blob: fa04e0fca0a770b9a4ece9b9406d3b9cbf127f39 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/ic/ic.h"
#include <iostream>
#include "src/accessors.h"
#include "src/api-arguments-inl.h"
#include "src/api.h"
#include "src/arguments.h"
#include "src/base/bits.h"
#include "src/codegen.h"
#include "src/conversions.h"
#include "src/execution.h"
#include "src/field-type.h"
#include "src/frames-inl.h"
#include "src/ic/call-optimization.h"
#include "src/ic/handler-compiler.h"
#include "src/ic/handler-configuration-inl.h"
#include "src/ic/ic-compiler.h"
#include "src/ic/ic-inl.h"
#include "src/ic/ic-stats.h"
#include "src/ic/stub-cache.h"
#include "src/isolate-inl.h"
#include "src/macro-assembler.h"
#include "src/prototype.h"
#include "src/runtime-profiler.h"
#include "src/runtime/runtime-utils.h"
#include "src/runtime/runtime.h"
#include "src/tracing/trace-event.h"
#include "src/tracing/tracing-category-observer.h"
namespace v8 {
namespace internal {
char IC::TransitionMarkFromState(IC::State state) {
switch (state) {
case UNINITIALIZED:
return '0';
case PREMONOMORPHIC:
return '.';
case MONOMORPHIC:
return '1';
case RECOMPUTE_HANDLER:
return '^';
case POLYMORPHIC:
return 'P';
case MEGAMORPHIC:
return 'N';
case GENERIC:
return 'G';
}
UNREACHABLE();
return 0;
}
const char* GetTransitionMarkModifier(KeyedAccessStoreMode mode) {
if (mode == STORE_NO_TRANSITION_HANDLE_COW) return ".COW";
if (mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) {
return ".IGNORE_OOB";
}
if (IsGrowStoreMode(mode)) return ".GROW";
return "";
}
#ifdef DEBUG
#define TRACE_GENERIC_IC(isolate, type, reason) \
do { \
if (FLAG_trace_ic) { \
PrintF("[%s patching generic stub in ", type); \
JavaScriptFrame::PrintTop(isolate, stdout, false, true); \
PrintF(" (%s)]\n", reason); \
} \
} while (false)
#else
#define TRACE_GENERIC_IC(isolate, type, reason) \
do { \
if (FLAG_trace_ic) { \
PrintF("[%s patching generic stub in ", type); \
PrintF("(see below) (%s)]\n", reason); \
} \
} while (false)
#endif // DEBUG
void IC::TraceIC(const char* type, Handle<Object> name) {
if (FLAG_ic_stats) {
if (AddressIsDeoptimizedCode()) return;
DCHECK(UseVector());
State new_state = nexus()->StateFromFeedback();
TraceIC(type, name, state(), new_state);
}
}
void IC::TraceIC(const char* type, Handle<Object> name, State old_state,
State new_state) {
if (V8_LIKELY(!FLAG_ic_stats)) return;
if (FLAG_ic_stats &
v8::tracing::TracingCategoryObserver::ENABLED_BY_TRACING) {
ICStats::instance()->Begin();
ICInfo& ic_info = ICStats::instance()->Current();
ic_info.type = is_keyed() ? "Keyed" : "";
ic_info.type += type;
} else {
PrintF("[%s%s in ", is_keyed() ? "Keyed" : "", type);
}
// TODO(jkummerow): Add support for "apply". The logic is roughly:
// marker = [fp_ + kMarkerOffset];
// if marker is smi and marker.value == INTERNAL and
// the frame's code == builtin(Builtins::kFunctionApply):
// then print "apply from" and advance one frame
Object* maybe_function =
Memory::Object_at(fp_ + JavaScriptFrameConstants::kFunctionOffset);
if (maybe_function->IsJSFunction()) {
JSFunction* function = JSFunction::cast(maybe_function);
int code_offset = 0;
if (function->IsInterpreted()) {
code_offset = InterpretedFrame::GetBytecodeOffset(fp());
} else {
code_offset =
static_cast<int>(pc() - function->code()->instruction_start());
}
if (FLAG_ic_stats &
v8::tracing::TracingCategoryObserver::ENABLED_BY_TRACING) {
JavaScriptFrame::CollectFunctionAndOffsetForICStats(
function, function->abstract_code(), code_offset);
} else {
JavaScriptFrame::PrintFunctionAndOffset(
function, function->abstract_code(), code_offset, stdout, true);
}
}
const char* modifier = "";
if (kind() == Code::KEYED_STORE_IC) {
KeyedAccessStoreMode mode =
casted_nexus<KeyedStoreICNexus>()->GetKeyedAccessStoreMode();
modifier = GetTransitionMarkModifier(mode);
}
Map* map = nullptr;
if (!receiver_map().is_null()) {
map = *receiver_map();
}
if (FLAG_ic_stats &
v8::tracing::TracingCategoryObserver::ENABLED_BY_TRACING) {
ICInfo& ic_info = ICStats::instance()->Current();
// Reverse enough space for IC transition state, the longest length is 17.
ic_info.state.reserve(17);
ic_info.state = "(";
ic_info.state += TransitionMarkFromState(old_state);
ic_info.state += "->";
ic_info.state += TransitionMarkFromState(new_state);
ic_info.state += modifier;
ic_info.state += ")";
ic_info.map = reinterpret_cast<void*>(map);
} else {
PrintF(" (%c->%c%s) map=(%p", TransitionMarkFromState(old_state),
TransitionMarkFromState(new_state), modifier,
reinterpret_cast<void*>(map));
}
if (map != nullptr) {
if (FLAG_ic_stats &
v8::tracing::TracingCategoryObserver::ENABLED_BY_TRACING) {
ICInfo& ic_info = ICStats::instance()->Current();
ic_info.is_dictionary_map = map->is_dictionary_map();
ic_info.number_of_own_descriptors = map->NumberOfOwnDescriptors();
ic_info.instance_type = std::to_string(map->instance_type());
} else {
PrintF(" dict=%u own=%u type=", map->is_dictionary_map(),
map->NumberOfOwnDescriptors());
std::cout << map->instance_type();
}
}
if (FLAG_ic_stats &
v8::tracing::TracingCategoryObserver::ENABLED_BY_TRACING) {
// TODO(lpy) Add name as key field in ICStats.
ICStats::instance()->End();
} else {
PrintF(") ");
name->ShortPrint(stdout);
PrintF("]\n");
}
}
#define TRACE_IC(type, name) TraceIC(type, name)
IC::IC(FrameDepth depth, Isolate* isolate, FeedbackNexus* nexus)
: isolate_(isolate),
vector_set_(false),
target_maps_set_(false),
nexus_(nexus) {
// To improve the performance of the (much used) IC code, we unfold a few
// levels of the stack frame iteration code. This yields a ~35% speedup when
// running DeltaBlue and a ~25% speedup of gbemu with the '--nouse-ic' flag.
const Address entry = Isolate::c_entry_fp(isolate->thread_local_top());
Address* constant_pool = NULL;
if (FLAG_enable_embedded_constant_pool) {
constant_pool = reinterpret_cast<Address*>(
entry + ExitFrameConstants::kConstantPoolOffset);
}
Address* pc_address =
reinterpret_cast<Address*>(entry + ExitFrameConstants::kCallerPCOffset);
Address fp = Memory::Address_at(entry + ExitFrameConstants::kCallerFPOffset);
// If there's another JavaScript frame on the stack or a
// StubFailureTrampoline, we need to look one frame further down the stack to
// find the frame pointer and the return address stack slot.
if (depth == EXTRA_CALL_FRAME) {
if (FLAG_enable_embedded_constant_pool) {
constant_pool = reinterpret_cast<Address*>(
fp + StandardFrameConstants::kConstantPoolOffset);
}
const int kCallerPCOffset = StandardFrameConstants::kCallerPCOffset;
pc_address = reinterpret_cast<Address*>(fp + kCallerPCOffset);
fp = Memory::Address_at(fp + StandardFrameConstants::kCallerFPOffset);
}
#ifdef DEBUG
StackFrameIterator it(isolate);
for (int i = 0; i < depth + 1; i++) it.Advance();
StackFrame* frame = it.frame();
DCHECK(fp == frame->fp() && pc_address == frame->pc_address());
#endif
// For interpreted functions, some bytecode handlers construct a
// frame. We have to skip the constructed frame to find the interpreted
// function's frame. Check if the there is an additional frame, and if there
// is skip this frame. However, the pc should not be updated. The call to
// ICs happen from bytecode handlers.
Object* frame_type =
Memory::Object_at(fp + TypedFrameConstants::kFrameTypeOffset);
if (frame_type == Smi::FromInt(StackFrame::STUB)) {
fp = Memory::Address_at(fp + TypedFrameConstants::kCallerFPOffset);
}
fp_ = fp;
if (FLAG_enable_embedded_constant_pool) {
constant_pool_address_ = constant_pool;
}
pc_address_ = StackFrame::ResolveReturnAddressLocation(pc_address);
Code* target = this->target();
kind_ = target->kind();
state_ = UseVector() ? nexus->StateFromFeedback() : StateFromCode(target);
old_state_ = state_;
extra_ic_state_ = target->extra_ic_state();
}
// The ICs that don't pass slot and vector through the stack have to
// save/restore them in the dispatcher.
bool IC::ShouldPushPopSlotAndVector(Code::Kind kind) {
if (kind == Code::LOAD_IC || kind == Code::LOAD_GLOBAL_IC ||
kind == Code::KEYED_LOAD_IC || kind == Code::CALL_IC) {
return true;
}
if (kind == Code::STORE_IC || kind == Code::KEYED_STORE_IC) {
return !StoreWithVectorDescriptor::kPassLastArgsOnStack;
}
return false;
}
InlineCacheState IC::StateFromCode(Code* code) {
Isolate* isolate = code->GetIsolate();
switch (code->kind()) {
case Code::BINARY_OP_IC: {
BinaryOpICState state(isolate, code->extra_ic_state());
return state.GetICState();
}
case Code::COMPARE_IC: {
CompareICStub stub(isolate, code->extra_ic_state());
return stub.GetICState();
}
case Code::TO_BOOLEAN_IC: {
ToBooleanICStub stub(isolate, code->extra_ic_state());
return stub.GetICState();
}
default:
if (code->is_debug_stub()) return UNINITIALIZED;
UNREACHABLE();
return UNINITIALIZED;
}
}
SharedFunctionInfo* IC::GetSharedFunctionInfo() const {
// Compute the JavaScript frame for the frame pointer of this IC
// structure. We need this to be able to find the function
// corresponding to the frame.
StackFrameIterator it(isolate());
while (it.frame()->fp() != this->fp()) it.Advance();
JavaScriptFrame* frame = JavaScriptFrame::cast(it.frame());
// Find the function on the stack and both the active code for the
// function and the original code.
JSFunction* function = frame->function();
return function->shared();
}
Code* IC::GetCode() const {
HandleScope scope(isolate());
Handle<SharedFunctionInfo> shared(GetSharedFunctionInfo(), isolate());
Code* code = shared->code();
return code;
}
static void LookupForRead(LookupIterator* it) {
for (; it->IsFound(); it->Next()) {
switch (it->state()) {
case LookupIterator::NOT_FOUND:
case LookupIterator::TRANSITION:
UNREACHABLE();
case LookupIterator::JSPROXY:
return;
case LookupIterator::INTERCEPTOR: {
// If there is a getter, return; otherwise loop to perform the lookup.
Handle<JSObject> holder = it->GetHolder<JSObject>();
if (!holder->GetNamedInterceptor()->getter()->IsUndefined(
it->isolate())) {
return;
}
break;
}
case LookupIterator::ACCESS_CHECK:
// PropertyHandlerCompiler::CheckPrototypes() knows how to emit
// access checks for global proxies.
if (it->GetHolder<JSObject>()->IsJSGlobalProxy() && it->HasAccess()) {
break;
}
return;
case LookupIterator::ACCESSOR:
case LookupIterator::INTEGER_INDEXED_EXOTIC:
case LookupIterator::DATA:
return;
}
}
}
bool IC::ShouldRecomputeHandler(Handle<String> name) {
if (!RecomputeHandlerForName(name)) return false;
DCHECK(UseVector());
maybe_handler_ = nexus()->FindHandlerForMap(receiver_map());
// This is a contextual access, always just update the handler and stay
// monomorphic.
if (kind() == Code::LOAD_GLOBAL_IC) return true;
// The current map wasn't handled yet. There's no reason to stay monomorphic,
// *unless* we're moving from a deprecated map to its replacement, or
// to a more general elements kind.
