blob: 787c3cc766f77cf0de29283c4ad2eba15c60a391 [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/execution.h"
#include "src/api-inl.h"
#include "src/bootstrapper.h"
#include "src/compiler-dispatcher/optimizing-compile-dispatcher.h"
#include "src/debug/debug.h"
#include "src/isolate-inl.h"
#include "src/runtime-profiler.h"
#include "src/vm-state-inl.h"
namespace v8 {
namespace internal {
void StackGuard::set_interrupt_limits(const ExecutionAccess& lock) {
DCHECK_NOT_NULL(isolate_);
thread_local_.set_jslimit(kInterruptLimit);
thread_local_.set_climit(kInterruptLimit);
isolate_->heap()->SetStackLimits();
}
void StackGuard::reset_limits(const ExecutionAccess& lock) {
DCHECK_NOT_NULL(isolate_);
thread_local_.set_jslimit(thread_local_.real_jslimit_);
thread_local_.set_climit(thread_local_.real_climit_);
isolate_->heap()->SetStackLimits();
}
namespace {
Handle<Object> NormalizeReceiver(Isolate* isolate, Handle<Object> receiver) {
// Convert calls on global objects to be calls on the global
// receiver instead to avoid having a 'this' pointer which refers
// directly to a global object.
if (receiver->IsJSGlobalObject()) {
return handle(Handle<JSGlobalObject>::cast(receiver)->global_proxy(),
isolate);
}
return receiver;
}
struct InvokeParams {
static InvokeParams SetUpForNew(Isolate* isolate, Handle<Object> constructor,
Handle<Object> new_target, int argc,
Handle<Object>* argv);
static InvokeParams SetUpForCall(Isolate* isolate, Handle<Object> callable,
Handle<Object> receiver, int argc,
Handle<Object>* argv);
static InvokeParams SetUpForTryCall(
Isolate* isolate, Handle<Object> callable, Handle<Object> receiver,
int argc, Handle<Object>* argv,
Execution::MessageHandling message_handling,
MaybeHandle<Object>* exception_out);
static InvokeParams SetUpForRunMicrotasks(Isolate* isolate,
MicrotaskQueue* microtask_queue,
MaybeHandle<Object>* exception_out);
Handle<Object> target;
Handle<Object> receiver;
int argc;
Handle<Object>* argv;
Handle<Object> new_target;
MicrotaskQueue* microtask_queue;
Execution::MessageHandling message_handling;
MaybeHandle<Object>* exception_out;
bool is_construct;
Execution::Target execution_target;
};
// static
InvokeParams InvokeParams::SetUpForNew(Isolate* isolate,
Handle<Object> constructor,
Handle<Object> new_target, int argc,
Handle<Object>* argv) {
InvokeParams params;
params.target = constructor;
params.receiver = isolate->factory()->undefined_value();
params.argc = argc;
params.argv = argv;
params.new_target = new_target;
params.microtask_queue = nullptr;
params.message_handling = Execution::MessageHandling::kReport;
params.exception_out = nullptr;
params.is_construct = true;
params.execution_target = Execution::Target::kCallable;
return params;
}
// static
InvokeParams InvokeParams::SetUpForCall(Isolate* isolate,
Handle<Object> callable,
Handle<Object> receiver, int argc,
Handle<Object>* argv) {
InvokeParams params;
params.target = callable;
params.receiver = NormalizeReceiver(isolate, receiver);
params.argc = argc;
params.argv = argv;
params.new_target = isolate->factory()->undefined_value();
params.microtask_queue = nullptr;
params.message_handling = Execution::MessageHandling::kReport;
params.exception_out = nullptr;
params.is_construct = false;
params.execution_target = Execution::Target::kCallable;
return params;
}
// static
InvokeParams InvokeParams::SetUpForTryCall(
Isolate* isolate, Handle<Object> callable, Handle<Object> receiver,
int argc, Handle<Object>* argv, Execution::MessageHandling message_handling,
MaybeHandle<Object>* exception_out) {
InvokeParams params;
params.target = callable;
params.receiver = NormalizeReceiver(isolate, receiver);
params.argc = argc;
params.argv = argv;
params.new_target = isolate->factory()->undefined_value();
