blob: 6dd6aff0af7206f445811784a0140fc0fe0820c0 [file] [log] [blame]
// Copyright 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/trees/layer_tree_impl.h"
#include <stddef.h>
#include <stdint.h>
#include <algorithm>
#include <iterator>
#include <limits>
#include <set>
#include "base/containers/adapters.h"
#include "base/metrics/histogram_macros.h"
#include "base/timer/elapsed_timer.h"
#include "base/trace_event/trace_event.h"
#include "base/trace_event/trace_event_argument.h"
#include "cc/base/histograms.h"
#include "cc/base/math_util.h"
#include "cc/base/synced_property.h"
#include "cc/debug/devtools_instrumentation.h"
#include "cc/debug/traced_value.h"
#include "cc/input/page_scale_animation.h"
#include "cc/input/scrollbar_animation_controller.h"
#include "cc/layers/heads_up_display_layer_impl.h"
#include "cc/layers/layer.h"
#include "cc/layers/layer_iterator.h"
#include "cc/layers/layer_list_iterator.h"
#include "cc/layers/render_surface_impl.h"
#include "cc/layers/scrollbar_layer_impl_base.h"
#include "cc/output/compositor_frame_sink.h"
#include "cc/resources/ui_resource_request.h"
#include "cc/trees/clip_node.h"
#include "cc/trees/draw_property_utils.h"
#include "cc/trees/effect_node.h"
#include "cc/trees/layer_tree_host_common.h"
#include "cc/trees/layer_tree_host_impl.h"
#include "cc/trees/mutator_host.h"
#include "cc/trees/occlusion_tracker.h"
#include "cc/trees/property_tree.h"
#include "cc/trees/property_tree_builder.h"
#include "cc/trees/scroll_node.h"
#include "cc/trees/transform_node.h"
#include "ui/gfx/geometry/box_f.h"
#include "ui/gfx/geometry/point_conversions.h"
#include "ui/gfx/geometry/rect_conversions.h"
#include "ui/gfx/geometry/size_conversions.h"
#include "ui/gfx/geometry/vector2d_conversions.h"
namespace cc {
LayerTreeImpl::LayerTreeImpl(
LayerTreeHostImpl* layer_tree_host_impl,
scoped_refptr<SyncedProperty<ScaleGroup>> page_scale_factor,
scoped_refptr<SyncedBrowserControls> top_controls_shown_ratio,
scoped_refptr<SyncedElasticOverscroll> elastic_overscroll)
: layer_tree_host_impl_(layer_tree_host_impl),
source_frame_number_(-1),
is_first_frame_after_commit_tracker_(-1),
root_layer_for_testing_(nullptr),
hud_layer_(nullptr),
background_color_(0),
has_transparent_background_(false),
last_scrolled_scroll_node_index_(ScrollTree::kInvalidNodeId),
overscroll_elasticity_layer_id_(Layer::INVALID_ID),
page_scale_layer_id_(Layer::INVALID_ID),
inner_viewport_scroll_layer_id_(Layer::INVALID_ID),
outer_viewport_scroll_layer_id_(Layer::INVALID_ID),
page_scale_factor_(page_scale_factor),
min_page_scale_factor_(0),
max_page_scale_factor_(0),
device_scale_factor_(1.f),
painted_device_scale_factor_(1.f),
elastic_overscroll_(elastic_overscroll),
layers_(new OwnedLayerImplList),
viewport_size_invalid_(false),
needs_update_draw_properties_(true),
needs_full_tree_sync_(true),
next_activation_forces_redraw_(false),
has_ever_been_drawn_(false),
handle_visibility_changed_(false),
have_scroll_event_handlers_(false),
event_listener_properties_(),
browser_controls_shrink_blink_size_(false),
top_controls_height_(0),
bottom_controls_height_(0),
top_controls_shown_ratio_(top_controls_shown_ratio) {
property_trees()->is_main_thread = false;
}
LayerTreeImpl::~LayerTreeImpl() {
BreakSwapPromises(IsActiveTree() ? SwapPromise::SWAP_FAILS
: SwapPromise::ACTIVATION_FAILS);
// Need to explicitly clear the tree prior to destroying this so that
// the LayerTreeImpl pointer is still valid in the LayerImpl dtor.
DCHECK(LayerListIsEmpty());
DCHECK(layers_->empty());
}
void LayerTreeImpl::Shutdown() {
DetachLayers();
DCHECK(LayerListIsEmpty());
}
void LayerTreeImpl::ReleaseResources() {
#if DCHECK_IS_ON()
// These DCHECKs catch tests that add layers to the tree but fail to build the
// layer list afterward.
LayerListIterator<LayerImpl> it(root_layer_for_testing_);
size_t i = 0;
for (; it != LayerListIterator<LayerImpl>(nullptr); ++it, ++i) {
DCHECK_LT(i, layer_list_.size());
DCHECK_EQ(layer_list_[i], *it);
}
#endif
if (!LayerListIsEmpty()) {
LayerTreeHostCommon::CallFunctionForEveryLayer(
this, [](LayerImpl* layer) { layer->ReleaseResources(); });
}
}
void LayerTreeImpl::ReleaseTileResources() {
if (!LayerListIsEmpty()) {
LayerTreeHostCommon::CallFunctionForEveryLayer(
this, [](LayerImpl* layer) { layer->ReleaseTileResources(); });
}
}
void LayerTreeImpl::RecreateTileResources() {
if (!LayerListIsEmpty()) {
LayerTreeHostCommon::CallFunctionForEveryLayer(
this, [](LayerImpl* layer) { layer->RecreateTileResources(); });
}
}
bool LayerTreeImpl::IsViewportLayerId(int id) const {
if (id == inner_viewport_scroll_layer_id_ ||
id == outer_viewport_scroll_layer_id_)
return true;
if (InnerViewportContainerLayer() &&
id == InnerViewportContainerLayer()->id())
return true;
if (OuterViewportContainerLayer() &&
id == OuterViewportContainerLayer()->id())
return true;
return false;
}
void LayerTreeImpl::DidUpdateScrollOffset(int layer_id) {
DidUpdateScrollState(layer_id);
TransformTree& transform_tree = property_trees()->transform_tree;
ScrollTree& scroll_tree = property_trees()->scroll_tree;
int transform_id = TransformTree::kInvalidNodeId;
// If pending tree topology changed and we still want to notify the pending
// tree about scroll offset in the active tree, we may not find the
// corresponding pending layer.
if (LayerById(layer_id)) {
// TODO(sunxd): when we have a layer_id to property_tree index map in
// property trees, use the transform_id parameter instead of looking for
// indices from LayerImpls.
transform_id = LayerById(layer_id)->transform_tree_index();
} else {
DCHECK(!IsActiveTree());
return;
}
if (transform_id != TransformTree::kInvalidNodeId) {
TransformNode* node = transform_tree.Node(transform_id);
if (node->scroll_offset != scroll_tree.current_scroll_offset(layer_id)) {
node->scroll_offset = scroll_tree.current_scroll_offset(layer_id);
node->needs_local_transform_update = true;
transform_tree.set_needs_update(true);
}
node->transform_changed = true;
property_trees()->changed = true;
set_needs_update_draw_properties();
}
if (IsActiveTree() && layer_tree_host_impl_->pending_tree())
layer_tree_host_impl_->pending_tree()->DidUpdateScrollOffset(layer_id);
}
void LayerTreeImpl::DidUpdateScrollState(int layer_id) {
if (!IsActiveTree())
return;
if (layer_id == Layer::INVALID_ID)
return;
int scroll_layer_id, clip_layer_id;
if (IsViewportLayerId(layer_id)) {
if (!InnerViewportContainerLayer())
return;
// For scrollbar purposes, a change to any of the four viewport layers
// should affect the scrollbars tied to the outermost layers, which express
// the sum of the entire viewport.
scroll_layer_id = outer_viewport_scroll_layer_id_;
clip_layer_id = InnerViewportContainerLayer()->id();
} else {
// If the clip layer id was passed in, then look up the scroll layer, or
// vice versa.