// TODO(verwaest): Check if the current map is actually what the old map
// would transition to.
if (maybe_handler_.is_null()) {
if (!receiver_map()->IsJSObjectMap()) return false;
Map* first_map = FirstTargetMap();
if (first_map == NULL) return false;
Handle<Map> old_map(first_map);
if (old_map->is_deprecated()) return true;
return IsMoreGeneralElementsKindTransition(old_map->elements_kind(),
receiver_map()->elements_kind());
}
return true;
}
bool IC::RecomputeHandlerForName(Handle<Object> name) {
if (is_keyed()) {
// Determine whether the failure is due to a name failure.
if (!name->IsName()) return false;
DCHECK(UseVector());
Name* stub_name = nexus()->FindFirstName();
if (*name != stub_name) return false;
}
return true;
}
void IC::UpdateState(Handle<Object> receiver, Handle<Object> name) {
update_receiver_map(receiver);
if (!name->IsString()) return;
if (state() != MONOMORPHIC && state() != POLYMORPHIC) return;
if (receiver->IsNullOrUndefined(isolate())) return;
// Remove the target from the code cache if it became invalid
// because of changes in the prototype chain to avoid hitting it
// again.
if (ShouldRecomputeHandler(Handle<String>::cast(name))) {
MarkRecomputeHandler(name);
}
}
MaybeHandle<Object> IC::TypeError(MessageTemplate::Template index,
Handle<Object> object, Handle<Object> key) {
HandleScope scope(isolate());
THROW_NEW_ERROR(isolate(), NewTypeError(index, key, object), Object);
}
MaybeHandle<Object> IC::ReferenceError(Handle<Name> name) {
HandleScope scope(isolate());
THROW_NEW_ERROR(
isolate(), NewReferenceError(MessageTemplate::kNotDefined, name), Object);
}
static void ComputeTypeInfoCountDelta(IC::State old_state, IC::State new_state,
int* polymorphic_delta,
int* generic_delta) {
switch (old_state) {
case UNINITIALIZED:
case PREMONOMORPHIC:
if (new_state == UNINITIALIZED || new_state == PREMONOMORPHIC) break;
if (new_state == MONOMORPHIC || new_state == POLYMORPHIC) {
*polymorphic_delta = 1;
} else if (new_state == MEGAMORPHIC || new_state == GENERIC) {
*generic_delta = 1;
}
break;
case MONOMORPHIC:
case POLYMORPHIC:
if (new_state == MONOMORPHIC || new_state == POLYMORPHIC) break;
*polymorphic_delta = -1;
if (new_state == MEGAMORPHIC || new_state == GENERIC) {
*generic_delta = 1;
}
break;
case MEGAMORPHIC:
case GENERIC:
if (new_state == MEGAMORPHIC || new_state == GENERIC) break;
*generic_delta = -1;
if (new_state == MONOMORPHIC || new_state == POLYMORPHIC) {
*polymorphic_delta = 1;
}
break;
case RECOMPUTE_HANDLER:
UNREACHABLE();
}
}
// static
void IC::OnTypeFeedbackChanged(Isolate* isolate, Code* host) {
if (host->kind() != Code::FUNCTION) return;
TypeFeedbackInfo* info = TypeFeedbackInfo::cast(host->type_feedback_info());
info->change_own_type_change_checksum();
host->set_profiler_ticks(0);
isolate->runtime_profiler()->NotifyICChanged();
// TODO(2029): When an optimized function is patched, it would
// be nice to propagate the corresponding type information to its
// unoptimized version for the benefit of later inlining.
}
void IC::PostPatching(Address address, Code* target, Code* old_target) {
// Type vector based ICs update these statistics at a different time because
// they don't always patch on state change.
if (ICUseVector(target->kind())) return;
DCHECK(old_target->is_inline_cache_stub());
DCHECK(target->is_inline_cache_stub());
State old_state = StateFromCode(old_target);
State new_state = StateFromCode(target);
Isolate* isolate = target->GetIsolate();
Code* host =
isolate->inner_pointer_to_code_cache()->GetCacheEntry(address)->code;
if (host->kind() != Code::FUNCTION) return;
// Not all Code objects have TypeFeedbackInfo.
if (host->type_feedback_info()->IsTypeFeedbackInfo()) {
if (FLAG_type_info_threshold > 0) {
int polymorphic_delta = 0; // "Polymorphic" here includes monomorphic.
int generic_delta = 0; // "Generic" here includes megamorphic.
ComputeTypeInfoCountDelta(old_state, new_state, &polymorphic_delta,
&generic_delta);
TypeFeedbackInfo* info =
TypeFeedbackInfo::cast(host->type_feedback_info());
info->change_ic_with_type_info_count(polymorphic_delta);
info->change_ic_generic_count(generic_delta);
}
TypeFeedbackInfo* info = TypeFeedbackInfo::cast(host->type_feedback_info());
info->change_own_type_change_checksum();
}
host->set_profiler_ticks(0);
isolate->runtime_profiler()->NotifyICChanged();
// TODO(2029): When an optimized function is patched, it would
// be nice to propagate the corresponding type information to its
// unoptimized version for the benefit of later inlining.
}
void IC::Clear(Isolate* isolate, Address address, Address constant_pool) {
Code* target = GetTargetAtAddress(address, constant_pool);
// Don't clear debug break inline cache as it will remove the break point.
if (target->is_debug_stub()) return;
if (target->kind() == Code::COMPARE_IC) {
CompareIC::Clear(isolate, address, target, constant_pool);
}
}
void KeyedLoadIC::Clear(Isolate* isolate, Code* host, KeyedLoadICNexus* nexus) {
if (IsCleared(nexus)) return;
// Make sure to also clear the map used in inline fast cases. If we
// do not clear these maps, cached code can keep objects alive
// through the embedded maps.
nexus->ConfigurePremonomorphic();
OnTypeFeedbackChanged(isolate, host);
}
void CallIC::Clear(Isolate* isolate, Code* host, CallICNexus* nexus) {
// Determine our state.
Object* feedback = nexus->vector()->Get(nexus->slot());
State state = nexus->StateFromFeedback();
if (state != UNINITIALIZED && !feedback->IsAllocationSite()) {
nexus->ConfigureUninitialized();
// The change in state must be processed.
OnTypeFeedbackChanged(isolate, host);
}
}
void LoadIC::Clear(Isolate* isolate, Code* host, LoadICNexus* nexus) {
if (IsCleared(nexus)) return;
nexus->ConfigurePremonomorphic();
OnTypeFeedbackChanged(isolate, host);
}
void LoadGlobalIC::Clear(Isolate* isolate, Code* host,
LoadGlobalICNexus* nexus) {
if (IsCleared(nexus)) return;
nexus->ConfigureUninitialized();
OnTypeFeedbackChanged(isolate, host);
}
void StoreIC::Clear(Isolate* isolate, Code* host, StoreICNexus* nexus) {
if (IsCleared(nexus)) return;
nexus->ConfigurePremonomorphic();
OnTypeFeedbackChanged(isolate, host);
}
void KeyedStoreIC::Clear(Isolate* isolate, Code* host,
KeyedStoreICNexus* nexus) {
if (IsCleared(nexus)) return;
nexus->ConfigurePremonomorphic();
OnTypeFeedbackChanged(isolate, host);
}
void CompareIC::Clear(Isolate* isolate, Address address, Code* target,
Address constant_pool) {
DCHECK(CodeStub::GetMajorKey(target) == CodeStub::CompareIC);
CompareICStub stub(target->stub_key(), isolate);
// Only clear CompareICs that can retain objects.
if (stub.state() != CompareICState::KNOWN_RECEIVER) return;
SetTargetAtAddress(address, GetRawUninitialized(isolate, stub.op()),
constant_pool);
PatchInlinedSmiCode(isolate, address, DISABLE_INLINED_SMI_CHECK);
}
static bool MigrateDeprecated(Handle<Object> object) {
if (!object->IsJSObject()) return false;
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
if (!receiver->map()->is_deprecated()) return false;
JSObject::MigrateInstance(Handle<JSObject>::cast(object));
return true;
}
void IC::ConfigureVectorState(IC::State new_state, Handle<Object> key) {
DCHECK(UseVector());
if (new_state == PREMONOMORPHIC) {
nexus()->ConfigurePremonomorphic();
} else if (new_state == MEGAMORPHIC) {
if (kind() == Code::LOAD_IC || kind() == Code::STORE_IC) {
nexus()->ConfigureMegamorphic();
} else if (kind() == Code::KEYED_LOAD_IC) {
KeyedLoadICNexus* nexus = casted_nexus<KeyedLoadICNexus>();
nexus->ConfigureMegamorphicKeyed(key->IsName() ? PROPERTY : ELEMENT);
} else {
DCHECK(kind() == Code::KEYED_STORE_IC);
KeyedStoreICNexus* nexus = casted_nexus<KeyedStoreICNexus>();
nexus->ConfigureMegamorphicKeyed(key->IsName() ? PROPERTY : ELEMENT);
}
} else {
UNREACHABLE();
}
vector_set_ = true;
OnTypeFeedbackChanged(isolate(), get_host());
}
void IC::ConfigureVectorState(Handle<Name> name, Handle<Map> map,
Handle<Object> handler) {
DCHECK(UseVector());
if (kind() == Code::LOAD_IC) {
LoadICNexus* nexus = casted_nexus<LoadICNexus>();
nexus->ConfigureMonomorphic(map, handler);
} else if (kind() == Code::LOAD_GLOBAL_IC) {
LoadGlobalICNexus* nexus = casted_nexus<LoadGlobalICNexus>();
nexus->ConfigureHandlerMode(handler);
} else if (kind() == Code::KEYED_LOAD_IC) {
KeyedLoadICNexus* nexus = casted_nexus<KeyedLoadICNexus>();
nexus->ConfigureMonomorphic(name, map, handler);
} else if (kind() == Code::STORE_IC) {
StoreICNexus* nexus = casted_nexus<StoreICNexus>();
nexus->ConfigureMonomorphic(map, handler);
} else {
DCHECK(kind() == Code::KEYED_STORE_IC);
KeyedStoreICNexus* nexus = casted_nexus<KeyedStoreICNexus>();
nexus->ConfigureMonomorphic(name, map, handler);
}
vector_set_ = true;
OnTypeFeedbackChanged(isolate(), get_host());
}
void IC::ConfigureVectorState(Handle<Name> name, MapHandleList* maps,
List<Handle<Object>>* handlers) {
DCHECK(UseVector());
if (kind() == Code::LOAD_IC) {
LoadICNexus* nexus = casted_nexus<LoadICNexus>();
nexus->ConfigurePolymorphic(maps, handlers);
} else if (kind() == Code::KEYED_LOAD_IC) {
KeyedLoadICNexus* nexus = casted_nexus<KeyedLoadICNexus>();
nexus->ConfigurePolymorphic(name, maps, handlers);
} else if (kind() == Code::STORE_IC) {
StoreICNexus* nexus = casted_nexus<StoreICNexus>();
nexus->ConfigurePolymorphic(maps, handlers);
} else {
DCHECK(kind() == Code::KEYED_STORE_IC);
KeyedStoreICNexus* nexus = casted_nexus<KeyedStoreICNexus>();
nexus->ConfigurePolymorphic(name, maps, handlers);
}
vector_set_ = true;
OnTypeFeedbackChanged(isolate(), get_host());
}
void IC::ConfigureVectorState(MapHandleList* maps,
MapHandleList* transitioned_maps,
List<Handle<Object>>* handlers) {
DCHECK(UseVector());
DCHECK(kind() == Code::KEYED_STORE_IC);
KeyedStoreICNexus* nexus = casted_nexus<KeyedStoreICNexus>();
nexus->ConfigurePolymorphic(maps, transitioned_maps, handlers);
vector_set_ = true;
OnTypeFeedbackChanged(isolate(), get_host());
}
MaybeHandle<Object> LoadIC::Load(Handle<Object> object, Handle<Name> name) {
// If the object is undefined or null it's illegal to try to get any
// of its properties; throw a TypeError in that case.
if (object->IsNullOrUndefined(isolate())) {
if (FLAG_use_ic && state() != UNINITIALIZED && state() != PREMONOMORPHIC) {
// Ensure the IC state progresses.
TRACE_HANDLER_STATS(isolate(), LoadIC_NonReceiver);
update_receiver_map(object);
PatchCache(name, slow_stub());
TRACE_IC("LoadIC", name);
}
return TypeError(MessageTemplate::kNonObjectPropertyLoad, object, name);
}
bool use_ic = MigrateDeprecated(object) ? false : FLAG_use_ic;
if (state() != UNINITIALIZED) {
JSObject::MakePrototypesFast(object, kStartAtReceiver, isolate());
update_receiver_map(object);
}
// Named lookup in the object.
LookupIterator it(object, name);
LookupForRead(&it);
if (it.IsFound() || !ShouldThrowReferenceError()) {
// Update inline cache and stub cache.
if (use_ic) UpdateCaches(&it);
// Get the property.
Handle<Object> result;
ASSIGN_RETURN_ON_EXCEPTION(isolate(), result, Object::GetProperty(&it),
Object);
if (it.IsFound()) {
return result;
} else if (!ShouldThrowReferenceError()) {
LOG(isolate(), SuspectReadEvent(*name, *object));
return result;
}
}
return ReferenceError(name);
}
MaybeHandle<Object> LoadGlobalIC::Load(Handle<Name> name) {
Handle<JSGlobalObject> global = isolate()->global_object();
if (name->IsString()) {
// Look up in script context table.
Handle<String> str_name = Handle<String>::cast(name);
Handle<ScriptContextTable> script_contexts(
global->native_context()->script_context_table());
ScriptContextTable::LookupResult lookup_result;
if (ScriptContextTable::Lookup(script_contexts, str_name, &lookup_result)) {
Handle<Object> result =
FixedArray::get(*ScriptContextTable::GetContext(
script_contexts, lookup_result.context_index),
lookup_result.slot_index, isolate());
if (result->IsTheHole(isolate())) {
// Do not install stubs and stay pre-monomorphic for
// uninitialized accesses.
return ReferenceError(name);
}
if (FLAG_use_ic && LoadScriptContextFieldStub::Accepted(&lookup_result)) {
TRACE_HANDLER_STATS(isolate(), LoadIC_LoadScriptContextFieldStub);
LoadScriptContextFieldStub stub(isolate(), &lookup_result);
PatchCache(name, stub.GetCode());
TRACE_IC("LoadGlobalIC", name);
}
return result;
}
}
return LoadIC::Load(global, name);
}
static bool AddOneReceiverMapIfMissing(MapHandleList* receiver_maps,
Handle<Map> new_receiver_map) {
DCHECK(!new_receiver_map.is_null());
for (int current = 0; current < receiver_maps->length(); ++current) {
if (!receiver_maps->at(current).is_null() &&
receiver_maps->at(current).is_identical_to(new_receiver_map)) {
return false;
}
}
receiver_maps->Add(new_receiver_map);
return true;
}
bool IC::UpdatePolymorphicIC(Handle<Name> name, Handle<Object> handler) {
DCHECK(IsHandler(*handler));
if (is_keyed() && state() != RECOMPUTE_HANDLER) return false;
Handle<Map> map = receiver_map();
MapHandleList maps;
List<Handle<Object>> handlers;
TargetMaps(&maps);
int number_of_maps = maps.length();
int deprecated_maps = 0;
int handler_to_overwrite = -1;
for (int i = 0; i < number_of_maps; i++) {
Handle<Map> current_map = maps.at(i);
if (current_map->is_deprecated()) {
// Filter out deprecated maps to ensure their instances get migrated.