params.microtask_queue = nullptr;
params.message_handling = message_handling;
params.exception_out = exception_out;
params.is_construct = false;
params.execution_target = Execution::Target::kCallable;
return params;
}
// static
InvokeParams InvokeParams::SetUpForRunMicrotasks(
Isolate* isolate, MicrotaskQueue* microtask_queue,
MaybeHandle<Object>* exception_out) {
auto undefined = isolate->factory()->undefined_value();
InvokeParams params;
params.target = undefined;
params.receiver = undefined;
params.argc = 0;
params.argv = nullptr;
params.new_target = undefined;
params.microtask_queue = microtask_queue;
params.message_handling = Execution::MessageHandling::kReport;
params.exception_out = exception_out;
params.is_construct = false;
params.execution_target = Execution::Target::kRunMicrotasks;
return params;
}
Handle<Code> JSEntry(Isolate* isolate, Execution::Target execution_target,
bool is_construct) {
if (is_construct) {
DCHECK_EQ(Execution::Target::kCallable, execution_target);
return BUILTIN_CODE(isolate, JSConstructEntry);
} else if (execution_target == Execution::Target::kCallable) {
DCHECK(!is_construct);
return BUILTIN_CODE(isolate, JSEntry);
} else if (execution_target == Execution::Target::kRunMicrotasks) {
DCHECK(!is_construct);
return BUILTIN_CODE(isolate, JSRunMicrotasksEntry);
}
UNREACHABLE();
}
V8_WARN_UNUSED_RESULT MaybeHandle<Object> Invoke(Isolate* isolate,
const InvokeParams& params) {
RuntimeCallTimerScope timer(isolate, RuntimeCallCounterId::kInvoke);
DCHECK(!params.receiver->IsJSGlobalObject());
DCHECK_LE(params.argc, FixedArray::kMaxLength);
#ifdef USE_SIMULATOR
// Simulators use separate stacks for C++ and JS. JS stack overflow checks
// are performed whenever a JS function is called. However, it can be the case
// that the C++ stack grows faster than the JS stack, resulting in an overflow
// there. Add a check here to make that less likely.
StackLimitCheck check(isolate);
if (check.HasOverflowed()) {
isolate->StackOverflow();
if (params.message_handling == Execution::MessageHandling::kReport) {
isolate->ReportPendingMessages();
}
return MaybeHandle<Object>();
}
#endif
// api callbacks can be called directly, unless we want to take the detour
// through JS to set up a frame for break-at-entry.
if (params.target->IsJSFunction()) {
Handle<JSFunction> function = Handle<JSFunction>::cast(params.target);
if ((!params.is_construct || function->IsConstructor()) &&
function->shared()->IsApiFunction() &&
!function->shared()->BreakAtEntry()) {
SaveAndSwitchContext save(isolate, function->context());
DCHECK(function->context()->global_object()->IsJSGlobalObject());
Handle<Object> receiver = params.is_construct
? isolate->factory()->the_hole_value()
: params.receiver;
auto value = Builtins::InvokeApiFunction(
isolate, params.is_construct, function, receiver, params.argc,
params.argv, Handle<HeapObject>::cast(params.new_target));
bool has_exception = value.is_null();
DCHECK(has_exception == isolate->has_pending_exception());
if (has_exception) {
if (params.message_handling == Execution::MessageHandling::kReport) {
isolate->ReportPendingMessages();
}
return MaybeHandle<Object>();
} else {
isolate->clear_pending_message();
}
return value;
}
}
// Entering JavaScript.
VMState<JS> state(isolate);
CHECK(AllowJavascriptExecution::IsAllowed(isolate));
if (!ThrowOnJavascriptExecution::IsAllowed(isolate)) {
isolate->ThrowIllegalOperation();
if (params.message_handling == Execution::MessageHandling::kReport) {
isolate->ReportPendingMessages();
}
return MaybeHandle<Object>();
}
if (!DumpOnJavascriptExecution::IsAllowed(isolate)) {
V8::GetCurrentPlatform()->DumpWithoutCrashing();
return isolate->factory()->undefined_value();
}
// Placeholder for return value.
