blob: e3a3f94bd0ff294cdfde8244bb484ea729279e43 [file] [log] [blame]
// Copyright 2014 The Crashpad Authors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "util/mach/mach_message_server.h"
#include <mach/mach.h>
#include <stdint.h>
#include <string.h>
#include <sys/types.h>
#include <set>
#include "base/mac/scoped_mach_port.h"
#include "base/macros.h"
#include "base/stl_util.h"
#include "gtest/gtest.h"
#include "test/mac/mach_errors.h"
#include "test/mac/mach_multiprocess.h"
#include "util/file/file_io.h"
#include "util/mach/mach_extensions.h"
#include "util/mach/mach_message.h"
#include "util/misc/implicit_cast.h"
namespace crashpad {
namespace test {
namespace {
class TestMachMessageServer : public MachMessageServer::Interface,
public MachMultiprocess {
public:
struct Options {
// The type of reply port that the client should put in its request message.
enum ReplyPortType {
// The normal reply port is the client’s local port, to which it holds
// a receive right. This allows the server to respond directly to the
// client. The client will expect a reply.
kReplyPortNormal,
// Use MACH_PORT_NULL as the reply port, which the server should detect
// avoid attempting to send a message to, and return success. The client
// will not expect a reply.
kReplyPortNull,
// Make the server see the reply port as a dead name by setting the reply
// port to a receive right and then destroying that right before the
// server processes the request. The server should return
// MACH_SEND_INVALID_DEST, and the client will not expect a reply.
kReplyPortDead,
};
Options()
: expect_server_interface_method_called(true),
parent_wait_for_child_pipe(false),
server_options(MACH_MSG_OPTION_NONE),
server_persistent(MachMessageServer::kOneShot),
server_receive_large(MachMessageServer::kReceiveLargeError),
server_timeout_ms(kMachMessageTimeoutWaitIndefinitely),
server_mig_retcode(KERN_SUCCESS),
server_destroy_complex(true),
expect_server_destroyed_complex(true),
expect_server_result(KERN_SUCCESS),
expect_server_transaction_count(1),
child_wait_for_parent_pipe_early(false),
client_send_request_count(1),
client_send_complex(false),
client_send_large(false),
client_reply_port_type(kReplyPortNormal),
client_expect_reply(true),
child_send_all_requests_before_receiving_any_replies(false),
child_wait_for_parent_pipe_late(false) {
}
// true if MachMessageServerFunction() is expected to be called.
bool expect_server_interface_method_called;
// true if the parent should wait for the child to write a byte to the pipe
// as a signal that the child is ready for the parent to begin its side of
// the test. This is used for nonblocking tests, which require that there
// be something in the server’s queue before attempting a nonblocking
// receive if the receive is to be successful.
bool parent_wait_for_child_pipe;
// Options to pass to MachMessageServer::Run() as the |options| parameter.
mach_msg_options_t server_options;
// Whether the server should run in one-shot or persistent mode.
MachMessageServer::Persistent server_persistent;
// The strategy for handling large messages.
MachMessageServer::ReceiveLarge server_receive_large;
// The server’s timeout in milliseconds, or kMachMessageTimeoutNonblocking
// or kMachMessageTimeoutWaitIndefinitely.
mach_msg_timeout_t server_timeout_ms;
// The return code that the server returns to the client via the
// mig_reply_error_t::RetCode field. A client would normally see this as
// a Mach RPC return value.
kern_return_t server_mig_retcode;
// The value that the server function should set its destroy_complex_request
// parameter to. This is true if resources sent in complex request messages
// should be destroyed, and false if they should not be destroyed, assuming
// that the server function indicates success.
bool server_destroy_complex;
// Whether to expect the server to destroy a complex message. Even if
// server_destroy_complex is false, a complex message will be destroyed if
// the MIG return code was unsuccessful.
bool expect_server_destroyed_complex;
// The expected return value from MachMessageServer::Run().
kern_return_t expect_server_result;
// The number of transactions that the server is expected to handle.
size_t expect_server_transaction_count;
// true if the child should wait for the parent to signal that it’s ready
// for the child to begin sending requests via the pipe. This is done if the
// parent needs to perform operations on its receive port before the child
// should be permitted to send anything to it. Currently, this is used to
// allow the parent to ensure that the receive port’s queue length is high
// enough before the child begins attempting to fill it.
