blob: 8dcca0a81c772ca7f1b358e2a7b3f5b04d171348 [file] [log] [blame]
/*
* Copyright (C) 1997 Martin Jones (mjones@kde.org)
* (C) 1997 Torben Weis (weis@kde.org)
* (C) 1998 Waldo Bastian (bastian@kde.org)
* (C) 1999 Lars Knoll (knoll@kde.org)
* (C) 1999 Antti Koivisto (koivisto@kde.org)
* Copyright (C) 2003, 2004, 2005, 2006, 2008, 2009, 2010, 2013 Apple Inc.
* All rights reserved.
* Copyright (C) 2006 Alexey Proskuryakov (ap@nypop.com)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#include "core/layout/LayoutTableSection.h"
#include "core/layout/HitTestResult.h"
#include "core/layout/LayoutAnalyzer.h"
#include "core/layout/LayoutTableCell.h"
#include "core/layout/LayoutTableCol.h"
#include "core/layout/LayoutTableRow.h"
#include "core/layout/LayoutView.h"
#include "core/layout/SubtreeLayoutScope.h"
#include "core/paint/TableSectionPainter.h"
#include "wtf/HashSet.h"
#include <algorithm>
#include <limits>
namespace blink {
using namespace HTMLNames;
// This variable is used to balance the memory consumption vs the paint
// invalidation time on big tables.
static unsigned gMinTableSizeToUseFastPaintPathWithOverflowingCell = 75 * 75;
static inline void setRowLogicalHeightToRowStyleLogicalHeight(
LayoutTableSection::RowStruct& row) {
ASSERT(row.rowLayoutObject);
row.logicalHeight = row.rowLayoutObject->style()->logicalHeight();
}
static inline void updateLogicalHeightForCell(
LayoutTableSection::RowStruct& row,
const LayoutTableCell* cell) {
// We ignore height settings on rowspan cells.
if (cell->rowSpan() != 1)
return;
Length logicalHeight = cell->style()->logicalHeight();
if (logicalHeight.isPositive()) {
Length cRowLogicalHeight = row.logicalHeight;
switch (logicalHeight.type()) {
case Percent:
// TODO(alancutter): Make this work correctly for calc lengths.
if (!(cRowLogicalHeight.isPercentOrCalc()) ||
(cRowLogicalHeight.isPercent() &&
cRowLogicalHeight.percent() < logicalHeight.percent()))
row.logicalHeight = logicalHeight;
break;
case Fixed:
if (cRowLogicalHeight.type() < Percent ||
(cRowLogicalHeight.isFixed() &&
cRowLogicalHeight.value() < logicalHeight.value()))
row.logicalHeight = logicalHeight;
break;
default:
break;
}
}
}
void CellSpan::ensureConsistency(const unsigned maximumSpanSize) {
static_assert(std::is_same<decltype(m_start), unsigned>::value,
"Asserts below assume m_start is unsigned");
static_assert(std::is_same<decltype(m_end), unsigned>::value,
"Asserts below assume m_end is unsigned");
RELEASE_ASSERT(m_start <= maximumSpanSize);
RELEASE_ASSERT(m_end <= maximumSpanSize);
RELEASE_ASSERT(m_start <= m_end);
}
LayoutTableSection::CellStruct::CellStruct() : inColSpan(false) {}
LayoutTableSection::CellStruct::~CellStruct() {}
LayoutTableSection::LayoutTableSection(Element* element)
: LayoutTableBoxComponent(element),
m_cCol(0),
m_cRow(0),
m_outerBorderStart(0),
m_outerBorderEnd(0),
m_outerBorderBefore(0),
m_outerBorderAfter(0),
m_needsCellRecalc(false),
m_forceSlowPaintPathWithOverflowingCell(false),
m_hasMultipleCellLevels(false) {
// init LayoutObject attributes
setInline(false); // our object is not Inline
}
LayoutTableSection::~LayoutTableSection() {}
void LayoutTableSection::styleDidChange(StyleDifference diff,
const ComputedStyle* oldStyle) {
DCHECK(style()->display() == EDisplay::TableFooterGroup ||
style()->display() == EDisplay::TableRowGroup ||
style()->display() == EDisplay::TableHeaderGroup);
LayoutTableBoxComponent::styleDidChange(diff, oldStyle);
propagateStyleToAnonymousChildren();
if (!oldStyle)
return;
LayoutTable* table = this->table();
if (!table)
return;
if (!table->selfNeedsLayout() && !table->normalChildNeedsLayout() &&
oldStyle->border() != style()->border())
table->invalidateCollapsedBorders();
if (LayoutTableBoxComponent::doCellsHaveDirtyWidth(*this, *table, diff,
*oldStyle))
markAllCellsWidthsDirtyAndOrNeedsLayout(
LayoutTable::MarkDirtyAndNeedsLayout);
}
void LayoutTableSection::willBeRemovedFromTree() {
LayoutTableBoxComponent::willBeRemovedFromTree();
// Preventively invalidate our cells as we may be re-inserted into
// a new table which would require us to rebuild our structure.
setNeedsCellRecalc();
}
void LayoutTableSection::addChild(LayoutObject* child,
LayoutObject* beforeChild) {
if (!child->isTableRow()) {
LayoutObject* last = beforeChild;
if (!last)
last = lastRow();
if (last && last->isAnonymous() && !last->isBeforeOrAfterContent()) {
if (beforeChild == last)
beforeChild = last->slowFirstChild();
last->addChild(child, beforeChild);
return;
}
if (beforeChild && !beforeChild->isAnonymous() &&
beforeChild->parent() == this) {
LayoutObject* row = beforeChild->previousSibling();
if (row && row->isTableRow() && row->isAnonymous()) {
row->addChild(child);
return;
}
}
// If beforeChild is inside an anonymous cell/row, insert into the cell or
// into the anonymous row containing it, if there is one.
LayoutObject* lastBox = last;
while (lastBox && lastBox->parent()->isAnonymous() &&
!lastBox->isTableRow())
lastBox = lastBox->parent();
if (lastBox && lastBox->isAnonymous() &&
!lastBox->isBeforeOrAfterContent()) {
lastBox->addChild(child, beforeChild);
return;
}
LayoutObject* row = LayoutTableRow::createAnonymousWithParent(this);
addChild(row, beforeChild);
row->addChild(child);
return;
}
if (beforeChild)
setNeedsCellRecalc();
unsigned insertionRow = m_cRow;
++m_cRow;
m_cCol = 0;
ensureRows(m_cRow);
LayoutTableRow* row = toLayoutTableRow(child);
m_grid[insertionRow].rowLayoutObject = row;
row->setRowIndex(insertionRow);
if (!beforeChild)
setRowLogicalHeightToRowStyleLogicalHeight(m_grid[insertionRow]);
if (beforeChild && beforeChild->parent() != this)
beforeChild = splitAnonymousBoxesAroundChild(beforeChild);
ASSERT(!beforeChild || beforeChild->isTableRow());
LayoutTableBoxComponent::addChild(child, beforeChild);
}
void LayoutTableSection::ensureRows(unsigned numRows) {
if (numRows <= m_grid.size())
return;
unsigned oldSize = m_grid.size();
m_grid.grow(numRows);
unsigned effectiveColumnCount = std::max(1u, table()->numEffectiveColumns());
for (unsigned row = oldSize; row < m_grid.size(); ++row)
m_grid[row].row.grow(effectiveColumnCount);
}
static inline void checkThatVectorIsDOMOrdered(
const Vector<LayoutTableCell*, 1>& cells) {
#ifndef NDEBUG
// This function should be called on a non-empty vector.
ASSERT(cells.size() > 0);
const LayoutTableCell* previousCell = cells[0];
for (size_t i = 1; i < cells.size(); ++i) {
const LayoutTableCell* currentCell = cells[i];
// The check assumes that all cells belong to the same row group.
ASSERT(previousCell->section() == currentCell->section());
// 2 overlapping cells can't be on the same row.
ASSERT(currentCell->row() != previousCell->row());
// Look backwards in the tree for the previousCell's row. If we are
// DOM ordered, we should find it.
const LayoutTableRow* row = currentCell->row();
for (; row && row != previousCell->row(); row = row->previousRow()) {
}
ASSERT(row == previousCell->row());
previousCell = currentCell;
}
#endif // NDEBUG
}
void LayoutTableSection::addCell(LayoutTableCell* cell, LayoutTableRow* row) {
// We don't insert the cell if we need cell recalc as our internal columns'
// representation will have drifted from the table's representation. Also
// recalcCells will call addCell at a later time after sync'ing our columns'
// with the table's.
if (needsCellRecalc())
return;
unsigned rSpan = cell->rowSpan();
unsigned cSpan = cell->colSpan();
const Vector<LayoutTable::ColumnStruct>& columns =
table()->effectiveColumns();
unsigned nCols = columns.size();
unsigned insertionRow = row->rowIndex();
// ### mozilla still seems to do the old HTML way, even for strict DTD
// (see the annotation on table cell layouting in the CSS specs and the
// testcase below:
// <TABLE border>
// <TR><TD>1 <TD rowspan="2">2 <TD>3 <TD>4
// <TR><TD colspan="2">5
// </TABLE>
while (m_cCol < nCols && (cellAt(insertionRow, m_cCol).hasCells() ||
cellAt(insertionRow, m_cCol).inColSpan))
m_cCol++;
updateLogicalHeightForCell(m_grid[insertionRow], cell);
ensureRows(insertionRow + rSpan);
m_grid[insertionRow].rowLayoutObject = row;
unsigned col = m_cCol;
// tell the cell where it is
bool inColSpan = false;
while (cSpan) {
unsigned currentSpan;
if (m_cCol >= nCols) {
table()->appendEffectiveColumn(cSpan);
currentSpan = cSpan;
} else {
if (cSpan < columns[m_cCol].span)
table()->splitEffectiveColumn(m_cCol, cSpan);
currentSpan = columns[m_cCol].span;
}
for (unsigned r = 0; r < rSpan; r++) {
CellStruct& c = cellAt(insertionRow + r, m_cCol);
ASSERT(cell);
c.cells.append(cell);
checkThatVectorIsDOMOrdered(c.cells);
// If cells overlap then we take the slow path for painting.