++deprecated_maps;
} else if (map.is_identical_to(current_map)) {
// If the receiver type is already in the polymorphic IC, this indicates
// there was a prototoype chain failure. In that case, just overwrite the
// handler.
handler_to_overwrite = i;
} else if (handler_to_overwrite == -1 &&
IsTransitionOfMonomorphicTarget(*current_map, *map)) {
handler_to_overwrite = i;
}
}
int number_of_valid_maps =
number_of_maps - deprecated_maps - (handler_to_overwrite != -1);
if (number_of_valid_maps >= 4) return false;
if (number_of_maps == 0 && state() != MONOMORPHIC && state() != POLYMORPHIC) {
return false;
}
DCHECK(UseVector());
if (!nexus()->FindHandlers(&handlers, maps.length())) return false;
number_of_valid_maps++;
if (number_of_valid_maps > 1 && is_keyed()) return false;
if (number_of_valid_maps == 1) {
ConfigureVectorState(name, receiver_map(), handler);
} else {
if (handler_to_overwrite >= 0) {
handlers.Set(handler_to_overwrite, handler);
if (!map.is_identical_to(maps.at(handler_to_overwrite))) {
maps.Set(handler_to_overwrite, map);
}
} else {
maps.Add(map);
handlers.Add(handler);
}
ConfigureVectorState(name, &maps, &handlers);
}
return true;
}
void IC::UpdateMonomorphicIC(Handle<Object> handler, Handle<Name> name) {
DCHECK(IsHandler(*handler));
ConfigureVectorState(name, receiver_map(), handler);
}
void IC::CopyICToMegamorphicCache(Handle<Name> name) {
MapHandleList maps;
List<Handle<Object>> handlers;
TargetMaps(&maps);
if (!nexus()->FindHandlers(&handlers, maps.length())) return;
for (int i = 0; i < maps.length(); i++) {
UpdateMegamorphicCache(*maps.at(i), *name, *handlers.at(i));
}
}
bool IC::IsTransitionOfMonomorphicTarget(Map* source_map, Map* target_map) {
if (source_map == NULL) return true;
if (target_map == NULL) return false;
ElementsKind target_elements_kind = target_map->elements_kind();
bool more_general_transition = IsMoreGeneralElementsKindTransition(
source_map->elements_kind(), target_elements_kind);
Map* transitioned_map = nullptr;
if (more_general_transition) {
MapHandleList map_list;
map_list.Add(handle(target_map));
transitioned_map = source_map->FindElementsKindTransitionedMap(&map_list);
}
return transitioned_map == target_map;
}
void IC::PatchCache(Handle<Name> name, Handle<Object> handler) {
DCHECK(IsHandler(*handler));
// Currently only LoadIC and KeyedLoadIC support non-code handlers.
DCHECK_IMPLIES(!handler->IsCode(), kind() == Code::LOAD_IC ||
kind() == Code::LOAD_GLOBAL_IC ||
kind() == Code::KEYED_LOAD_IC ||
kind() == Code::STORE_IC ||
kind() == Code::KEYED_STORE_IC);
switch (state()) {
case UNINITIALIZED:
case PREMONOMORPHIC:
UpdateMonomorphicIC(handler, name);
break;
case RECOMPUTE_HANDLER:
case MONOMORPHIC:
if (kind() == Code::LOAD_GLOBAL_IC) {
UpdateMonomorphicIC(handler, name);
break;
}
// Fall through.
case POLYMORPHIC:
if (!is_keyed() || state() == RECOMPUTE_HANDLER) {
if (UpdatePolymorphicIC(name, handler)) break;
// For keyed stubs, we can't know whether old handlers were for the
// same key.
CopyICToMegamorphicCache(name);
}
DCHECK(UseVector());
ConfigureVectorState(MEGAMORPHIC, name);
// Fall through.
case MEGAMORPHIC:
UpdateMegamorphicCache(*receiver_map(), *name, *handler);
// Indicate that we've handled this case.
DCHECK(UseVector());
vector_set_ = true;
break;
case GENERIC:
UNREACHABLE();
break;
}
}
Handle<Object> LoadIC::SimpleFieldLoad(Isolate* isolate, FieldIndex index) {
TRACE_HANDLER_STATS(isolate, LoadIC_LoadFieldDH);
return LoadHandler::LoadField(isolate, index);
}
namespace {
template <bool fill_array = true>
int InitPrototypeChecks(Isolate* isolate, Handle<Map> receiver_map,
Handle<JSObject> holder, Handle<Name> name,
Handle<FixedArray> array, int first_index) {
DCHECK(holder.is_null() || holder->HasFastProperties());
// We don't encode the requirement to check access rights because we already
// passed the access check for current native context and the access
// can't be revoked.
HandleScope scope(isolate);
int checks_count = 0;
if (receiver_map->IsPrimitiveMap() || receiver_map->IsJSGlobalProxyMap()) {
// The validity cell check for primitive and global proxy receivers does
// not guarantee that certain native context ever had access to other
// native context. However, a handler created for one native context could
// be used in other native context through the megamorphic stub cache.
// So we record the original native context to which this handler
// corresponds.
if (fill_array) {
Handle<Context> native_context = isolate->native_context();
array->set(LoadHandler::kFirstPrototypeIndex + checks_count,
native_context->self_weak_cell());
}
checks_count++;
} else if (receiver_map->IsJSGlobalObjectMap()) {
if (fill_array) {
Handle<JSGlobalObject> global = isolate->global_object();
Handle<PropertyCell> cell = JSGlobalObject::EnsureEmptyPropertyCell(
global, name, PropertyCellType::kInvalidated);
DCHECK(cell->value()->IsTheHole(isolate));
Handle<WeakCell> weak_cell = isolate->factory()->NewWeakCell(cell);
array->set(LoadHandler::kFirstPrototypeIndex + checks_count, *weak_cell);
}
checks_count++;
}
// Create/count entries for each global or dictionary prototype appeared in
// the prototype chain contains from receiver till holder.
PrototypeIterator::WhereToEnd end = name->IsPrivate()
? PrototypeIterator::END_AT_NON_HIDDEN
: PrototypeIterator::END_AT_NULL;
for (PrototypeIterator iter(receiver_map, end); !iter.IsAtEnd();
iter.Advance()) {
Handle<JSObject> current = PrototypeIterator::GetCurrent<JSObject>(iter);
if (holder.is_identical_to(current)) break;
Handle<Map> current_map(current->map(), isolate);
if (current_map->IsJSGlobalObjectMap()) {
if (fill_array) {
Handle<JSGlobalObject> global = Handle<JSGlobalObject>::cast(current);
Handle<PropertyCell> cell = JSGlobalObject::EnsureEmptyPropertyCell(
global, name, PropertyCellType::kInvalidated);
DCHECK(cell->value()->IsTheHole(isolate));
Handle<WeakCell> weak_cell = isolate->factory()->NewWeakCell(cell);
array->set(first_index + checks_count, *weak_cell);
}
checks_count++;
} else if (current_map->is_dictionary_map()) {
DCHECK(!current_map->IsJSGlobalProxyMap()); // Proxy maps are fast.
if (fill_array) {
DCHECK_EQ(NameDictionary::kNotFound,
current->property_dictionary()->FindEntry(name));
Handle<WeakCell> weak_cell =
Map::GetOrCreatePrototypeWeakCell(current, isolate);
array->set(first_index + checks_count, *weak_cell);
}
checks_count++;
}
}
return checks_count;
}
// Returns 0 if the validity cell check is enough to ensure that the
// prototype chain from |receiver_map| till |holder| did not change.
// If the |holder| is an empty handle then the full prototype chain is
// checked.
// Returns -1 if the handler has to be compiled or the number of prototype
// checks otherwise.
int GetPrototypeCheckCount(Isolate* isolate, Handle<Map> receiver_map,
Handle<JSObject> holder, Handle<Name> name) {
return InitPrototypeChecks<false>(isolate, receiver_map, holder, name,
Handle<FixedArray>(), 0);
}
} // namespace
Handle<Object> LoadIC::LoadFromPrototype(Handle<Map> receiver_map,
Handle<JSObject> holder,
Handle<Name> name,
Handle<Object> smi_handler) {
int checks_count =
GetPrototypeCheckCount(isolate(), receiver_map, holder, name);
DCHECK_LE(0, checks_count);
if (receiver_map->IsPrimitiveMap() || receiver_map->IsJSGlobalProxyMap()) {
DCHECK(!receiver_map->is_dictionary_map());
DCHECK_LE(1, checks_count); // For native context.
smi_handler =
LoadHandler::EnableAccessCheckOnReceiver(isolate(), smi_handler);
} else if (receiver_map->is_dictionary_map() &&
!receiver_map->IsJSGlobalObjectMap()) {
smi_handler =
LoadHandler::EnableNegativeLookupOnReceiver(isolate(), smi_handler);
}
Handle<Cell> validity_cell =
Map::GetOrCreatePrototypeChainValidityCell(receiver_map, isolate());
DCHECK(!validity_cell.is_null());
Handle<WeakCell> holder_cell =
Map::GetOrCreatePrototypeWeakCell(holder, isolate());
if (checks_count == 0) {
return isolate()->factory()->NewTuple3(holder_cell, smi_handler,
validity_cell);
}
Handle<FixedArray> handler_array(isolate()->factory()->NewFixedArray(
LoadHandler::kFirstPrototypeIndex + checks_count, TENURED));
handler_array->set(LoadHandler::kSmiHandlerIndex, *smi_handler);
handler_array->set(LoadHandler::kValidityCellIndex, *validity_cell);
handler_array->set(LoadHandler::kHolderCellIndex, *holder_cell);
InitPrototypeChecks(isolate(), receiver_map, holder, name, handler_array,
LoadHandler::kFirstPrototypeIndex);
return handler_array;
}
Handle<Object> LoadIC::LoadNonExistent(Handle<Map> receiver_map,
Handle<Name> name) {
Handle<JSObject> holder; // null handle
int checks_count =
GetPrototypeCheckCount(isolate(), receiver_map, holder, name);
DCHECK_LE(0, checks_count);
bool do_negative_lookup_on_receiver =
receiver_map->is_dictionary_map() && !receiver_map->IsJSGlobalObjectMap();
Handle<Object> smi_handler =
LoadHandler::LoadNonExistent(isolate(), do_negative_lookup_on_receiver);
if (receiver_map->IsPrimitiveMap() || receiver_map->IsJSGlobalProxyMap()) {
DCHECK(!receiver_map->is_dictionary_map());
DCHECK_LE(1, checks_count); // For native context.
smi_handler =
LoadHandler::EnableAccessCheckOnReceiver(isolate(), smi_handler);
}
Handle<Object> validity_cell =
Map::GetOrCreatePrototypeChainValidityCell(receiver_map, isolate());
if (validity_cell.is_null()) {
DCHECK_EQ(0, checks_count);
validity_cell = handle(Smi::FromInt(0), isolate());
}
Factory* factory = isolate()->factory();
if (checks_count == 0) {
return factory->NewTuple3(factory->null_value(), smi_handler,
validity_cell);
}
Handle<FixedArray> handler_array(factory->NewFixedArray(
LoadHandler::kFirstPrototypeIndex + checks_count, TENURED));
handler_array->set(LoadHandler::kSmiHandlerIndex, *smi_handler);
handler_array->set(LoadHandler::kValidityCellIndex, *validity_cell);
handler_array->set(LoadHandler::kHolderCellIndex, *factory->null_value());
InitPrototypeChecks(isolate(), receiver_map, holder, name, handler_array,
LoadHandler::kFirstPrototypeIndex);
return handler_array;
}
bool IsCompatibleReceiver(LookupIterator* lookup, Handle<Map> receiver_map) {
DCHECK(lookup->state() == LookupIterator::ACCESSOR);
Isolate* isolate = lookup->isolate();
Handle<Object> accessors = lookup->GetAccessors();
if (accessors->IsAccessorInfo()) {
Handle<AccessorInfo> info = Handle<AccessorInfo>::cast(accessors);
if (info->getter() != NULL &&
!AccessorInfo::IsCompatibleReceiverMap(isolate, info, receiver_map)) {
return false;
}
} else if (accessors->IsAccessorPair()) {
Handle<Object> getter(Handle<AccessorPair>::cast(accessors)->getter(),
isolate);
if (!getter->IsJSFunction() && !getter->IsFunctionTemplateInfo()) {
return false;
}
Handle<JSObject> holder = lookup->GetHolder<JSObject>();
Handle<Object> receiver = lookup->GetReceiver();
if (holder->HasFastProperties()) {
if (getter->IsJSFunction()) {
Handle<JSFunction> function = Handle<JSFunction>::cast(getter);
if (!receiver->IsJSObject() && function->shared()->IsUserJavaScript() &&
is_sloppy(function->shared()->language_mode())) {
// Calling sloppy non-builtins with a value as the receiver
// requires boxing.
return false;
}
}
CallOptimization call_optimization(getter);
if (call_optimization.is_simple_api_call() &&
!call_optimization.IsCompatibleReceiverMap(receiver_map, holder)) {
return false;
}
}
}
return true;
}
void LoadIC::UpdateCaches(LookupIterator* lookup) {
if (state() == UNINITIALIZED && kind() != Code::LOAD_GLOBAL_IC) {
// This is the first time we execute this inline cache. Set the target to
// the pre monomorphic stub to delay setting the monomorphic state.
