blob: 171fb3e48cb0cf351b8071fcf5bf457e633d6624 [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/js-inlining.h"
#include "src/ast/ast.h"
#include "src/ast/ast-numbering.h"
#include "src/ast/scopes.h"
#include "src/compiler.h"
#include "src/compiler/all-nodes.h"
#include "src/compiler/ast-graph-builder.h"
#include "src/compiler/common-operator.h"
#include "src/compiler/graph-reducer.h"
#include "src/compiler/js-operator.h"
#include "src/compiler/node-matchers.h"
#include "src/compiler/node-properties.h"
#include "src/compiler/operator-properties.h"
#include "src/isolate-inl.h"
#include "src/parsing/parser.h"
#include "src/parsing/rewriter.h"
namespace v8 {
namespace internal {
namespace compiler {
#define TRACE(...) \
do { \
if (FLAG_trace_turbo_inlining) PrintF(__VA_ARGS__); \
} while (false)
// Provides convenience accessors for the common layout of nodes having either
// the {JSCallFunction} or the {JSCallConstruct} operator.
class JSCallAccessor {
public:
explicit JSCallAccessor(Node* call) : call_(call) {
DCHECK(call->opcode() == IrOpcode::kJSCallFunction ||
call->opcode() == IrOpcode::kJSCallConstruct);
}
Node* target() {
// Both, {JSCallFunction} and {JSCallConstruct}, have same layout here.
return call_->InputAt(0);
}
Node* receiver() {
DCHECK_EQ(IrOpcode::kJSCallFunction, call_->opcode());
return call_->InputAt(1);
}
Node* new_target() {
DCHECK_EQ(IrOpcode::kJSCallConstruct, call_->opcode());
return call_->InputAt(formal_arguments() + 1);
}
Node* frame_state_before() {
return NodeProperties::GetFrameStateInput(call_, 1);
}
Node* frame_state_after() {
// Both, {JSCallFunction} and {JSCallConstruct}, have frame state after.
return NodeProperties::GetFrameStateInput(call_, 0);
}
int formal_arguments() {
// Both, {JSCallFunction} and {JSCallConstruct}, have two extra inputs:
// - JSCallConstruct: Includes target function and new target.
// - JSCallFunction: Includes target function and receiver.
return call_->op()->ValueInputCount() - 2;
}
private:
Node* call_;
};
class CopyVisitor {
public:
CopyVisitor(Graph* source_graph, Graph* target_graph, Zone* temp_zone)
: sentinel_op_(IrOpcode::kDead, Operator::kNoProperties, "Sentinel", 0, 0,
0, 0, 0, 0),
sentinel_(target_graph->NewNode(&sentinel_op_)),
copies_(source_graph->NodeCount(), sentinel_, temp_zone),
source_graph_(source_graph),
target_graph_(target_graph),
temp_zone_(temp_zone) {}
Node* GetCopy(Node* orig) { return copies_[orig->id()]; }
void CopyGraph() {
NodeVector inputs(temp_zone_);
// TODO(bmeurer): AllNodes should be turned into something like
// Graph::CollectNodesReachableFromEnd() and the gray set stuff should be
// removed since it's only needed by the visualizer.
AllNodes all(temp_zone_, source_graph_);
// Copy all nodes reachable from end.
for (Node* orig : all.live) {
Node* copy = GetCopy(orig);
if (copy != sentinel_) {
// Mapping already exists.
continue;
}
// Copy the node.
inputs.clear();
for (Node* input : orig->inputs()) inputs.push_back(copies_[input->id()]);
copy = target_graph_->NewNode(orig->op(), orig->InputCount(),
inputs.empty() ? nullptr : &inputs[0]);
copies_[orig->id()] = copy;
}
// For missing inputs.
for (Node* orig : all.live) {
Node* copy = copies_[orig->id()];
for (int i = 0; i < copy->InputCount(); ++i) {
Node* input = copy->InputAt(i);
if (input == sentinel_) {
copy->ReplaceInput(i, GetCopy(orig->InputAt(i)));
}
}
}
}
const NodeVector& copies() const { return copies_; }
private:
Operator const sentinel_op_;
Node* const sentinel_;
NodeVector copies_;
Graph* const source_graph_;
Graph* const target_graph_;
Zone* const temp_zone_;
};
Reduction JSInliner::InlineCall(Node* call, Node* new_target, Node* context,
Node* frame_state, Node* start, Node* end) {
// The scheduler is smart enough to place our code; we just ensure {control}
// becomes the control input of the start of the inlinee, and {effect} becomes
// the effect input of the start of the inlinee.