if (c.cells.size() > 1)
m_hasMultipleCellLevels = true;
if (inColSpan)
c.inColSpan = true;
}
m_cCol++;
cSpan -= currentSpan;
inColSpan = true;
}
cell->setAbsoluteColumnIndex(table()->effectiveColumnToAbsoluteColumn(col));
}
bool LayoutTableSection::rowHasOnlySpanningCells(unsigned row) {
unsigned totalCols = m_grid[row].row.size();
if (!totalCols)
return false;
for (unsigned col = 0; col < totalCols; col++) {
const CellStruct& rowSpanCell = cellAt(row, col);
// Empty cell is not a valid cell so it is not a rowspan cell.
if (rowSpanCell.cells.isEmpty())
return false;
if (rowSpanCell.cells[0]->rowSpan() == 1)
return false;
}
return true;
}
void LayoutTableSection::populateSpanningRowsHeightFromCell(
LayoutTableCell* cell,
struct SpanningRowsHeight& spanningRowsHeight) {
const unsigned rowSpan = cell->rowSpan();
const unsigned rowIndex = cell->rowIndex();
spanningRowsHeight.spanningCellHeightIgnoringBorderSpacing =
cell->logicalHeightForRowSizing();
spanningRowsHeight.rowHeight.resize(rowSpan);
spanningRowsHeight.totalRowsHeight = 0;
for (unsigned row = 0; row < rowSpan; row++) {
unsigned actualRow = row + rowIndex;
spanningRowsHeight.rowHeight[row] = m_rowPos[actualRow + 1] -
m_rowPos[actualRow] -
borderSpacingForRow(actualRow);
if (!spanningRowsHeight.rowHeight[row])
spanningRowsHeight.isAnyRowWithOnlySpanningCells |=
rowHasOnlySpanningCells(actualRow);
spanningRowsHeight.totalRowsHeight += spanningRowsHeight.rowHeight[row];
spanningRowsHeight.spanningCellHeightIgnoringBorderSpacing -=
borderSpacingForRow(actualRow);
}
// We don't span the following row so its border-spacing (if any) should be
// included.
spanningRowsHeight.spanningCellHeightIgnoringBorderSpacing +=
borderSpacingForRow(rowIndex + rowSpan - 1);
}
void LayoutTableSection::distributeExtraRowSpanHeightToPercentRows(
LayoutTableCell* cell,
float totalPercent,
int& extraRowSpanningHeight,
Vector<int>& rowsHeight) {
if (!extraRowSpanningHeight || !totalPercent)
return;
const unsigned rowSpan = cell->rowSpan();
const unsigned rowIndex = cell->rowIndex();
float percent = std::min(totalPercent, 100.0f);
const int tableHeight = m_rowPos[m_grid.size()] + extraRowSpanningHeight;
// Our algorithm matches Firefox. Extra spanning height would be distributed
// Only in first percent height rows those total percent is 100. Other percent
// rows would be uneffected even extra spanning height is remain.
int accumulatedPositionIncrease = 0;
for (unsigned row = rowIndex; row < (rowIndex + rowSpan); row++) {
if (percent > 0 && extraRowSpanningHeight > 0) {
// TODO(alancutter): Make this work correctly for calc lengths.
if (m_grid[row].logicalHeight.isPercent()) {
int toAdd =
(tableHeight *
std::min(m_grid[row].logicalHeight.percent(), percent) / 100) -
rowsHeight[row - rowIndex];
toAdd = std::max(std::min(toAdd, extraRowSpanningHeight), 0);
accumulatedPositionIncrease += toAdd;
extraRowSpanningHeight -= toAdd;
percent -= m_grid[row].logicalHeight.percent();
}
}
m_rowPos[row + 1] += accumulatedPositionIncrease;
}
}
static void updatePositionIncreasedWithRowHeight(
int extraHeight,
float rowHeight,
float totalHeight,
int& accumulatedPositionIncrease,
double& remainder) {
// Without the cast we lose enough precision to cause heights to miss pixels
// (and trigger asserts) in some layout tests.
double proportionalPositionIncrease =
remainder + (extraHeight * double(rowHeight)) / totalHeight;
// The epsilon is to push any values that are close to a whole number but
// aren't due to floating point imprecision. The epsilons are not accumulated,
// any that aren't necessary are lost in the cast to int.
int positionIncreaseInt = proportionalPositionIncrease + 0.000001;
accumulatedPositionIncrease += positionIncreaseInt;
remainder = proportionalPositionIncrease - positionIncreaseInt;
}
// This is mainly used to distribute whole extra rowspanning height in percent
// rows when all spanning rows are percent rows.
// Distributing whole extra rowspanning height in percent rows based on the
// ratios of percent because this method works same as percent distribution when
// only percent rows are present and percent is 100. Also works perfectly fine
// when percent is not equal to 100.
void LayoutTableSection::distributeWholeExtraRowSpanHeightToPercentRows(
LayoutTableCell* cell,
float totalPercent,
int& extraRowSpanningHeight,
Vector<int>& rowsHeight) {
if (!extraRowSpanningHeight || !totalPercent)
return;
const unsigned rowSpan = cell->rowSpan();
const unsigned rowIndex = cell->rowIndex();
double remainder = 0;
int accumulatedPositionIncrease = 0;
for (unsigned row = rowIndex; row < (rowIndex + rowSpan); row++) {
// TODO(alancutter): Make this work correctly for calc lengths.
if (m_grid[row].logicalHeight.isPercent()) {
updatePositionIncreasedWithRowHeight(
extraRowSpanningHeight, m_grid[row].logicalHeight.percent(),
totalPercent, accumulatedPositionIncrease, remainder);
}
m_rowPos[row + 1] += accumulatedPositionIncrease;
}
DCHECK(!round(remainder)) << "remainder was " << remainder;
extraRowSpanningHeight -= accumulatedPositionIncrease;
}
void LayoutTableSection::distributeExtraRowSpanHeightToAutoRows(
LayoutTableCell* cell,
int totalAutoRowsHeight,
int& extraRowSpanningHeight,
Vector<int>& rowsHeight) {
if (!extraRowSpanningHeight || !totalAutoRowsHeight)
return;
const unsigned rowSpan = cell->rowSpan();
const unsigned rowIndex = cell->rowIndex();
int accumulatedPositionIncrease = 0;
double remainder = 0;
// Aspect ratios of auto rows should not change otherwise table may look
// different than user expected. So extra height distributed in auto spanning
// rows based on their weight in spanning cell.
for (unsigned row = rowIndex; row < (rowIndex + rowSpan); row++) {
if (m_grid[row].logicalHeight.isAuto()) {
updatePositionIncreasedWithRowHeight(
extraRowSpanningHeight, rowsHeight[row - rowIndex],
totalAutoRowsHeight, accumulatedPositionIncrease, remainder);
}
m_rowPos[row + 1] += accumulatedPositionIncrease;
}
DCHECK(!round(remainder)) << "remainder was " << remainder;
extraRowSpanningHeight -= accumulatedPositionIncrease;
}
void LayoutTableSection::distributeExtraRowSpanHeightToRemainingRows(
LayoutTableCell* cell,
int totalRemainingRowsHeight,
int& extraRowSpanningHeight,
Vector<int>& rowsHeight) {
if (!extraRowSpanningHeight || !totalRemainingRowsHeight)
return;
const unsigned rowSpan = cell->rowSpan();
const unsigned rowIndex = cell->rowIndex();
int accumulatedPositionIncrease = 0;
double remainder = 0;
// Aspect ratios of the rows should not change otherwise table may look
// different than user expected. So extra height distribution in remaining
// spanning rows based on their weight in spanning cell.
for (unsigned row = rowIndex; row < (rowIndex + rowSpan); row++) {
if (!m_grid[row].logicalHeight.isPercentOrCalc()) {
updatePositionIncreasedWithRowHeight(
extraRowSpanningHeight, rowsHeight[row - rowIndex],
totalRemainingRowsHeight, accumulatedPositionIncrease, remainder);
}
m_rowPos[row + 1] += accumulatedPositionIncrease;
}
DCHECK(!round(remainder)) << "remainder was " << remainder;
extraRowSpanningHeight -= accumulatedPositionIncrease;
}
static bool cellIsFullyIncludedInOtherCell(const LayoutTableCell* cell1,
const LayoutTableCell* cell2) {
return (cell1->rowIndex() >= cell2->rowIndex() &&
(cell1->rowIndex() + cell1->rowSpan()) <=
(cell2->rowIndex() + cell2->rowSpan()));
}
// To avoid unneeded extra height distributions, we apply the following sorting
// algorithm:
static bool compareRowSpanCellsInHeightDistributionOrder(
const LayoutTableCell* cell1,
const LayoutTableCell* cell2) {
// Sorting bigger height cell first if cells are at same index with same span
// because we will skip smaller height cell to distribute it's extra height.
if (cell1->rowIndex() == cell2->rowIndex() &&
cell1->rowSpan() == cell2->rowSpan())
return (cell1->logicalHeightForRowSizing() >
cell2->logicalHeightForRowSizing());
// Sorting inner most cell first because if inner spanning cell'e extra height
// is distributed then outer spanning cell's extra height will adjust
// accordingly. In reverse order, there is more chances that outer spanning
// cell's height will exceed than defined by user.
if (cellIsFullyIncludedInOtherCell(cell1, cell2))
return true;
// Sorting lower row index first because first we need to apply the extra
// height of spanning cell which comes first in the table so lower rows's
// position would increment in sequence.