TRACE_HANDLER_STATS(isolate(), LoadIC_Premonomorphic);
ConfigureVectorState(PREMONOMORPHIC, Handle<Object>());
TRACE_IC("LoadIC", lookup->name());
return;
}
Handle<Object> code;
if (lookup->state() == LookupIterator::JSPROXY ||
lookup->state() == LookupIterator::ACCESS_CHECK) {
code = slow_stub();
} else if (!lookup->IsFound()) {
if (kind() == Code::LOAD_IC || kind() == Code::LOAD_GLOBAL_IC) {
TRACE_HANDLER_STATS(isolate(), LoadIC_LoadNonexistentDH);
code = LoadNonExistent(receiver_map(), lookup->name());
} else {
code = slow_stub();
}
} else {
if (kind() == Code::LOAD_GLOBAL_IC &&
lookup->state() == LookupIterator::DATA &&
lookup->GetReceiver().is_identical_to(lookup->GetHolder<Object>())) {
DCHECK(lookup->GetReceiver()->IsJSGlobalObject());
// Now update the cell in the feedback vector.
LoadGlobalICNexus* nexus = casted_nexus<LoadGlobalICNexus>();
nexus->ConfigurePropertyCellMode(lookup->GetPropertyCell());
TRACE_IC("LoadGlobalIC", lookup->name());
return;
} else if (lookup->state() == LookupIterator::ACCESSOR) {
if (!IsCompatibleReceiver(lookup, receiver_map())) {
TRACE_GENERIC_IC(isolate(), "LoadIC", "incompatible receiver type");
code = slow_stub();
}
} else if (lookup->state() == LookupIterator::INTERCEPTOR) {
// Perform a lookup behind the interceptor. Copy the LookupIterator
// since the original iterator will be used to fetch the value.
LookupIterator it = *lookup;
it.Next();
LookupForRead(&it);
if (it.state() == LookupIterator::ACCESSOR &&
!IsCompatibleReceiver(&it, receiver_map())) {
TRACE_GENERIC_IC(isolate(), "LoadIC", "incompatible receiver type");
code = slow_stub();
}
}
if (code.is_null()) code = ComputeHandler(lookup);
}
PatchCache(lookup->name(), code);
TRACE_IC("LoadIC", lookup->name());
}
StubCache* IC::stub_cache() {
switch (kind()) {
case Code::LOAD_IC:
case Code::KEYED_LOAD_IC:
return isolate()->load_stub_cache();
case Code::STORE_IC:
case Code::KEYED_STORE_IC:
return isolate()->store_stub_cache();
default:
break;
}
UNREACHABLE();
return nullptr;
}
void IC::UpdateMegamorphicCache(Map* map, Name* name, Object* handler) {
stub_cache()->Set(name, map, handler);
}
void IC::TraceHandlerCacheHitStats(LookupIterator* lookup) {
if (!FLAG_runtime_call_stats) return;
if (kind() == Code::LOAD_IC || kind() == Code::LOAD_GLOBAL_IC ||
kind() == Code::KEYED_LOAD_IC) {
switch (lookup->state()) {
case LookupIterator::ACCESS_CHECK:
TRACE_HANDLER_STATS(isolate(), LoadIC_HandlerCacheHit_AccessCheck);
break;
case LookupIterator::INTEGER_INDEXED_EXOTIC:
TRACE_HANDLER_STATS(isolate(), LoadIC_HandlerCacheHit_Exotic);
break;
case LookupIterator::INTERCEPTOR:
TRACE_HANDLER_STATS(isolate(), LoadIC_HandlerCacheHit_Interceptor);
break;
case LookupIterator::JSPROXY:
TRACE_HANDLER_STATS(isolate(), LoadIC_HandlerCacheHit_JSProxy);
break;
case LookupIterator::NOT_FOUND:
TRACE_HANDLER_STATS(isolate(), LoadIC_HandlerCacheHit_NonExistent);
break;
case LookupIterator::ACCESSOR:
TRACE_HANDLER_STATS(isolate(), LoadIC_HandlerCacheHit_Accessor);
break;
case LookupIterator::DATA:
TRACE_HANDLER_STATS(isolate(), LoadIC_HandlerCacheHit_Data);
break;
case LookupIterator::TRANSITION:
TRACE_HANDLER_STATS(isolate(), LoadIC_HandlerCacheHit_Transition);
break;
}
} else if (kind() == Code::STORE_IC || kind() == Code::KEYED_STORE_IC) {
switch (lookup->state()) {
case LookupIterator::ACCESS_CHECK:
TRACE_HANDLER_STATS(isolate(), StoreIC_HandlerCacheHit_AccessCheck);
break;
case LookupIterator::INTEGER_INDEXED_EXOTIC:
TRACE_HANDLER_STATS(isolate(), StoreIC_HandlerCacheHit_Exotic);
break;
case LookupIterator::INTERCEPTOR:
TRACE_HANDLER_STATS(isolate(), StoreIC_HandlerCacheHit_Interceptor);
break;
case LookupIterator::JSPROXY:
TRACE_HANDLER_STATS(isolate(), StoreIC_HandlerCacheHit_JSProxy);
break;
case LookupIterator::NOT_FOUND:
TRACE_HANDLER_STATS(isolate(), StoreIC_HandlerCacheHit_NonExistent);
break;
case LookupIterator::ACCESSOR:
TRACE_HANDLER_STATS(isolate(), StoreIC_HandlerCacheHit_Accessor);
break;
case LookupIterator::DATA:
TRACE_HANDLER_STATS(isolate(), StoreIC_HandlerCacheHit_Data);
break;
case LookupIterator::TRANSITION:
TRACE_HANDLER_STATS(isolate(), StoreIC_HandlerCacheHit_Transition);
break;
}
} else {
TRACE_HANDLER_STATS(isolate(), IC_HandlerCacheHit);
}
}
Handle<Object> IC::ComputeHandler(LookupIterator* lookup,
Handle<Object> value) {
// Try to find a globally shared handler stub.
Handle<Object> shared_handler = GetMapIndependentHandler(lookup);
if (!shared_handler.is_null()) {
DCHECK(IC::IsHandler(*shared_handler));
return shared_handler;
}
// Otherwise check the map's handler cache for a map-specific handler, and
// compile one if the cache comes up empty.
bool receiver_is_holder =
lookup->GetReceiver().is_identical_to(lookup->GetHolder<JSObject>());
CacheHolderFlag flag;
Handle<Map> stub_holder_map;
if (kind() == Code::LOAD_IC || kind() == Code::LOAD_GLOBAL_IC ||
kind() == Code::KEYED_LOAD_IC) {
stub_holder_map = IC::GetHandlerCacheHolder(
receiver_map(), receiver_is_holder, isolate(), &flag);
} else {
DCHECK(kind() == Code::STORE_IC || kind() == Code::KEYED_STORE_IC);
// Store handlers cannot be cached on prototypes.
flag = kCacheOnReceiver;
stub_holder_map = receiver_map();
}
Handle<Object> handler = PropertyHandlerCompiler::Find(
lookup->name(), stub_holder_map, kind(), flag);
// Use the cached value if it exists, and if it is different from the
// handler that just missed.
if (!handler.is_null()) {
Handle<Object> current_handler;
if (maybe_handler_.ToHandle(&current_handler)) {
if (!current_handler.is_identical_to(handler)) {
TraceHandlerCacheHitStats(lookup);
return handler;
}
} else {
// maybe_handler_ is only populated for MONOMORPHIC and POLYMORPHIC ICs.
// In MEGAMORPHIC case, check if the handler in the megamorphic stub
// cache (which just missed) is different from the cached handler.
if (state() == MEGAMORPHIC && lookup->GetReceiver()->IsHeapObject()) {
Map* map = Handle<HeapObject>::cast(lookup->GetReceiver())->map();
Object* megamorphic_cached_handler =
stub_cache()->Get(*lookup->name(), map);
if (megamorphic_cached_handler != *handler) {
TraceHandlerCacheHitStats(lookup);
return handler;
}
} else {
TraceHandlerCacheHitStats(lookup);
return handler;
}
}
}
handler = CompileHandler(lookup, value, flag);
DCHECK(IC::IsHandler(*handler));
if (handler->IsCode()) {
Handle<Code> code = Handle<Code>::cast(handler);
DCHECK_EQ(Code::ExtractCacheHolderFromFlags(code->flags()), flag);
Map::UpdateCodeCache(stub_holder_map, lookup->name(), code);
}
return handler;
}
Handle<Object> LoadIC::GetMapIndependentHandler(LookupIterator* lookup) {
Handle<Object> receiver = lookup->GetReceiver();
if (receiver->IsString() &&
Name::Equals(isolate()->factory()->length_string(), lookup->name())) {
FieldIndex index = FieldIndex::ForInObjectOffset(String::kLengthOffset);
return SimpleFieldLoad(isolate(), index);
}
if (receiver->IsStringWrapper() &&
Name::Equals(isolate()->factory()->length_string(), lookup->name())) {
TRACE_HANDLER_STATS(isolate(), LoadIC_StringLengthStub);
StringLengthStub string_length_stub(isolate());
return string_length_stub.GetCode();
}
// Use specialized code for getting prototype of functions.
if (receiver->IsJSFunction() &&
Name::Equals(isolate()->factory()->prototype_string(), lookup->name()) &&
receiver->IsConstructor() &&
!Handle<JSFunction>::cast(receiver)
->map()
->has_non_instance_prototype()) {
Handle<Code> stub;
TRACE_HANDLER_STATS(isolate(), LoadIC_FunctionPrototypeStub);
FunctionPrototypeStub function_prototype_stub(isolate());
return function_prototype_stub.GetCode();
}
Handle<Map> map = receiver_map();
Handle<JSObject> holder = lookup->GetHolder<JSObject>();
bool receiver_is_holder = receiver.is_identical_to(holder);
switch (lookup->state()) {
case LookupIterator::INTERCEPTOR:
break; // Custom-compiled handler.
case LookupIterator::ACCESSOR: {
// Use simple field loads for some well-known callback properties.
// The method will only return true for absolute truths based on the
// receiver maps.
int object_offset;
if (Accessors::IsJSObjectFieldAccessor(map, lookup->name(),
&object_offset)) {
FieldIndex index = FieldIndex::ForInObjectOffset(object_offset, *map);
return SimpleFieldLoad(isolate(), index);
}
if (IsCompatibleReceiver(lookup, map)) {
Handle<Object> accessors = lookup->GetAccessors();
if (accessors->IsAccessorPair()) {
if (!holder->HasFastProperties()) {
TRACE_HANDLER_STATS(isolate(), LoadIC_SlowStub);
return slow_stub();
}
// When debugging we need to go the slow path to flood the accessor.
if (GetSharedFunctionInfo()->HasDebugInfo()) {
TRACE_HANDLER_STATS(isolate(), LoadIC_SlowStub);
return slow_stub();
}
break; // Custom-compiled handler.
} else if (accessors->IsAccessorInfo()) {
Handle<AccessorInfo> info = Handle<AccessorInfo>::cast(accessors);
if (v8::ToCData<Address>(info->getter()) == nullptr) {
TRACE_HANDLER_STATS(isolate(), LoadIC_SlowStub);
return slow_stub();
}
// Ruled out by IsCompatibleReceiver() above.
DCHECK(AccessorInfo::IsCompatibleReceiverMap(isolate(), info, map));
if (!holder->HasFastProperties() ||
(info->is_sloppy() && !receiver->IsJSReceiver())) {
DCHECK(!holder->HasFastProperties() || !receiver_is_holder);
TRACE_HANDLER_STATS(isolate(), LoadIC_SlowStub);
return slow_stub();
}
Handle<Object> smi_handler =
LoadHandler::LoadApiGetter(isolate(), lookup->GetAccessorIndex());
if (receiver_is_holder) {
TRACE_HANDLER_STATS(isolate(), LoadIC_LoadApiGetterDH);
return smi_handler;
}
if (kind() != Code::LOAD_GLOBAL_IC) {
TRACE_HANDLER_STATS(isolate(), LoadIC_LoadApiGetterFromPrototypeDH);
return LoadFromPrototype(map, holder, lookup->name(), smi_handler);
}
break; // Custom-compiled handler.
}
}
TRACE_HANDLER_STATS(isolate(), LoadIC_SlowStub);
return slow_stub();
}
case LookupIterator::DATA: {
DCHECK_EQ(kData, lookup->property_details().kind());
if (lookup->is_dictionary_holder()) {
if (kind() != Code::LOAD_IC && kind() != Code::LOAD_GLOBAL_IC) {
TRACE_HANDLER_STATS(isolate(), LoadIC_SlowStub);
return slow_stub();
}
if (holder->IsJSGlobalObject()) {
break; // Custom-compiled handler.