bool child_wait_for_parent_pipe_early;
// The number of requests that the client should send to the server.
size_t client_send_request_count;
// true if the client should send a complex message, one that carries a port
// descriptor in its body. Normally false.
bool client_send_complex;
// true if the client should send a larger message than the server has
// allocated space to receive. The server’s response is directed by
// server_receive_large.
bool client_send_large;
// The type of reply port that the client should provide in its request’s
// mach_msg_header_t::msgh_local_port, which will appear to the server as
// mach_msg_header_t::msgh_remote_port.
ReplyPortType client_reply_port_type;
// true if the client should wait for a reply from the server. For
// non-normal reply ports or requests which the server responds to with no
// reply (MIG_NO_REPLY), the server will either not send a reply or not
// succeed in sending a reply, and the child process should not wait for
// one.
bool client_expect_reply;
// true if the client should send all requests before attempting to receive
// any replies from the server. This is used for the persistent nonblocking
// test, which requires the client to fill the server’s queue before the
// server can attempt processing it.
bool child_send_all_requests_before_receiving_any_replies;
// true if the child should wait to receive a byte from the parent before
// exiting. This can be used to keep a receive right in the child alive
// until the parent has a chance to verify that it’s holding a send right.
// Otherwise, the right might appear in the parent as a dead name if the
// child exited before the parent had a chance to examine it. This would be
// a race.
bool child_wait_for_parent_pipe_late;
};
explicit TestMachMessageServer(const Options& options)
: MachMessageServer::Interface(),
MachMultiprocess(),
options_(options),
child_complex_message_port_(),
parent_complex_message_port_(MACH_PORT_NULL) {
}
// Runs the test.
void Test() {
EXPECT_EQ(replies_, requests_);
uint32_t start = requests_;
Run();
EXPECT_EQ(replies_, requests_);
EXPECT_EQ(requests_ - start, options_.expect_server_transaction_count);
}
// MachMessageServerInterface:
virtual bool MachMessageServerFunction(
const mach_msg_header_t* in,
mach_msg_header_t* out,
bool* destroy_complex_request) override {
*destroy_complex_request = options_.server_destroy_complex;
EXPECT_TRUE(options_.expect_server_interface_method_called);
if (!options_.expect_server_interface_method_called) {
return false;
}
struct ReceiveRequestMessage : public RequestMessage {
mach_msg_trailer_t trailer;
};
struct ReceiveLargeRequestMessage : public LargeRequestMessage {
mach_msg_trailer_t trailer;
};
const ReceiveRequestMessage* request =
reinterpret_cast<const ReceiveRequestMessage*>(in);
const mach_msg_bits_t expect_msgh_bits =
MACH_MSGH_BITS(MACH_MSG_TYPE_MOVE_SEND, MACH_MSG_TYPE_MOVE_SEND) |
(options_.client_send_complex ? MACH_MSGH_BITS_COMPLEX : 0);
EXPECT_EQ(request->header.msgh_bits, expect_msgh_bits);
EXPECT_EQ(request->header.msgh_size,
options_.client_send_large ? sizeof(LargeRequestMessage)
: sizeof(RequestMessage));
if (options_.client_reply_port_type == Options::kReplyPortNormal) {
EXPECT_EQ(request->header.msgh_remote_port, RemotePort());
}
EXPECT_EQ(request->header.msgh_local_port, LocalPort());
EXPECT_EQ(request->header.msgh_id, kRequestMessageID);
if (options_.client_send_complex) {
EXPECT_EQ(request->body.msgh_descriptor_count, 1u);
EXPECT_NE(request->port_descriptor.name, kMachPortNull);
parent_complex_message_port_ = request->port_descriptor.name;
EXPECT_EQ(request->port_descriptor.disposition,
implicit_cast<mach_msg_type_name_t>(MACH_MSG_TYPE_MOVE_SEND));
EXPECT_EQ(
request->port_descriptor.type,
implicit_cast<mach_msg_descriptor_type_t>(MACH_MSG_PORT_DESCRIPTOR));
} else {
EXPECT_EQ(request->body.msgh_descriptor_count, 0u);
EXPECT_EQ(request->port_descriptor.name, kMachPortNull);
EXPECT_EQ(request->port_descriptor.disposition, 0u);
EXPECT_EQ(request->port_descriptor.type, 0u);
}
EXPECT_EQ(memcmp(&request->ndr, &NDR_record, sizeof(NDR_record)), 0);
EXPECT_EQ(request->number, requests_);
// Look for the trailer in the right spot, depending on whether the request
// message was a RequestMessage or a LargeRequestMessage.