if (!cellIsFullyIncludedInOtherCell(cell2, cell1))
return (cell1->rowIndex() < cell2->rowIndex());
return false;
}
unsigned LayoutTableSection::calcRowHeightHavingOnlySpanningCells(
unsigned row,
int& accumulatedCellPositionIncrease,
unsigned rowToApplyExtraHeight,
unsigned& extraTableHeightToPropgate,
Vector<int>& rowsCountWithOnlySpanningCells) {
ASSERT(rowHasOnlySpanningCells(row));
unsigned totalCols = m_grid[row].row.size();
if (!totalCols)
return 0;
unsigned rowHeight = 0;
for (unsigned col = 0; col < totalCols; col++) {
const CellStruct& rowSpanCell = cellAt(row, col);
if (!rowSpanCell.cells.size())
continue;
LayoutTableCell* cell = rowSpanCell.cells[0];
if (cell->rowSpan() < 2)
continue;
const unsigned cellRowIndex = cell->rowIndex();
const unsigned cellRowSpan = cell->rowSpan();
// As we are going from the top of the table to the bottom to calculate the
// row heights for rows that only contain spanning cells and all previous
// rows are processed we only need to find the number of rows with spanning
// cells from the current cell to the end of the current cells spanning
// height.
unsigned startRowForSpanningCellCount = std::max(cellRowIndex, row);
unsigned endRow = cellRowIndex + cellRowSpan;
unsigned spanningCellsRowsCountHavingZeroHeight =
rowsCountWithOnlySpanningCells[endRow - 1];
if (startRowForSpanningCellCount)
spanningCellsRowsCountHavingZeroHeight -=
rowsCountWithOnlySpanningCells[startRowForSpanningCellCount - 1];
int totalRowspanCellHeight = (m_rowPos[endRow] - m_rowPos[cellRowIndex]) -
borderSpacingForRow(endRow - 1);
totalRowspanCellHeight += accumulatedCellPositionIncrease;
if (rowToApplyExtraHeight >= cellRowIndex && rowToApplyExtraHeight < endRow)
totalRowspanCellHeight += extraTableHeightToPropgate;
if (totalRowspanCellHeight < cell->logicalHeightForRowSizing()) {
unsigned extraHeightRequired =
cell->logicalHeightForRowSizing() - totalRowspanCellHeight;
rowHeight =
std::max(rowHeight, extraHeightRequired /
spanningCellsRowsCountHavingZeroHeight);
}
}
return rowHeight;
}
void LayoutTableSection::updateRowsHeightHavingOnlySpanningCells(
LayoutTableCell* cell,
struct SpanningRowsHeight& spanningRowsHeight,
unsigned& extraHeightToPropagate,
Vector<int>& rowsCountWithOnlySpanningCells) {
ASSERT(spanningRowsHeight.rowHeight.size());
int accumulatedPositionIncrease = 0;
const unsigned rowSpan = cell->rowSpan();
const unsigned rowIndex = cell->rowIndex();
DCHECK_EQ(rowSpan, spanningRowsHeight.rowHeight.size());
for (unsigned row = 0; row < spanningRowsHeight.rowHeight.size(); row++) {
unsigned actualRow = row + rowIndex;
if (!spanningRowsHeight.rowHeight[row] &&
rowHasOnlySpanningCells(actualRow)) {
spanningRowsHeight.rowHeight[row] = calcRowHeightHavingOnlySpanningCells(
actualRow, accumulatedPositionIncrease, rowIndex + rowSpan,
extraHeightToPropagate, rowsCountWithOnlySpanningCells);
accumulatedPositionIncrease += spanningRowsHeight.rowHeight[row];
}
m_rowPos[actualRow + 1] += accumulatedPositionIncrease;
}
spanningRowsHeight.totalRowsHeight += accumulatedPositionIncrease;
}
// Distribute rowSpan cell height in rows those comes in rowSpan cell based on
// the ratio of row's height if 1 RowSpan cell height is greater than the total
// height of rows in rowSpan cell.
void LayoutTableSection::distributeRowSpanHeightToRows(
SpanningLayoutTableCells& rowSpanCells) {
ASSERT(rowSpanCells.size());
// 'rowSpanCells' list is already sorted based on the cells rowIndex in
// ascending order
// Arrange row spanning cell in the order in which we need to process first.
std::sort(rowSpanCells.begin(), rowSpanCells.end(),
compareRowSpanCellsInHeightDistributionOrder);
unsigned extraHeightToPropagate = 0;
unsigned lastRowIndex = 0;
unsigned lastRowSpan = 0;
Vector<int> rowsCountWithOnlySpanningCells;
// At this stage, Height of the rows are zero for the one containing only
// spanning cells.
int count = 0;
for (unsigned row = 0; row < m_grid.size(); row++) {
if (rowHasOnlySpanningCells(row))
count++;
rowsCountWithOnlySpanningCells.append(count);
}
for (unsigned i = 0; i < rowSpanCells.size(); i++) {
LayoutTableCell* cell = rowSpanCells[i];
unsigned rowIndex = cell->rowIndex();
unsigned rowSpan = cell->rowSpan();
unsigned spanningCellEndIndex = rowIndex + rowSpan;
unsigned lastSpanningCellEndIndex = lastRowIndex + lastRowSpan;
// Only the highest spanning cell will distribute its extra height in a row
// if more than one spanning cell is present at the same level.
if (rowIndex == lastRowIndex && rowSpan == lastRowSpan)
continue;
int originalBeforePosition = m_rowPos[spanningCellEndIndex];
// When 2 spanning cells are ending at same row index then while extra
// height distribution of first spanning cell updates position of the last
// row so getting the original position of the last row in second spanning
// cell need to reduce the height changed by first spanning cell.
if (spanningCellEndIndex == lastSpanningCellEndIndex)
originalBeforePosition -= extraHeightToPropagate;
if (extraHeightToPropagate) {
for (unsigned row = lastSpanningCellEndIndex + 1;
row <= spanningCellEndIndex; row++)
m_rowPos[row] += extraHeightToPropagate;
}
lastRowIndex = rowIndex;
lastRowSpan = rowSpan;
struct SpanningRowsHeight spanningRowsHeight;
populateSpanningRowsHeightFromCell(cell, spanningRowsHeight);
// Here we are handling only row(s) who have only rowspanning cells and do
// not have any empty cell.
if (spanningRowsHeight.isAnyRowWithOnlySpanningCells)
updateRowsHeightHavingOnlySpanningCells(cell, spanningRowsHeight,
extraHeightToPropagate,
rowsCountWithOnlySpanningCells);
// This code handle row(s) that have rowspanning cell(s) and at least one
// empty cell. Such rows are not handled below and end up having a height of
// 0. That would mean content overlapping if one of their cells has any
// content. To avoid the problem, we add all the remaining spanning cells'
// height to the last spanned row. This means that we could grow a row past
// its 'height' or break percentage spreading however this is better than
// overlapping content.
// FIXME: Is there a better algorithm?
if (!spanningRowsHeight.totalRowsHeight) {
if (spanningRowsHeight.spanningCellHeightIgnoringBorderSpacing)
m_rowPos[spanningCellEndIndex] +=
spanningRowsHeight.spanningCellHeightIgnoringBorderSpacing +
borderSpacingForRow(spanningCellEndIndex - 1);
extraHeightToPropagate =
m_rowPos[spanningCellEndIndex] - originalBeforePosition;
continue;
}
if (spanningRowsHeight.spanningCellHeightIgnoringBorderSpacing <=
spanningRowsHeight.totalRowsHeight) {
extraHeightToPropagate =
m_rowPos[rowIndex + rowSpan] - originalBeforePosition;
continue;
}
// Below we are handling only row(s) who have at least one visible cell
// without rowspan value.
float totalPercent = 0;
int totalAutoRowsHeight = 0;
int totalRemainingRowsHeight = spanningRowsHeight.totalRowsHeight;
// FIXME: Inner spanning cell height should not change if it have fixed
// height when it's parent spanning cell is distributing it's extra height
// in rows.
// Calculate total percentage, total auto rows height and total rows height
// except percent rows.
for (unsigned row = rowIndex; row < spanningCellEndIndex; row++) {
// TODO(alancutter): Make this work correctly for calc lengths.
if (m_grid[row].logicalHeight.isPercent()) {
totalPercent += m_grid[row].logicalHeight.percent();
totalRemainingRowsHeight -=
spanningRowsHeight.rowHeight[row - rowIndex];
} else if (m_grid[row].logicalHeight.isAuto()) {
totalAutoRowsHeight += spanningRowsHeight.rowHeight[row - rowIndex];
}
}
int extraRowSpanningHeight =
spanningRowsHeight.spanningCellHeightIgnoringBorderSpacing -
spanningRowsHeight.totalRowsHeight;
if (totalPercent < 100 && !totalAutoRowsHeight &&
!totalRemainingRowsHeight) {
// Distributing whole extra rowspanning height in percent row when only
// non-percent rows height is 0.
distributeWholeExtraRowSpanHeightToPercentRows(
cell, totalPercent, extraRowSpanningHeight,
spanningRowsHeight.rowHeight);
} else {
distributeExtraRowSpanHeightToPercentRows(cell, totalPercent,
extraRowSpanningHeight,
spanningRowsHeight.rowHeight);
distributeExtraRowSpanHeightToAutoRows(cell, totalAutoRowsHeight,
extraRowSpanningHeight,
spanningRowsHeight.rowHeight);
distributeExtraRowSpanHeightToRemainingRows(
cell, totalRemainingRowsHeight, extraRowSpanningHeight,
spanningRowsHeight.rowHeight);
}
ASSERT(!extraRowSpanningHeight);
// Getting total changed height in the table
extraHeightToPropagate =
m_rowPos[spanningCellEndIndex] - originalBeforePosition;
}
if (extraHeightToPropagate) {
// Apply changed height by rowSpan cells to rows present at the end of the
// table
for (unsigned row = lastRowIndex + lastRowSpan + 1; row <= m_grid.size();
row++)
m_rowPos[row] += extraHeightToPropagate;
}
}
// Find out the baseline of the cell
// If the cell's baseline is more than the row's baseline then the cell's
// baseline become the row's baseline and if the row's baseline goes out of the
// row's boundaries then adjust row height accordingly.