}
// There is only one shared stub for loading normalized
// properties. It does not traverse the prototype chain, so the
// property must be found in the object for the stub to be
// applicable.
if (!receiver_is_holder) {
TRACE_HANDLER_STATS(isolate(), LoadIC_SlowStub);
return slow_stub();
}
TRACE_HANDLER_STATS(isolate(), LoadIC_LoadNormal);
return isolate()->builtins()->LoadIC_Normal();
}
// -------------- Fields --------------
if (lookup->property_details().location() == kField) {
FieldIndex field = lookup->GetFieldIndex();
Handle<Object> smi_handler = SimpleFieldLoad(isolate(), field);
if (receiver_is_holder) {
return smi_handler;
}
TRACE_HANDLER_STATS(isolate(), LoadIC_LoadFieldFromPrototypeDH);
return LoadFromPrototype(map, holder, lookup->name(), smi_handler);
}
// -------------- Constant properties --------------
DCHECK_EQ(kDescriptor, lookup->property_details().location());
Handle<Object> smi_handler =
LoadHandler::LoadConstant(isolate(), lookup->GetConstantIndex());
if (receiver_is_holder) {
TRACE_HANDLER_STATS(isolate(), LoadIC_LoadConstantDH);
return smi_handler;
}
TRACE_HANDLER_STATS(isolate(), LoadIC_LoadConstantFromPrototypeDH);
return LoadFromPrototype(map, holder, lookup->name(), smi_handler);
}
case LookupIterator::INTEGER_INDEXED_EXOTIC:
TRACE_HANDLER_STATS(isolate(), LoadIC_SlowStub);
return slow_stub();
case LookupIterator::ACCESS_CHECK:
case LookupIterator::JSPROXY:
case LookupIterator::NOT_FOUND:
case LookupIterator::TRANSITION:
UNREACHABLE();
}
return Handle<Code>::null();
}
Handle<Object> LoadIC::CompileHandler(LookupIterator* lookup,
Handle<Object> unused,
CacheHolderFlag cache_holder) {
Handle<JSObject> holder = lookup->GetHolder<JSObject>();
#ifdef DEBUG
// Only used by DCHECKs below.
Handle<Object> receiver = lookup->GetReceiver();
bool receiver_is_holder = receiver.is_identical_to(holder);
#endif
// Non-map-specific handler stubs have already been selected.
DCHECK(!receiver->IsString() ||
!Name::Equals(isolate()->factory()->length_string(), lookup->name()));
DCHECK(!receiver->IsStringWrapper() ||
!Name::Equals(isolate()->factory()->length_string(), lookup->name()));
DCHECK(!(
receiver->IsJSFunction() &&
Name::Equals(isolate()->factory()->prototype_string(), lookup->name()) &&
receiver->IsConstructor() &&
!Handle<JSFunction>::cast(receiver)
->map()
->has_non_instance_prototype()));
Handle<Map> map = receiver_map();
switch (lookup->state()) {
case LookupIterator::INTERCEPTOR: {
DCHECK(!holder->GetNamedInterceptor()->getter()->IsUndefined(isolate()));
TRACE_HANDLER_STATS(isolate(), LoadIC_LoadInterceptor);
NamedLoadHandlerCompiler compiler(isolate(), map, holder, cache_holder);
// Perform a lookup behind the interceptor. Copy the LookupIterator since
// the original iterator will be used to fetch the value.
LookupIterator it = *lookup;
it.Next();
LookupForRead(&it);
return compiler.CompileLoadInterceptor(&it);
}
case LookupIterator::ACCESSOR: {
#ifdef DEBUG
int object_offset;
DCHECK(!Accessors::IsJSObjectFieldAccessor(map, lookup->name(),
&object_offset));
#endif
DCHECK(IsCompatibleReceiver(lookup, map));
Handle<Object> accessors = lookup->GetAccessors();
if (accessors->IsAccessorPair()) {
if (lookup->TryLookupCachedProperty()) {
DCHECK_EQ(LookupIterator::DATA, lookup->state());
return ComputeHandler(lookup);
}
DCHECK(holder->HasFastProperties());
DCHECK(!GetSharedFunctionInfo()->HasDebugInfo());
Handle<Object> getter(Handle<AccessorPair>::cast(accessors)->getter(),
isolate());
CallOptimization call_optimization(getter);
NamedLoadHandlerCompiler compiler(isolate(), map, holder, cache_holder);
if (call_optimization.is_simple_api_call()) {
TRACE_HANDLER_STATS(isolate(), LoadIC_LoadCallback);
int index = lookup->GetAccessorIndex();
Handle<Code> code = compiler.CompileLoadCallback(
lookup->name(), call_optimization, index, slow_stub());
return code;
}
TRACE_HANDLER_STATS(isolate(), LoadIC_LoadViaGetter);
int expected_arguments = Handle<JSFunction>::cast(getter)
->shared()
->internal_formal_parameter_count();
return compiler.CompileLoadViaGetter(
lookup->name(), lookup->GetAccessorIndex(), expected_arguments);
} else {
DCHECK(accessors->IsAccessorInfo());
Handle<AccessorInfo> info = Handle<AccessorInfo>::cast(accessors);
DCHECK(v8::ToCData<Address>(info->getter()) != nullptr);
DCHECK(AccessorInfo::IsCompatibleReceiverMap(isolate(), info, map));
DCHECK(holder->HasFastProperties());
DCHECK(!receiver_is_holder);
DCHECK(!info->is_sloppy() || receiver->IsJSReceiver());
TRACE_HANDLER_STATS(isolate(), LoadIC_LoadCallback);
NamedLoadHandlerCompiler compiler(isolate(), map, holder, cache_holder);
Handle<Code> code =
compiler.CompileLoadCallback(lookup->name(), info, slow_stub());
return code;
}
UNREACHABLE();
}
case LookupIterator::DATA: {
DCHECK(lookup->is_dictionary_holder());
DCHECK(kind() == Code::LOAD_IC || kind() == Code::LOAD_GLOBAL_IC);
DCHECK(holder->IsJSGlobalObject());
TRACE_HANDLER_STATS(isolate(), LoadIC_LoadGlobal);
NamedLoadHandlerCompiler compiler(isolate(), map, holder, cache_holder);
Handle<PropertyCell> cell = lookup->GetPropertyCell();
Handle<Code> code = compiler.CompileLoadGlobal(cell, lookup->name(),
lookup->IsConfigurable());
return code;
}
case LookupIterator::INTEGER_INDEXED_EXOTIC:
case LookupIterator::ACCESS_CHECK:
case LookupIterator::JSPROXY:
case LookupIterator::NOT_FOUND:
case LookupIterator::TRANSITION:
UNREACHABLE();
}
UNREACHABLE();
return slow_stub();
}
static Handle<Object> TryConvertKey(Handle<Object> key, Isolate* isolate) {
// This helper implements a few common fast cases for converting
// non-smi keys of keyed loads/stores to a smi or a string.
if (key->IsHeapNumber()) {
double value = Handle<HeapNumber>::cast(key)->value();
if (std::isnan(value)) {
key = isolate->factory()->nan_string();
} else {
int int_value = FastD2I(value);
if (value == int_value && Smi::IsValid(int_value)) {
key = handle(Smi::FromInt(int_value), isolate);
}
}
} else if (key->IsUndefined(isolate)) {
key = isolate->factory()->undefined_string();
}
return key;
}
void KeyedLoadIC::UpdateLoadElement(Handle<HeapObject> receiver) {
Handle<Map> receiver_map(receiver->map(), isolate());
DCHECK(receiver_map->instance_type() != JS_VALUE_TYPE &&
receiver_map->instance_type() != JS_PROXY_TYPE); // Checked by caller.
MapHandleList target_receiver_maps;
TargetMaps(&target_receiver_maps);
if (target_receiver_maps.length() == 0) {
Handle<Object> handler =
ElementHandlerCompiler::GetKeyedLoadHandler(receiver_map, isolate());
return ConfigureVectorState(Handle<Name>(), receiver_map, handler);
}
for (int i = 0; i < target_receiver_maps.length(); i++) {
Handle<Map> map = target_receiver_maps.at(i);
if (map.is_null()) continue;
if (map->instance_type() == JS_VALUE_TYPE) {
TRACE_GENERIC_IC(isolate(), "KeyedLoadIC", "JSValue");
return;
}
if (map->instance_type() == JS_PROXY_TYPE) {
TRACE_GENERIC_IC(isolate(), "KeyedLoadIC", "JSProxy");
return;
}
}
// The first time a receiver is seen that is a transitioned version of the
// previous monomorphic receiver type, assume the new ElementsKind is the
// monomorphic type. This benefits global arrays that only transition
// once, and all call sites accessing them are faster if they remain
// monomorphic. If this optimistic assumption is not true, the IC will
// miss again and it will become polymorphic and support both the
// untransitioned and transitioned maps.
if (state() == MONOMORPHIC && !receiver->IsString() &&
IsMoreGeneralElementsKindTransition(
target_receiver_maps.at(0)->elements_kind(),
Handle<JSObject>::cast(receiver)->GetElementsKind())) {
Handle<Object> handler =
ElementHandlerCompiler::GetKeyedLoadHandler(receiver_map, isolate());
return ConfigureVectorState(Handle<Name>(), receiver_map, handler);
}
DCHECK(state() != GENERIC);
// Determine the list of receiver maps that this call site has seen,
// adding the map that was just encountered.
if (!AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map)) {
// If the miss wasn't due to an unseen map, a polymorphic stub
// won't help, use the generic stub.
TRACE_GENERIC_IC(isolate(), "KeyedLoadIC", "same map added twice");
return;
}
// If the maximum number of receiver maps has been exceeded, use the generic
// version of the IC.
if (target_receiver_maps.length() > kMaxKeyedPolymorphism) {
TRACE_GENERIC_IC(isolate(), "KeyedLoadIC", "max polymorph exceeded");
return;
}
List<Handle<Object>> handlers(target_receiver_maps.length());
ElementHandlerCompiler compiler(isolate());
compiler.CompileElementHandlers(&target_receiver_maps, &handlers);
ConfigureVectorState(Handle<Name>(), &target_receiver_maps, &handlers);
}
MaybeHandle<Object> KeyedLoadIC::Load(Handle<Object> object,
Handle<Object> key) {
if (MigrateDeprecated(object)) {
Handle<Object> result;
ASSIGN_RETURN_ON_EXCEPTION(
isolate(), result, Runtime::GetObjectProperty(isolate(), object, key),
Object);
return result;
}
Handle<Object> load_handle;
// Check for non-string values that can be converted into an
// internalized string directly or is representable as a smi.
key = TryConvertKey(key, isolate());
uint32_t index;
if ((key->IsInternalizedString() &&
!String::cast(*key)->AsArrayIndex(&index)) ||
key->IsSymbol()) {
ASSIGN_RETURN_ON_EXCEPTION(isolate(), load_handle,
LoadIC::Load(object, Handle<Name>::cast(key)),
Object);
} else if (FLAG_use_ic && !object->IsAccessCheckNeeded() &&
!object->IsJSValue()) {
if ((object->IsJSObject() && key->IsSmi()) ||
(object->IsString() && key->IsNumber())) {
UpdateLoadElement(Handle<HeapObject>::cast(object));
if (is_vector_set()) {
TRACE_IC("LoadIC", key);
}
}
}
if (!is_vector_set()) {
ConfigureVectorState(MEGAMORPHIC, key);
TRACE_GENERIC_IC(isolate(), "KeyedLoadIC", "set generic");
TRACE_IC("LoadIC", key);
}
if (!load_handle.is_null()) return load_handle;
Handle<Object> result;
ASSIGN_RETURN_ON_EXCEPTION(isolate(), result,
Runtime::GetObjectProperty(isolate(), object, key),
Object);
return result;
}
bool StoreIC::LookupForWrite(LookupIterator* it, Handle<Object> value,
JSReceiver::StoreFromKeyed store_mode) {
// Disable ICs for non-JSObjects for now.
Handle<Object> object = it->GetReceiver();
if (!object->IsJSObject()) return false;
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
DCHECK(!receiver->map()->is_deprecated());
for (; it->IsFound(); it->Next()) {
switch (it->state()) {
case LookupIterator::NOT_FOUND:
case LookupIterator::TRANSITION:
UNREACHABLE();
case LookupIterator::JSPROXY:
return false;
case LookupIterator::INTERCEPTOR: {
Handle<JSObject> holder = it->GetHolder<JSObject>();
InterceptorInfo* info = holder->GetNamedInterceptor();
if (it->HolderIsReceiverOrHiddenPrototype()) {
return !info->non_masking() && receiver.is_identical_to(holder) &&
!info->setter()->IsUndefined(it->isolate());
} else if (!info->getter()->IsUndefined(it->isolate()) ||
!info->query()->IsUndefined(it->isolate())) {
return false;
}
break;
}
case LookupIterator::ACCESS_CHECK:
if (it->GetHolder<JSObject>()->IsAccessCheckNeeded()) return false;
break;
case LookupIterator::ACCESSOR:
return !it->IsReadOnly();
case LookupIterator::INTEGER_INDEXED_EXOTIC:
return false;
case LookupIterator::DATA: {
if (it->IsReadOnly()) return false;
Handle<JSObject> holder = it->GetHolder<JSObject>();
if (receiver.is_identical_to(holder)) {
it->PrepareForDataProperty(value);
// The previous receiver map might just have been deprecated,
// so reload it.
update_receiver_map(receiver);
return true;
}
// Receiver != holder.
if (receiver->IsJSGlobalProxy()) {
PrototypeIterator iter(it->isolate(), receiver);
return it->GetHolder<Object>().is_identical_to(
PrototypeIterator::GetCurrent(iter));
}
if (it->HolderIsReceiverOrHiddenPrototype()) return false;
if (it->ExtendingNonExtensible(receiver)) return false;
it->PrepareTransitionToDataProperty(receiver, value, NONE, store_mode);
return it->IsCacheableTransition();
}
}
}
receiver = it->GetStoreTarget();
if (it->ExtendingNonExtensible(receiver)) return false;
it->PrepareTransitionToDataProperty(receiver, value, NONE, store_mode);
return it->IsCacheableTransition();
}
MaybeHandle<Object> StoreIC::Store(Handle<Object> object, Handle<Name> name,
Handle<Object> value,
JSReceiver::StoreFromKeyed store_mode) {
if (object->IsJSGlobalObject() && name->IsString()) {
// Look up in script context table.