const mach_msg_trailer_t* trailer;
if (options_.client_send_large) {
const ReceiveLargeRequestMessage* large_request =
reinterpret_cast<const ReceiveLargeRequestMessage*>(request);
for (size_t index = 0; index < sizeof(large_request->data); ++index) {
EXPECT_EQ(large_request->data[index], '!');
}
trailer = &large_request->trailer;
} else {
trailer = &request->trailer;
}
EXPECT_EQ(
trailer->msgh_trailer_type,
implicit_cast<mach_msg_trailer_type_t>(MACH_MSG_TRAILER_FORMAT_0));
EXPECT_EQ(trailer->msgh_trailer_size, MACH_MSG_TRAILER_MINIMUM_SIZE);
++requests_;
ReplyMessage* reply = reinterpret_cast<ReplyMessage*>(out);
reply->Head.msgh_bits = MACH_MSGH_BITS(MACH_MSG_TYPE_COPY_SEND, 0);
reply->Head.msgh_size = sizeof(*reply);
reply->Head.msgh_remote_port = request->header.msgh_remote_port;
reply->Head.msgh_local_port = MACH_PORT_NULL;
reply->Head.msgh_id = kReplyMessageID;
reply->NDR = NDR_record;
reply->RetCode = options_.server_mig_retcode;
reply->number = replies_++;
return true;
}
std::set<mach_msg_id_t> MachMessageServerRequestIDs() override {
static constexpr mach_msg_id_t request_ids[] = {kRequestMessageID};
return std::set<mach_msg_id_t>(&request_ids[0],
&request_ids[base::size(request_ids)]);
}
mach_msg_size_t MachMessageServerRequestSize() override {
return sizeof(RequestMessage);
}
mach_msg_size_t MachMessageServerReplySize() override {
return sizeof(ReplyMessage);
}
private:
struct RequestMessage : public mach_msg_base_t {
// If body.msgh_descriptor_count is 0, port_descriptor will still be
// present, but it will be zeroed out. It wouldn’t normally be present in a
// message froma MIG-generated interface, but it’s harmless and simpler to
// leave it here and just treat it as more data.
mach_msg_port_descriptor_t port_descriptor;
NDR_record_t ndr;
uint32_t number;
};
// LargeRequestMessage is larger enough than a regular RequestMessage to
// ensure that whatever buffer was allocated to receive a RequestMessage is
// not large enough to receive a LargeRequestMessage.
struct LargeRequestMessage : public RequestMessage {
uint8_t data[4 * PAGE_SIZE];
};
struct ReplyMessage : public mig_reply_error_t {
uint32_t number;
};
// MachMultiprocess:
void MachMultiprocessParent() override {
mach_port_t local_port = LocalPort();
kern_return_t kr;
if (options_.child_send_all_requests_before_receiving_any_replies) {
// On OS X 10.10, the queue limit of a new Mach port seems to be 2 by
// default, which is below the value of MACH_PORT_QLIMIT_DEFAULT. Set the
// port’s queue limit explicitly here.
mach_port_limits limits = {};
limits.mpl_qlimit = MACH_PORT_QLIMIT_DEFAULT;
kr = mach_port_set_attributes(mach_task_self(),
local_port,
MACH_PORT_LIMITS_INFO,
reinterpret_cast<mach_port_info_t>(&limits),
MACH_PORT_LIMITS_INFO_COUNT);
ASSERT_EQ(kr, KERN_SUCCESS)
<< MachErrorMessage(kr, "mach_port_set_attributes");
}
if (options_.child_wait_for_parent_pipe_early) {
// Tell the child to begin sending messages.