auto i = clip_scroll_map_.find(layer_id);
if (i != clip_scroll_map_.end()) {
scroll_layer_id = i->second;
clip_layer_id = layer_id;
} else {
scroll_layer_id = layer_id;
clip_layer_id = LayerById(scroll_layer_id)->scroll_clip_layer_id();
}
}
UpdateScrollbars(scroll_layer_id, clip_layer_id);
}
void LayerTreeImpl::UpdateScrollbars(int scroll_layer_id, int clip_layer_id) {
DCHECK(IsActiveTree());
LayerImpl* clip_layer = LayerById(clip_layer_id);
LayerImpl* scroll_layer = LayerById(scroll_layer_id);
if (!clip_layer || !scroll_layer)
return;
gfx::SizeF clip_size(clip_layer->BoundsForScrolling());
gfx::SizeF scroll_size(scroll_layer->BoundsForScrolling());
if (scroll_size.IsEmpty())
return;
gfx::ScrollOffset current_offset = scroll_layer->CurrentScrollOffset();
if (IsViewportLayerId(scroll_layer_id)) {
current_offset += InnerViewportScrollLayer()->CurrentScrollOffset();
if (OuterViewportContainerLayer())
clip_size.SetToMin(OuterViewportContainerLayer()->BoundsForScrolling());
clip_size.Scale(1 / current_page_scale_factor());
}
bool scrollbar_needs_animation = false;
bool scroll_layer_size_did_change = false;
bool y_offset_did_change = false;
for (ScrollbarLayerImplBase* scrollbar : ScrollbarsFor(scroll_layer_id)) {
if (scrollbar->orientation() == HORIZONTAL) {
scrollbar_needs_animation |= scrollbar->SetCurrentPos(current_offset.x());
scrollbar_needs_animation |=
scrollbar->SetClipLayerLength(clip_size.width());
scrollbar_needs_animation |= scroll_layer_size_did_change |=
scrollbar->SetScrollLayerLength(scroll_size.width());
} else {
scrollbar_needs_animation |= y_offset_did_change |=
scrollbar->SetCurrentPos(current_offset.y());
scrollbar_needs_animation |=
scrollbar->SetClipLayerLength(clip_size.height());
scrollbar_needs_animation |= scroll_layer_size_did_change |=
scrollbar->SetScrollLayerLength(scroll_size.height());
}
scrollbar_needs_animation |=
scrollbar->SetVerticalAdjust(clip_layer->bounds_delta().y());
}
if (y_offset_did_change && IsViewportLayerId(scroll_layer_id))
TRACE_COUNTER_ID1("cc", "scroll_offset_y", scroll_layer->id(),
current_offset.y());
if (scrollbar_needs_animation) {
ScrollbarAnimationController* controller =
layer_tree_host_impl_->ScrollbarAnimationControllerForId(
scroll_layer_id);
if (controller)
controller->DidScrollUpdate(scroll_layer_size_did_change);
}
}
RenderSurfaceImpl* LayerTreeImpl::RootRenderSurface() const {
return layer_list_.empty() ? nullptr : layer_list_[0]->GetRenderSurface();
}
bool LayerTreeImpl::LayerListIsEmpty() const {
return layer_list_.empty();
}
void LayerTreeImpl::SetRootLayerForTesting(std::unique_ptr<LayerImpl> layer) {
if (root_layer_for_testing_ && layer.get() != root_layer_for_testing_)
RemoveLayer(root_layer_for_testing_->id());
root_layer_for_testing_ = layer.get();
ClearLayerList();
if (layer) {
AddLayer(std::move(layer));
BuildLayerListForTesting();
}
layer_tree_host_impl_->OnCanDrawStateChangedForTree();
}
void LayerTreeImpl::OnCanDrawStateChangedForTree() {
layer_tree_host_impl_->OnCanDrawStateChangedForTree();
}
void LayerTreeImpl::AddToLayerList(LayerImpl* layer) {
layer_list_.push_back(layer);
}
void LayerTreeImpl::ClearLayerList() {
layer_list_.clear();
}
void LayerTreeImpl::BuildLayerListForTesting() {
ClearLayerList();
LayerListIterator<LayerImpl> it(root_layer_for_testing_);
for (; it != LayerListIterator<LayerImpl>(nullptr); ++it) {
AddToLayerList(*it);
}
}
void LayerTreeImpl::InvalidateRegionForImages(
const ImageIdFlatSet& images_to_invalidate) {
DCHECK(IsSyncTree());
if (images_to_invalidate.empty())
return;
for (auto* picture_layer : picture_layers_)
picture_layer->InvalidateRegionForImages(images_to_invalidate);
}
bool LayerTreeImpl::IsRootLayer(const LayerImpl* layer) const {
return layer_list_.empty() ? false : layer_list_[0] == layer;
}
LayerImpl* LayerTreeImpl::InnerViewportScrollLayer() const {
return LayerById(inner_viewport_scroll_layer_id_);
}
LayerImpl* LayerTreeImpl::OuterViewportScrollLayer() const {
return LayerById(outer_viewport_scroll_layer_id_);
}
gfx::ScrollOffset LayerTreeImpl::TotalScrollOffset() const {
gfx::ScrollOffset offset;
if (InnerViewportScrollLayer())
offset += InnerViewportScrollLayer()->CurrentScrollOffset();
if (OuterViewportScrollLayer())
offset += OuterViewportScrollLayer()->CurrentScrollOffset();
return offset;
}
gfx::ScrollOffset LayerTreeImpl::TotalMaxScrollOffset() const {
gfx::ScrollOffset offset;
if (InnerViewportScrollLayer())
offset += InnerViewportScrollLayer()->MaxScrollOffset();
if (OuterViewportScrollLayer())
offset += OuterViewportScrollLayer()->MaxScrollOffset();
return offset;
}
std::unique_ptr<OwnedLayerImplList> LayerTreeImpl::DetachLayers() {
root_layer_for_testing_ = nullptr;
layer_list_.clear();
render_surface_layer_list_.clear();
set_needs_update_draw_properties();
std::unique_ptr<OwnedLayerImplList> ret = std::move(layers_);
layers_.reset(new OwnedLayerImplList);
return ret;
}
static void UpdateClipTreeForBoundsDeltaOnLayer(LayerImpl* layer,
ClipTree* clip_tree) {
if (layer && layer->masks_to_bounds()) {
ClipNode* clip_node = clip_tree->Node(layer->clip_tree_index());
if (clip_node) {
DCHECK_EQ(layer->id(), clip_node->owning_layer_id);
gfx::SizeF bounds = gfx::SizeF(layer->bounds());
if (clip_node->clip.size() != bounds) {
clip_node->clip.set_size(bounds);
clip_tree->set_needs_update(true);
}
}
}
}
void LayerTreeImpl::SetPropertyTrees(PropertyTrees* property_trees) {
std::vector<std::unique_ptr<RenderSurfaceImpl>> old_render_surfaces;
property_trees_.effect_tree.TakeRenderSurfaces(&old_render_surfaces);
property_trees_ = *property_trees;
bool render_surfaces_changed =
property_trees_.effect_tree.CreateOrReuseRenderSurfaces(
&old_render_surfaces, this);
if (render_surfaces_changed)
set_needs_update_draw_properties();
property_trees->effect_tree.PushCopyRequestsTo(&property_trees_.effect_tree);
property_trees_.is_main_thread = false;
property_trees_.is_active = IsActiveTree();
property_trees_.transform_tree.set_source_to_parent_updates_allowed(false);
// The value of some effect node properties (like is_drawn) depends on
// whether we are on the active tree or not. So, we need to update the
// effect tree.
if (IsActiveTree())
property_trees_.effect_tree.set_needs_update(true);
}
void LayerTreeImpl::UpdatePropertyTreesForBoundsDelta() {
DCHECK(IsActiveTree());
LayerImpl* inner_container = InnerViewportContainerLayer();
LayerImpl* outer_container = OuterViewportContainerLayer();
LayerImpl* inner_scroll = InnerViewportScrollLayer();
UpdateClipTreeForBoundsDeltaOnLayer(inner_container,
&property_trees_.clip_tree);
UpdateClipTreeForBoundsDeltaOnLayer(InnerViewportScrollLayer(),
&property_trees_.clip_tree);
UpdateClipTreeForBoundsDeltaOnLayer(outer_container,
&property_trees_.clip_tree);
if (inner_container)
property_trees_.SetInnerViewportContainerBoundsDelta(
inner_container->bounds_delta());
if (outer_container)
property_trees_.SetOuterViewportContainerBoundsDelta(
outer_container->bounds_delta());
if (inner_scroll)
property_trees_.SetInnerViewportScrollBoundsDelta(
inner_scroll->bounds_delta());
}
void LayerTreeImpl::PushPropertiesTo(LayerTreeImpl* target_tree) {
// The request queue should have been processed and does not require a push.
DCHECK_EQ(ui_resource_request_queue_.size(), 0u);
// To maintain the current scrolling node we need to use element ids which
// are stable across the property tree update in SetPropertyTrees.
ElementId scrolling_element_id;
if (ScrollNode* scrolling_node = target_tree->CurrentlyScrollingNode())
scrolling_element_id = scrolling_node->element_id;
target_tree->SetPropertyTrees(&property_trees_);
ScrollNode* scrolling_node = nullptr;
if (scrolling_element_id) {
auto& scroll_node_index_map =
target_tree->property_trees()->element_id_to_scroll_node_index;
auto scrolling_node_it = scroll_node_index_map.find(scrolling_element_id);
if (scrolling_node_it != scroll_node_index_map.end()) {
int index = scrolling_node_it->second;
scrolling_node = target_tree->property_trees()->scroll_tree.Node(index);
}
}
target_tree->SetCurrentlyScrollingNode(scrolling_node);
target_tree->property_trees()->scroll_tree.PushScrollUpdatesFromPendingTree(
&property_trees_, target_tree);
// This needs to be called early so that we don't clamp with incorrect max
// offsets when UpdateViewportContainerSizes is called from e.g.
// PushBrowserControls
target_tree->UpdatePropertyTreesForBoundsDelta();
if (next_activation_forces_redraw_) {
target_tree->ForceRedrawNextActivation();
next_activation_forces_redraw_ = false;
}
target_tree->PassSwapPromises(std::move(swap_promise_list_));
swap_promise_list_.clear();
target_tree->set_browser_controls_shrink_blink_size(
browser_controls_shrink_blink_size_);
target_tree->set_top_controls_height(top_controls_height_);
target_tree->set_bottom_controls_height(bottom_controls_height_);
target_tree->PushBrowserControls(nullptr);
// Active tree already shares the page_scale_factor object with pending
// tree so only the limits need to be provided.
target_tree->PushPageScaleFactorAndLimits(nullptr, min_page_scale_factor(),
max_page_scale_factor());
target_tree->SetDeviceScaleFactor(device_scale_factor());
target_tree->set_painted_device_scale_factor(painted_device_scale_factor());
target_tree->SetDeviceColorSpace(device_color_space_);
target_tree->elastic_overscroll()->PushPendingToActive();
target_tree->pending_page_scale_animation_ =
std::move(pending_page_scale_animation_);
target_tree->SetViewportLayersFromIds(
overscroll_elasticity_layer_id_, page_scale_layer_id_,
inner_viewport_scroll_layer_id_, outer_viewport_scroll_layer_id_);
target_tree->RegisterSelection(selection_);
// This should match the property synchronization in
// LayerTreeHost::finishCommitOnImplThread().
target_tree->set_source_frame_number(source_frame_number());
target_tree->set_background_color(background_color());
target_tree->set_has_transparent_background(has_transparent_background());
target_tree->set_have_scroll_event_handlers(have_scroll_event_handlers());
target_tree->set_event_listener_properties(
EventListenerClass::kTouchStartOrMove,
event_listener_properties(EventListenerClass::kTouchStartOrMove));
target_tree->set_event_listener_properties(
EventListenerClass::kMouseWheel,
event_listener_properties(EventListenerClass::kMouseWheel));
target_tree->set_event_listener_properties(
EventListenerClass::kTouchEndOrCancel,
event_listener_properties(EventListenerClass::kTouchEndOrCancel));
if (ViewportSizeInvalid())
target_tree->SetViewportSizeInvalid();
else
target_tree->ResetViewportSizeInvalid();
if (hud_layer())
target_tree->set_hud_layer(static_cast<HeadsUpDisplayLayerImpl*>(
target_tree->LayerById(hud_layer()->id())));
else
target_tree->set_hud_layer(NULL);
target_tree->has_ever_been_drawn_ = false;
}
void LayerTreeImpl::MoveChangeTrackingToLayers() {
// We need to update the change tracking on property trees before we move it
// onto the layers.