Node* control = NodeProperties::GetControlInput(call);
Node* effect = NodeProperties::GetEffectInput(call);
int const inlinee_new_target_index =
static_cast<int>(start->op()->ValueOutputCount()) - 3;
int const inlinee_arity_index =
static_cast<int>(start->op()->ValueOutputCount()) - 2;
int const inlinee_context_index =
static_cast<int>(start->op()->ValueOutputCount()) - 1;
// {inliner_inputs} counts JSFunction, receiver, arguments, but not
// new target value, argument count, context, effect or control.
int inliner_inputs = call->op()->ValueInputCount();
// Iterate over all uses of the start node.
for (Edge edge : start->use_edges()) {
Node* use = edge.from();
switch (use->opcode()) {
case IrOpcode::kParameter: {
int index = 1 + ParameterIndexOf(use->op());
DCHECK_LE(index, inlinee_context_index);
if (index < inliner_inputs && index < inlinee_new_target_index) {
// There is an input from the call, and the index is a value
// projection but not the context, so rewire the input.
Replace(use, call->InputAt(index));
} else if (index == inlinee_new_target_index) {
// The projection is requesting the new target value.
Replace(use, new_target);
} else if (index == inlinee_arity_index) {
// The projection is requesting the number of arguments.
Replace(use, jsgraph_->Int32Constant(inliner_inputs - 2));
} else if (index == inlinee_context_index) {
// The projection is requesting the inlinee function context.
Replace(use, context);
} else {
// Call has fewer arguments than required, fill with undefined.
Replace(use, jsgraph_->UndefinedConstant());
}
break;
}
default:
if (NodeProperties::IsEffectEdge(edge)) {
edge.UpdateTo(effect);
} else if (NodeProperties::IsControlEdge(edge)) {
edge.UpdateTo(control);
} else if (NodeProperties::IsFrameStateEdge(edge)) {
edge.UpdateTo(frame_state);
} else {
UNREACHABLE();
}
break;
}
}
NodeVector values(local_zone_);
NodeVector effects(local_zone_);
NodeVector controls(local_zone_);
for (Node* const input : end->inputs()) {
switch (input->opcode()) {
case IrOpcode::kReturn:
values.push_back(NodeProperties::GetValueInput(input, 0));
effects.push_back(NodeProperties::GetEffectInput(input));
controls.push_back(NodeProperties::GetControlInput(input));
break;
case IrOpcode::kDeoptimize:
case IrOpcode::kTerminate:
case IrOpcode::kThrow:
NodeProperties::MergeControlToEnd(jsgraph_->graph(), jsgraph_->common(),
input);
Revisit(jsgraph_->graph()->end());
break;
default:
UNREACHABLE();
break;
}
}
DCHECK_EQ(values.size(), effects.size());
DCHECK_EQ(values.size(), controls.size());
// Depending on whether the inlinee produces a value, we either replace value
// uses with said value or kill value uses if no value can be returned.
if (values.size() > 0) {
int const input_count = static_cast<int>(controls.size());
Node* control_output = jsgraph_->graph()->NewNode(
jsgraph_->common()->Merge(input_count), input_count, &controls.front());
values.push_back(control_output);
effects.push_back(control_output);
Node* value_output = jsgraph_->graph()->NewNode(
jsgraph_->common()->Phi(MachineRepresentation::kTagged, input_count),
static_cast<int>(values.size()), &values.front());
Node* effect_output = jsgraph_->graph()->NewNode(
jsgraph_->common()->EffectPhi(input_count),
static_cast<int>(effects.size()), &effects.front());
ReplaceWithValue(call, value_output, effect_output, control_output);
return Changed(value_output);
} else {
ReplaceWithValue(call, call, call, jsgraph_->Dead());
return Changed(call);
}
}
Node* JSInliner::CreateArtificialFrameState(Node* node, Node* outer_frame_state,
int parameter_count,
FrameStateType frame_state_type,
Handle<SharedFunctionInfo> shared) {
const FrameStateFunctionInfo* state_info =
jsgraph_->common()->CreateFrameStateFunctionInfo(
frame_state_type, parameter_count + 1, 0, shared);
const Operator* op = jsgraph_->common()->FrameState(
BailoutId(-1), OutputFrameStateCombine::Ignore(), state_info);
const Operator* op0 = jsgraph_->common()->StateValues(0);
Node* node0 = jsgraph_->graph()->NewNode(op0);
NodeVector params(local_zone_);
for (int parameter = 0; parameter < parameter_count + 1; ++parameter) {
params.push_back(node->InputAt(1 + parameter));
}
const Operator* op_param =
jsgraph_->common()->StateValues(static_cast<int>(params.size()));
Node* params_node = jsgraph_->graph()->NewNode(
op_param, static_cast<int>(params.size()), &params.front());
return jsgraph_->graph()->NewNode(op, params_node, node0, node0,
jsgraph_->UndefinedConstant(),
node->InputAt(0), outer_frame_state);
}
Node* JSInliner::CreateTailCallerFrameState(Node* node, Node* frame_state) {
FrameStateInfo const& frame_info = OpParameter<FrameStateInfo>(frame_state);
Handle<SharedFunctionInfo> shared =
frame_info.shared_info().ToHandleChecked();
Node* function = frame_state->InputAt(kFrameStateFunctionInput);
// If we are inlining a tail call drop caller's frame state and an
// arguments adaptor if it exists.