char c = '\0';
CheckedWriteFile(WritePipeHandle(), &c, 1);
}
if (options_.parent_wait_for_child_pipe) {
// Wait until the child is done sending what it’s going to send.
char c;
CheckedReadFileExactly(ReadPipeHandle(), &c, 1);
EXPECT_EQ(c, '\0');
}
ASSERT_EQ((kr = MachMessageServer::Run(this,
local_port,
options_.server_options,
options_.server_persistent,
options_.server_receive_large,
options_.server_timeout_ms)),
options_.expect_server_result)
<< MachErrorMessage(kr, "MachMessageServer");
if (options_.client_send_complex) {
EXPECT_NE(parent_complex_message_port_, kMachPortNull);
mach_port_type_t type;
if (!options_.expect_server_destroyed_complex) {
// MachMessageServer should not have destroyed the resources sent in the
// complex request message.
kr = mach_port_type(
mach_task_self(), parent_complex_message_port_, &type);
EXPECT_EQ(kr, KERN_SUCCESS) << MachErrorMessage(kr, "mach_port_type");
EXPECT_EQ(type, MACH_PORT_TYPE_SEND);
// Destroy the resources here.
kr = mach_port_deallocate(mach_task_self(),
parent_complex_message_port_);
EXPECT_EQ(kr, KERN_SUCCESS)
<< MachErrorMessage(kr, "mach_port_deallocate");
}
// The kernel won’t have reused the same name for another Mach port in
// this task so soon. It’s possible that something else in this task could
// have reused the name, but it’s unlikely for that to have happened in
// this test environment.
kr =
mach_port_type(mach_task_self(), parent_complex_message_port_, &type);
EXPECT_EQ(kr, KERN_INVALID_NAME)
<< MachErrorMessage(kr, "mach_port_type");
}
if (options_.child_wait_for_parent_pipe_late) {
// Let the child know it’s safe to exit.
char c = '\0';
CheckedWriteFile(WritePipeHandle(), &c, 1);
}
}
void MachMultiprocessChild() override {
if (options_.child_wait_for_parent_pipe_early) {
// Wait until the parent is done setting things up on its end.
char c;
CheckedReadFileExactly(ReadPipeHandle(), &c, 1);
EXPECT_EQ(c, '\0');
}
for (size_t index = 0;
index < options_.client_send_request_count;
++index) {
if (options_.child_send_all_requests_before_receiving_any_replies) {
// For this test, all of the messages need to go into the queue before
// the parent is allowed to start processing them. Don’t attempt to
// process replies before all of the requests are sent, because the
// server won’t have sent any replies until all of the requests are in
// its queue.
ASSERT_NO_FATAL_FAILURE(ChildSendRequest());
} else {
ASSERT_NO_FATAL_FAILURE(ChildSendRequestAndWaitForReply());
}
}
if (options_.parent_wait_for_child_pipe &&
options_.child_send_all_requests_before_receiving_any_replies) {
// Now that all of the requests have been sent, let the parent know that
// it’s safe to begin processing them, and then wait for the replies.
ASSERT_NO_FATAL_FAILURE(ChildNotifyParentViaPipe());
for (size_t index = 0;
index < options_.client_send_request_count;
++index) {
ASSERT_NO_FATAL_FAILURE(ChildWaitForReply());
}
}
if (options_.child_wait_for_parent_pipe_late) {
char c;
CheckedReadFileExactly(ReadPipeHandle(), &c, 1);
ASSERT_EQ(c, '\0');
}
}
// In the child process, sends a request message to the server.
void ChildSendRequest() {
// local_receive_port_owner will the receive right that is created in this
// scope and intended to be destroyed when leaving this scope, after it has
// been carried in a Mach message.
base::mac::ScopedMachReceiveRight local_receive_port_owner;
// A LargeRequestMessage is always allocated, but the message that will be
// sent will be a normal RequestMessage due to the msgh_size field
// indicating the size of the smaller base structure unless
// options_.client_send_large is true.