property_trees_.UpdateChangeTracking();
for (auto* layer : *this) {
if (layer->LayerPropertyChanged())
layer->NoteLayerPropertyChanged();
}
EffectTree& effect_tree = property_trees_.effect_tree;
for (int id = EffectTree::kContentsRootNodeId;
id < static_cast<int>(effect_tree.size()); ++id) {
RenderSurfaceImpl* render_surface = effect_tree.GetRenderSurface(id);
if (render_surface && render_surface->AncestorPropertyChanged())
render_surface->NoteAncestorPropertyChanged();
}
}
void LayerTreeImpl::ForceRecalculateRasterScales() {
for (auto* layer : picture_layers_)
layer->ResetRasterScale();
}
LayerImplList::const_iterator LayerTreeImpl::begin() const {
return layer_list_.cbegin();
}
LayerImplList::const_iterator LayerTreeImpl::end() const {
return layer_list_.cend();
}
LayerImplList::reverse_iterator LayerTreeImpl::rbegin() {
return layer_list_.rbegin();
}
LayerImplList::reverse_iterator LayerTreeImpl::rend() {
return layer_list_.rend();
}
int LayerTreeImpl::LayerIdByElementId(ElementId element_id) const {
auto iter = element_layers_map_.find(element_id);
if (iter == element_layers_map_.end())
return Layer::INVALID_ID;
return iter->second;
}
LayerImpl* LayerTreeImpl::LayerByElementId(ElementId element_id) const {
return LayerById(LayerIdByElementId(element_id));
}
void LayerTreeImpl::AddToElementMap(LayerImpl* layer) {
ElementId element_id = layer->element_id();
if (!element_id)
return;
TRACE_EVENT2(TRACE_DISABLED_BY_DEFAULT("compositor-worker"),
"LayerTreeImpl::AddToElementMap", "element",
element_id.AsValue().release(), "layer_id", layer->id());
#if DCHECK_IS_ON()
LayerImpl* existing_layer = LayerByElementId(element_id);
bool element_id_collision_detected =
existing_layer && existing_layer != layer;
// TODO(pdr): Remove this suppression and always check for id collisions.
// This is a temporary suppression for SPV2 which generates unnecessary
// layers that collide. Remove once crbug.com/693693 is fixed.
if (!settings().use_layer_lists)
DCHECK(!element_id_collision_detected);
#endif
element_layers_map_[element_id] = layer->id();
layer_tree_host_impl_->mutator_host()->RegisterElement(
element_id,
IsActiveTree() ? ElementListType::ACTIVE : ElementListType::PENDING);
}
void LayerTreeImpl::RemoveFromElementMap(LayerImpl* layer) {
if (!layer->element_id())
return;
TRACE_EVENT2(TRACE_DISABLED_BY_DEFAULT("compositor-worker"),
"LayerTreeImpl::RemoveFromElementMap", "element",
layer->element_id().AsValue().release(), "layer_id",
layer->id());
layer_tree_host_impl_->mutator_host()->UnregisterElement(
layer->element_id(),
IsActiveTree() ? ElementListType::ACTIVE : ElementListType::PENDING);
element_layers_map_.erase(layer->element_id());
}
void LayerTreeImpl::AddToOpacityAnimationsMap(int id, float opacity) {
opacity_animations_map_[id] = opacity;
}
void LayerTreeImpl::AddToTransformAnimationsMap(int id,
gfx::Transform transform) {
transform_animations_map_[id] = transform;
}
void LayerTreeImpl::AddToFilterAnimationsMap(int id,
const FilterOperations& filters) {
filter_animations_map_[id] = filters;
}
LayerImpl* LayerTreeImpl::InnerViewportContainerLayer() const {
return InnerViewportScrollLayer()
? InnerViewportScrollLayer()->scroll_clip_layer()
: NULL;
}
LayerImpl* LayerTreeImpl::OuterViewportContainerLayer() const {
return OuterViewportScrollLayer()
? OuterViewportScrollLayer()->scroll_clip_layer()
: NULL;
}
ScrollNode* LayerTreeImpl::CurrentlyScrollingNode() {
DCHECK(IsActiveTree());
return property_trees_.scroll_tree.CurrentlyScrollingNode();
}
const ScrollNode* LayerTreeImpl::CurrentlyScrollingNode() const {
return property_trees_.scroll_tree.CurrentlyScrollingNode();
}
int LayerTreeImpl::LastScrolledScrollNodeIndex() const {
return last_scrolled_scroll_node_index_;
}
void LayerTreeImpl::SetCurrentlyScrollingNode(ScrollNode* node) {
if (node)
last_scrolled_scroll_node_index_ = node->id;
ScrollTree& scroll_tree = property_trees()->scroll_tree;
ScrollNode* old_node = scroll_tree.CurrentlyScrollingNode();
ElementId old_element_id = old_node ? old_node->element_id : ElementId();
ElementId new_element_id = node ? node->element_id : ElementId();
#if DCHECK_IS_ON()
int old_layer_id = old_node ? old_node->owning_layer_id : Layer::INVALID_ID;
int new_layer_id = node ? node->owning_layer_id : Layer::INVALID_ID;
DCHECK(old_layer_id == LayerIdByElementId(old_element_id));
DCHECK(new_layer_id == LayerIdByElementId(new_element_id));
#endif
if (old_element_id == new_element_id)
return;
// TODO(pdr): Make the scrollbar animation controller lookup based on
// element ids instead of layer ids.
ScrollbarAnimationController* old_animation_controller =
layer_tree_host_impl_->ScrollbarAnimationControllerForId(
LayerIdByElementId(old_element_id));
ScrollbarAnimationController* new_animation_controller =
layer_tree_host_impl_->ScrollbarAnimationControllerForId(
LayerIdByElementId(new_element_id));
if (old_animation_controller)
old_animation_controller->DidScrollEnd();
scroll_tree.set_currently_scrolling_node(node ? node->id
: ScrollTree::kInvalidNodeId);
if (new_animation_controller)
new_animation_controller->DidScrollBegin();
}
void LayerTreeImpl::ClearCurrentlyScrollingNode() {
SetCurrentlyScrollingNode(nullptr);
}
float LayerTreeImpl::ClampPageScaleFactorToLimits(
float page_scale_factor) const {
if (min_page_scale_factor_ && page_scale_factor < min_page_scale_factor_)
page_scale_factor = min_page_scale_factor_;
else if (max_page_scale_factor_ && page_scale_factor > max_page_scale_factor_)
page_scale_factor = max_page_scale_factor_;
return page_scale_factor;
}
void LayerTreeImpl::UpdatePropertyTreeScrollingAndAnimationFromMainThread() {
// TODO(enne): This should get replaced by pulling out scrolling and
// animations into their own trees. Then scrolls and animations would have
// their own ways of synchronizing across commits. This occurs to push
// updates from scrolling deltas on the compositor thread that have occurred
// after begin frame and updates from animations that have ticked since begin
// frame to a newly-committed property tree.
if (layer_list_.empty())
return;
std::vector<int> layer_ids_to_remove;
for (auto& layer_id_to_opacity : opacity_animations_map_) {
const int id = layer_id_to_opacity.first;
if (property_trees_.IsInIdToIndexMap(PropertyTrees::TreeType::EFFECT, id)) {
EffectNode* node = property_trees_.effect_tree.Node(
property_trees_.layer_id_to_effect_node_index[id]);
if (!node->is_currently_animating_opacity ||
node->opacity == layer_id_to_opacity.second) {
layer_ids_to_remove.push_back(id);
continue;
}
node->opacity = layer_id_to_opacity.second;
property_trees_.effect_tree.set_needs_update(true);
}
}
for (auto id : layer_ids_to_remove)
opacity_animations_map_.erase(id);
layer_ids_to_remove.clear();
for (auto& layer_id_to_transform : transform_animations_map_) {
const int id = layer_id_to_transform.first;
if (property_trees_.IsInIdToIndexMap(PropertyTrees::TreeType::TRANSFORM,
id)) {
TransformNode* node = property_trees_.transform_tree.Node(
property_trees_.layer_id_to_transform_node_index[id]);
if (!node->is_currently_animating ||
node->local == layer_id_to_transform.second) {
layer_ids_to_remove.push_back(id);
continue;
}
node->local = layer_id_to_transform.second;
node->needs_local_transform_update = true;
property_trees_.transform_tree.set_needs_update(true);
}
}
for (auto id : layer_ids_to_remove)
transform_animations_map_.erase(id);
layer_ids_to_remove.clear();
for (auto& layer_id_to_filters : filter_animations_map_) {
const int id = layer_id_to_filters.first;
if (property_trees_.IsInIdToIndexMap(PropertyTrees::TreeType::EFFECT, id)) {
EffectNode* node = property_trees_.effect_tree.Node(
property_trees_.layer_id_to_effect_node_index[id]);
if (!node->is_currently_animating_filter ||
node->filters == layer_id_to_filters.second) {
layer_ids_to_remove.push_back(id);
continue;
}
node->filters = layer_id_to_filters.second;
property_trees_.effect_tree.set_needs_update(true);
}
}
for (auto id : layer_ids_to_remove)
filter_animations_map_.erase(id);
LayerTreeHostCommon::CallFunctionForEveryLayer(this, [](LayerImpl* layer) {
layer->UpdatePropertyTreeForScrollingAndAnimationIfNeeded();
});
}
void LayerTreeImpl::SetPageScaleOnActiveTree(float active_page_scale) {
DCHECK(IsActiveTree());
if (page_scale_factor()->SetCurrent(
ClampPageScaleFactorToLimits(active_page_scale))) {
DidUpdatePageScale();
if (PageScaleLayer()) {
draw_property_utils::UpdatePageScaleFactor(
property_trees(), PageScaleLayer(), current_page_scale_factor(),
device_scale_factor(), layer_tree_host_impl_->DrawTransform());
} else {
DCHECK(layer_list_.empty() || active_page_scale == 1);
}
}
}
void LayerTreeImpl::PushPageScaleFromMainThread(float page_scale_factor,
float min_page_scale_factor,
float max_page_scale_factor) {
PushPageScaleFactorAndLimits(&page_scale_factor, min_page_scale_factor,
max_page_scale_factor);
}
void LayerTreeImpl::PushPageScaleFactorAndLimits(const float* page_scale_factor,
float min_page_scale_factor,
float max_page_scale_factor) {
DCHECK(page_scale_factor || IsActiveTree());
bool changed_page_scale = false;
changed_page_scale |=
SetPageScaleFactorLimits(min_page_scale_factor, max_page_scale_factor);
if (page_scale_factor) {
DCHECK(!IsActiveTree() || !layer_tree_host_impl_->pending_tree());
changed_page_scale |= page_scale_factor_->Delta() != 1.f;
// TODO(enne): Once CDP goes away, ignore this call below. The only time
// the property trees will differ is if there's been a page scale on the
// compositor thread after the begin frame, which is the delta check above.