void LayoutTableSection::updateBaselineForCell(LayoutTableCell* cell,
unsigned row,
int& baselineDescent) {
if (!cell->isBaselineAligned())
return;
// Ignoring the intrinsic padding as it depends on knowing the row's baseline,
// which won't be accurate until the end of this function.
int baselinePosition =
cell->cellBaselinePosition() - cell->intrinsicPaddingBefore();
if (baselinePosition >
cell->borderBefore() +
(cell->paddingBefore() - cell->intrinsicPaddingBefore())) {
m_grid[row].baseline = std::max(m_grid[row].baseline, baselinePosition);
int cellStartRowBaselineDescent = 0;
if (cell->rowSpan() == 1) {
baselineDescent =
std::max(baselineDescent,
cell->logicalHeightForRowSizing() - baselinePosition);
cellStartRowBaselineDescent = baselineDescent;
}
m_rowPos[row + 1] =
std::max<int>(m_rowPos[row + 1], m_rowPos[row] + m_grid[row].baseline +
cellStartRowBaselineDescent);
}
}
int LayoutTableSection::calcRowLogicalHeight() {
#if DCHECK_IS_ON()
SetLayoutNeededForbiddenScope layoutForbiddenScope(*this);
#endif
ASSERT(!needsLayout());
LayoutTableCell* cell;
// We may have to forcefully lay out cells here, in which case we need a
// layout state.
LayoutState state(*this);
m_rowPos.resize(m_grid.size() + 1);
// We ignore the border-spacing on any non-top section as it is already
// included in the previous section's last row position.
if (this == table()->topSection())
m_rowPos[0] = table()->vBorderSpacing();
else
m_rowPos[0] = 0;
SpanningLayoutTableCells rowSpanCells;
// At fragmentainer breaks we need to prevent rowspanned cells (and whatever
// else) from distributing their extra height requirements over the rows that
// it spans. Otherwise we'd need to refragment afterwards.
unsigned indexOfFirstStretchableRow = 0;
for (unsigned r = 0; r < m_grid.size(); r++) {
m_grid[r].baseline = -1;
int baselineDescent = 0;
if (state.isPaginated() && m_grid[r].rowLayoutObject)
m_rowPos[r] += m_grid[r].rowLayoutObject->paginationStrut().ceil();
if (m_grid[r].logicalHeight.isSpecified()) {
// Our base size is the biggest logical height from our cells' styles
// (excluding row spanning cells).
m_rowPos[r + 1] = std::max(
m_rowPos[r] +
minimumValueForLength(m_grid[r].logicalHeight, LayoutUnit())
.round(),
0);
} else {
// Non-specified lengths are ignored because the row already accounts for
// the cells intrinsic logical height.
m_rowPos[r + 1] = std::max(m_rowPos[r], 0);
}
Row& row = m_grid[r].row;
unsigned totalCols = row.size();
for (unsigned c = 0; c < totalCols; c++) {
CellStruct& current = cellAt(r, c);
if (current.inColSpan)
continue;
for (unsigned i = 0; i < current.cells.size(); i++) {
cell = current.cells[i];
// For row spanning cells, we only handle them for the first row they
// span. This ensures we take their baseline into account.
if (cell->rowIndex() != r)
continue;
if (r < indexOfFirstStretchableRow ||
(state.isPaginated() &&
crossesPageBoundary(
LayoutUnit(m_rowPos[r]),
LayoutUnit(cell->logicalHeightForRowSizing())))) {
// Entering or extending a range of unstretchable rows. We enter this
// mode when a cell in a row crosses a fragmentainer boundary, and
// we'll stay in this mode until we get to a row where we're past all
// rowspanned cells that we encountered while in this mode.
DCHECK(state.isPaginated());
unsigned rowIndexBelowCell = r + cell->rowSpan();
indexOfFirstStretchableRow =
std::max(indexOfFirstStretchableRow, rowIndexBelowCell);
} else if (cell->rowSpan() > 1) {
DCHECK(!rowSpanCells.contains(cell));
rowSpanCells.append(cell);
}
if (cell->hasOverrideLogicalContentHeight()) {
cell->clearIntrinsicPadding();
cell->clearOverrideSize();
cell->forceChildLayout();
}
if (cell->rowSpan() == 1)
m_rowPos[r + 1] = std::max(
m_rowPos[r + 1], m_rowPos[r] + cell->logicalHeightForRowSizing());
// Find out the baseline. The baseline is set on the first row in a
// rowSpan.
updateBaselineForCell(cell, r, baselineDescent);
}
}
if (r < indexOfFirstStretchableRow && m_grid[r].rowLayoutObject) {
// We're not allowed to resize this row. Just scratch what we've
// calculated so far, and use the height that we got during initial
// layout instead.
m_rowPos[r + 1] =
m_rowPos[r] + m_grid[r].rowLayoutObject->logicalHeight().toInt();
}
// Add the border-spacing to our final position.
m_rowPos[r + 1] += borderSpacingForRow(r);
m_rowPos[r + 1] = std::max(m_rowPos[r + 1], m_rowPos[r]);
}
if (!rowSpanCells.isEmpty())
distributeRowSpanHeightToRows(rowSpanCells);
ASSERT(!needsLayout());
return m_rowPos[m_grid.size()];
}
void LayoutTableSection::layout() {
ASSERT(needsLayout());
LayoutAnalyzer::Scope analyzer(*this);
RELEASE_ASSERT(!needsCellRecalc());
ASSERT(!table()->needsSectionRecalc());
// addChild may over-grow m_grid but we don't want to throw away the memory
// too early as addChild can be called in a loop (e.g during parsing). Doing
// it now ensures we have a stable-enough structure.
m_grid.shrinkToFit();
LayoutState state(*this);
const Vector<int>& columnPos = table()->effectiveColumnPositions();
LayoutUnit rowLogicalTop;
SubtreeLayoutScope layouter(*this);
for (unsigned r = 0; r < m_grid.size(); ++r) {
Row& row = m_grid[r].row;
unsigned cols = row.size();
// First, propagate our table layout's information to the cells. This will
// mark the row as needing layout if there was a column logical width
// change.
for (unsigned startColumn = 0; startColumn < cols; ++startColumn) {
CellStruct& current = row[startColumn];
LayoutTableCell* cell = current.primaryCell();
if (!cell || current.inColSpan)
continue;
unsigned endCol = startColumn;
unsigned cspan = cell->colSpan();
while (cspan && endCol < cols) {
ASSERT(endCol < table()->effectiveColumns().size());
cspan -= table()->effectiveColumns()[endCol].span;
endCol++;
}
int tableLayoutLogicalWidth = columnPos[endCol] - columnPos[startColumn] -
table()->hBorderSpacing();
cell->setCellLogicalWidth(tableLayoutLogicalWidth, layouter);
}
if (LayoutTableRow* rowLayoutObject = m_grid[r].rowLayoutObject) {
if (state.isPaginated())
rowLayoutObject->setLogicalTop(rowLogicalTop);
if (!rowLayoutObject->needsLayout())
markChildForPaginationRelayoutIfNeeded(*rowLayoutObject, layouter);
rowLayoutObject->layoutIfNeeded();
if (state.isPaginated()) {
adjustRowForPagination(*rowLayoutObject, layouter);
updateFragmentationInfoForChild(*rowLayoutObject);
rowLogicalTop = rowLayoutObject->logicalBottom();
rowLogicalTop += LayoutUnit(table()->vBorderSpacing());
}
}
}
clearNeedsLayout();
}
void LayoutTableSection::distributeExtraLogicalHeightToPercentRows(
int& extraLogicalHeight,
int totalPercent) {
if (!totalPercent)
return;
unsigned totalRows = m_grid.size();
int totalHeight = m_rowPos[totalRows] + extraLogicalHeight;
int totalLogicalHeightAdded = 0;
totalPercent = std::min(totalPercent, 100);
int rowHeight = m_rowPos[1] - m_rowPos[0];
for (unsigned r = 0; r < totalRows; ++r) {
// TODO(alancutter): Make this work correctly for calc lengths.
if (totalPercent > 0 && m_grid[r].logicalHeight.isPercent()) {
int toAdd = std::min<int>(
extraLogicalHeight,
(totalHeight * m_grid[r].logicalHeight.percent() / 100) - rowHeight);
// If toAdd is negative, then we don't want to shrink the row (this bug
// affected Outlook Web Access).
toAdd = std::max(0, toAdd);
totalLogicalHeightAdded += toAdd;
extraLogicalHeight -= toAdd;
totalPercent -= m_grid[r].logicalHeight.percent();
}
ASSERT(totalRows >= 1);
if (r < totalRows - 1)
rowHeight = m_rowPos[r + 2] - m_rowPos[r + 1];
m_rowPos[r + 1] += totalLogicalHeightAdded;
}
}
void LayoutTableSection::distributeExtraLogicalHeightToAutoRows(
int& extraLogicalHeight,
unsigned autoRowsCount) {
if (!autoRowsCount)
return;
int totalLogicalHeightAdded = 0;
for (unsigned r = 0; r < m_grid.size(); ++r) {
if (autoRowsCount > 0 && m_grid[r].logicalHeight.isAuto()) {
// Recomputing |extraLogicalHeightForRow| guarantees that we properly
// ditribute round |extraLogicalHeight|.
int extraLogicalHeightForRow = extraLogicalHeight / autoRowsCount;
totalLogicalHeightAdded += extraLogicalHeightForRow;
extraLogicalHeight -= extraLogicalHeightForRow;
--autoRowsCount;
}
m_rowPos[r + 1] += totalLogicalHeightAdded;
}
}
void LayoutTableSection::distributeRemainingExtraLogicalHeight(
int& extraLogicalHeight) {
unsigned totalRows = m_grid.size();
if (extraLogicalHeight <= 0 || !m_rowPos[totalRows])
return;
// FIXME: m_rowPos[totalRows] - m_rowPos[0] is the total rows' size.