Object value;
Handle<Code> code =
JSEntry(isolate, params.execution_target, params.is_construct);
{
// Save and restore context around invocation and block the
// allocation of handles without explicit handle scopes.
SaveContext save(isolate);
SealHandleScope shs(isolate);
if (FLAG_clear_exceptions_on_js_entry) isolate->clear_pending_exception();
if (params.execution_target == Execution::Target::kCallable) {
// clang-format off
// {new_target}, {target}, {receiver}, return value: tagged pointers
// {argv}: pointer to array of tagged pointers
using JSEntryFunction = GeneratedCode<Address(
Address root_register_value, Address new_target, Address target,
Address receiver, intptr_t argc, Address** argv)>;
// clang-format on
JSEntryFunction stub_entry =
JSEntryFunction::FromAddress(isolate, code->InstructionStart());
Address orig_func = params.new_target->ptr();
Address func = params.target->ptr();
Address recv = params.receiver->ptr();
Address** argv = reinterpret_cast<Address**>(params.argv);
RuntimeCallTimerScope timer(isolate, RuntimeCallCounterId::kJS_Execution);
value = Object(stub_entry.Call(isolate->isolate_data()->isolate_root(),
orig_func, func, recv, params.argc, argv));
} else {
DCHECK_EQ(Execution::Target::kRunMicrotasks, params.execution_target);
// clang-format off
// return value: tagged pointers
// {microtask_queue}: pointer to a C++ object
using JSEntryFunction = GeneratedCode<Address(
Address root_register_value, MicrotaskQueue* microtask_queue)>;
// clang-format on
JSEntryFunction stub_entry =
JSEntryFunction::FromAddress(isolate, code->InstructionStart());
RuntimeCallTimerScope timer(isolate, RuntimeCallCounterId::kJS_Execution);
value = Object(stub_entry.Call(isolate->isolate_data()->isolate_root(),
params.microtask_queue));
}
}
#ifdef VERIFY_HEAP
if (FLAG_verify_heap) {
value->ObjectVerify(isolate);
}
#endif
// Update the pending exception flag and return the value.
bool has_exception = value->IsException(isolate);
DCHECK(has_exception == isolate->has_pending_exception());
if (has_exception) {
if (params.message_handling == Execution::MessageHandling::kReport) {
isolate->ReportPendingMessages();
}
return MaybeHandle<Object>();
} else {
isolate->clear_pending_message();
}
return Handle<Object>(value, isolate);
}
MaybeHandle<Object> InvokeWithTryCatch(Isolate* isolate,
const InvokeParams& params) {
bool is_termination = false;
MaybeHandle<Object> maybe_result;
if (params.exception_out != nullptr) {
*params.exception_out = MaybeHandle<Object>();
}
DCHECK_IMPLIES(
params.message_handling == Execution::MessageHandling::kKeepPending,
params.exception_out == nullptr);
// Enter a try-block while executing the JavaScript code. To avoid
// duplicate error printing it must be non-verbose. Also, to avoid
// creating message objects during stack overflow we shouldn't
// capture messages.
{
v8::TryCatch catcher(reinterpret_cast<v8::Isolate*>(isolate));
catcher.SetVerbose(false);
catcher.SetCaptureMessage(false);
maybe_result = Invoke(isolate, params);
if (maybe_result.is_null()) {
DCHECK(isolate->has_pending_exception());
if (isolate->pending_exception() ==
ReadOnlyRoots(isolate).termination_exception()) {
is_termination = true;
} else {
if (params.exception_out != nullptr) {
DCHECK(catcher.HasCaught());
DCHECK(isolate->external_caught_exception());
*params.exception_out = v8::Utils::OpenHandle(*catcher.Exception());
}
}
if (params.message_handling == Execution::MessageHandling::kReport) {
isolate->OptionalRescheduleException(true);
}
}
}
// Re-request terminate execution interrupt to trigger later.