changed_page_scale |=
page_scale_factor_->PushFromMainThread(*page_scale_factor);
}
if (IsActiveTree()) {
// TODO(enne): Pushing from pending to active should never require
// DidUpdatePageScale. The values should already be set by the fully
// computed property trees being synced from one tree to another. Remove
// this once CDP goes away.
changed_page_scale |= page_scale_factor_->PushPendingToActive();
}
if (changed_page_scale)
DidUpdatePageScale();
if (page_scale_factor) {
if (PageScaleLayer()) {
draw_property_utils::UpdatePageScaleFactor(
property_trees(), PageScaleLayer(), current_page_scale_factor(),
device_scale_factor(), layer_tree_host_impl_->DrawTransform());
} else {
DCHECK(layer_list_.empty() || *page_scale_factor == 1);
}
}
}
void LayerTreeImpl::set_browser_controls_shrink_blink_size(bool shrink) {
if (browser_controls_shrink_blink_size_ == shrink)
return;
browser_controls_shrink_blink_size_ = shrink;
if (IsActiveTree())
layer_tree_host_impl_->UpdateViewportContainerSizes();
}
void LayerTreeImpl::set_top_controls_height(float top_controls_height) {
if (top_controls_height_ == top_controls_height)
return;
top_controls_height_ = top_controls_height;
if (IsActiveTree())
layer_tree_host_impl_->UpdateViewportContainerSizes();
}
void LayerTreeImpl::set_bottom_controls_height(float bottom_controls_height) {
if (bottom_controls_height_ == bottom_controls_height)
return;
bottom_controls_height_ = bottom_controls_height;
if (IsActiveTree())
layer_tree_host_impl_->UpdateViewportContainerSizes();
}
bool LayerTreeImpl::ClampBrowserControlsShownRatio() {
float ratio = top_controls_shown_ratio_->Current(true);
ratio = std::max(ratio, 0.f);
ratio = std::min(ratio, 1.f);
return top_controls_shown_ratio_->SetCurrent(ratio);
}
bool LayerTreeImpl::SetCurrentBrowserControlsShownRatio(float ratio) {
bool changed = top_controls_shown_ratio_->SetCurrent(ratio);
changed |= ClampBrowserControlsShownRatio();
return changed;
}
void LayerTreeImpl::PushBrowserControlsFromMainThread(
float top_controls_shown_ratio) {
PushBrowserControls(&top_controls_shown_ratio);
}
void LayerTreeImpl::PushBrowserControls(const float* top_controls_shown_ratio) {
DCHECK(top_controls_shown_ratio || IsActiveTree());
if (top_controls_shown_ratio) {
DCHECK(!IsActiveTree() || !layer_tree_host_impl_->pending_tree());
top_controls_shown_ratio_->PushFromMainThread(*top_controls_shown_ratio);
}
if (IsActiveTree()) {
bool changed_active = top_controls_shown_ratio_->PushPendingToActive();
changed_active |= ClampBrowserControlsShownRatio();
if (changed_active)
layer_tree_host_impl_->DidChangeBrowserControlsPosition();
}
}
bool LayerTreeImpl::SetPageScaleFactorLimits(float min_page_scale_factor,
float max_page_scale_factor) {
if (min_page_scale_factor == min_page_scale_factor_ &&
max_page_scale_factor == max_page_scale_factor_)
return false;
min_page_scale_factor_ = min_page_scale_factor;
max_page_scale_factor_ = max_page_scale_factor;
return true;
}
void LayerTreeImpl::DidUpdatePageScale() {
if (IsActiveTree())
page_scale_factor()->SetCurrent(
ClampPageScaleFactorToLimits(current_page_scale_factor()));
set_needs_update_draw_properties();
DidUpdateScrollState(inner_viewport_scroll_layer_id_);
}
void LayerTreeImpl::SetDeviceScaleFactor(float device_scale_factor) {
if (device_scale_factor == device_scale_factor_)
return;
device_scale_factor_ = device_scale_factor;
set_needs_update_draw_properties();
if (IsActiveTree())
layer_tree_host_impl_->SetFullViewportDamage();
layer_tree_host_impl_->SetNeedUpdateGpuRasterizationStatus();
}
void LayerTreeImpl::SetDeviceColorSpace(
const gfx::ColorSpace& device_color_space) {
if (device_color_space == device_color_space_)
return;
device_color_space_ = device_color_space;
}
SyncedProperty<ScaleGroup>* LayerTreeImpl::page_scale_factor() {
return page_scale_factor_.get();
}
const SyncedProperty<ScaleGroup>* LayerTreeImpl::page_scale_factor() const {
return page_scale_factor_.get();
}
gfx::SizeF LayerTreeImpl::ScrollableViewportSize() const {
if (!InnerViewportContainerLayer())
return gfx::SizeF();
return gfx::ScaleSize(InnerViewportContainerLayer()->BoundsForScrolling(),
1.0f / current_page_scale_factor());
}
gfx::Rect LayerTreeImpl::RootScrollLayerDeviceViewportBounds() const {
LayerImpl* root_scroll_layer = OuterViewportScrollLayer()
? OuterViewportScrollLayer()
: InnerViewportScrollLayer();
if (!root_scroll_layer)
return gfx::Rect();
return MathUtil::MapEnclosingClippedRect(
root_scroll_layer->ScreenSpaceTransform(),
gfx::Rect(root_scroll_layer->bounds()));
}
void LayerTreeImpl::ApplySentScrollAndScaleDeltasFromAbortedCommit() {
DCHECK(IsActiveTree());
page_scale_factor()->AbortCommit();
top_controls_shown_ratio()->AbortCommit();
elastic_overscroll()->AbortCommit();
if (layer_list_.empty())
return;
property_trees()->scroll_tree.ApplySentScrollDeltasFromAbortedCommit();
}
void LayerTreeImpl::SetViewportLayersFromIds(
int overscroll_elasticity_layer_id,
int page_scale_layer_id,
int inner_viewport_scroll_layer_id,
int outer_viewport_scroll_layer_id) {
overscroll_elasticity_layer_id_ = overscroll_elasticity_layer_id;
page_scale_layer_id_ = page_scale_layer_id;
inner_viewport_scroll_layer_id_ = inner_viewport_scroll_layer_id;
outer_viewport_scroll_layer_id_ = outer_viewport_scroll_layer_id;
}
void LayerTreeImpl::ClearViewportLayers() {
overscroll_elasticity_layer_id_ = Layer::INVALID_ID;
page_scale_layer_id_ = Layer::INVALID_ID;
inner_viewport_scroll_layer_id_ = Layer::INVALID_ID;
outer_viewport_scroll_layer_id_ = Layer::INVALID_ID;
}
// For unit tests, we use the layer's id as its element id.
static void SetElementIdForTesting(LayerImpl* layer) {
layer->SetElementId(LayerIdToElementIdForTesting(layer->id()));
}
void LayerTreeImpl::SetElementIdsForTesting() {
LayerListIterator<LayerImpl> it(root_layer_for_testing_);
for (; it != LayerListIterator<LayerImpl>(nullptr); ++it) {
SetElementIdForTesting(*it);
}
}
bool LayerTreeImpl::UpdateDrawProperties(
bool update_lcd_text,
bool force_skip_verify_visible_rect_calculations) {
if (!needs_update_draw_properties_)
return true;
// Calling UpdateDrawProperties must clear this flag, so there can be no
// early outs before this.
needs_update_draw_properties_ = false;
// For max_texture_size. When a new output surface is received the needs
// update draw properties flag is set again.
if (!layer_tree_host_impl_->compositor_frame_sink())
return false;
// Clear this after the renderer early out, as it should still be
// possible to hit test even without a renderer.
render_surface_layer_list_.clear();
if (layer_list_.empty())
return false;
{
base::ElapsedTimer timer;
TRACE_EVENT2(
"cc", "LayerTreeImpl::UpdateDrawProperties::CalculateDrawProperties",
"IsActive", IsActiveTree(), "SourceFrameNumber", source_frame_number_);
// TODO(crbug.com/692780): Remove this option entirely once this get to
// stable and proves it works.
bool can_render_to_separate_surface = true;
// We verify visible rect calculations whenever we verify clip tree
// calculations except when this function is explicitly passed a flag asking
// us to skip it.
bool verify_visible_rect_calculations =
force_skip_verify_visible_rect_calculations
? false
: settings().verify_clip_tree_calculations;
LayerTreeHostCommon::CalcDrawPropsImplInputs inputs(
layer_list_[0], DrawViewportSize(),
layer_tree_host_impl_->DrawTransform(), device_scale_factor(),
current_page_scale_factor(), PageScaleLayer(),
InnerViewportScrollLayer(), OuterViewportScrollLayer(),
elastic_overscroll()->Current(IsActiveTree()),
OverscrollElasticityLayer(), resource_provider()->max_texture_size(),
can_render_to_separate_surface,
settings().layer_transforms_should_scale_layer_contents,
settings().verify_clip_tree_calculations,
verify_visible_rect_calculations, &render_surface_layer_list_,
&property_trees_);
LayerTreeHostCommon::CalculateDrawProperties(&inputs);
if (const char* client_name = GetClientNameForMetrics()) {
UMA_HISTOGRAM_COUNTS(
base::StringPrintf(
"Compositing.%s.LayerTreeImpl.CalculateDrawPropertiesUs",
client_name),
timer.Elapsed().InMicroseconds());
UMA_HISTOGRAM_COUNTS_100(
base::StringPrintf("Compositing.%s.NumRenderSurfaces", client_name),
base::saturated_cast<int>(render_surface_layer_list_.size()));
}
}
{
TRACE_EVENT2("cc", "LayerTreeImpl::UpdateDrawProperties::Occlusion",
"IsActive", IsActiveTree(), "SourceFrameNumber",
source_frame_number_);
OcclusionTracker occlusion_tracker(
layer_list_[0]->GetRenderSurface()->content_rect());
occlusion_tracker.set_minimum_tracking_size(
settings().minimum_occlusion_tracking_size);
// LayerIterator is used here instead of CallFunctionForEveryLayer to only
// UpdateTilePriorities on layers that will be visible (and thus have valid
// draw properties) and not because any ordering is required.