Handle<String> str_name = Handle<String>::cast(name);
Handle<JSGlobalObject> global = Handle<JSGlobalObject>::cast(object);
Handle<ScriptContextTable> script_contexts(
global->native_context()->script_context_table());
ScriptContextTable::LookupResult lookup_result;
if (ScriptContextTable::Lookup(script_contexts, str_name, &lookup_result)) {
Handle<Context> script_context = ScriptContextTable::GetContext(
script_contexts, lookup_result.context_index);
if (lookup_result.mode == CONST) {
return TypeError(MessageTemplate::kConstAssign, object, name);
}
Handle<Object> previous_value =
FixedArray::get(*script_context, lookup_result.slot_index, isolate());
if (previous_value->IsTheHole(isolate())) {
// Do not install stubs and stay pre-monomorphic for
// uninitialized accesses.
return ReferenceError(name);
}
if (FLAG_use_ic &&
StoreScriptContextFieldStub::Accepted(&lookup_result)) {
TRACE_HANDLER_STATS(isolate(), StoreIC_StoreScriptContextFieldStub);
StoreScriptContextFieldStub stub(isolate(), &lookup_result);
PatchCache(name, stub.GetCode());
}
script_context->set(lookup_result.slot_index, *value);
return value;
}
}
// TODO(verwaest): Let SetProperty do the migration, since storing a property
// might deprecate the current map again, if value does not fit.
if (MigrateDeprecated(object) || object->IsJSProxy()) {
Handle<Object> result;
ASSIGN_RETURN_ON_EXCEPTION(
isolate(), result,
Object::SetProperty(object, name, value, language_mode()), Object);
return result;
}
// If the object is undefined or null it's illegal to try to set any
// properties on it; throw a TypeError in that case.
if (object->IsNullOrUndefined(isolate())) {
if (FLAG_use_ic && state() != UNINITIALIZED && state() != PREMONOMORPHIC) {
// Ensure the IC state progresses.
TRACE_HANDLER_STATS(isolate(), StoreIC_NonReceiver);
update_receiver_map(object);
PatchCache(name, slow_stub());
TRACE_IC("StoreIC", name);
}
return TypeError(MessageTemplate::kNonObjectPropertyStore, object, name);
}
if (state() != UNINITIALIZED) {
JSObject::MakePrototypesFast(object, kStartAtPrototype, isolate());
}
LookupIterator it(object, name);
if (FLAG_use_ic) UpdateCaches(&it, value, store_mode);
MAYBE_RETURN_NULL(
Object::SetProperty(&it, value, language_mode(), store_mode));
return value;
}
void StoreIC::UpdateCaches(LookupIterator* lookup, Handle<Object> value,
JSReceiver::StoreFromKeyed store_mode) {
if (state() == UNINITIALIZED) {
// This is the first time we execute this inline cache. Set the target to
// the pre monomorphic stub to delay setting the monomorphic state.
TRACE_HANDLER_STATS(isolate(), StoreIC_Premonomorphic);
ConfigureVectorState(PREMONOMORPHIC, Handle<Object>());
TRACE_IC("StoreIC", lookup->name());
return;
}
bool use_ic = LookupForWrite(lookup, value, store_mode);
if (!use_ic) {
TRACE_GENERIC_IC(isolate(), "StoreIC", "LookupForWrite said 'false'");
}
Handle<Object> handler = use_ic ? ComputeHandler(lookup, value)
: Handle<Object>::cast(slow_stub());
PatchCache(lookup->name(), handler);
TRACE_IC("StoreIC", lookup->name());
}
Handle<Object> StoreIC::StoreTransition(Handle<Map> receiver_map,
Handle<JSObject> holder,
Handle<Map> transition,
Handle<Name> name) {
int descriptor = transition->LastAdded();
Handle<DescriptorArray> descriptors(transition->instance_descriptors());
PropertyDetails details = descriptors->GetDetails(descriptor);
Representation representation = details.representation();
DCHECK(!representation.IsNone());
// Declarative handlers don't support access checks.
DCHECK(!transition->is_access_check_needed());
Handle<Object> smi_handler;
DCHECK_EQ(kData, details.kind());
if (details.location() == kDescriptor) {
smi_handler = StoreHandler::TransitionToConstant(isolate(), descriptor);
} else {
DCHECK_EQ(kField, details.location());
bool extend_storage =
Map::cast(transition->GetBackPointer())->unused_property_fields() == 0;
FieldIndex index = FieldIndex::ForDescriptor(*transition, descriptor);
smi_handler = StoreHandler::TransitionToField(
isolate(), descriptor, index, representation, extend_storage);
}
// |holder| is either a receiver if the property is non-existent or
// one of the prototypes.
DCHECK(!holder.is_null());
bool is_nonexistent = holder->map() == transition->GetBackPointer();
if (is_nonexistent) holder = Handle<JSObject>::null();
int checks_count =
GetPrototypeCheckCount(isolate(), receiver_map, holder, name);
DCHECK_LE(0, checks_count);
DCHECK(!receiver_map->IsJSGlobalObjectMap());
Handle<Object> validity_cell =
Map::GetOrCreatePrototypeChainValidityCell(receiver_map, isolate());
if (validity_cell.is_null()) {
DCHECK_EQ(0, checks_count);
validity_cell = handle(Smi::FromInt(0), isolate());
}
Handle<WeakCell> transition_cell = Map::WeakCellForMap(transition);
Factory* factory = isolate()->factory();
if (checks_count == 0) {
return factory->NewTuple3(transition_cell, smi_handler, validity_cell);
}
Handle<FixedArray> handler_array(factory->NewFixedArray(
StoreHandler::kFirstPrototypeIndex + checks_count, TENURED));
handler_array->set(StoreHandler::kSmiHandlerIndex, *smi_handler);
handler_array->set(StoreHandler::kValidityCellIndex, *validity_cell);
handler_array->set(StoreHandler::kTransitionCellIndex, *transition_cell);
InitPrototypeChecks(isolate(), receiver_map, holder, name, handler_array,
StoreHandler::kFirstPrototypeIndex);
return handler_array;
}
static Handle<Code> PropertyCellStoreHandler(
Isolate* isolate, Handle<JSObject> receiver, Handle<JSGlobalObject> holder,
Handle<Name> name, Handle<PropertyCell> cell, PropertyCellType type) {
auto constant_type = Nothing<PropertyCellConstantType>();
if (type == PropertyCellType::kConstantType) {
constant_type = Just(cell->GetConstantType());
}
StoreGlobalStub stub(isolate, type, constant_type,
receiver->IsJSGlobalProxy());
auto code = stub.GetCodeCopyFromTemplate(holder, cell);
// TODO(verwaest): Move caching of these NORMAL stubs outside as well.
HeapObject::UpdateMapCodeCache(receiver, name, code);
return code;
}
Handle<Object> StoreIC::GetMapIndependentHandler(LookupIterator* lookup) {
DCHECK_NE(LookupIterator::JSPROXY, lookup->state());
// This is currently guaranteed by checks in StoreIC::Store.
Handle<JSObject> receiver = Handle<JSObject>::cast(lookup->GetReceiver());
Handle<JSObject> holder = lookup->GetHolder<JSObject>();
DCHECK(!receiver->IsAccessCheckNeeded() || lookup->name()->IsPrivate());
switch (lookup->state()) {
case LookupIterator::TRANSITION: {
auto store_target = lookup->GetStoreTarget();
if (store_target->IsJSGlobalObject()) {
break; // Custom-compiled handler.
}
// Currently not handled by CompileStoreTransition.
if (!holder->HasFastProperties()) {
TRACE_GENERIC_IC(isolate(), "StoreIC", "transition from slow");
TRACE_HANDLER_STATS(isolate(), StoreIC_SlowStub);
return slow_stub();
}
DCHECK(lookup->IsCacheableTransition());
Handle<Map> transition = lookup->transition_map();
TRACE_HANDLER_STATS(isolate(), StoreIC_StoreTransitionDH);
return StoreTransition(receiver_map(), holder, transition,
lookup->name());
}
case LookupIterator::INTERCEPTOR: {
DCHECK(!holder->GetNamedInterceptor()->setter()->IsUndefined(isolate()));
TRACE_HANDLER_STATS(isolate(), StoreIC_StoreInterceptorStub);
StoreInterceptorStub stub(isolate());
return stub.GetCode();
}
case LookupIterator::ACCESSOR: {
if (!holder->HasFastProperties()) {
TRACE_GENERIC_IC(isolate(), "StoreIC", "accessor on slow map");
TRACE_HANDLER_STATS(isolate(), StoreIC_SlowStub);
return slow_stub();
}
Handle<Object> accessors = lookup->GetAccessors();
if (accessors->IsAccessorInfo()) {
Handle<AccessorInfo> info = Handle<AccessorInfo>::cast(accessors);
if (v8::ToCData<Address>(info->setter()) == nullptr) {
TRACE_GENERIC_IC(isolate(), "StoreIC", "setter == nullptr");
TRACE_HANDLER_STATS(isolate(), StoreIC_SlowStub);
return slow_stub();
}
if (AccessorInfo::cast(*accessors)->is_special_data_property() &&
!lookup->HolderIsReceiverOrHiddenPrototype()) {
TRACE_GENERIC_IC(isolate(), "StoreIC",
"special data property in prototype chain");
TRACE_HANDLER_STATS(isolate(), StoreIC_SlowStub);
return slow_stub();
}
if (!AccessorInfo::IsCompatibleReceiverMap(isolate(), info,
receiver_map())) {
TRACE_GENERIC_IC(isolate(), "StoreIC", "incompatible receiver type");
TRACE_HANDLER_STATS(isolate(), StoreIC_SlowStub);
return slow_stub();
}
if (info->is_sloppy() && !receiver->IsJSReceiver()) {
TRACE_HANDLER_STATS(isolate(), StoreIC_SlowStub);
return slow_stub();
}
break; // Custom-compiled handler.
} else if (accessors->IsAccessorPair()) {
Handle<Object> setter(Handle<AccessorPair>::cast(accessors)->setter(),
isolate());
if (!setter->IsJSFunction() && !setter->IsFunctionTemplateInfo()) {
TRACE_GENERIC_IC(isolate(), "StoreIC", "setter not a function");
TRACE_HANDLER_STATS(isolate(), StoreIC_SlowStub);
return slow_stub();
}
CallOptimization call_optimization(setter);
if (call_optimization.is_simple_api_call()) {
if (call_optimization.IsCompatibleReceiver(receiver, holder)) {
break; // Custom-compiled handler.
}
TRACE_GENERIC_IC(isolate(), "StoreIC", "incompatible receiver");
TRACE_HANDLER_STATS(isolate(), StoreIC_SlowStub);
return slow_stub();
}
break; // Custom-compiled handler.
}
TRACE_HANDLER_STATS(isolate(), StoreIC_SlowStub);
return slow_stub();
}
case LookupIterator::DATA: {
DCHECK_EQ(kData, lookup->property_details().kind());
if (lookup->is_dictionary_holder()) {
if (holder->IsJSGlobalObject()) {
break; // Custom-compiled handler.
}
TRACE_HANDLER_STATS(isolate(), StoreIC_StoreNormal);
DCHECK(holder.is_identical_to(receiver));
return isolate()->builtins()->StoreIC_Normal();
}
// -------------- Fields --------------
if (lookup->property_details().location() == kField) {
TRACE_HANDLER_STATS(isolate(), StoreIC_StoreFieldDH);
int descriptor = lookup->GetFieldDescriptorIndex();
FieldIndex index = lookup->GetFieldIndex();
return StoreHandler::StoreField(isolate(), descriptor, index,
lookup->representation());
}
// -------------- Constant properties --------------
DCHECK_EQ(kDescriptor, lookup->property_details().location());
TRACE_GENERIC_IC(isolate(), "StoreIC", "constant property");
TRACE_HANDLER_STATS(isolate(), StoreIC_SlowStub);
return slow_stub();
}
case LookupIterator::INTEGER_INDEXED_EXOTIC:
case LookupIterator::ACCESS_CHECK:
case LookupIterator::JSPROXY:
case LookupIterator::NOT_FOUND:
UNREACHABLE();
}
return Handle<Code>::null();
}
Handle<Object> StoreIC::CompileHandler(LookupIterator* lookup,
Handle<Object> value,
CacheHolderFlag cache_holder) {
DCHECK_NE(LookupIterator::JSPROXY, lookup->state());
// This is currently guaranteed by checks in StoreIC::Store.