frame_state = NodeProperties::GetFrameStateInput(frame_state, 0);
if (frame_state->opcode() == IrOpcode::kFrameState) {
FrameStateInfo state_info = OpParameter<FrameStateInfo>(frame_state);
if (state_info.type() == FrameStateType::kArgumentsAdaptor) {
frame_state = NodeProperties::GetFrameStateInput(frame_state, 0);
}
}
const FrameStateFunctionInfo* state_info =
jsgraph_->common()->CreateFrameStateFunctionInfo(
FrameStateType::kTailCallerFunction, 0, 0, shared);
const Operator* op = jsgraph_->common()->FrameState(
BailoutId(-1), OutputFrameStateCombine::Ignore(), state_info);
const Operator* op0 = jsgraph_->common()->StateValues(0);
Node* node0 = jsgraph_->graph()->NewNode(op0);
return jsgraph_->graph()->NewNode(op, node0, node0, node0,
jsgraph_->UndefinedConstant(), function,
frame_state);
}
namespace {
// TODO(mstarzinger,verwaest): Move this predicate onto SharedFunctionInfo?
bool NeedsImplicitReceiver(Handle<SharedFunctionInfo> shared_info) {
DisallowHeapAllocation no_gc;
Isolate* const isolate = shared_info->GetIsolate();
Code* const construct_stub = shared_info->construct_stub();
return construct_stub != *isolate->builtins()->JSBuiltinsConstructStub();
}
bool IsNonConstructible(Handle<SharedFunctionInfo> shared_info) {
DisallowHeapAllocation no_gc;
Isolate* const isolate = shared_info->GetIsolate();
Code* const construct_stub = shared_info->construct_stub();
return construct_stub == *isolate->builtins()->ConstructedNonConstructable();
}
} // namespace
Reduction JSInliner::Reduce(Node* node) {
if (!IrOpcode::IsInlineeOpcode(node->opcode())) return NoChange();
// This reducer can handle both normal function calls as well a constructor
// calls whenever the target is a constant function object, as follows:
// - JSCallFunction(target:constant, receiver, args...)
// - JSCallConstruct(target:constant, args..., new.target)
HeapObjectMatcher match(node->InputAt(0));
if (!match.HasValue() || !match.Value()->IsJSFunction()) return NoChange();
Handle<JSFunction> function = Handle<JSFunction>::cast(match.Value());
return ReduceJSCall(node, function);
}
Reduction JSInliner::ReduceJSCall(Node* node, Handle<JSFunction> function) {
DCHECK(IrOpcode::IsInlineeOpcode(node->opcode()));
JSCallAccessor call(node);
Handle<SharedFunctionInfo> shared_info(function->shared());
// Function must be inlineable.
if (!shared_info->IsInlineable()) {
TRACE("Not inlining %s into %s because callee is not inlineable\n",
shared_info->DebugName()->ToCString().get(),
info_->shared_info()->DebugName()->ToCString().get());
return NoChange();
}
// Constructor must be constructable.
if (node->opcode() == IrOpcode::kJSCallConstruct &&
IsNonConstructible(shared_info)) {
TRACE("Not inlining %s into %s because constructor is not constructable.\n",
shared_info->DebugName()->ToCString().get(),
info_->shared_info()->DebugName()->ToCString().get());
return NoChange();
}
// Class constructors are callable, but [[Call]] will raise an exception.
// See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList ).
if (node->opcode() == IrOpcode::kJSCallFunction &&
IsClassConstructor(shared_info->kind())) {
TRACE("Not inlining %s into %s because callee is a class constructor.\n",
shared_info->DebugName()->ToCString().get(),
info_->shared_info()->DebugName()->ToCString().get());
return NoChange();
}
// Function contains break points.
if (shared_info->HasDebugInfo()) {
TRACE("Not inlining %s into %s because callee may contain break points\n",
shared_info->DebugName()->ToCString().get(),
info_->shared_info()->DebugName()->ToCString().get());
return NoChange();
}
// Disallow cross native-context inlining for now. This means that all parts
// of the resulting code will operate on the same global object.