LayerIterator end = LayerIterator::End(&render_surface_layer_list_);
for (LayerIterator it = LayerIterator::Begin(&render_surface_layer_list_);
it != end; ++it) {
occlusion_tracker.EnterLayer(it);
if (it.represents_itself()) {
it->draw_properties().occlusion_in_content_space =
occlusion_tracker.GetCurrentOcclusionForLayer(it->DrawTransform());
}
if (it.represents_contributing_render_surface()) {
const RenderSurfaceImpl* occlusion_surface =
occlusion_tracker.OcclusionSurfaceForContributingSurface();
gfx::Transform draw_transform;
RenderSurfaceImpl* render_surface = it->GetRenderSurface();
if (occlusion_surface) {
// We are calculating transform between two render surfaces. So, we
// need to apply the surface contents scale at target and remove the
// surface contents scale at source.
property_trees()->GetToTarget(render_surface->TransformTreeIndex(),
occlusion_surface->EffectTreeIndex(),
&draw_transform);
const EffectNode* effect_node = property_trees()->effect_tree.Node(
render_surface->EffectTreeIndex());
draw_property_utils::ConcatInverseSurfaceContentsScale(
effect_node, &draw_transform);
}
Occlusion occlusion =
occlusion_tracker.GetCurrentOcclusionForContributingSurface(
draw_transform);
render_surface->set_occlusion_in_content_space(occlusion);
// Masks are used to draw the contributing surface, so should have
// the same occlusion as the surface (nothing inside the surface
// occludes them).
if (LayerImpl* mask = render_surface->MaskLayer()) {
mask->draw_properties().occlusion_in_content_space =
occlusion_tracker.GetCurrentOcclusionForContributingSurface(
draw_transform * it->DrawTransform());
}
}
occlusion_tracker.LeaveLayer(it);
}
unoccluded_screen_space_region_ =
occlusion_tracker.ComputeVisibleRegionInScreen(this);
}
// It'd be ideal if this could be done earlier, but when the raster source
// is updated from the main thread during push properties, update draw
// properties has not occurred yet and so it's not clear whether or not the
// layer can or cannot use lcd text. So, this is the cleanup pass to
// determine if the raster source needs to be replaced with a non-lcd
// raster source due to draw properties.
if (update_lcd_text) {
// TODO(enne): Make LTHI::sync_tree return this value.
LayerTreeImpl* sync_tree = layer_tree_host_impl_->CommitToActiveTree()
? layer_tree_host_impl_->active_tree()
: layer_tree_host_impl_->pending_tree();
// If this is not the sync tree, then it is not safe to update lcd text
// as it causes invalidations and the tiles may be in use.
DCHECK_EQ(this, sync_tree);
for (auto* layer : picture_layers_)
layer->UpdateCanUseLCDTextAfterCommit();
}
// Resourceless draw do not need tiles and should not affect existing tile
// priorities.
if (!is_in_resourceless_software_draw_mode()) {
TRACE_EVENT_BEGIN2("cc", "LayerTreeImpl::UpdateDrawProperties::UpdateTiles",
"IsActive", IsActiveTree(), "SourceFrameNumber",
source_frame_number_);
size_t layers_updated_count = 0;
bool tile_priorities_updated = false;
for (PictureLayerImpl* layer : picture_layers_) {
if (!layer->is_drawn_render_surface_layer_list_member())
continue;
++layers_updated_count;
tile_priorities_updated |= layer->UpdateTiles();
}
if (tile_priorities_updated)
DidModifyTilePriorities();
TRACE_EVENT_END1("cc", "LayerTreeImpl::UpdateDrawProperties::UpdateTiles",
"layers_updated_count", layers_updated_count);
}
DCHECK(!needs_update_draw_properties_)
<< "CalcDrawProperties should not set_needs_update_draw_properties()";
return true;
}
void LayerTreeImpl::BuildLayerListAndPropertyTreesForTesting() {
BuildLayerListForTesting();
BuildPropertyTreesForTesting();
}
void LayerTreeImpl::BuildPropertyTreesForTesting() {
PropertyTreeBuilder::PreCalculateMetaInformationForTesting(layer_list_[0]);
property_trees_.needs_rebuild = true;
property_trees_.transform_tree.set_source_to_parent_updates_allowed(true);
PropertyTreeBuilder::BuildPropertyTrees(
layer_list_[0], PageScaleLayer(), InnerViewportScrollLayer(),
OuterViewportScrollLayer(), OverscrollElasticityLayer(),
elastic_overscroll()->Current(IsActiveTree()),
current_page_scale_factor(), device_scale_factor(),
gfx::Rect(DrawViewportSize()), layer_tree_host_impl_->DrawTransform(),
&property_trees_);
property_trees_.transform_tree.set_source_to_parent_updates_allowed(false);
}
const LayerImplList& LayerTreeImpl::RenderSurfaceLayerList() const {
// If this assert triggers, then the list is dirty.
DCHECK(!needs_update_draw_properties_);
return render_surface_layer_list_;
}
const Region& LayerTreeImpl::UnoccludedScreenSpaceRegion() const {
// If this assert triggers, then the render_surface_layer_list_ is dirty, so
// the unoccluded_screen_space_region_ is not valid anymore.
DCHECK(!needs_update_draw_properties_);
return unoccluded_screen_space_region_;
}
gfx::SizeF LayerTreeImpl::ScrollableSize() const {
LayerImpl* root_scroll_layer = OuterViewportScrollLayer()
? OuterViewportScrollLayer()
: InnerViewportScrollLayer();
if (!root_scroll_layer)
return gfx::SizeF();
gfx::SizeF content_size = root_scroll_layer->BoundsForScrolling();
gfx::SizeF viewport_size =
root_scroll_layer->scroll_clip_layer()->BoundsForScrolling();
content_size.SetToMax(viewport_size);
return content_size;
}
LayerImpl* LayerTreeImpl::LayerById(int id) const {
LayerImplMap::const_iterator iter = layer_id_map_.find(id);
return iter != layer_id_map_.end() ? iter->second : nullptr;
}
void LayerTreeImpl::AddLayerShouldPushProperties(LayerImpl* layer) {
layers_that_should_push_properties_.insert(layer);
}
void LayerTreeImpl::RemoveLayerShouldPushProperties(LayerImpl* layer) {
layers_that_should_push_properties_.erase(layer);
}
std::unordered_set<LayerImpl*>&
LayerTreeImpl::LayersThatShouldPushProperties() {
return layers_that_should_push_properties_;
}
bool LayerTreeImpl::LayerNeedsPushPropertiesForTesting(LayerImpl* layer) {
return layers_that_should_push_properties_.find(layer) !=
layers_that_should_push_properties_.end();
}
void LayerTreeImpl::RegisterLayer(LayerImpl* layer) {
DCHECK(!LayerById(layer->id()));
layer_id_map_[layer->id()] = layer;
}
void LayerTreeImpl::UnregisterLayer(LayerImpl* layer) {
DCHECK(LayerById(layer->id()));
layers_that_should_push_properties_.erase(layer);
transform_animations_map_.erase(layer->id());
opacity_animations_map_.erase(layer->id());
layer_id_map_.erase(layer->id());
}
// These manage ownership of the LayerImpl.
void LayerTreeImpl::AddLayer(std::unique_ptr<LayerImpl> layer) {
DCHECK(std::find(layers_->begin(), layers_->end(), layer) == layers_->end());
layers_->push_back(std::move(layer));
set_needs_update_draw_properties();
}
std::unique_ptr<LayerImpl> LayerTreeImpl::RemoveLayer(int id) {
for (auto it = layers_->begin(); it != layers_->end(); ++it) {
if ((*it) && (*it)->id() != id)
continue;
std::unique_ptr<LayerImpl> ret = std::move(*it);
set_needs_update_draw_properties();
layers_->erase(it);
return ret;
}
return nullptr;
}
size_t LayerTreeImpl::NumLayers() {
return layer_id_map_.size();
}
void LayerTreeImpl::DidBecomeActive() {
if (next_activation_forces_redraw_) {
layer_tree_host_impl_->SetFullViewportDamage();
next_activation_forces_redraw_ = false;
}
// Always reset this flag on activation, as we would only have activated
// if we were in a good state.