LargeRequestMessage request = {};
request.header.msgh_bits =
MACH_MSGH_BITS(MACH_MSG_TYPE_COPY_SEND, MACH_MSG_TYPE_MAKE_SEND) |
(options_.client_send_complex ? MACH_MSGH_BITS_COMPLEX : 0);
request.header.msgh_size = options_.client_send_large ?
sizeof(LargeRequestMessage) : sizeof(RequestMessage);
request.header.msgh_remote_port = RemotePort();
kern_return_t kr;
switch (options_.client_reply_port_type) {
case Options::kReplyPortNormal:
request.header.msgh_local_port = LocalPort();
break;
case Options::kReplyPortNull:
request.header.msgh_local_port = MACH_PORT_NULL;
break;
case Options::kReplyPortDead: {
// Use a newly-allocated receive right that will be destroyed when this
// method returns. A send right will be made from this receive right and
// carried in the request message to the server. By the time the server
// looks at the right, it will have become a dead name.
local_receive_port_owner.reset(NewMachPort(MACH_PORT_RIGHT_RECEIVE));
ASSERT_TRUE(local_receive_port_owner.is_valid());
request.header.msgh_local_port = local_receive_port_owner.get();
break;
}
}
request.header.msgh_id = kRequestMessageID;
if (options_.client_send_complex) {
// Allocate a new receive right in this process and make a send right that
// will appear in the parent process. This is used to test that the server
// properly handles ownership of resources received in complex messages.
request.body.msgh_descriptor_count = 1;
child_complex_message_port_.reset(NewMachPort(MACH_PORT_RIGHT_RECEIVE));
ASSERT_TRUE(child_complex_message_port_.is_valid());
request.port_descriptor.name = child_complex_message_port_.get();
request.port_descriptor.disposition = MACH_MSG_TYPE_MAKE_SEND;
request.port_descriptor.type = MACH_MSG_PORT_DESCRIPTOR;
} else {
request.body.msgh_descriptor_count = 0;
request.port_descriptor.name = MACH_PORT_NULL;
request.port_descriptor.disposition = 0;
request.port_descriptor.type = 0;
}
request.ndr = NDR_record;
request.number = requests_++;
if (options_.client_send_large) {
memset(request.data, '!', sizeof(request.data));
}
kr = mach_msg(&request.header,
MACH_SEND_MSG | MACH_SEND_TIMEOUT,
request.header.msgh_size,
0,
MACH_PORT_NULL,
MACH_MSG_TIMEOUT_NONE,
MACH_PORT_NULL);
ASSERT_EQ(kr, MACH_MSG_SUCCESS) << MachErrorMessage(kr, "mach_msg");
}
// In the child process, waits for a reply message from the server.
void ChildWaitForReply() {
if (!options_.client_expect_reply) {
// The client shouldn’t expect a reply when it didn’t send a good reply
// port with its request, or when testing the server behaving in a way
// that doesn’t send replies.
return;
}
struct ReceiveReplyMessage : public ReplyMessage {
mach_msg_trailer_t trailer;
};
ReceiveReplyMessage reply = {};
kern_return_t kr = mach_msg(&reply.Head,
MACH_RCV_MSG,
0,
sizeof(reply),
LocalPort(),
MACH_MSG_TIMEOUT_NONE,
MACH_PORT_NULL);
ASSERT_EQ(kr, MACH_MSG_SUCCESS) << MachErrorMessage(kr, "mach_msg");
ASSERT_EQ(reply.Head.msgh_bits,
implicit_cast<mach_msg_bits_t>(
MACH_MSGH_BITS(0, MACH_MSG_TYPE_MOVE_SEND)));
ASSERT_EQ(reply.Head.msgh_size, sizeof(ReplyMessage));
ASSERT_EQ(reply.Head.msgh_remote_port, kMachPortNull);
ASSERT_EQ(reply.Head.msgh_local_port, LocalPort());
ASSERT_EQ(reply.Head.msgh_id, kReplyMessageID);
ASSERT_EQ(memcmp(&reply.NDR, &NDR_record, sizeof(NDR_record)), 0);
ASSERT_EQ(reply.RetCode, options_.server_mig_retcode);
ASSERT_EQ(reply.number, replies_);
ASSERT_EQ(
reply.trailer.msgh_trailer_type,
implicit_cast<mach_msg_trailer_type_t>(MACH_MSG_TRAILER_FORMAT_0));
ASSERT_EQ(reply.trailer.msgh_trailer_size, MACH_MSG_TRAILER_MINIMUM_SIZE);
++replies_;
}
// For test types where the child needs to notify the server in the parent
// that the child is ready, this method will send a byte via the POSIX pipe.
