
visitor.VisitFunctionLiteral(node);
return visitor.result_;
}
LiveEditFunctionTracker::LiveEditFunctionTracker(Handle<Script> script,
Zone* zone, Isolate* isolate)
: AstTraversalVisitor<LiveEditFunctionTracker>(isolate) {
current_parent_index_ = -1;
isolate_ = isolate;
len_ = 0;
result_ = isolate->factory()->NewJSArray(10);
script_ = script;
zone_ = zone;
}
void LiveEditFunctionTracker::VisitFunctionLiteral(FunctionLiteral* node) {
// FunctionStarted is called in pre-order.
FunctionStarted(node);
// Recurse using the regular traversal.
AstTraversalVisitor::VisitFunctionLiteral(node);
// FunctionDone are called in post-order.
Handle<SharedFunctionInfo> info =
script_->FindSharedFunctionInfo(isolate_, node).ToHandleChecked();
FunctionDone(info, node->scope());
}
void LiveEditFunctionTracker::FunctionStarted(FunctionLiteral* fun) {
HandleScope handle_scope(isolate_);
FunctionInfoWrapper info = FunctionInfoWrapper::Create(isolate_);
info.SetInitialProperties(fun->name(), fun->start_position(),
fun->end_position(), fun->parameter_count(),
fun->materialized_literal_count(),
current_parent_index_, fun->function_literal_id());
current_parent_index_ = len_;
SetElementSloppy(result_, len_, info.GetJSArray());
len_++;
}
// Saves full information about a function: its code, its scope info
// and a SharedFunctionInfo object.
void LiveEditFunctionTracker::FunctionDone(Handle<SharedFunctionInfo> shared,
Scope* scope) {
HandleScope handle_scope(isolate_);
FunctionInfoWrapper info = FunctionInfoWrapper::cast(
*JSReceiver::GetElement(isolate_, result_, current_parent_index_)
.ToHandleChecked());
info.SetSharedFunctionInfo(shared);
Handle<Object> scope_info_list = SerializeFunctionScope(scope);
info.SetFunctionScopeInfo(scope_info_list);
current_parent_index_ = info.GetParentIndex();
}
Handle<Object> LiveEditFunctionTracker::SerializeFunctionScope(Scope* scope) {
Handle<JSArray> scope_info_list = isolate_->factory()->NewJSArray(10);
int scope_info_length = 0;
// Saves some description of scope. It stores name and indexes of
// variables in the whole scope chain. Null-named slots delimit
// scopes of this chain.
Scope* current_scope = scope;
while (current_scope != NULL) {
HandleScope handle_scope(isolate_);
for (Variable* var : *current_scope->locals()) {
if (!var->IsContextSlot()) continue;
int context_index = var->index() - Context::MIN_CONTEXT_SLOTS;
int location = scope_info_length + context_index * 2;
SetElementSloppy(scope_info_list, location, var->name());
SetElementSloppy(scope_info_list, location + 1,
handle(Smi::FromInt(var->index()), isolate_));
}
scope_info_length += current_scope->ContextLocalCount() * 2;
SetElementSloppy(scope_info_list, scope_info_length,
isolate_->factory()->null_value());
scope_info_length++;
current_scope = current_scope->outer_scope();
}
return scope_info_list;
}
} // namespace internal
} // namespace v8