int totalRowSize = m_rowPos[totalRows];
int totalLogicalHeightAdded = 0;
int previousRowPosition = m_rowPos[0];
for (unsigned r = 0; r < totalRows; r++) {
// weight with the original height
totalLogicalHeightAdded += extraLogicalHeight *
(m_rowPos[r + 1] - previousRowPosition) /
totalRowSize;
previousRowPosition = m_rowPos[r + 1];
m_rowPos[r + 1] += totalLogicalHeightAdded;
}
extraLogicalHeight -= totalLogicalHeightAdded;
}
int LayoutTableSection::distributeExtraLogicalHeightToRows(
int extraLogicalHeight) {
if (!extraLogicalHeight)
return extraLogicalHeight;
unsigned totalRows = m_grid.size();
if (!totalRows)
return extraLogicalHeight;
if (!m_rowPos[totalRows] && nextSibling())
return extraLogicalHeight;
unsigned autoRowsCount = 0;
int totalPercent = 0;
for (unsigned r = 0; r < totalRows; r++) {
if (m_grid[r].logicalHeight.isAuto())
++autoRowsCount;
else if (m_grid[r].logicalHeight.isPercent())
totalPercent += m_grid[r].logicalHeight.percent();
}
int remainingExtraLogicalHeight = extraLogicalHeight;
distributeExtraLogicalHeightToPercentRows(remainingExtraLogicalHeight,
totalPercent);
distributeExtraLogicalHeightToAutoRows(remainingExtraLogicalHeight,
autoRowsCount);
distributeRemainingExtraLogicalHeight(remainingExtraLogicalHeight);
return extraLogicalHeight - remainingExtraLogicalHeight;
}
static bool shouldFlexCellChild(LayoutObject* cellDescendant) {
return cellDescendant->isAtomicInlineLevel() ||
(cellDescendant->isBox() &&
toLayoutBox(cellDescendant)->style()->overflowY() !=
EOverflow::Visible &&
toLayoutBox(cellDescendant)->style()->overflowY() !=
EOverflow::Hidden);
}
void LayoutTableSection::layoutRows() {
#if DCHECK_IS_ON()
SetLayoutNeededForbiddenScope layoutForbiddenScope(*this);
#endif
ASSERT(!needsLayout());
LayoutAnalyzer::Scope analyzer(*this);
// FIXME: Changing the height without a layout can change the overflow so it
// seems wrong.
unsigned totalRows = m_grid.size();
// Set the width of our section now. The rows will also be this width.
setLogicalWidth(table()->contentLogicalWidth());
int vspacing = table()->vBorderSpacing();
unsigned nEffCols = table()->numEffectiveColumns();
LayoutState state(*this);
// Set the rows' location and size.
for (unsigned r = 0; r < totalRows; r++) {
LayoutTableRow* rowLayoutObject = m_grid[r].rowLayoutObject;
if (rowLayoutObject) {
rowLayoutObject->setLogicalLocation(LayoutPoint(0, m_rowPos[r]));
rowLayoutObject->setLogicalWidth(logicalWidth());
LayoutUnit rowLogicalHeight(m_rowPos[r + 1] - m_rowPos[r] - vspacing);
if (state.isPaginated() && r + 1 < totalRows) {
// If the next row has a pagination strut, we need to subtract it. It
// should not be included in this row's height.
if (LayoutTableRow* nextRowObject = m_grid[r + 1].rowLayoutObject)
rowLogicalHeight -= nextRowObject->paginationStrut();
}
rowLayoutObject->setLogicalHeight(rowLogicalHeight);
rowLayoutObject->updateLayerTransformAfterLayout();
}
}
// Vertically align and flex the cells in each row.
for (unsigned r = 0; r < totalRows; r++) {
LayoutTableRow* rowLayoutObject = m_grid[r].rowLayoutObject;
for (unsigned c = 0; c < nEffCols; c++) {
CellStruct& cs = cellAt(r, c);
LayoutTableCell* cell = cs.primaryCell();
if (!cell || cs.inColSpan)
continue;
if (cell->rowIndex() != r)
continue; // Rowspanned cells are handled in the first row they occur.
int rHeight;
int rowLogicalTop;
unsigned rowSpan = std::max(1U, cell->rowSpan());
unsigned endRowIndex = std::min(r + rowSpan, totalRows) - 1;
LayoutTableRow* lastRowObject = m_grid[endRowIndex].rowLayoutObject;
if (lastRowObject && rowLayoutObject) {
rowLogicalTop = rowLayoutObject->logicalTop().toInt();
rHeight = lastRowObject->logicalBottom().toInt() - rowLogicalTop;
} else {
rHeight = m_rowPos[endRowIndex + 1] - m_rowPos[r] - vspacing;
rowLogicalTop = m_rowPos[r];
}
relayoutCellIfFlexed(*cell, r, rHeight);
SubtreeLayoutScope layouter(*cell);
EVerticalAlign cellVerticalAlign;
// If the cell crosses a fragmentainer boundary, just align it at the
// top. That's how it was laid out initially, before we knew the final
// row height, and re-aligning it now could result in the cell being
// fragmented differently, which could change its height and thus violate
// the requested alignment. Give up instead of risking circular
// dependencies and unstable layout.
if (state.isPaginated() &&
crossesPageBoundary(LayoutUnit(rowLogicalTop), LayoutUnit(rHeight)))
cellVerticalAlign = VerticalAlignTop;
else
cellVerticalAlign = cell->style()->verticalAlign();
cell->computeIntrinsicPadding(rHeight, cellVerticalAlign, layouter);
LayoutRect oldCellRect = cell->frameRect();
setLogicalPositionForCell(cell, c);
cell->layoutIfNeeded();
LayoutSize childOffset(cell->location() - oldCellRect.location());
if (childOffset.width() || childOffset.height()) {
// If the child moved, we have to issue paint invalidations to it as
// well as any floating/positioned descendants. An exception is if we
// need a layout. In this case, we know we're going to issue paint
// invalidations ourselves (and the child) anyway.
if (!table()->selfNeedsLayout())
cell->setMayNeedPaintInvalidation();
}
}
if (rowLayoutObject)
rowLayoutObject->computeOverflow();
}
ASSERT(!needsLayout());
setLogicalHeight(LayoutUnit(m_rowPos[totalRows]));
computeOverflowFromCells(totalRows, nEffCols);
}
int LayoutTableSection::paginationStrutForRow(LayoutTableRow* row,
LayoutUnit logicalOffset) const {
DCHECK(row);
if (row->getPaginationBreakability() == AllowAnyBreaks)
return 0;
LayoutUnit pageLogicalHeight = pageLogicalHeightForOffset(logicalOffset);
if (!pageLogicalHeight)
return 0;
// If the row is too tall for the page don't insert a strut.
LayoutUnit rowLogicalHeight = row->logicalHeight();
if (rowLogicalHeight > pageLogicalHeight)
return 0;
LayoutUnit remainingLogicalHeight = pageRemainingLogicalHeightForOffset(
logicalOffset, LayoutBlock::AssociateWithLatterPage);
if (remainingLogicalHeight >= rowLogicalHeight)
return 0; // It fits fine where it is. No need to break.
LayoutUnit paginationStrut = calculatePaginationStrutToFitContent(
logicalOffset, remainingLogicalHeight, rowLogicalHeight);
if (paginationStrut == remainingLogicalHeight &&
remainingLogicalHeight == pageLogicalHeight) {
// Don't break if we were at the top of a page, and we failed to fit the
// content completely. No point in leaving a page completely blank.
return 0;
}
// Table layout parts only work on integers, so we have to round. Round up, to
// make sure that no fraction ever gets left behind in the previous
// fragmentainer.
return paginationStrut.ceil();
}
void LayoutTableSection::computeOverflowFromCells() {
unsigned totalRows = m_grid.size();
unsigned nEffCols = table()->numEffectiveColumns();
computeOverflowFromCells(totalRows, nEffCols);
}
void LayoutTableSection::computeOverflowFromCells(unsigned totalRows,
unsigned nEffCols) {
unsigned totalCellsCount = nEffCols * totalRows;
unsigned maxAllowedOverflowingCellsCount =
totalCellsCount < gMinTableSizeToUseFastPaintPathWithOverflowingCell
? 0
: gMaxAllowedOverflowingCellRatioForFastPaintPath * totalCellsCount;
m_overflow.reset();
m_overflowingCells.clear();
m_forceSlowPaintPathWithOverflowingCell = false;
#if ENABLE(ASSERT)
bool hasOverflowingCell = false;
#endif
// Now that our height has been determined, add in overflow from cells.
for (unsigned r = 0; r < totalRows; r++) {
for (unsigned c = 0; c < nEffCols; c++) {
CellStruct& cs = cellAt(r, c);
LayoutTableCell* cell = cs.primaryCell();
if (!cell || cs.inColSpan)
continue;
if (r < totalRows - 1 && cell == primaryCellAt(r + 1, c))
continue;
addOverflowFromChild(cell);
#if ENABLE(ASSERT)
hasOverflowingCell |= cell->hasVisualOverflow();
#endif
if (cell->hasVisualOverflow() &&
!m_forceSlowPaintPathWithOverflowingCell) {
m_overflowingCells.add(cell);
if (m_overflowingCells.size() > maxAllowedOverflowingCellsCount) {
// We need to set m_forcesSlowPaintPath only if there is a least one
// overflowing cells as the hit testing code rely on this information.
m_forceSlowPaintPathWithOverflowingCell = true;
// The slow path does not make any use of the overflowing cells info,
// don't hold on to the memory.