Handle<JSObject> receiver = Handle<JSObject>::cast(lookup->GetReceiver());
Handle<JSObject> holder = lookup->GetHolder<JSObject>();
DCHECK(!receiver->IsAccessCheckNeeded() || lookup->name()->IsPrivate());
switch (lookup->state()) {
case LookupIterator::TRANSITION: {
auto store_target = lookup->GetStoreTarget();
if (store_target->IsJSGlobalObject()) {
TRACE_HANDLER_STATS(isolate(), StoreIC_StoreGlobalTransition);
Handle<PropertyCell> cell = lookup->transition_cell();
cell->set_value(*value);
Handle<Code> code = PropertyCellStoreHandler(
isolate(), store_target, Handle<JSGlobalObject>::cast(store_target),
lookup->name(), cell, PropertyCellType::kConstant);
cell->set_value(isolate()->heap()->the_hole_value());
return code;
}
UNREACHABLE();
}
case LookupIterator::INTERCEPTOR:
UNREACHABLE();
case LookupIterator::ACCESSOR: {
DCHECK(holder->HasFastProperties());
Handle<Object> accessors = lookup->GetAccessors();
if (accessors->IsAccessorInfo()) {
Handle<AccessorInfo> info = Handle<AccessorInfo>::cast(accessors);
DCHECK(v8::ToCData<Address>(info->setter()) != 0);
DCHECK(!AccessorInfo::cast(*accessors)->is_special_data_property() ||
lookup->HolderIsReceiverOrHiddenPrototype());
DCHECK(AccessorInfo::IsCompatibleReceiverMap(isolate(), info,
receiver_map()));
DCHECK(!info->is_sloppy() || receiver->IsJSReceiver());
TRACE_HANDLER_STATS(isolate(), StoreIC_StoreCallback);
NamedStoreHandlerCompiler compiler(isolate(), receiver_map(), holder);
Handle<Code> code = compiler.CompileStoreCallback(
receiver, lookup->name(), info, language_mode());
return code;
} else {
DCHECK(accessors->IsAccessorPair());
Handle<Object> setter(Handle<AccessorPair>::cast(accessors)->setter(),
isolate());
DCHECK(setter->IsJSFunction() || setter->IsFunctionTemplateInfo());
CallOptimization call_optimization(setter);
NamedStoreHandlerCompiler compiler(isolate(), receiver_map(), holder);
if (call_optimization.is_simple_api_call()) {
DCHECK(call_optimization.IsCompatibleReceiver(receiver, holder));
TRACE_HANDLER_STATS(isolate(), StoreIC_StoreCallback);
Handle<Code> code = compiler.CompileStoreCallback(
receiver, lookup->name(), call_optimization,
lookup->GetAccessorIndex(), slow_stub());
return code;
}
TRACE_HANDLER_STATS(isolate(), StoreIC_StoreViaSetter);
int expected_arguments = JSFunction::cast(*setter)
->shared()
->internal_formal_parameter_count();
return compiler.CompileStoreViaSetter(receiver, lookup->name(),
lookup->GetAccessorIndex(),
expected_arguments);
}
}
case LookupIterator::DATA: {
DCHECK(lookup->is_dictionary_holder());
DCHECK(holder->IsJSGlobalObject());
TRACE_HANDLER_STATS(isolate(), StoreIC_StoreGlobal);
DCHECK(holder.is_identical_to(receiver) ||
receiver->map()->prototype() == *holder);
auto cell = lookup->GetPropertyCell();
auto updated_type =
PropertyCell::UpdatedType(cell, value, lookup->property_details());
auto code = PropertyCellStoreHandler(isolate(), receiver,
Handle<JSGlobalObject>::cast(holder),
lookup->name(), cell, updated_type);
return code;
}
case LookupIterator::INTEGER_INDEXED_EXOTIC:
case LookupIterator::ACCESS_CHECK:
case LookupIterator::JSPROXY:
case LookupIterator::NOT_FOUND:
UNREACHABLE();
}
UNREACHABLE();
return slow_stub();
}
void KeyedStoreIC::UpdateStoreElement(Handle<Map> receiver_map,
KeyedAccessStoreMode store_mode) {
MapHandleList target_receiver_maps;
TargetMaps(&target_receiver_maps);
if (target_receiver_maps.length() == 0) {
Handle<Map> monomorphic_map =
ComputeTransitionedMap(receiver_map, store_mode);
store_mode = GetNonTransitioningStoreMode(store_mode);
Handle<Object> handler =
PropertyICCompiler::ComputeKeyedStoreMonomorphicHandler(monomorphic_map,
store_mode);
return ConfigureVectorState(Handle<Name>(), monomorphic_map, handler);
}
for (int i = 0; i < target_receiver_maps.length(); i++) {
if (!target_receiver_maps.at(i).is_null() &&
target_receiver_maps.at(i)->instance_type() == JS_VALUE_TYPE) {
TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "JSValue");
return;
}
}
// There are several special cases where an IC that is MONOMORPHIC can still
// transition to a different GetNonTransitioningStoreMode IC that handles a
// superset of the original IC. Handle those here if the receiver map hasn't
// changed or it has transitioned to a more general kind.
KeyedAccessStoreMode old_store_mode = GetKeyedAccessStoreMode();
Handle<Map> previous_receiver_map = target_receiver_maps.at(0);
if (state() == MONOMORPHIC) {
Handle<Map> transitioned_receiver_map = receiver_map;
if (IsTransitionStoreMode(store_mode)) {
transitioned_receiver_map =
ComputeTransitionedMap(receiver_map, store_mode);
}
if ((receiver_map.is_identical_to(previous_receiver_map) &&
IsTransitionStoreMode(store_mode)) ||
IsTransitionOfMonomorphicTarget(*previous_receiver_map,
*transitioned_receiver_map)) {
// If the "old" and "new" maps are in the same elements map family, or
// if they at least come from the same origin for a transitioning store,
// stay MONOMORPHIC and use the map for the most generic ElementsKind.
store_mode = GetNonTransitioningStoreMode(store_mode);
Handle<Object> handler =
PropertyICCompiler::ComputeKeyedStoreMonomorphicHandler(
transitioned_receiver_map, store_mode);
ConfigureVectorState(Handle<Name>(), transitioned_receiver_map, handler);
return;
}
if (receiver_map.is_identical_to(previous_receiver_map) &&
old_store_mode == STANDARD_STORE &&
(store_mode == STORE_AND_GROW_NO_TRANSITION ||
store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS ||
store_mode == STORE_NO_TRANSITION_HANDLE_COW)) {
// A "normal" IC that handles stores can switch to a version that can
// grow at the end of the array, handle OOB accesses or copy COW arrays
// and still stay MONOMORPHIC.
Handle<Object> handler =
PropertyICCompiler::ComputeKeyedStoreMonomorphicHandler(receiver_map,
store_mode);
return ConfigureVectorState(Handle<Name>(), receiver_map, handler);
}
}
DCHECK(state() != GENERIC);
bool map_added =
AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map);
if (IsTransitionStoreMode(store_mode)) {
Handle<Map> transitioned_receiver_map =
ComputeTransitionedMap(receiver_map, store_mode);
map_added |= AddOneReceiverMapIfMissing(&target_receiver_maps,
transitioned_receiver_map);
}
if (!map_added) {
// If the miss wasn't due to an unseen map, a polymorphic stub
// won't help, use the megamorphic stub which can handle everything.
TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "same map added twice");
return;
}
// If the maximum number of receiver maps has been exceeded, use the
// megamorphic version of the IC.
if (target_receiver_maps.length() > kMaxKeyedPolymorphism) return;
// Make sure all polymorphic handlers have the same store mode, otherwise the
// megamorphic stub must be used.
store_mode = GetNonTransitioningStoreMode(store_mode);
if (old_store_mode != STANDARD_STORE) {
if (store_mode == STANDARD_STORE) {
store_mode = old_store_mode;
} else if (store_mode != old_store_mode) {
TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "store mode mismatch");
return;
}
}
// If the store mode isn't the standard mode, make sure that all polymorphic
// receivers are either external arrays, or all "normal" arrays. Otherwise,
// use the megamorphic stub.
if (store_mode != STANDARD_STORE) {
int external_arrays = 0;
for (int i = 0; i < target_receiver_maps.length(); ++i) {
if (target_receiver_maps[i]->has_fixed_typed_array_elements()) {
external_arrays++;
}
}
if (external_arrays != 0 &&
external_arrays != target_receiver_maps.length()) {
TRACE_GENERIC_IC(isolate(), "KeyedStoreIC",
"unsupported combination of external and normal arrays");
return;
}
}
MapHandleList transitioned_maps(target_receiver_maps.length());
List<Handle<Object>> handlers(target_receiver_maps.length());
PropertyICCompiler::ComputeKeyedStorePolymorphicHandlers(
&target_receiver_maps, &transitioned_maps, &handlers, store_mode);
ConfigureVectorState(&target_receiver_maps, &transitioned_maps, &handlers);
}
Handle<Map> KeyedStoreIC::ComputeTransitionedMap(
Handle<Map> map, KeyedAccessStoreMode store_mode) {
switch (store_mode) {
case STORE_TRANSITION_TO_OBJECT:
case STORE_AND_GROW_TRANSITION_TO_OBJECT: {
ElementsKind kind = IsFastHoleyElementsKind(map->elements_kind())
? FAST_HOLEY_ELEMENTS
: FAST_ELEMENTS;
return Map::TransitionElementsTo(map, kind);
}
case STORE_TRANSITION_TO_DOUBLE:
case STORE_AND_GROW_TRANSITION_TO_DOUBLE: {
ElementsKind kind = IsFastHoleyElementsKind(map->elements_kind())
? FAST_HOLEY_DOUBLE_ELEMENTS
: FAST_DOUBLE_ELEMENTS;
return Map::TransitionElementsTo(map, kind);
}
case STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS:
DCHECK(map->has_fixed_typed_array_elements());
// Fall through
case STORE_NO_TRANSITION_HANDLE_COW:
case STANDARD_STORE:
case STORE_AND_GROW_NO_TRANSITION:
return map;
}
UNREACHABLE();
return MaybeHandle<Map>().ToHandleChecked();
}
bool IsOutOfBoundsAccess(Handle<JSObject> receiver, uint32_t index) {
uint32_t length = 0;
if (receiver->IsJSArray()) {
JSArray::cast(*receiver)->length()->ToArrayLength(&length);
} else {
length = static_cast<uint32_t>(receiver->elements()->length());
}
return index >= length;
}
static KeyedAccessStoreMode GetStoreMode(Handle<JSObject> receiver,
uint32_t index, Handle<Object> value) {
bool oob_access = IsOutOfBoundsAccess(receiver, index);
// Don't consider this a growing store if the store would send the receiver to
// dictionary mode.
bool allow_growth = receiver->IsJSArray() && oob_access &&
!receiver->WouldConvertToSlowElements(index);
if (allow_growth) {
// Handle growing array in stub if necessary.
if (receiver->HasFastSmiElements()) {
if (value->IsHeapNumber()) {
return STORE_AND_GROW_TRANSITION_TO_DOUBLE;
}
if (value->IsHeapObject()) {
return STORE_AND_GROW_TRANSITION_TO_OBJECT;
}
} else if (receiver->HasFastDoubleElements()) {
if (!value->IsSmi() && !value->IsHeapNumber()) {
return STORE_AND_GROW_TRANSITION_TO_OBJECT;
}
}
return STORE_AND_GROW_NO_TRANSITION;
} else {
// Handle only in-bounds elements accesses.
if (receiver->HasFastSmiElements()) {
if (value->IsHeapNumber()) {
return STORE_TRANSITION_TO_DOUBLE;
} else if (value->IsHeapObject()) {
return STORE_TRANSITION_TO_OBJECT;
}
} else if (receiver->HasFastDoubleElements()) {
if (!value->IsSmi() && !value->IsHeapNumber()) {
return STORE_TRANSITION_TO_OBJECT;
}
}
if (!FLAG_trace_external_array_abuse &&
receiver->map()->has_fixed_typed_array_elements() && oob_access) {
return STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS;
}
Heap* heap = receiver->GetHeap();
if (receiver->elements()->map() == heap->fixed_cow_array_map()) {
return STORE_NO_TRANSITION_HANDLE_COW;
} else {
return STANDARD_STORE;
}
}
}
MaybeHandle<Object> KeyedStoreIC::Store(Handle<Object> object,
Handle<Object> key,
Handle<Object> value) {
// TODO(verwaest): Let SetProperty do the migration, since storing a property
// might deprecate the current map again, if value does not fit.
if (MigrateDeprecated(object)) {
Handle<Object> result;
ASSIGN_RETURN_ON_EXCEPTION(
isolate(), result, Runtime::SetObjectProperty(isolate(), object, key,
value, language_mode()),
Object);
return result;
}
// Check for non-string values that can be converted into an
// internalized string directly or is representable as a smi.
key = TryConvertKey(key, isolate());
Handle<Object> store_handle;
uint32_t index;
if ((key->IsInternalizedString() &&
!String::cast(*key)->AsArrayIndex(&index)) ||
key->IsSymbol()) {
ASSIGN_RETURN_ON_EXCEPTION(
isolate(), store_handle,
StoreIC::Store(object, Handle<Name>::cast(key), value,
JSReceiver::MAY_BE_STORE_FROM_KEYED),
Object);
if (!is_vector_set()) {
ConfigureVectorState(MEGAMORPHIC, key);
TRACE_GENERIC_IC(isolate(), "KeyedStoreIC",
"unhandled internalized string key");
TRACE_IC("StoreIC", key);
}
return store_handle;
}
bool use_ic = FLAG_use_ic && !object->IsStringWrapper() &&
!object->IsAccessCheckNeeded() && !object->IsJSGlobalProxy();
if (use_ic && !object->IsSmi()) {
// Don't use ICs for maps of the objects in Array's prototype chain. We
// expect to be able to trap element sets to objects with those maps in
// the runtime to enable optimization of element hole access.