// The parent will be waiting in a read() on this pipe, and will proceed to
// running MachMessageServer() once it’s received.
void ChildNotifyParentViaPipe() {
char c = '\0';
CheckedWriteFile(WritePipeHandle(), &c, 1);
}
// In the child process, sends a request message to the server and then
// receives a reply message.
void ChildSendRequestAndWaitForReply() {
ASSERT_NO_FATAL_FAILURE(ChildSendRequest());
if (options_.parent_wait_for_child_pipe &&
!options_.child_send_all_requests_before_receiving_any_replies) {
// The parent is waiting to read a byte to indicate that the message has
// been placed in the queue.
ASSERT_NO_FATAL_FAILURE(ChildNotifyParentViaPipe());
}
ASSERT_NO_FATAL_FAILURE(ChildWaitForReply());
}
const Options& options_;
// A receive right allocated in the child process. A send right will be
// created from this right and sent to the parent parent process in the
// request message.
base::mac::ScopedMachReceiveRight child_complex_message_port_;
// The send right received in the parent process. This right is stored in a
// member variable to test that resources carried in complex messages are
// properly destroyed in the server when expected.
mach_port_t parent_complex_message_port_;
static uint32_t requests_;
static uint32_t replies_;
static constexpr mach_msg_id_t kRequestMessageID = 16237;
static constexpr mach_msg_id_t kReplyMessageID = kRequestMessageID + 100;
DISALLOW_COPY_AND_ASSIGN(TestMachMessageServer);
};
uint32_t TestMachMessageServer::requests_;
uint32_t TestMachMessageServer::replies_;
constexpr mach_msg_id_t TestMachMessageServer::kRequestMessageID;
constexpr mach_msg_id_t TestMachMessageServer::kReplyMessageID;
TEST(MachMessageServer, Basic) {
// The client sends one message to the server, which will wait indefinitely in
// blocking mode for it.
TestMachMessageServer::Options options;
TestMachMessageServer test_mach_message_server(options);
test_mach_message_server.Test();
}
TEST(MachMessageServer, NonblockingNoMessage) {
// The server waits in nonblocking mode and the client sends nothing, so the
// server should return immediately without processing any message.
TestMachMessageServer::Options options;
options.expect_server_interface_method_called = false;
options.server_timeout_ms = kMachMessageTimeoutNonblocking;
options.expect_server_result = MACH_RCV_TIMED_OUT;
options.expect_server_transaction_count = 0;
options.client_send_request_count = 0;
TestMachMessageServer test_mach_message_server(options);
test_mach_message_server.Test();
}
TEST(MachMessageServer, TimeoutNoMessage) {
// The server waits in blocking mode for one message, but with a timeout. The
// client sends no message, so the server returns after the timeout.
TestMachMessageServer::Options options;
options.expect_server_interface_method_called = false;
options.server_timeout_ms = 10;
options.expect_server_result = MACH_RCV_TIMED_OUT;
options.expect_server_transaction_count = 0;
options.client_send_request_count = 0;
TestMachMessageServer test_mach_message_server(options);
test_mach_message_server.Test();
}
TEST(MachMessageServer, Nonblocking) {
// The client sends one message to the server and then signals the server that
// it’s safe to start waiting for it in nonblocking mode. The message is in
// the server’s queue, so it’s able to receive it when it begins listening in
// nonblocking mode.
TestMachMessageServer::Options options;
options.parent_wait_for_child_pipe = true;
options.server_timeout_ms = kMachMessageTimeoutNonblocking;
TestMachMessageServer test_mach_message_server(options);
test_mach_message_server.Test();
}
TEST(MachMessageServer, Timeout) {
// The client sends one message to the server, which will wait in blocking
// mode for it up to a specific timeout.
TestMachMessageServer::Options options;
options.server_timeout_ms = 10;
TestMachMessageServer test_mach_message_server(options);
test_mach_message_server.Test();
}
TEST(MachMessageServer, PersistentTenMessages) {
// The server waits for as many messages as it can receive in blocking mode
// with a timeout. The client sends several messages, and the server processes
// them all.