layer_tree_host_impl_->ResetRequiresHighResToDraw();
if (!layer_list_.empty()) {
LayerTreeHostCommon::CallFunctionForEveryLayer(
this, [](LayerImpl* layer) { layer->DidBecomeActive(); });
}
for (const auto& swap_promise : swap_promise_list_)
swap_promise->DidActivate();
devtools_instrumentation::DidActivateLayerTree(layer_tree_host_impl_->id(),
source_frame_number_);
}
bool LayerTreeImpl::RequiresHighResToDraw() const {
return layer_tree_host_impl_->RequiresHighResToDraw();
}
bool LayerTreeImpl::ViewportSizeInvalid() const {
return viewport_size_invalid_;
}
void LayerTreeImpl::SetViewportSizeInvalid() {
viewport_size_invalid_ = true;
layer_tree_host_impl_->OnCanDrawStateChangedForTree();
}
void LayerTreeImpl::ResetViewportSizeInvalid() {
viewport_size_invalid_ = false;
layer_tree_host_impl_->OnCanDrawStateChangedForTree();
}
TaskRunnerProvider* LayerTreeImpl::task_runner_provider() const {
return layer_tree_host_impl_->task_runner_provider();
}
const LayerTreeSettings& LayerTreeImpl::settings() const {
return layer_tree_host_impl_->settings();
}
const LayerTreeDebugState& LayerTreeImpl::debug_state() const {
return layer_tree_host_impl_->debug_state();
}
ContextProvider* LayerTreeImpl::context_provider() const {
return layer_tree_host_impl_->compositor_frame_sink()->context_provider();
}
ResourceProvider* LayerTreeImpl::resource_provider() const {
return layer_tree_host_impl_->resource_provider();
}
TileManager* LayerTreeImpl::tile_manager() const {
return layer_tree_host_impl_->tile_manager();
}
ImageDecodeCache* LayerTreeImpl::image_decode_cache() const {
return layer_tree_host_impl_->image_decode_cache();
}
FrameRateCounter* LayerTreeImpl::frame_rate_counter() const {
return layer_tree_host_impl_->fps_counter();
}
MemoryHistory* LayerTreeImpl::memory_history() const {
return layer_tree_host_impl_->memory_history();
}
gfx::Size LayerTreeImpl::device_viewport_size() const {
return layer_tree_host_impl_->device_viewport_size();
}
DebugRectHistory* LayerTreeImpl::debug_rect_history() const {
return layer_tree_host_impl_->debug_rect_history();
}
bool LayerTreeImpl::IsActiveTree() const {
return layer_tree_host_impl_->active_tree() == this;
}
bool LayerTreeImpl::IsPendingTree() const {
return layer_tree_host_impl_->pending_tree() == this;
}
bool LayerTreeImpl::IsRecycleTree() const {
return layer_tree_host_impl_->recycle_tree() == this;
}
bool LayerTreeImpl::IsSyncTree() const {
return layer_tree_host_impl_->sync_tree() == this;
}
LayerImpl* LayerTreeImpl::FindActiveTreeLayerById(int id) {
LayerTreeImpl* tree = layer_tree_host_impl_->active_tree();
if (!tree)
return NULL;
return tree->LayerById(id);
}
LayerImpl* LayerTreeImpl::FindPendingTreeLayerById(int id) {
LayerTreeImpl* tree = layer_tree_host_impl_->pending_tree();
if (!tree)
return NULL;
return tree->LayerById(id);
}
bool LayerTreeImpl::PinchGestureActive() const {
return layer_tree_host_impl_->pinch_gesture_active();
}
BeginFrameArgs LayerTreeImpl::CurrentBeginFrameArgs() const {
return layer_tree_host_impl_->CurrentBeginFrameArgs();
}
base::TimeDelta LayerTreeImpl::CurrentBeginFrameInterval() const {
return layer_tree_host_impl_->CurrentBeginFrameInterval();
}
gfx::Rect LayerTreeImpl::DeviceViewport() const {
return layer_tree_host_impl_->DeviceViewport();
}
gfx::Size LayerTreeImpl::DrawViewportSize() const {
return layer_tree_host_impl_->DrawViewportSize();
}
const gfx::Rect LayerTreeImpl::ViewportRectForTilePriority() const {
return layer_tree_host_impl_->ViewportRectForTilePriority();
}
std::unique_ptr<ScrollbarAnimationController>
LayerTreeImpl::CreateScrollbarAnimationController(int scroll_layer_id) {
DCHECK(!settings().scrollbar_fade_out_delay.is_zero());
DCHECK(!settings().scrollbar_fade_out_duration.is_zero());
base::TimeDelta fade_out_delay = settings().scrollbar_fade_out_delay;
base::TimeDelta fade_out_resize_delay =
settings().scrollbar_fade_out_resize_delay;
base::TimeDelta fade_out_duration = settings().scrollbar_fade_out_duration;
switch (settings().scrollbar_animator) {
case LayerTreeSettings::ANDROID_OVERLAY: {
return ScrollbarAnimationController::
CreateScrollbarAnimationControllerAndroid(
scroll_layer_id, layer_tree_host_impl_, fade_out_delay,
fade_out_resize_delay, fade_out_duration);
}
case LayerTreeSettings::AURA_OVERLAY: {
DCHECK(!settings().scrollbar_show_delay.is_zero());
base::TimeDelta show_delay = settings().scrollbar_show_delay;
base::TimeDelta thinning_duration =
settings().scrollbar_thinning_duration;
return ScrollbarAnimationController::
CreateScrollbarAnimationControllerAuraOverlay(
scroll_layer_id, layer_tree_host_impl_, show_delay,
fade_out_delay, fade_out_resize_delay, fade_out_duration,
thinning_duration);
}
case LayerTreeSettings::NO_ANIMATOR:
NOTREACHED();
break;
}
return nullptr;
}
void LayerTreeImpl::DidAnimateScrollOffset() {
layer_tree_host_impl_->DidAnimateScrollOffset();
}
bool LayerTreeImpl::use_gpu_rasterization() const {
return layer_tree_host_impl_->use_gpu_rasterization();
}
GpuRasterizationStatus LayerTreeImpl::GetGpuRasterizationStatus() const {
return layer_tree_host_impl_->gpu_rasterization_status();
}
bool LayerTreeImpl::create_low_res_tiling() const {
return layer_tree_host_impl_->create_low_res_tiling();
}
void LayerTreeImpl::SetNeedsRedraw() {
layer_tree_host_impl_->SetNeedsRedraw();
}
void LayerTreeImpl::GetAllPrioritizedTilesForTracing(
std::vector<PrioritizedTile>* prioritized_tiles) const {
LayerIterator end = LayerIterator::End(&render_surface_layer_list_);
for (LayerIterator it = LayerIterator::Begin(&render_surface_layer_list_);
it != end; ++it) {
if (!it.represents_itself())
continue;
LayerImpl* layer_impl = *it;
layer_impl->GetAllPrioritizedTilesForTracing(prioritized_tiles);
}
}
void LayerTreeImpl::AsValueInto(base::trace_event::TracedValue* state) const {
TracedValue::MakeDictIntoImplicitSnapshot(state, "cc::LayerTreeImpl", this);
state->SetInteger("source_frame_number", source_frame_number_);
state->BeginArray("render_surface_layer_list");
LayerIterator end = LayerIterator::End(&render_surface_layer_list_);
for (LayerIterator it = LayerIterator::Begin(&render_surface_layer_list_);
it != end; ++it) {
if (!it.represents_itself())
continue;
TracedValue::AppendIDRef(*it, state);
}
state->EndArray();
state->BeginArray("swap_promise_trace_ids");
for (const auto& swap_promise : swap_promise_list_)
state->AppendDouble(swap_promise->TraceId());
state->EndArray();
state->BeginArray("pinned_swap_promise_trace_ids");
for (const auto& swap_promise : pinned_swap_promise_list_)
state->AppendDouble(swap_promise->TraceId());
state->EndArray();
state->BeginArray("layers");
for (auto* layer : *this) {
state->BeginDictionary();
layer->AsValueInto(state);
state->EndDictionary();
}
state->EndArray();
}
bool LayerTreeImpl::DistributeRootScrollOffset(
const gfx::ScrollOffset& root_offset) {
if (!InnerViewportScrollLayer())
return false;
DCHECK(OuterViewportScrollLayer());
// If we get here, we have both inner/outer viewports, and need to distribute
// the scroll offset between them.
gfx::ScrollOffset inner_viewport_offset =
InnerViewportScrollLayer()->CurrentScrollOffset();
gfx::ScrollOffset outer_viewport_offset =
OuterViewportScrollLayer()->CurrentScrollOffset();
// It may be nothing has changed.
DCHECK(inner_viewport_offset + outer_viewport_offset == TotalScrollOffset());
if (inner_viewport_offset + outer_viewport_offset == root_offset)
return false;
gfx::ScrollOffset max_outer_viewport_scroll_offset =
OuterViewportScrollLayer()->MaxScrollOffset();
outer_viewport_offset = root_offset - inner_viewport_offset;
outer_viewport_offset.SetToMin(max_outer_viewport_scroll_offset);
outer_viewport_offset.SetToMax(gfx::ScrollOffset());
OuterViewportScrollLayer()->SetCurrentScrollOffset(outer_viewport_offset);
inner_viewport_offset = root_offset - outer_viewport_offset;
InnerViewportScrollLayer()->SetCurrentScrollOffset(inner_viewport_offset);
return true;
}
void LayerTreeImpl::QueueSwapPromise(
std::unique_ptr<SwapPromise> swap_promise) {
DCHECK(swap_promise);
swap_promise_list_.push_back(std::move(swap_promise));
}
void LayerTreeImpl::QueuePinnedSwapPromise(
std::unique_ptr<SwapPromise> swap_promise) {
DCHECK(IsActiveTree());
DCHECK(swap_promise);
pinned_swap_promise_list_.push_back(std::move(swap_promise));
}
void LayerTreeImpl::PassSwapPromises(
std::vector<std::unique_ptr<SwapPromise>> new_swap_promises) {
for (auto& swap_promise : swap_promise_list_) {
if (swap_promise->DidNotSwap(SwapPromise::SWAP_FAILS) ==
SwapPromise::DidNotSwapAction::KEEP_ACTIVE) {
// |swap_promise| must remain active, so place it in |new_swap_promises|
// in order to keep it alive and active.
new_swap_promises.push_back(std::move(swap_promise));
}
}
swap_promise_list_.clear();
swap_promise_list_.swap(new_swap_promises);
}
void LayerTreeImpl::AppendSwapPromises(
std::vector<std::unique_ptr<SwapPromise>> new_swap_promises) {
std::move(new_swap_promises.begin(), new_swap_promises.end(),
std::back_inserter(swap_promise_list_));
new_swap_promises.clear();
}
void LayerTreeImpl::FinishSwapPromises(CompositorFrameMetadata* metadata) {
for (const auto& swap_promise : swap_promise_list_)
swap_promise->WillSwap(metadata);
for (const auto& swap_promise : pinned_swap_promise_list_)
swap_promise->WillSwap(metadata);
}
void LayerTreeImpl::ClearSwapPromises() {
for (const auto& swap_promise : swap_promise_list_)
swap_promise->DidSwap();
swap_promise_list_.clear();
for (const auto& swap_promise : pinned_swap_promise_list_)
swap_promise->DidSwap();
pinned_swap_promise_list_.clear();
}
void LayerTreeImpl::BreakSwapPromises(SwapPromise::DidNotSwapReason reason) {
{
std::vector<std::unique_ptr<SwapPromise>> persistent_swap_promises;
for (auto& swap_promise : swap_promise_list_) {
if (swap_promise->DidNotSwap(reason) ==
SwapPromise::DidNotSwapAction::KEEP_ACTIVE) {
persistent_swap_promises.push_back(std::move(swap_promise));
}
}
// |persistent_swap_promises| must remain active even when swap fails.