m_overflowingCells.clear();
}
}
}
}
ASSERT(hasOverflowingCell == this->hasOverflowingCell());
}
bool LayoutTableSection::recalcChildOverflowAfterStyleChange() {
ASSERT(childNeedsOverflowRecalcAfterStyleChange());
clearChildNeedsOverflowRecalcAfterStyleChange();
unsigned totalRows = m_grid.size();
unsigned numEffCols = table()->numEffectiveColumns();
bool childrenOverflowChanged = false;
for (unsigned r = 0; r < totalRows; r++) {
LayoutTableRow* rowLayouter = rowLayoutObjectAt(r);
if (!rowLayouter ||
!rowLayouter->childNeedsOverflowRecalcAfterStyleChange())
continue;
rowLayouter->clearChildNeedsOverflowRecalcAfterStyleChange();
bool rowChildrenOverflowChanged = false;
for (unsigned c = 0; c < numEffCols; c++) {
CellStruct& cs = cellAt(r, c);
LayoutTableCell* cell = cs.primaryCell();
if (!cell || cs.inColSpan || !cell->needsOverflowRecalcAfterStyleChange())
continue;
rowChildrenOverflowChanged |= cell->recalcOverflowAfterStyleChange();
}
if (rowChildrenOverflowChanged)
rowLayouter->computeOverflow();
childrenOverflowChanged |= rowChildrenOverflowChanged;
}
// TODO(crbug.com/604136): Add visual overflow from rows too.
if (childrenOverflowChanged)
computeOverflowFromCells(totalRows, numEffCols);
return childrenOverflowChanged;
}
void LayoutTableSection::markAllCellsWidthsDirtyAndOrNeedsLayout(
LayoutTable::WhatToMarkAllCells whatToMark) {
for (LayoutTableRow* row = firstRow(); row; row = row->nextRow()) {
for (LayoutTableCell* cell = row->firstCell(); cell;
cell = cell->nextCell()) {
cell->setPreferredLogicalWidthsDirty();
if (whatToMark == LayoutTable::MarkDirtyAndNeedsLayout)
cell->setChildNeedsLayout();
}
}
}
int LayoutTableSection::calcBlockDirectionOuterBorder(
BlockBorderSide side) const {
unsigned totalCols = table()->numEffectiveColumns();
if (!m_grid.size() || !totalCols)
return 0;
int borderWidth = 0;
const BorderValue& sb =
side == BorderBefore ? style()->borderBefore() : style()->borderAfter();
if (sb.style() == BorderStyleHidden)
return -1;
if (sb.style() > BorderStyleHidden)
borderWidth = sb.width();
const BorderValue& rb = side == BorderBefore
? firstRow()->style()->borderBefore()
: lastRow()->style()->borderAfter();
if (rb.style() == BorderStyleHidden)
return -1;
if (rb.style() > BorderStyleHidden && rb.width() > borderWidth)
borderWidth = rb.width();
bool allHidden = true;
for (unsigned c = 0; c < totalCols; c++) {
const CellStruct& current =
cellAt(side == BorderBefore ? 0 : m_grid.size() - 1, c);
if (current.inColSpan || !current.hasCells())
continue;
const ComputedStyle& primaryCellStyle = current.primaryCell()->styleRef();
// FIXME: Make this work with perpendicular and flipped cells.
const BorderValue& cb = side == BorderBefore
? primaryCellStyle.borderBefore()
: primaryCellStyle.borderAfter();
// FIXME: Don't repeat for the same col group
LayoutTableCol* col =
table()->colElementAtAbsoluteColumn(c).innermostColOrColGroup();
if (col) {
const BorderValue& gb = side == BorderBefore
? col->style()->borderBefore()
: col->style()->borderAfter();
if (gb.style() == BorderStyleHidden || cb.style() == BorderStyleHidden)
continue;
allHidden = false;
if (gb.style() > BorderStyleHidden && gb.width() > borderWidth)
borderWidth = gb.width();
if (cb.style() > BorderStyleHidden && cb.width() > borderWidth)
borderWidth = cb.width();
} else {
if (cb.style() == BorderStyleHidden)
continue;
allHidden = false;
if (cb.style() > BorderStyleHidden && cb.width() > borderWidth)
borderWidth = cb.width();
}
}
if (allHidden)
return -1;
if (side == BorderAfter)
borderWidth++; // Distribute rounding error
return borderWidth / 2;
}
int LayoutTableSection::calcInlineDirectionOuterBorder(
InlineBorderSide side) const {
unsigned totalCols = table()->numEffectiveColumns();
if (!m_grid.size() || !totalCols)
return 0;
unsigned colIndex = side == BorderStart ? 0 : totalCols - 1;
int borderWidth = 0;
const BorderValue& sb =
side == BorderStart ? style()->borderStart() : style()->borderEnd();
if (sb.style() == BorderStyleHidden)
return -1;
if (sb.style() > BorderStyleHidden)
borderWidth = sb.width();
if (LayoutTableCol* col = table()
->colElementAtAbsoluteColumn(colIndex)
.innermostColOrColGroup()) {
const BorderValue& gb = side == BorderStart ? col->style()->borderStart()
: col->style()->borderEnd();
if (gb.style() == BorderStyleHidden)
return -1;
if (gb.style() > BorderStyleHidden && gb.width() > borderWidth)
borderWidth = gb.width();
}
bool allHidden = true;
for (unsigned r = 0; r < m_grid.size(); r++) {
const CellStruct& current = cellAt(r, colIndex);
if (!current.hasCells())
continue;
// FIXME: Don't repeat for the same cell
const ComputedStyle& primaryCellStyle = current.primaryCell()->styleRef();
const ComputedStyle& primaryCellParentStyle =
current.primaryCell()->parent()->styleRef();
// FIXME: Make this work with perpendicular and flipped cells.
const BorderValue& cb = side == BorderStart ? primaryCellStyle.borderStart()
: primaryCellStyle.borderEnd();
const BorderValue& rb = side == BorderStart
? primaryCellParentStyle.borderStart()
: primaryCellParentStyle.borderEnd();
if (cb.style() == BorderStyleHidden || rb.style() == BorderStyleHidden)
continue;
allHidden = false;
if (cb.style() > BorderStyleHidden && cb.width() > borderWidth)
borderWidth = cb.width();
if (rb.style() > BorderStyleHidden && rb.width() > borderWidth)
borderWidth = rb.width();
}
if (allHidden)
return -1;
if ((side == BorderStart) != table()->style()->isLeftToRightDirection())
borderWidth++; // Distribute rounding error
return borderWidth / 2;
}
void LayoutTableSection::recalcOuterBorder() {
m_outerBorderBefore = calcBlockDirectionOuterBorder(BorderBefore);
m_outerBorderAfter = calcBlockDirectionOuterBorder(BorderAfter);
m_outerBorderStart = calcInlineDirectionOuterBorder(BorderStart);
m_outerBorderEnd = calcInlineDirectionOuterBorder(BorderEnd);
}
int LayoutTableSection::firstLineBoxBaseline() const {
if (!m_grid.size())
return -1;
int firstLineBaseline = m_grid[0].baseline;
if (firstLineBaseline >= 0)
return firstLineBaseline + m_rowPos[0];
const Row& firstRow = m_grid[0].row;
for (size_t i = 0; i < firstRow.size(); ++i) {
const CellStruct& cs = firstRow.at(i);
const LayoutTableCell* cell = cs.primaryCell();
if (cell)
firstLineBaseline =
std::max<int>(firstLineBaseline,
(cell->logicalTop() + cell->borderBefore() +
cell->paddingBefore() + cell->contentLogicalHeight())
.toInt());
}
return firstLineBaseline;
}
void LayoutTableSection::paint(const PaintInfo& paintInfo,
const LayoutPoint& paintOffset) const {
TableSectionPainter(*this).paint(paintInfo, paintOffset);
}
LayoutRect LayoutTableSection::logicalRectForWritingModeAndDirection(
const LayoutRect& rect) const {
LayoutRect tableAlignedRect(rect);
flipForWritingMode(tableAlignedRect);
if (!style()->isHorizontalWritingMode())
tableAlignedRect = tableAlignedRect.transposedRect();
const Vector<int>& columnPos = table()->effectiveColumnPositions();
// FIXME: The table's direction should determine our row's direction, not the
// section's (see bug 96691).
if (!style()->isLeftToRightDirection())
tableAlignedRect.setX(columnPos[columnPos.size() - 1] -
tableAlignedRect.maxX());
return tableAlignedRect;
}
CellSpan LayoutTableSection::dirtiedRows(const LayoutRect& damageRect) const {
if (m_forceSlowPaintPathWithOverflowingCell)
return fullTableRowSpan();
if (!m_grid.size())
return CellSpan(0, 0);
CellSpan coveredRows = spannedRows(damageRect);
// To issue paint invalidations for the border we might need to paint
// invalidate the first or last row even if they are not spanned themselves.
RELEASE_ASSERT(coveredRows.start() < m_rowPos.size());
if (coveredRows.start() == m_rowPos.size() - 1 &&
m_rowPos[m_rowPos.size() - 1] + table()->outerBorderAfter() >=
damageRect.y())
coveredRows.decreaseStart();
if (!coveredRows.end() &&
m_rowPos[0] - table()->outerBorderBefore() <= damageRect.maxY())
coveredRows.increaseEnd();
coveredRows.ensureConsistency(m_grid.size());
return coveredRows;
}
CellSpan LayoutTableSection::dirtiedEffectiveColumns(
const LayoutRect& damageRect) const {
if (m_forceSlowPaintPathWithOverflowingCell)
return fullTableEffectiveColumnSpan();
RELEASE_ASSERT(table()->numEffectiveColumns());
CellSpan coveredColumns = spannedEffectiveColumns(damageRect);
const Vector<int>& columnPos = table()->effectiveColumnPositions();
// To issue paint invalidations for the border we might need to paint
// invalidate the first or last column even if they are not spanned
// themselves.