TestMachMessageServer::Options options;
options.server_persistent = MachMessageServer::kPersistent;
options.server_timeout_ms = 10;
options.expect_server_result = MACH_RCV_TIMED_OUT;
options.expect_server_transaction_count = 10;
options.client_send_request_count = 10;
TestMachMessageServer test_mach_message_server(options);
test_mach_message_server.Test();
}
TEST(MachMessageServer, PersistentNonblockingFourMessages) {
// The client sends several messages to the server and then signals the server
// that it’s safe to start waiting for them in nonblocking mode. The server
// then listens for them in nonblocking persistent mode, and receives all of
// them because they’ve been queued up. The client doesn’t wait for the
// replies until after it’s put all of its requests into the server’s queue.
//
// This test is sensitive to the length of the IPC queue limit. Mach ports
// normally have a queue length limit of MACH_PORT_QLIMIT_DEFAULT (which is
// MACH_PORT_QLIMIT_BASIC, or 5). The number of messages sent for this test
// must be below this, because the server does not begin dequeueing request
// messages until the client has finished sending them.
//
// The queue limit on new ports has been seen to be below
// MACH_PORT_QLIMIT_DEFAULT, so it will explicitly be set by
// mach_port_set_attributes() for this test. This needs to happen before the
// child is allowed to begin sending messages, so
// child_wait_for_parent_pipe_early is used to make the child wait until the
// parent is ready.
constexpr size_t kTransactionCount = 4;
static_assert(kTransactionCount <= MACH_PORT_QLIMIT_DEFAULT,
"must not exceed queue limit");
TestMachMessageServer::Options options;
options.parent_wait_for_child_pipe = true;
options.server_persistent = MachMessageServer::kPersistent;
options.server_timeout_ms = kMachMessageTimeoutNonblocking;
options.expect_server_result = MACH_RCV_TIMED_OUT;
options.expect_server_transaction_count = kTransactionCount;
options.child_wait_for_parent_pipe_early = true;
options.client_send_request_count = kTransactionCount;
options.child_send_all_requests_before_receiving_any_replies = true;
TestMachMessageServer test_mach_message_server(options);
test_mach_message_server.Test();
}
TEST(MachMessageServer, ReturnCodeInvalidArgument) {
// This tests that the mig_reply_error_t::RetCode field is properly returned
// to the client.
TestMachMessageServer::Options options;
options.server_mig_retcode = KERN_INVALID_ARGUMENT;
TestMachMessageServer test_mach_message_server(options);
test_mach_message_server.Test();
}
TEST(MachMessageServer, ReturnCodeNoReply) {
// This tests that when mig_reply_error_t::RetCode is set to MIG_NO_REPLY, no
// response is sent to the client.
TestMachMessageServer::Options options;
options.server_mig_retcode = MIG_NO_REPLY;
options.client_expect_reply = false;
options.child_wait_for_parent_pipe_late = true;
TestMachMessageServer test_mach_message_server(options);
test_mach_message_server.Test();
}
TEST(MachMessageServer, ReplyPortNull) {
// The client sets its reply port to MACH_PORT_NULL. The server should see
// this and avoid sending a message to the null port. No reply message is
// sent and the server returns success.
TestMachMessageServer::Options options;
options.client_reply_port_type =
TestMachMessageServer::Options::kReplyPortNull;
options.client_expect_reply = false;
TestMachMessageServer test_mach_message_server(options);
test_mach_message_server.Test();
}
TEST(MachMessageServer, ReplyPortDead) {
// The client allocates a new port and uses it as the reply port in its
// request message, and then deallocates its receive right to that port. It
// then signals the server to process the request message. The server’s view
// of the port is that it is a dead name. The server function will return
// MACH_SEND_INVALID_DEST because it’s not possible to send a message to a
// dead name.
TestMachMessageServer::Options options;
options.parent_wait_for_child_pipe = true;
options.expect_server_result = MACH_SEND_INVALID_DEST;
options.client_reply_port_type =
TestMachMessageServer::Options::kReplyPortDead;
options.client_expect_reply = false;
TestMachMessageServer test_mach_message_server(options);
test_mach_message_server.Test();
}
TEST(MachMessageServer, Complex) {
// The client allocates a new receive right and sends a complex request
// message to the server with a send right made out of this receive right. The
// server receives this message and is instructed to destroy the send right
// when it is done handling the request-reply transaction. The former send
// right is verified to be invalid after the server runs. This test ensures
// that resources transferred to a server process temporarily aren’t leaked.