swap_promise_list_ = std::move(persistent_swap_promises);
}
{
std::vector<std::unique_ptr<SwapPromise>> persistent_swap_promises;
for (auto& swap_promise : pinned_swap_promise_list_) {
if (swap_promise->DidNotSwap(reason) ==
SwapPromise::DidNotSwapAction::KEEP_ACTIVE) {
persistent_swap_promises.push_back(std::move(swap_promise));
}
}
// |persistent_swap_promises| must remain active even when swap fails.
pinned_swap_promise_list_ = std::move(persistent_swap_promises);
}
}
void LayerTreeImpl::DidModifyTilePriorities() {
layer_tree_host_impl_->DidModifyTilePriorities();
}
void LayerTreeImpl::set_ui_resource_request_queue(
UIResourceRequestQueue queue) {
ui_resource_request_queue_ = std::move(queue);
}
ResourceId LayerTreeImpl::ResourceIdForUIResource(UIResourceId uid) const {
return layer_tree_host_impl_->ResourceIdForUIResource(uid);
}
bool LayerTreeImpl::IsUIResourceOpaque(UIResourceId uid) const {
return layer_tree_host_impl_->IsUIResourceOpaque(uid);
}
void LayerTreeImpl::ProcessUIResourceRequestQueue() {
for (const auto& req : ui_resource_request_queue_) {
switch (req.GetType()) {
case UIResourceRequest::UI_RESOURCE_CREATE:
layer_tree_host_impl_->CreateUIResource(req.GetId(), req.GetBitmap());
break;
case UIResourceRequest::UI_RESOURCE_DELETE:
layer_tree_host_impl_->DeleteUIResource(req.GetId());
break;
case UIResourceRequest::UI_RESOURCE_INVALID_REQUEST:
NOTREACHED();
break;
}
}
ui_resource_request_queue_.clear();
// If all UI resource evictions were not recreated by processing this queue,
// then another commit is required.
if (layer_tree_host_impl_->EvictedUIResourcesExist())
layer_tree_host_impl_->SetNeedsCommit();
}
void LayerTreeImpl::RegisterPictureLayerImpl(PictureLayerImpl* layer) {
DCHECK(std::find(picture_layers_.begin(), picture_layers_.end(), layer) ==
picture_layers_.end());
picture_layers_.push_back(layer);
}
void LayerTreeImpl::UnregisterPictureLayerImpl(PictureLayerImpl* layer) {
std::vector<PictureLayerImpl*>::iterator it =
std::find(picture_layers_.begin(), picture_layers_.end(), layer);
DCHECK(it != picture_layers_.end());
picture_layers_.erase(it);
}
void LayerTreeImpl::RegisterScrollbar(ScrollbarLayerImplBase* scrollbar_layer) {
if (scrollbar_layer->ScrollLayerId() == Layer::INVALID_ID)
return;
scrollbar_map_.insert(std::pair<int, int>(scrollbar_layer->ScrollLayerId(),
scrollbar_layer->id()));
if (IsActiveTree() && scrollbar_layer->is_overlay_scrollbar())
layer_tree_host_impl_->RegisterScrollbarAnimationController(
scrollbar_layer->ScrollLayerId());
DidUpdateScrollState(scrollbar_layer->ScrollLayerId());
}
void LayerTreeImpl::UnregisterScrollbar(
ScrollbarLayerImplBase* scrollbar_layer) {
int scroll_layer_id = scrollbar_layer->ScrollLayerId();
if (scroll_layer_id == Layer::INVALID_ID)
return;
auto scrollbar_range = scrollbar_map_.equal_range(scroll_layer_id);
for (auto i = scrollbar_range.first; i != scrollbar_range.second; ++i)
if (i->second == scrollbar_layer->id()) {
scrollbar_map_.erase(i);
break;
}
if (IsActiveTree() && scrollbar_map_.count(scroll_layer_id) == 0)
layer_tree_host_impl_->UnregisterScrollbarAnimationController(
scroll_layer_id);
}
ScrollbarSet LayerTreeImpl::ScrollbarsFor(int scroll_layer_id) const {
ScrollbarSet scrollbars;
auto scrollbar_range = scrollbar_map_.equal_range(scroll_layer_id);
for (auto i = scrollbar_range.first; i != scrollbar_range.second; ++i)
scrollbars.insert(LayerById(i->second)->ToScrollbarLayer());
return scrollbars;
}
void LayerTreeImpl::RegisterScrollLayer(LayerImpl* layer) {
if (layer->scroll_clip_layer_id() == Layer::INVALID_ID)
return;
clip_scroll_map_.insert(
std::pair<int, int>(layer->scroll_clip_layer_id(), layer->id()));
DidUpdateScrollState(layer->id());
}
void LayerTreeImpl::UnregisterScrollLayer(LayerImpl* layer) {
if (layer->scroll_clip_layer_id() == Layer::INVALID_ID)
return;
clip_scroll_map_.erase(layer->scroll_clip_layer_id());
}
void LayerTreeImpl::AddSurfaceLayer(LayerImpl* layer) {
DCHECK(std::find(surface_layers_.begin(), surface_layers_.end(), layer) ==
surface_layers_.end());
surface_layers_.push_back(layer);
}
void LayerTreeImpl::RemoveSurfaceLayer(LayerImpl* layer) {
LayerImplList::iterator it =
std::find(surface_layers_.begin(), surface_layers_.end(), layer);
DCHECK(it != surface_layers_.end());
surface_layers_.erase(it);
}
template <typename LayerType>
static inline bool LayerClipsSubtree(LayerType* layer) {
return layer->masks_to_bounds() || layer->mask_layer();
}
static bool PointHitsRect(
const gfx::PointF& screen_space_point,
const gfx::Transform& local_space_to_screen_space_transform,
const gfx::Rect& local_space_rect,
float* distance_to_camera) {
// If the transform is not invertible, then assume that this point doesn't hit
// this rect.
gfx::Transform inverse_local_space_to_screen_space(
gfx::Transform::kSkipInitialization);
if (!local_space_to_screen_space_transform.GetInverse(
&inverse_local_space_to_screen_space))
return false;
// Transform the hit test point from screen space to the local space of the
// given rect.
bool clipped = false;
gfx::Point3F planar_point = MathUtil::ProjectPoint3D(
inverse_local_space_to_screen_space, screen_space_point, &clipped);
gfx::PointF hit_test_point_in_local_space =
gfx::PointF(planar_point.x(), planar_point.y());
// If ProjectPoint could not project to a valid value, then we assume that
// this point doesn't hit this rect.
if (clipped)
return false;
if (!gfx::RectF(local_space_rect).Contains(hit_test_point_in_local_space))
return false;
if (distance_to_camera) {
// To compute the distance to the camera, we have to take the planar point
// and pull it back to world space and compute the displacement along the
// z-axis.
gfx::Point3F planar_point_in_screen_space(planar_point);
local_space_to_screen_space_transform.TransformPoint(
&planar_point_in_screen_space);
*distance_to_camera = planar_point_in_screen_space.z();
}
return true;
}
static bool PointHitsRegion(const gfx::PointF& screen_space_point,
const gfx::Transform& screen_space_transform,
const Region& layer_space_region) {
// If the transform is not invertible, then assume that this point doesn't hit
// this region.
gfx::Transform inverse_screen_space_transform(
gfx::Transform::kSkipInitialization);
if (!screen_space_transform.GetInverse(&inverse_screen_space_transform))
return false;
// Transform the hit test point from screen space to the local space of the
// given region.
bool clipped = false;
gfx::PointF hit_test_point_in_layer_space = MathUtil::ProjectPoint(
inverse_screen_space_transform, screen_space_point, &clipped);
// If ProjectPoint could not project to a valid value, then we assume that
// this point doesn't hit this region.
if (clipped)
return false;
return layer_space_region.Contains(
gfx::ToRoundedPoint(hit_test_point_in_layer_space));
}
static const gfx::Transform SurfaceScreenSpaceTransform(
const LayerImpl* layer) {
const PropertyTrees* property_trees =
layer->layer_tree_impl()->property_trees();
RenderSurfaceImpl* render_surface = layer->GetRenderSurface();
DCHECK(render_surface);
return layer->is_drawn_render_surface_layer_list_member()
? render_surface->screen_space_transform()
: property_trees
->ToScreenSpaceTransformWithoutSurfaceContentsScale(
render_surface->TransformTreeIndex(),
render_surface->EffectTreeIndex());
}
static bool PointIsClippedByAncestorClipNode(
const gfx::PointF& screen_space_point,
const LayerImpl* layer) {
// We need to visit all ancestor clip nodes to check this. Checking with just
// the combined clip stored at a clip node is not enough because parent
// combined clip can sometimes be smaller than current combined clip. This can
// happen when we have transforms like rotation that inflate the combined
// clip's bounds. Also, the point can be clipped by the content rect of an
// ancestor render surface.