if (is_termination) isolate->stack_guard()->RequestTerminateExecution();
return maybe_result;
}
} // namespace
// static
MaybeHandle<Object> Execution::Call(Isolate* isolate, Handle<Object> callable,
Handle<Object> receiver, int argc,
Handle<Object> argv[]) {
return Invoke(isolate, InvokeParams::SetUpForCall(isolate, callable, receiver,
argc, argv));
}
// static
MaybeHandle<Object> Execution::New(Isolate* isolate, Handle<Object> constructor,
int argc, Handle<Object> argv[]) {
return New(isolate, constructor, constructor, argc, argv);
}
// static
MaybeHandle<Object> Execution::New(Isolate* isolate, Handle<Object> constructor,
Handle<Object> new_target, int argc,
Handle<Object> argv[]) {
return Invoke(isolate, InvokeParams::SetUpForNew(isolate, constructor,
new_target, argc, argv));
}
// static
MaybeHandle<Object> Execution::TryCall(Isolate* isolate,
Handle<Object> callable,
Handle<Object> receiver, int argc,
Handle<Object> argv[],
MessageHandling message_handling,
MaybeHandle<Object>* exception_out) {
return InvokeWithTryCatch(
isolate,
InvokeParams::SetUpForTryCall(isolate, callable, receiver, argc, argv,
message_handling, exception_out));
}
// static
MaybeHandle<Object> Execution::TryRunMicrotasks(
Isolate* isolate, MicrotaskQueue* microtask_queue,
MaybeHandle<Object>* exception_out) {
return InvokeWithTryCatch(
isolate, InvokeParams::SetUpForRunMicrotasks(isolate, microtask_queue,
exception_out));
}
void StackGuard::SetStackLimit(uintptr_t limit) {
ExecutionAccess access(isolate_);
// If the current limits are special (e.g. due to a pending interrupt) then
// leave them alone.
uintptr_t jslimit = SimulatorStack::JsLimitFromCLimit(isolate_, limit);
if (thread_local_.jslimit() == thread_local_.real_jslimit_) {
thread_local_.set_jslimit(jslimit);
}
if (thread_local_.climit() == thread_local_.real_climit_) {
thread_local_.set_climit(limit);
}
thread_local_.real_climit_ = limit;
thread_local_.real_jslimit_ = jslimit;
}
void StackGuard::AdjustStackLimitForSimulator() {
ExecutionAccess access(isolate_);
uintptr_t climit = thread_local_.real_climit_;
// If the current limits are special (e.g. due to a pending interrupt) then
// leave them alone.
uintptr_t jslimit = SimulatorStack::JsLimitFromCLimit(isolate_, climit);
if (thread_local_.jslimit() == thread_local_.real_jslimit_) {
thread_local_.set_jslimit(jslimit);
isolate_->heap()->SetStackLimits();
}
}
void StackGuard::EnableInterrupts() {
ExecutionAccess access(isolate_);
if (has_pending_interrupts(access)) {
set_interrupt_limits(access);
}
}
void StackGuard::DisableInterrupts() {
ExecutionAccess access(isolate_);
reset_limits(access);
}
void StackGuard::PushInterruptsScope(InterruptsScope* scope) {
ExecutionAccess access(isolate_);
DCHECK_NE(scope->mode_, InterruptsScope::kNoop);
if (scope->mode_ == InterruptsScope::kPostponeInterrupts) {
// Intercept already requested interrupts.
int intercepted = thread_local_.interrupt_flags_ & scope->intercept_mask_;
scope->intercepted_flags_ = intercepted;
thread_local_.interrupt_flags_ &= ~intercepted;
} else {
DCHECK_EQ(scope->mode_, InterruptsScope::kRunInterrupts);
// Restore postponed interrupts.
int restored_flags = 0;
for (InterruptsScope* current = thread_local_.interrupt_scopes_;
current != nullptr; current = current->prev_) {
restored_flags |= (current->intercepted_flags_ & scope->intercept_mask_);
current->intercepted_flags_ &= ~scope->intercept_mask_;
}
thread_local_.interrupt_flags_ |= restored_flags;
}
if (!has_pending_interrupts(access)) reset_limits(access);
// Add scope to the chain.
scope->prev_ = thread_local_.interrupt_scopes_;
thread_local_.interrupt_scopes_ = scope;
}
void StackGuard::PopInterruptsScope() {
ExecutionAccess access(isolate_);
InterruptsScope* top = thread_local_.interrupt_scopes_;
DCHECK_NE(top->mode_, InterruptsScope::kNoop);
if (top->mode_ == InterruptsScope::kPostponeInterrupts) {
// Make intercepted interrupts active.