// This also prevents cross context leaks for asm.js code, where we could
// inline functions from a different context and hold on to that context (and
// closure) from the code object.
// TODO(turbofan): We might want to revisit this restriction later when we
// have a need for this, and we know how to model different native contexts
// in the same graph in a compositional way.
if (function->context()->native_context() !=
info_->context()->native_context()) {
TRACE("Not inlining %s into %s because of different native contexts\n",
shared_info->DebugName()->ToCString().get(),
info_->shared_info()->DebugName()->ToCString().get());
return NoChange();
}
// TODO(turbofan): TranslatedState::GetAdaptedArguments() currently relies on
// not inlining recursive functions. We might want to relax that at some
// point.
for (Node* frame_state = call.frame_state_after();
frame_state->opcode() == IrOpcode::kFrameState;
frame_state = frame_state->InputAt(kFrameStateOuterStateInput)) {
FrameStateInfo const& frame_info = OpParameter<FrameStateInfo>(frame_state);
Handle<SharedFunctionInfo> frame_shared_info;
if (frame_info.shared_info().ToHandle(&frame_shared_info) &&
*frame_shared_info == *shared_info) {
TRACE("Not inlining %s into %s because call is recursive\n",
shared_info->DebugName()->ToCString().get(),
info_->shared_info()->DebugName()->ToCString().get());
return NoChange();
}
}
// TODO(turbofan): Inlining into a try-block is not yet supported.
if (NodeProperties::IsExceptionalCall(node)) {
TRACE("Not inlining %s into %s because of surrounding try-block\n",
shared_info->DebugName()->ToCString().get(),
info_->shared_info()->DebugName()->ToCString().get());
return NoChange();
}
Zone zone;
ParseInfo parse_info(&zone, function);
CompilationInfo info(&parse_info);
if (info_->is_deoptimization_enabled()) info.MarkAsDeoptimizationEnabled();
if (!Compiler::ParseAndAnalyze(info.parse_info())) {
TRACE("Not inlining %s into %s because parsing failed\n",
shared_info->DebugName()->ToCString().get(),
info_->shared_info()->DebugName()->ToCString().get());
if (info_->isolate()->has_pending_exception()) {
info_->isolate()->clear_pending_exception();
}
return NoChange();
}
// In strong mode, in case of too few arguments we need to throw a TypeError
// so we must not inline this call.
int parameter_count = info.literal()->parameter_count();
if (is_strong(info.language_mode()) &&
call.formal_arguments() < parameter_count) {
TRACE("Not inlining %s into %s because too few arguments for strong mode\n",
shared_info->DebugName()->ToCString().get(),
info_->shared_info()->DebugName()->ToCString().get());
return NoChange();
}
if (!Compiler::EnsureDeoptimizationSupport(&info)) {
TRACE("Not inlining %s into %s because deoptimization support failed\n",
shared_info->DebugName()->ToCString().get(),
info_->shared_info()->DebugName()->ToCString().get());
return NoChange();
}
// Remember that we inlined this function. This needs to be called right
// after we ensure deoptimization support so that the code flusher
// does not remove the code with the deoptimization support.
info_->AddInlinedFunction(shared_info);
// ----------------------------------------------------------------
// After this point, we've made a decision to inline this function.
// We shall not bailout from inlining if we got here.
TRACE("Inlining %s into %s\n",
shared_info->DebugName()->ToCString().get(),
info_->shared_info()->DebugName()->ToCString().get());
// TODO(mstarzinger): We could use the temporary zone for the graph because
// nodes are copied. This however leads to Zone-Types being allocated in the
// wrong zone and makes the engine explode at high speeds. Explosion bad!
Graph graph(jsgraph_->zone());
JSGraph jsgraph(info.isolate(), &graph, jsgraph_->common(),
jsgraph_->javascript(), jsgraph_->simplified(),
jsgraph_->machine());
AstGraphBuilder graph_builder(local_zone_, &info, &jsgraph);
graph_builder.CreateGraph(false);
CopyVisitor visitor(&graph, jsgraph_->graph(), &zone);
visitor.CopyGraph();
Node* start = visitor.GetCopy(graph.start());
Node* end = visitor.GetCopy(graph.end());
Node* frame_state = call.frame_state_after();
Node* new_target = jsgraph_->UndefinedConstant();
// Insert nodes around the call that model the behavior required for a
// constructor dispatch (allocate implicit receiver and check return value).