// We first check if the point is clipped by viewport.
const PropertyTrees* property_trees =
layer->layer_tree_impl()->property_trees();
const ClipTree& clip_tree = property_trees->clip_tree;
const TransformTree& transform_tree = property_trees->transform_tree;
const ClipNode* clip_node = clip_tree.Node(1);
gfx::Rect clip = gfx::ToEnclosingRect(clip_node->clip);
if (!PointHitsRect(screen_space_point, gfx::Transform(), clip, NULL))
return true;
for (const ClipNode* clip_node = clip_tree.Node(layer->clip_tree_index());
clip_node->id > ClipTree::kViewportNodeId;
clip_node = clip_tree.parent(clip_node)) {
if (clip_node->clip_type == ClipNode::ClipType::APPLIES_LOCAL_CLIP) {
gfx::Rect clip = gfx::ToEnclosingRect(clip_node->clip);
gfx::Transform screen_space_transform =
transform_tree.ToScreen(clip_node->transform_id);
if (!PointHitsRect(screen_space_point, screen_space_transform, clip,
NULL)) {
return true;
}
}
const LayerImpl* clip_node_owner =
layer->layer_tree_impl()->LayerById(clip_node->owning_layer_id);
RenderSurfaceImpl* render_surface = clip_node_owner->GetRenderSurface();
if (render_surface &&
!PointHitsRect(screen_space_point,
SurfaceScreenSpaceTransform(clip_node_owner),
render_surface->content_rect(), NULL)) {
return true;
}
}
return false;
}
static bool PointIsClippedBySurfaceOrClipRect(
const gfx::PointF& screen_space_point,
const LayerImpl* layer) {
// Walk up the layer tree and hit-test any render_surfaces and any layer
// clip rects that are active.
return PointIsClippedByAncestorClipNode(screen_space_point, layer);
}
static bool PointHitsLayer(const LayerImpl* layer,
const gfx::PointF& screen_space_point,
float* distance_to_intersection) {
gfx::Rect content_rect(layer->bounds());
if (!PointHitsRect(screen_space_point, layer->ScreenSpaceTransform(),
content_rect, distance_to_intersection)) {
return false;
}
// At this point, we think the point does hit the layer, but we need to walk
// up the parents to ensure that the layer was not clipped in such a way
// that the hit point actually should not hit the layer.
if (PointIsClippedBySurfaceOrClipRect(screen_space_point, layer))
return false;
// Skip the HUD layer.
if (layer == layer->layer_tree_impl()->hud_layer())
return false;
return true;
}
struct FindClosestMatchingLayerState {
FindClosestMatchingLayerState()
: closest_match(NULL),
closest_distance(-std::numeric_limits<float>::infinity()) {}
LayerImpl* closest_match;
// Note that the positive z-axis points towards the camera, so bigger means
// closer in this case, counterintuitively.
float closest_distance;
};
template <typename Functor>
static void FindClosestMatchingLayer(const gfx::PointF& screen_space_point,
LayerImpl* root_layer,
const Functor& func,
FindClosestMatchingLayerState* state) {
// We want to iterate from front to back when hit testing.
{
base::ElapsedTimer timer;
for (auto* layer : base::Reversed(*root_layer->layer_tree_impl())) {
if (!func(layer))
continue;
float distance_to_intersection = 0.f;
bool hit = false;
if (layer->Is3dSorted())
hit = PointHitsLayer(layer, screen_space_point,
&distance_to_intersection);
else
hit = PointHitsLayer(layer, screen_space_point, nullptr);
if (!hit)
continue;
bool in_front_of_previous_candidate =
state->closest_match &&
layer->GetSortingContextId() ==
state->closest_match->GetSortingContextId() &&
distance_to_intersection >
state->closest_distance + std::numeric_limits<float>::epsilon();
if (!state->closest_match || in_front_of_previous_candidate) {
state->closest_distance = distance_to_intersection;
state->closest_match = layer;
}
}
UMA_HISTOGRAM_COUNTS("Compositing.LayerTreeImpl.FindClosestMatchingLayerUs",
timer.Elapsed().InMicroseconds());
}
}
struct FindScrollingLayerOrDrawnScrollbarFunctor {
bool operator()(LayerImpl* layer) const {
return layer->scrollable() || layer->IsDrawnScrollbar();
}
};
LayerImpl*
LayerTreeImpl::FindFirstScrollingLayerOrDrawnScrollbarThatIsHitByPoint(
const gfx::PointF& screen_space_point) {
FindClosestMatchingLayerState state;
LayerImpl* root_layer = layer_list_.empty() ? nullptr : layer_list_[0];
FindClosestMatchingLayer(screen_space_point, root_layer,
FindScrollingLayerOrDrawnScrollbarFunctor(), &state);
return state.closest_match;
}
struct HitTestVisibleScrollableOrTouchableFunctor {
bool operator()(LayerImpl* layer) const {
return layer->scrollable() ||
layer->is_drawn_render_surface_layer_list_member() ||
!layer->touch_event_handler_region().IsEmpty();
}
};
LayerImpl* LayerTreeImpl::FindLayerThatIsHitByPoint(
const gfx::PointF& screen_space_point) {
if (layer_list_.empty())
return NULL;
bool update_lcd_text = false;
if (!UpdateDrawProperties(update_lcd_text))
return NULL;
FindClosestMatchingLayerState state;
FindClosestMatchingLayer(screen_space_point, layer_list_[0],
HitTestVisibleScrollableOrTouchableFunctor(),
&state);
return state.closest_match;
}
static bool LayerHasTouchEventHandlersAt(const gfx::PointF& screen_space_point,
LayerImpl* layer_impl) {
if (layer_impl->touch_event_handler_region().IsEmpty())
return false;
if (!PointHitsRegion(screen_space_point, layer_impl->ScreenSpaceTransform(),
layer_impl->touch_event_handler_region()))
return false;
// At this point, we think the point does hit the touch event handler region
// on the layer, but we need to walk up the parents to ensure that the layer
// was not clipped in such a way that the hit point actually should not hit
// the layer.
if (PointIsClippedBySurfaceOrClipRect(screen_space_point, layer_impl))
return false;
return true;
}
struct FindTouchEventLayerFunctor {
bool operator()(LayerImpl* layer) const {
return LayerHasTouchEventHandlersAt(screen_space_point, layer);
}
const gfx::PointF screen_space_point;
};
LayerImpl* LayerTreeImpl::FindLayerThatIsHitByPointInTouchHandlerRegion(
const gfx::PointF& screen_space_point) {
if (layer_list_.empty())
return NULL;
bool update_lcd_text = false;
if (!UpdateDrawProperties(update_lcd_text))
return NULL;
FindTouchEventLayerFunctor func = {screen_space_point};
FindClosestMatchingLayerState state;
FindClosestMatchingLayer(screen_space_point, layer_list_[0], func, &state);
return state.closest_match;
}
void LayerTreeImpl::RegisterSelection(const LayerSelection& selection) {
if (selection_ == selection)
return;
handle_visibility_changed_ = true;
selection_ = selection;
}
bool LayerTreeImpl::GetAndResetHandleVisibilityChanged() {
bool curr_handle_visibility_changed = handle_visibility_changed_;
handle_visibility_changed_ = false;
return curr_handle_visibility_changed;
}
static gfx::SelectionBound ComputeViewportSelectionBound(
const LayerSelectionBound& layer_bound,
LayerImpl* layer,
float device_scale_factor) {
gfx::SelectionBound viewport_bound;
viewport_bound.set_type(layer_bound.type);
if (!layer || layer_bound.type == gfx::SelectionBound::EMPTY)
return viewport_bound;
auto layer_top = gfx::PointF(layer_bound.edge_top);
auto layer_bottom = gfx::PointF(layer_bound.edge_bottom);
gfx::Transform screen_space_transform = layer->ScreenSpaceTransform();
bool clipped = false;
gfx::PointF screen_top =
MathUtil::MapPoint(screen_space_transform, layer_top, &clipped);
gfx::PointF screen_bottom =
MathUtil::MapPoint(screen_space_transform, layer_bottom, &clipped);
// MapPoint can produce points with NaN components (even when no inputs are
// NaN). Since consumers of gfx::SelectionBounds may round |edge_top| or
// |edge_bottom| (and since rounding will crash on NaN), we return an empty
// bound instead.
if (std::isnan(screen_top.x()) || std::isnan(screen_top.y()) ||
std::isnan(screen_bottom.x()) || std::isnan(screen_bottom.y()))
return gfx::SelectionBound();
const float inv_scale = 1.f / device_scale_factor;
viewport_bound.SetEdgeTop(gfx::ScalePoint(screen_top, inv_scale));
viewport_bound.SetEdgeBottom(gfx::ScalePoint(screen_bottom, inv_scale));
// The bottom edge point is used for visibility testing as it is the logical
// focal point for bound selection handles (this may change in the future).
// Shifting the visibility point fractionally inward ensures that neighboring
// or logically coincident layers aligned to integral DPI coordinates will not
// spuriously occlude the bound.
gfx::Vector2dF visibility_offset = layer_top - layer_bottom;
visibility_offset.Scale(device_scale_factor / visibility_offset.Length());
gfx::PointF visibility_point = layer_bottom + visibility_offset;
if (visibility_point.x() <= 0)
visibility_point.set_x(visibility_point.x() + device_scale_factor);
visibility_point =
MathUtil::MapPoint(screen_space_transform, visibility_point, &clipped);
float intersect_distance = 0.f;
viewport_bound.set_visible(
PointHitsLayer(layer, visibility_point, &intersect_distance));
return viewport_bound;
}
void LayerTreeImpl::GetViewportSelection(
Selection<gfx::SelectionBound>* selection) {
DCHECK(selection);
selection->start = ComputeViewportSelectionBound(
selection_.start,
selection_.start.layer_id ? LayerById(selection_.start.layer_id) : NULL,
device_scale_factor());
if (selection->start.type() == gfx::SelectionBound::CENTER ||
selection->start.type() == gfx::SelectionBound::EMPTY) {
selection->end = selection->start;
} else {
selection->end = ComputeViewportSelectionBound(
selection_.end,
selection_.end.layer_id ? LayerById(selection_.end.layer_id) : NULL,
device_scale_factor());
}
}
bool LayerTreeImpl::SmoothnessTakesPriority() const {
return layer_tree_host_impl_->GetTreePriority() == SMOOTHNESS_TAKES_PRIORITY;
}
VideoFrameControllerClient* LayerTreeImpl::GetVideoFrameControllerClient()
const {
return layer_tree_host_impl_;
}
void LayerTreeImpl::SetPendingPageScaleAnimation(
std::unique_ptr<PendingPageScaleAnimation> pending_animation) {
pending_page_scale_animation_ = std::move(pending_animation);
}
std::unique_ptr<PendingPageScaleAnimation>
LayerTreeImpl::TakePendingPageScaleAnimation() {
return std::move(pending_page_scale_animation_);
}
void LayerTreeImpl::ResetAllChangeTracking() {
layers_that_should_push_properties_.clear();
// Iterate over all layers, including masks.
for (auto& layer : *layers_)
layer->ResetChangeTracking();
property_trees_.ResetAllChangeTracking();
}
} // namespace cc