TestMachMessageServer::Options options;
options.client_send_complex = true;
TestMachMessageServer test_mach_message_server(options);
test_mach_message_server.Test();
}
TEST(MachMessageServer, ComplexNotDestroyed) {
// As in MachMessageServer.Complex, but the server is instructed not to
// destroy the send right. After the server runs, the send right is verified
// to continue to exist in the server task. The client process is then
// signalled by pipe that it’s safe to exit so that the send right in the
// server task doesn’t prematurely become a dead name. This test ensures that
// rights that are expected to be retained in the server task are properly
// retained.
TestMachMessageServer::Options options;
options.server_destroy_complex = false;
options.expect_server_destroyed_complex = false;
options.client_send_complex = true;
TestMachMessageServer test_mach_message_server(options);
test_mach_message_server.Test();
}
TEST(MachMessageServer, ComplexDestroyedInvalidArgument) {
// As in MachMessageServer.ComplexNotDestroyed, but the server does not return
// a successful code via MIG. The server is expected to destroy resources in
// this case, because server_destroy_complex = false is only honored when a
// MIG request is handled successfully or with no reply.
TestMachMessageServer::Options options;
options.server_mig_retcode = KERN_INVALID_TASK;
options.server_destroy_complex = false;
options.client_send_complex = true;
TestMachMessageServer test_mach_message_server(options);
test_mach_message_server.Test();
}
TEST(MachMessageServer, ComplexNotDestroyedNoReply) {
// As in MachMessageServer.ComplexNotDestroyed, but the server does not send
// a reply message and is expected to retain the send right in the server
// task.
TestMachMessageServer::Options options;
options.server_mig_retcode = MIG_NO_REPLY;
options.server_destroy_complex = false;
options.expect_server_destroyed_complex = false;
options.client_send_complex = true;
options.client_expect_reply = false;
options.child_wait_for_parent_pipe_late = true;
TestMachMessageServer test_mach_message_server(options);
test_mach_message_server.Test();
}
TEST(MachMessageServer, ReceiveLargeError) {
// The client sends a request to the server that is larger than the server is
// expecting. server_receive_large is kReceiveLargeError, so the request is
// destroyed and the server returns a MACH_RCV_TOO_LARGE error. The client
// does not receive a reply.
TestMachMessageServer::Options options;
options.expect_server_result = MACH_RCV_TOO_LARGE;
options.expect_server_transaction_count = 0;
options.client_send_large = true;
options.client_expect_reply = false;
TestMachMessageServer test_mach_message_server(options);
test_mach_message_server.Test();
}
TEST(MachMessageServer, ReceiveLargeRetry) {
// The client sends a request to the server that is larger than the server is
// initially expecting. server_receive_large is kReceiveLargeResize, so a new
// buffer is allocated to receive the message. The server receives the large
// request message, processes it, and returns a reply to the client.
TestMachMessageServer::Options options;
options.server_receive_large = MachMessageServer::kReceiveLargeResize;
options.client_send_large = true;
TestMachMessageServer test_mach_message_server(options);
test_mach_message_server.Test();
}
TEST(MachMessageServer, ReceiveLargeIgnore) {
// The client sends a request to the server that is larger than the server is
// expecting. server_receive_large is kReceiveLargeIgnore, so the request is
// destroyed but the server does not consider this an error. The server is
// running in blocking mode with a timeout, and continues to wait for a
// message until it times out. The client does not receive a reply.
TestMachMessageServer::Options options;
options.server_receive_large = MachMessageServer::kReceiveLargeIgnore;
options.server_timeout_ms = 10;
options.expect_server_result = MACH_RCV_TIMED_OUT;
options.expect_server_transaction_count = 0;
options.client_send_large = true;
options.client_expect_reply = false;
TestMachMessageServer test_mach_message_server(options);
test_mach_message_server.Test();
}
} // namespace
} // namespace test
} // namespace crashpad