RELEASE_ASSERT(coveredColumns.start() < columnPos.size());
if (coveredColumns.start() == columnPos.size() - 1 &&
columnPos[columnPos.size() - 1] + table()->outerBorderEnd() >=
damageRect.x())
coveredColumns.decreaseStart();
if (!coveredColumns.end() &&
columnPos[0] - table()->outerBorderStart() <= damageRect.maxX())
coveredColumns.increaseEnd();
coveredColumns.ensureConsistency(table()->numEffectiveColumns());
return coveredColumns;
}
CellSpan LayoutTableSection::spannedRows(const LayoutRect& flippedRect) const {
// Find the first row that starts after rect top.
unsigned nextRow =
std::upper_bound(m_rowPos.begin(), m_rowPos.end(), flippedRect.y()) -
m_rowPos.begin();
// After all rows.
if (nextRow == m_rowPos.size())
return CellSpan(m_rowPos.size() - 1, m_rowPos.size() - 1);
unsigned startRow = nextRow > 0 ? nextRow - 1 : 0;
// Find the first row that starts after rect bottom.
unsigned endRow;
if (m_rowPos[nextRow] >= flippedRect.maxY()) {
endRow = nextRow;
} else {
endRow = std::upper_bound(m_rowPos.begin() + nextRow, m_rowPos.end(),
flippedRect.maxY()) -
m_rowPos.begin();
if (endRow == m_rowPos.size())
endRow = m_rowPos.size() - 1;
}
return CellSpan(startRow, endRow);
}
CellSpan LayoutTableSection::spannedEffectiveColumns(
const LayoutRect& flippedRect) const {
const Vector<int>& columnPos = table()->effectiveColumnPositions();
// Find the first column that starts after rect left.
// lower_bound doesn't handle the edge between two cells properly as it would
// wrongly return the cell on the logical top/left.
// upper_bound on the other hand properly returns the cell on the logical
// bottom/right, which also matches the behavior of other browsers.
unsigned nextColumn =
std::upper_bound(columnPos.begin(), columnPos.end(), flippedRect.x()) -
columnPos.begin();
if (nextColumn == columnPos.size())
return CellSpan(columnPos.size() - 1,
columnPos.size() - 1); // After all columns.
unsigned startColumn = nextColumn > 0 ? nextColumn - 1 : 0;
// Find the first column that starts after rect right.
unsigned endColumn;
if (columnPos[nextColumn] >= flippedRect.maxX()) {
endColumn = nextColumn;
} else {
endColumn = std::upper_bound(columnPos.begin() + nextColumn,
columnPos.end(), flippedRect.maxX()) -
columnPos.begin();
if (endColumn == columnPos.size())
endColumn = columnPos.size() - 1;
}
return CellSpan(startColumn, endColumn);
}
void LayoutTableSection::recalcCells() {
ASSERT(m_needsCellRecalc);
// We reset the flag here to ensure that |addCell| works. This is safe to do
// as fillRowsWithDefaultStartingAtPosition makes sure we match the table's
// columns representation.
m_needsCellRecalc = false;
m_cCol = 0;
m_cRow = 0;
m_grid.clear();
for (LayoutTableRow* row = firstRow(); row; row = row->nextRow()) {
unsigned insertionRow = m_cRow;
++m_cRow;
m_cCol = 0;
ensureRows(m_cRow);
m_grid[insertionRow].rowLayoutObject = row;
row->setRowIndex(insertionRow);
setRowLogicalHeightToRowStyleLogicalHeight(m_grid[insertionRow]);
for (LayoutTableCell* cell = row->firstCell(); cell;
cell = cell->nextCell())
addCell(cell, row);
}
m_grid.shrinkToFit();
setNeedsLayoutAndFullPaintInvalidation(LayoutInvalidationReason::Unknown);
}
// FIXME: This function could be made O(1) in certain cases (like for the
// non-most-constrainive cells' case).
void LayoutTableSection::rowLogicalHeightChanged(LayoutTableRow* row) {
if (needsCellRecalc())
return;
unsigned rowIndex = row->rowIndex();
setRowLogicalHeightToRowStyleLogicalHeight(m_grid[rowIndex]);
for (LayoutTableCell* cell = m_grid[rowIndex].rowLayoutObject->firstCell();
cell; cell = cell->nextCell())
updateLogicalHeightForCell(m_grid[rowIndex], cell);
}
void LayoutTableSection::setNeedsCellRecalc() {
m_needsCellRecalc = true;
if (LayoutTable* t = table())
t->setNeedsSectionRecalc();
}
unsigned LayoutTableSection::numEffectiveColumns() const {
unsigned result = 0;
for (unsigned r = 0; r < m_grid.size(); ++r) {
for (unsigned c = result; c < table()->numEffectiveColumns(); ++c) {
const CellStruct& cell = cellAt(r, c);
if (cell.hasCells() || cell.inColSpan)
result = c;
}
}
return result + 1;
}
const BorderValue& LayoutTableSection::borderAdjoiningStartCell(
const LayoutTableCell* cell) const {
ASSERT(cell->isFirstOrLastCellInRow());
return hasSameDirectionAs(cell) ? style()->borderStart()
: style()->borderEnd();
}
const BorderValue& LayoutTableSection::borderAdjoiningEndCell(
const LayoutTableCell* cell) const {
ASSERT(cell->isFirstOrLastCellInRow());
return hasSameDirectionAs(cell) ? style()->borderEnd()
: style()->borderStart();
}
const LayoutTableCell* LayoutTableSection::firstRowCellAdjoiningTableStart()
const {
unsigned adjoiningStartCellColumnIndex =
hasSameDirectionAs(table()) ? 0 : table()->lastEffectiveColumnIndex();
return cellAt(0, adjoiningStartCellColumnIndex).primaryCell();
}
const LayoutTableCell* LayoutTableSection::firstRowCellAdjoiningTableEnd()
const {
unsigned adjoiningEndCellColumnIndex =
hasSameDirectionAs(table()) ? table()->lastEffectiveColumnIndex() : 0;
return cellAt(0, adjoiningEndCellColumnIndex).primaryCell();
}
void LayoutTableSection::appendEffectiveColumn(unsigned pos) {
ASSERT(!m_needsCellRecalc);
for (unsigned row = 0; row < m_grid.size(); ++row)
m_grid[row].row.resize(pos + 1);
}
void LayoutTableSection::splitEffectiveColumn(unsigned pos, unsigned first) {
ASSERT(!m_needsCellRecalc);
if (m_cCol > pos)
m_cCol++;
for (unsigned row = 0; row < m_grid.size(); ++row) {
Row& r = m_grid[row].row;
r.insert(pos + 1, CellStruct());
if (r[pos].hasCells()) {
r[pos + 1].cells.appendVector(r[pos].cells);
LayoutTableCell* cell = r[pos].primaryCell();
ASSERT(cell);
ASSERT(cell->colSpan() >= (r[pos].inColSpan ? 1u : 0));
unsigned colleft = cell->colSpan() - r[pos].inColSpan;
if (first > colleft)
r[pos + 1].inColSpan = 0;
else
r[pos + 1].inColSpan = first + r[pos].inColSpan;
} else {
r[pos + 1].inColSpan = 0;
}
}
}
// Hit Testing
bool LayoutTableSection::nodeAtPoint(HitTestResult& result,
const HitTestLocation& locationInContainer,
const LayoutPoint& accumulatedOffset,
HitTestAction action) {
// If we have no children then we have nothing to do.
if (!firstRow())
return false;
// Table sections cannot ever be hit tested. Effectively they do not exist.
// Just forward to our children always.
LayoutPoint adjustedLocation = accumulatedOffset + location();
if (hasOverflowClip() &&
!locationInContainer.intersects(overflowClipRect(adjustedLocation)))
return false;
if (hasOverflowingCell()) {
for (LayoutTableRow* row = lastRow(); row; row = row->previousRow()) {
// FIXME: We have to skip over inline flows, since they can show up inside
// table rows at the moment (a demoted inline <form> for example). If we
// ever implement a table-specific hit-test method (which we should do for
// performance reasons anyway), then we can remove this check.
if (!row->hasSelfPaintingLayer()) {
LayoutPoint childPoint =
flipForWritingModeForChild(row, adjustedLocation);
if (row->nodeAtPoint(result, locationInContainer, childPoint, action)) {
updateHitTestResult(
result, toLayoutPoint(locationInContainer.point() - childPoint));
return true;
}
}
}
return false;
}
recalcCellsIfNeeded();
LayoutRect hitTestRect = LayoutRect(locationInContainer.boundingBox());
hitTestRect.moveBy(-adjustedLocation);
LayoutRect tableAlignedRect =
logicalRectForWritingModeAndDirection(hitTestRect);
CellSpan rowSpan = spannedRows(tableAlignedRect);
CellSpan columnSpan = spannedEffectiveColumns(tableAlignedRect);
// Now iterate over the spanned rows and columns.
for (unsigned hitRow = rowSpan.start(); hitRow < rowSpan.end(); ++hitRow) {
for (unsigned hitColumn = columnSpan.start(); hitColumn < columnSpan.end();
++hitColumn) {
CellStruct& current = cellAt(hitRow, hitColumn);
// If the cell is empty, there's nothing to do
if (!current.hasCells())
continue;
for (unsigned i = current.cells.size(); i;) {
--i;
LayoutTableCell* cell = current.cells[i];
LayoutPoint cellPoint =
flipForWritingModeForChild(cell, adjustedLocation);
if (static_cast<LayoutObject*>(cell)->nodeAtPoint(
result, locationInContainer, cellPoint, action)) {
updateHitTestResult(
result, locationInContainer.point() - toLayoutSize(cellPoint));
return true;
}
}
if (!result.hitTestRequest().listBased())
break;
}
if (!result.hitTestRequest().listBased())
break;
}
return false;
}
LayoutTableSection* LayoutTableSection::createAnonymousWithParent(
const LayoutObject* parent) {
RefPtr<ComputedStyle> newStyle =
ComputedStyle::createAnonymousStyleWithDisplay(parent->styleRef(),
EDisplay::TableRowGroup);
LayoutTableSection* newSection = new LayoutTableSection(nullptr);
newSection->setDocumentForAnonymous(&parent->document());
newSection->setStyle(newStyle.release());
return newSection;
}
void LayoutTableSection::setLogicalPositionForCell(
LayoutTableCell* cell,
unsigned effectiveColumn) const {
LayoutPoint cellLocation(0, m_rowPos[cell->rowIndex()]);
int horizontalBorderSpacing = table()->hBorderSpacing();
// FIXME: The table's direction should determine our row's direction, not the
// section's (see bug 96691).
if (!style()->isLeftToRightDirection())
cellLocation.setX(LayoutUnit(
table()->effectiveColumnPositions()[table()->numEffectiveColumns()] -
table()->effectiveColumnPositions()
[table()->absoluteColumnToEffectiveColumn(
cell->absoluteColumnIndex() + cell->colSpan())] +
horizontalBorderSpacing));
else
cellLocation.setX(
LayoutUnit(table()->effectiveColumnPositions()[effectiveColumn] +
horizontalBorderSpacing));
cell->setLogicalLocation(cellLocation);
}
void LayoutTableSection::relayoutCellIfFlexed(LayoutTableCell& cell,
int rowIndex,
int rowHeight) {
// Force percent height children to lay themselves out again.