DCHECK_EQ(thread_local_.interrupt_flags_ & top->intercept_mask_, 0);
thread_local_.interrupt_flags_ |= top->intercepted_flags_;
} else {
DCHECK_EQ(top->mode_, InterruptsScope::kRunInterrupts);
// Postpone existing interupts if needed.
if (top->prev_) {
for (int interrupt = 1; interrupt < ALL_INTERRUPTS;
interrupt = interrupt << 1) {
InterruptFlag flag = static_cast<InterruptFlag>(interrupt);
if ((thread_local_.interrupt_flags_ & flag) &&
top->prev_->Intercept(flag)) {
thread_local_.interrupt_flags_ &= ~flag;
}
}
}
}
if (has_pending_interrupts(access)) set_interrupt_limits(access);
// Remove scope from chain.
thread_local_.interrupt_scopes_ = top->prev_;
}
bool StackGuard::CheckInterrupt(InterruptFlag flag) {
ExecutionAccess access(isolate_);
return thread_local_.interrupt_flags_ & flag;
}
void StackGuard::RequestInterrupt(InterruptFlag flag) {
ExecutionAccess access(isolate_);
// Check the chain of InterruptsScope for interception.
if (thread_local_.interrupt_scopes_ &&
thread_local_.interrupt_scopes_->Intercept(flag)) {
return;
}
// Not intercepted. Set as active interrupt flag.
thread_local_.interrupt_flags_ |= flag;
set_interrupt_limits(access);
// If this isolate is waiting in a futex, notify it to wake up.
isolate_->futex_wait_list_node()->NotifyWake();
}
void StackGuard::ClearInterrupt(InterruptFlag flag) {
ExecutionAccess access(isolate_);
// Clear the interrupt flag from the chain of InterruptsScope.
for (InterruptsScope* current = thread_local_.interrupt_scopes_;
current != nullptr; current = current->prev_) {
current->intercepted_flags_ &= ~flag;
}
// Clear the interrupt flag from the active interrupt flags.
thread_local_.interrupt_flags_ &= ~flag;
if (!has_pending_interrupts(access)) reset_limits(access);
}
bool StackGuard::CheckAndClearInterrupt(InterruptFlag flag) {
ExecutionAccess access(isolate_);
bool result = (thread_local_.interrupt_flags_ & flag);
thread_local_.interrupt_flags_ &= ~flag;
if (!has_pending_interrupts(access)) reset_limits(access);
return result;
}
char* StackGuard::ArchiveStackGuard(char* to) {
ExecutionAccess access(isolate_);
MemCopy(to, reinterpret_cast<char*>(&thread_local_), sizeof(ThreadLocal));
ThreadLocal blank;
// Set the stack limits using the old thread_local_.
// TODO(isolates): This was the old semantics of constructing a ThreadLocal
// (as the ctor called SetStackLimits, which looked at the
// current thread_local_ from StackGuard)-- but is this
// really what was intended?