// This models the behavior usually accomplished by our {JSConstructStub}.
// Note that the context has to be the callers context (input to call node).
Node* receiver = jsgraph_->UndefinedConstant(); // Implicit receiver.
if (node->opcode() == IrOpcode::kJSCallConstruct &&
NeedsImplicitReceiver(shared_info)) {
Node* effect = NodeProperties::GetEffectInput(node);
Node* context = NodeProperties::GetContextInput(node);
Node* create = jsgraph_->graph()->NewNode(
jsgraph_->javascript()->Create(), call.target(), call.new_target(),
context, call.frame_state_before(), effect);
NodeProperties::ReplaceEffectInput(node, create);
// Insert a check of the return value to determine whether the return value
// or the implicit receiver should be selected as a result of the call.
Node* check = jsgraph_->graph()->NewNode(
jsgraph_->javascript()->CallRuntime(Runtime::kInlineIsJSReceiver, 1),
node, context, node, start);
Node* select = jsgraph_->graph()->NewNode(
jsgraph_->common()->Select(MachineRepresentation::kTagged), check, node,
create);
NodeProperties::ReplaceUses(node, select, check, node, node);
NodeProperties::ReplaceValueInput(select, node, 1);
NodeProperties::ReplaceValueInput(check, node, 0);
NodeProperties::ReplaceEffectInput(check, node);
receiver = create; // The implicit receiver.
}
// Swizzle the inputs of the {JSCallConstruct} node to look like inputs to a
// normal {JSCallFunction} node so that the rest of the inlining machinery
// behaves as if we were dealing with a regular function invocation.
if (node->opcode() == IrOpcode::kJSCallConstruct) {
new_target = call.new_target(); // Retrieve new target value input.
node->RemoveInput(call.formal_arguments() + 1); // Drop new target.
node->InsertInput(jsgraph_->graph()->zone(), 1, receiver);
// Insert a construct stub frame into the chain of frame states. This will
// reconstruct the proper frame when deoptimizing within the constructor.
frame_state = CreateArtificialFrameState(
node, frame_state, call.formal_arguments(),
FrameStateType::kConstructStub, info.shared_info());
}
// The inlinee specializes to the context from the JSFunction object.
// TODO(turbofan): We might want to load the context from the JSFunction at
// runtime in case we only know the SharedFunctionInfo once we have dynamic
// type feedback in the compiler.
Node* context = jsgraph_->Constant(handle(function->context()));
// Insert a JSConvertReceiver node for sloppy callees. Note that the context
// passed into this node has to be the callees context (loaded above). Note
// that the frame state passed to the JSConvertReceiver must be the frame
// state _before_ the call; it is not necessary to fiddle with the receiver
// in that frame state tho, as the conversion of the receiver can be repeated
// any number of times, it's not observable.
if (node->opcode() == IrOpcode::kJSCallFunction &&
is_sloppy(info.language_mode()) && !shared_info->native()) {
const CallFunctionParameters& p = CallFunctionParametersOf(node->op());
Node* effect = NodeProperties::GetEffectInput(node);
Node* convert = jsgraph_->graph()->NewNode(
jsgraph_->javascript()->ConvertReceiver(p.convert_mode()),
call.receiver(), context, call.frame_state_before(), effect, start);
NodeProperties::ReplaceValueInput(node, convert, 1);
NodeProperties::ReplaceEffectInput(node, convert);
}
// If we are inlining a JS call at tail position then we have to pop current
// frame state and its potential arguments adaptor frame state in order to
// make the call stack be consistent with non-inlining case.
// After that we add a tail caller frame state which lets deoptimizer handle
// the case when the outermost function inlines a tail call (it should remove
// potential arguments adaptor frame that belongs to outermost function when
// deopt happens).
if (node->opcode() == IrOpcode::kJSCallFunction) {
const CallFunctionParameters& p = CallFunctionParametersOf(node->op());
if (p.tail_call_mode() == TailCallMode::kAllow) {
frame_state = CreateTailCallerFrameState(node, frame_state);
}
}
// Insert argument adaptor frame if required. The callees formal parameter
// count (i.e. value outputs of start node minus target, receiver, new target,
// arguments count and context) have to match the number of arguments passed
// to the call.
DCHECK_EQ(parameter_count, start->op()->ValueOutputCount() - 5);
if (call.formal_arguments() != parameter_count) {
frame_state = CreateArtificialFrameState(
node, frame_state, call.formal_arguments(),
FrameStateType::kArgumentsAdaptor, shared_info);
}
return InlineCall(node, new_target, context, frame_state, start, end);
}
} // namespace compiler
} // namespace internal
} // namespace v8