// This will cause these children to grow to fill the cell.
// FIXME: There is still more work to do here to fully match WinIE (should
// it become necessary to do so). In quirks mode, WinIE behaves like we
// do, but it will clip the cells that spill out of the table section.
// strict mode, Mozilla and WinIE both regrow the table to accommodate the
// new height of the cell (thus letting the percentages cause growth one
// time only). We may also not be handling row-spanning cells correctly.
//
// Note also the oddity where replaced elements always flex, and yet blocks/
// tables do not necessarily flex. WinIE is crazy and inconsistent, and we
// can't hope to match the behavior perfectly, but we'll continue to refine it
// as we discover new bugs. :)
bool cellChildrenFlex = false;
bool flexAllChildren = cell.style()->logicalHeight().isSpecified() ||
(!table()->style()->logicalHeight().isAuto() &&
rowHeight != cell.logicalHeight());
for (LayoutObject* child = cell.firstChild(); child;
child = child->nextSibling()) {
if (!child->isText() && child->style()->logicalHeight().isPercentOrCalc() &&
(flexAllChildren || shouldFlexCellChild(child)) &&
(!child->isTable() || toLayoutTable(child)->hasSections())) {
cellChildrenFlex = true;
break;
}
}
if (!cellChildrenFlex) {
if (TrackedLayoutBoxListHashSet* percentHeightDescendants =
cell.percentHeightDescendants()) {
for (auto* descendant : *percentHeightDescendants) {
if (flexAllChildren || shouldFlexCellChild(descendant)) {
cellChildrenFlex = true;
break;
}
}
}
}
if (!cellChildrenFlex)
return;
// Alignment within a cell is based off the calculated height, which becomes
// irrelevant once the cell has been resized based off its percentage.
cell.setOverrideLogicalContentHeightFromRowHeight(LayoutUnit(rowHeight));
cell.forceChildLayout();
// If the baseline moved, we may have to update the data for our row. Find
// out the new baseline.
if (cell.isBaselineAligned()) {
int baseline = cell.cellBaselinePosition();
if (baseline > cell.borderBefore() + cell.paddingBefore())
m_grid[rowIndex].baseline = std::max(m_grid[rowIndex].baseline, baseline);
}
}
int LayoutTableSection::logicalHeightForRow(
const LayoutTableRow& rowObject) const {
unsigned rowIndex = rowObject.rowIndex();
DCHECK(rowIndex < m_grid.size());
int logicalHeight = 0;
const Row& row = m_grid[rowIndex].row;
unsigned cols = row.size();
for (unsigned colIndex = 0; colIndex < cols; colIndex++) {
const CellStruct& cellStruct = cellAt(rowIndex, colIndex);
const LayoutTableCell* cell = cellStruct.primaryCell();
if (!cell || cellStruct.inColSpan)
continue;
unsigned rowSpan = cell->rowSpan();
if (rowSpan == 1) {
logicalHeight =
std::max(logicalHeight, cell->logicalHeightForRowSizing());
continue;
}
unsigned rowIndexForCell = cell->rowIndex();
if (rowIndex == m_grid.size() - 1 ||
(rowSpan > 1 && rowIndex - rowIndexForCell == rowSpan - 1)) {
// This is the last row of the rowspanned cell. Add extra height if
// needed.
if (LayoutTableRow* firstRowForCell =
m_grid[rowIndexForCell].rowLayoutObject) {
int minLogicalHeight = cell->logicalHeightForRowSizing();
// Subtract space provided by previous rows.
minLogicalHeight -= rowObject.logicalTop().toInt() -
firstRowForCell->logicalTop().toInt();
logicalHeight = std::max(logicalHeight, minLogicalHeight);
}
}
}
if (m_grid[rowIndex].logicalHeight.isSpecified()) {
LayoutUnit specifiedLogicalHeight =
minimumValueForLength(m_grid[rowIndex].logicalHeight, LayoutUnit());
logicalHeight = std::max(logicalHeight, specifiedLogicalHeight.toInt());
}
return logicalHeight;
}
void LayoutTableSection::adjustRowForPagination(LayoutTableRow& rowObject,
SubtreeLayoutScope& layouter) {
rowObject.setPaginationStrut(LayoutUnit());
rowObject.setLogicalHeight(LayoutUnit(logicalHeightForRow(rowObject)));
int paginationStrut =
paginationStrutForRow(&rowObject, rowObject.logicalTop());
bool rowIsAtTopOfColumn = false;
LayoutUnit offsetFromTopOfPage;
if (!paginationStrut) {
LayoutUnit pageLogicalHeight =
pageLogicalHeightForOffset(rowObject.logicalTop());
if (pageLogicalHeight && table()->header() &&
table()->rowOffsetFromRepeatingHeader()) {
offsetFromTopOfPage =
pageLogicalHeight -
pageRemainingLogicalHeightForOffset(rowObject.logicalTop(),
AssociateWithLatterPage);
rowIsAtTopOfColumn = !offsetFromTopOfPage ||
offsetFromTopOfPage <= table()->vBorderSpacing();
}
if (!rowIsAtTopOfColumn)
return;
}
// We need to push this row to the next fragmentainer. If there are repeated
// table headers, we need to make room for those at the top of the next
// fragmentainer, above this row. Otherwise, this row will just go at the top
// of the next fragmentainer.
// If there isn't room for at least one content row on a page with a
// header group, then we won't repeat the header on each page.
LayoutTableSection* header = table()->header();
if (!rowObject.rowIndex() && header &&
table()->sectionAbove(this) == header &&
header->getPaginationBreakability() != AllowAnyBreaks) {
table()->setRowOffsetFromRepeatingHeader(LayoutUnit());
}
// Border spacing from the previous row has pushed this row just past the top
// of the page, so we must reposition it to the top of the page and avoid any
// repeating header.
if (rowIsAtTopOfColumn && offsetFromTopOfPage)
paginationStrut -= offsetFromTopOfPage.toInt();
// If we have a header group we will paint it at the top of each page,
// move the rows down to accomodate it.
if (header)
paginationStrut += table()->rowOffsetFromRepeatingHeader().toInt();
rowObject.setPaginationStrut(LayoutUnit(paginationStrut));
// We have inserted a pagination strut before the row. Adjust the logical top
// and re-lay out. We no longer want to break inside the row, but rather
// *before* it. From the previous layout pass, there are most likely
// pagination struts inside some cell in this row that we need to get rid of.
rowObject.setLogicalTop(rowObject.logicalTop() + paginationStrut);
layouter.setChildNeedsLayout(&rowObject);
rowObject.layoutIfNeeded();
// It's very likely that re-laying out (and nuking pagination struts inside
// cells) gave us a new height.
rowObject.setLogicalHeight(LayoutUnit(logicalHeightForRow(rowObject)));
}
bool LayoutTableSection::isRepeatingHeaderGroup() const {
if (getPaginationBreakability() == LayoutBox::AllowAnyBreaks)
return false;
// TODO(rhogan): Should we paint a header repeatedly if it's self-painting?
if (hasSelfPaintingLayer())
return false;
LayoutUnit pageHeight = table()->pageLogicalHeightForOffset(LayoutUnit());
if (!pageHeight)
return false;
if (logicalHeight() > pageHeight)
return false;
// If the first row of the section after the header group doesn't fit on the
// page, then don't repeat the header on each page.
// See https://drafts.csswg.org/css-tables-3/#repeated-headers
LayoutTableSection* sectionBelow = table()->sectionBelow(this);
if (!sectionBelow)
return true;
if (LayoutTableRow* firstRow = sectionBelow->firstRow()) {
if (firstRow->paginationStrut() || firstRow->logicalHeight() > pageHeight)
return false;
}
return true;
}
bool LayoutTableSection::mapToVisualRectInAncestorSpace(
const LayoutBoxModelObject* ancestor,
LayoutRect& rect,
VisualRectFlags flags) const {
if (ancestor == this)
return true;
// Repeating table headers are painted once per fragmentation page/column.
// This does not go through the regular fragmentation machinery, so we need
// special code to expand the invalidation rect to contain all positions of
// the header in all columns.
// Note that this is in flow thread coordinates, not visual coordinates. The
// enclosing LayoutFlowThread will convert to visual coordinates.
if (table()->header() == this && isRepeatingHeaderGroup())
rect.setHeight(table()->logicalHeight());
return LayoutTableBoxComponent::mapToVisualRectInAncestorSpace(ancestor, rect,
flags);
}
} // namespace blink