isolate_->heap()->SetStackLimits();
thread_local_ = blank;
return to + sizeof(ThreadLocal);
}
char* StackGuard::RestoreStackGuard(char* from) {
ExecutionAccess access(isolate_);
MemCopy(reinterpret_cast<char*>(&thread_local_), from, sizeof(ThreadLocal));
isolate_->heap()->SetStackLimits();
return from + sizeof(ThreadLocal);
}
void StackGuard::FreeThreadResources() {
Isolate::PerIsolateThreadData* per_thread =
isolate_->FindOrAllocatePerThreadDataForThisThread();
per_thread->set_stack_limit(thread_local_.real_climit_);
}
void StackGuard::ThreadLocal::Clear() {
real_jslimit_ = kIllegalLimit;
set_jslimit(kIllegalLimit);
real_climit_ = kIllegalLimit;
set_climit(kIllegalLimit);
interrupt_scopes_ = nullptr;
interrupt_flags_ = 0;
}
bool StackGuard::ThreadLocal::Initialize(Isolate* isolate) {
bool should_set_stack_limits = false;
if (real_climit_ == kIllegalLimit) {
const uintptr_t kLimitSize = FLAG_stack_size * KB;
DCHECK_GT(GetCurrentStackPosition(), kLimitSize);
uintptr_t limit = GetCurrentStackPosition() - kLimitSize;
real_jslimit_ = SimulatorStack::JsLimitFromCLimit(isolate, limit);
set_jslimit(SimulatorStack::JsLimitFromCLimit(isolate, limit));
real_climit_ = limit;
set_climit(limit);
should_set_stack_limits = true;
}
interrupt_scopes_ = nullptr;
interrupt_flags_ = 0;
return should_set_stack_limits;
}
void StackGuard::ClearThread(const ExecutionAccess& lock) {
thread_local_.Clear();
isolate_->heap()->SetStackLimits();
}
void StackGuard::InitThread(const ExecutionAccess& lock) {
if (thread_local_.Initialize(isolate_)) isolate_->heap()->SetStackLimits();
Isolate::PerIsolateThreadData* per_thread =
isolate_->FindOrAllocatePerThreadDataForThisThread();
uintptr_t stored_limit = per_thread->stack_limit();
// You should hold the ExecutionAccess lock when you call this.
if (stored_limit != 0) {
SetStackLimit(stored_limit);
}
}
// --- C a l l s t o n a t i v e s ---
Object StackGuard::HandleInterrupts() {
if (FLAG_verify_predictable) {
// Advance synthetic time by making a time request.
isolate_->heap()->MonotonicallyIncreasingTimeInMs();
}
bool any_interrupt_handled = false;
if (FLAG_trace_interrupts) {
PrintF("[Handling interrupts: ");
}
if (CheckAndClearInterrupt(GC_REQUEST)) {
if (FLAG_trace_interrupts) {
PrintF("GC_REQUEST");
any_interrupt_handled = true;
}
isolate_->heap()->HandleGCRequest();
}
if (CheckAndClearInterrupt(TERMINATE_EXECUTION)) {
if (FLAG_trace_interrupts) {
if (any_interrupt_handled) PrintF(", ");
PrintF("TERMINATE_EXECUTION");
any_interrupt_handled = true;
}
return isolate_->TerminateExecution();
}
if (CheckAndClearInterrupt(DEOPT_MARKED_ALLOCATION_SITES)) {
if (FLAG_trace_interrupts) {
if (any_interrupt_handled) PrintF(", ");
PrintF("DEOPT_MARKED_ALLOCATION_SITES");
any_interrupt_handled = true;
}
isolate_->heap()->DeoptMarkedAllocationSites();
}
if (CheckAndClearInterrupt(INSTALL_CODE)) {
if (FLAG_trace_interrupts) {
if (any_interrupt_handled) PrintF(", ");
PrintF("INSTALL_CODE");
any_interrupt_handled = true;
}
DCHECK(isolate_->concurrent_recompilation_enabled());
isolate_->optimizing_compile_dispatcher()->InstallOptimizedFunctions();
}
if (CheckAndClearInterrupt(API_INTERRUPT)) {
if (FLAG_trace_interrupts) {
if (any_interrupt_handled) PrintF(", ");
PrintF("API_INTERRUPT");
any_interrupt_handled = true;
}
// Callbacks must be invoked outside of ExecusionAccess lock.
isolate_->InvokeApiInterruptCallbacks();
}
if (FLAG_trace_interrupts) {
if (!any_interrupt_handled) {
PrintF("No interrupt flags set");
}
PrintF("]\n");
}
isolate_->counters()->stack_interrupts()->Increment();
isolate_->counters()->runtime_profiler_ticks()->Increment();
isolate_->runtime_profiler()->MarkCandidatesForOptimization();
return ReadOnlyRoots(isolate_).undefined_value();
}
} // namespace internal
} // namespace v8