Handle<HeapObject> heap_object = Handle<HeapObject>::cast(object);
if (heap_object->map()->IsMapInArrayPrototypeChain()) {
TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "map in array prototype");
use_ic = false;
}
}
Handle<Map> old_receiver_map;
bool is_arguments = false;
bool key_is_valid_index = false;
KeyedAccessStoreMode store_mode = STANDARD_STORE;
if (use_ic && object->IsJSObject()) {
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
old_receiver_map = handle(receiver->map(), isolate());
is_arguments = receiver->IsJSArgumentsObject();
if (!is_arguments) {
key_is_valid_index = key->IsSmi() && Smi::cast(*key)->value() >= 0;
if (key_is_valid_index) {
uint32_t index = static_cast<uint32_t>(Smi::cast(*key)->value());
store_mode = GetStoreMode(receiver, index, value);
}
}
}
DCHECK(store_handle.is_null());
ASSIGN_RETURN_ON_EXCEPTION(isolate(), store_handle,
Runtime::SetObjectProperty(isolate(), object, key,
value, language_mode()),
Object);
if (use_ic) {
if (!old_receiver_map.is_null()) {
if (is_arguments) {
TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "arguments receiver");
} else if (key_is_valid_index) {
// We should go generic if receiver isn't a dictionary, but our
// prototype chain does have dictionary elements. This ensures that
// other non-dictionary receivers in the polymorphic case benefit
// from fast path keyed stores.
if (!old_receiver_map->DictionaryElementsInPrototypeChainOnly()) {
UpdateStoreElement(old_receiver_map, store_mode);
} else {
TRACE_GENERIC_IC(isolate(), "KeyedStoreIC",
"dictionary or proxy prototype");
}
} else {
TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "non-smi-like key");
}
} else {
TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "non-JSObject receiver");
}
}
if (!is_vector_set()) {
ConfigureVectorState(MEGAMORPHIC, key);
TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "set generic");
}
TRACE_IC("StoreIC", key);
return store_handle;
}
void CallIC::HandleMiss(Handle<Object> function) {
Handle<Object> name = isolate()->factory()->empty_string();
CallICNexus* nexus = casted_nexus<CallICNexus>();
Object* feedback = nexus->GetFeedback();
// Hand-coded MISS handling is easier if CallIC slots don't contain smis.
DCHECK(!feedback->IsSmi());
if (feedback->IsWeakCell() || !function->IsJSFunction() ||
feedback->IsAllocationSite()) {
// We are going generic.
nexus->ConfigureMegamorphic();
} else {
DCHECK(feedback == *TypeFeedbackVector::UninitializedSentinel(isolate()));
Handle<JSFunction> js_function = Handle<JSFunction>::cast(function);
Handle<JSFunction> array_function =
Handle<JSFunction>(isolate()->native_context()->array_function());
if (array_function.is_identical_to(js_function)) {
// Alter the slot.
nexus->ConfigureMonomorphicArray();
} else if (js_function->context()->native_context() !=
*isolate()->native_context()) {
// Don't collect cross-native context feedback for the CallIC.
// TODO(bmeurer): We should collect the SharedFunctionInfo as
// feedback in this case instead.
nexus->ConfigureMegamorphic();
} else {
nexus->ConfigureMonomorphic(js_function);
}
}
if (function->IsJSFunction()) {
Handle<JSFunction> js_function = Handle<JSFunction>::cast(function);
name = handle(js_function->shared()->name(), isolate());
}
OnTypeFeedbackChanged(isolate(), get_host());
TRACE_IC("CallIC", name);
}
#undef TRACE_IC
// ----------------------------------------------------------------------------
// Static IC stub generators.
//
// Used from ic-<arch>.cc.
RUNTIME_FUNCTION(Runtime_CallIC_Miss) {
HandleScope scope(isolate);
DCHECK_EQ(3, args.length());
// Runtime functions don't follow the IC's calling convention.
Handle<Object> function = args.at(0);
Handle<TypeFeedbackVector> vector = args.at<TypeFeedbackVector>(1);
Handle<Smi> slot = args.at<Smi>(2);
FeedbackVectorSlot vector_slot = vector->ToSlot(slot->value());
CallICNexus nexus(vector, vector_slot);
CallIC ic(isolate, &nexus);
ic.HandleMiss(function);
return *function;
}
// Used from ic-<arch>.cc.
RUNTIME_FUNCTION(Runtime_LoadIC_Miss) {
HandleScope scope(isolate);
DCHECK_EQ(4, args.length());
// Runtime functions don't follow the IC's calling convention.
Handle<Object> receiver = args.at(0);
Handle<Name> key = args.at<Name>(1);
Handle<Smi> slot = args.at<Smi>(2);
Handle<TypeFeedbackVector> vector = args.at<TypeFeedbackVector>(3);
FeedbackVectorSlot vector_slot = vector->ToSlot(slot->value());
// A monomorphic or polymorphic KeyedLoadIC with a string key can call the
// LoadIC miss handler if the handler misses. Since the vector Nexus is
// set up outside the IC, handle that here.
FeedbackVectorSlotKind kind = vector->GetKind(vector_slot);
if (kind == FeedbackVectorSlotKind::LOAD_IC) {
LoadICNexus nexus(vector, vector_slot);
LoadIC ic(IC::NO_EXTRA_FRAME, isolate, &nexus);
ic.UpdateState(receiver, key);
RETURN_RESULT_OR_FAILURE(isolate, ic.Load(receiver, key));
} else if (kind == FeedbackVectorSlotKind::LOAD_GLOBAL_IC) {
DCHECK_EQ(*isolate->global_object(), *receiver);
LoadGlobalICNexus nexus(vector, vector_slot);
LoadGlobalIC ic(IC::NO_EXTRA_FRAME, isolate, &nexus);
ic.UpdateState(receiver, key);
RETURN_RESULT_OR_FAILURE(isolate, ic.Load(key));
} else {
DCHECK_EQ(FeedbackVectorSlotKind::KEYED_LOAD_IC, kind);
KeyedLoadICNexus nexus(vector, vector_slot);
KeyedLoadIC ic(IC::NO_EXTRA_FRAME, isolate, &nexus);
ic.UpdateState(receiver, key);
RETURN_RESULT_OR_FAILURE(isolate, ic.Load(receiver, key));
}
}
// Used from ic-<arch>.cc.
RUNTIME_FUNCTION(Runtime_LoadGlobalIC_Miss) {
HandleScope scope(isolate);
DCHECK_EQ(3, args.length());
// Runtime functions don't follow the IC's calling convention.
Handle<JSGlobalObject> global = isolate->global_object();
Handle<String> name = args.at<String>(0);
Handle<Smi> slot = args.at<Smi>(1);
Handle<TypeFeedbackVector> vector = args.at<TypeFeedbackVector>(2);
FeedbackVectorSlot vector_slot = vector->ToSlot(slot->value());
LoadGlobalICNexus nexus(vector, vector_slot);
LoadGlobalIC ic(IC::NO_EXTRA_FRAME, isolate, &nexus);
ic.UpdateState(global, name);
Handle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, ic.Load(name));
return *result;
}
RUNTIME_FUNCTION(Runtime_LoadGlobalIC_Slow) {
HandleScope scope(isolate);
DCHECK_EQ(1, args.length());
CONVERT_ARG_HANDLE_CHECKED(String, name, 0);
Handle<Context> native_context = isolate->native_context();
Handle<ScriptContextTable> script_contexts(
native_context->script_context_table());
ScriptContextTable::LookupResult lookup_result;
if (ScriptContextTable::Lookup(script_contexts, name, &lookup_result)) {
Handle<Context> script_context = ScriptContextTable::GetContext(
script_contexts, lookup_result.context_index);
Handle<Object> result =
FixedArray::get(*script_context, lookup_result.slot_index, isolate);
if (*result == isolate->heap()->the_hole_value()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewReferenceError(MessageTemplate::kNotDefined, name));
}
return *result;
}
Handle<JSGlobalObject> global(native_context->global_object(), isolate);
Handle<Object> result;
bool is_found = false;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, result,
Runtime::GetObjectProperty(isolate, global, name, &is_found));
if (!is_found) {
LoadICNexus nexus(isolate);
LoadIC ic(IC::NO_EXTRA_FRAME, isolate, &nexus);
// It is actually a LoadGlobalICs here but the predicate handles this case
// properly.
if (ic.ShouldThrowReferenceError()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewReferenceError(MessageTemplate::kNotDefined, name));
}
}
return *result;
}
// Used from ic-<arch>.cc
RUNTIME_FUNCTION(Runtime_KeyedLoadIC_Miss) {
HandleScope scope(isolate);
DCHECK_EQ(4, args.length());
// Runtime functions don't follow the IC's calling convention.
Handle<Object> receiver = args.at(0);
Handle<Object> key = args.at(1);
Handle<Smi> slot = args.at<Smi>(2);
Handle<TypeFeedbackVector> vector = args.at<TypeFeedbackVector>(3);
FeedbackVectorSlot vector_slot = vector->ToSlot(slot->value());
KeyedLoadICNexus nexus(vector, vector_slot);
KeyedLoadIC ic(IC::NO_EXTRA_FRAME, isolate, &nexus);
ic.UpdateState(receiver, key);
RETURN_RESULT_OR_FAILURE(isolate, ic.Load(receiver, key));
}
RUNTIME_FUNCTION(Runtime_KeyedLoadIC_MissFromStubFailure) {
HandleScope scope(isolate);
typedef LoadWithVectorDescriptor Descriptor;
DCHECK_EQ(Descriptor::kParameterCount, args.length());
Handle<Object> receiver = args.at(Descriptor::kReceiver);
Handle<Object> key = args.at(Descriptor::kName);
Handle<Smi> slot = args.at<Smi>(Descriptor::kSlot);
Handle<TypeFeedbackVector> vector =
args.at<TypeFeedbackVector>(Descriptor::kVector);
FeedbackVectorSlot vector_slot = vector->ToSlot(slot->value());
KeyedLoadICNexus nexus(vector, vector_slot);
KeyedLoadIC ic(IC::EXTRA_CALL_FRAME, isolate, &nexus);
ic.UpdateState(receiver, key);
RETURN_RESULT_OR_FAILURE(isolate, ic.Load(receiver, key));
}
// Used from ic-<arch>.cc.
RUNTIME_FUNCTION(Runtime_StoreIC_Miss) {
HandleScope scope(isolate);
DCHECK_EQ(5, args.length());
// Runtime functions don't follow the IC's calling convention.
Handle<Object> value = args.at(0);
Handle<Smi> slot = args.at<Smi>(1);
Handle<TypeFeedbackVector> vector = args.at<TypeFeedbackVector>(2);
Handle<Object> receiver = args.at(3);
Handle<Name> key = args.at<Name>(4);
FeedbackVectorSlot vector_slot = vector->ToSlot(slot->value());
if (vector->GetKind(vector_slot) == FeedbackVectorSlotKind::STORE_IC) {
StoreICNexus nexus(vector, vector_slot);
StoreIC ic(IC::NO_EXTRA_FRAME, isolate, &nexus);
ic.UpdateState(receiver, key);
RETURN_RESULT_OR_FAILURE(isolate, ic.Store(receiver, key, value));
} else {
DCHECK_EQ(FeedbackVectorSlotKind::KEYED_STORE_IC,
vector->GetKind(vector_slot));
KeyedStoreICNexus nexus(vector, vector_slot);
KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate, &nexus);
ic.UpdateState(receiver, key);
RETURN_RESULT_OR_FAILURE(isolate, ic.Store(receiver, key, value));
}
}
// Used from ic-<arch>.cc.
RUNTIME_FUNCTION(Runtime_KeyedStoreIC_Miss) {
HandleScope scope(isolate);
DCHECK_EQ(5, args.length());
// Runtime functions don't follow the IC's calling convention.
Handle<Object> value = args.at(0);
Handle<Smi> slot = args.at<Smi>(1);
Handle<TypeFeedbackVector> vector = args.at<TypeFeedbackVector>(2);
Handle<Object> receiver = args.at(3);
Handle<Object> key = args.at(4);
FeedbackVectorSlot vector_slot = vector->ToSlot(slot->value());
KeyedStoreICNexus nexus(vector, vector_slot);
KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate, &nexus);
ic.UpdateState(receiver, key);
RETURN_RESULT_OR_FAILURE(isolate, ic.Store(receiver, key, value));
}
RUNTIME_FUNCTION(Runtime_KeyedStoreIC_Slow) {
HandleScope scope(isolate);
DCHECK_EQ(5, args.length());
// Runtime functions don't follow the IC's calling convention.
Handle<Object> value = args.at(0);
// slot and vector parameters are not used.
Handle<Object> object = args.at(3);
Handle<Object> key = args.at(4);
LanguageMode language_mode;
KeyedStoreICNexus nexus(isolate);
KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate, &nexus);
language_mode = ic.language_mode();
RETURN_RESULT_OR_FAILURE(
isolate,
Runtime::SetObjectProperty(isolate, object, key, value, language_mode));
}
RUNTIME_FUNCTION(Runtime_ElementsTransitionAndStoreIC_Miss) {
HandleScope scope(isolate);
// Runtime functions don't follow the IC's calling convention.
Handle<Object> object = args.at(0);
Handle<Object> key = args.at(1);
Handle<Object> value = args.at(2);
Handle<Map> map = args.at<Map>(3);
LanguageMode language_mode;
KeyedStoreICNexus nexus(isolate);
KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate, &nexus);
language_mode = ic.language_mode();
if (object->IsJSObject()) {
JSObject::TransitionElementsKind(Handle<JSObject>::cast(object),
map->elements_kind());
}
RETURN_RESULT_OR_FAILURE(
isolate,
Runtime::SetObjectProperty(isolate, object, key, value, language_mode));
}
MaybeHandle<Object> BinaryOpIC::Transition(
Handle<AllocationSite> allocation_site, Handle<Object> left,
Handle<Object> right) {
BinaryOpICState state(isolate(), extra_ic_state());
// Compute the actual result using the builtin for the binary operation.
Handle<Object> result;
switch (state.op()) {
default:
UNREACHABLE();
case Token::ADD:
ASSIGN_RETURN_ON_EXCEPTION(isolate(), result,
Object::Add(isolate(), left, right), Object);
break;
case Token::SUB:
ASSIGN_RETURN_ON_EXCEPTION(
isolate(), result, Object::Subtract(isolate(), left, right), Object);
break;
case Token::MUL:
ASSIGN_RETURN_ON_EXCEPTION(
isolate(), result, Object::Multiply(isolate(), left, right), Object);
break;
case Token::DIV:
ASSIGN_RETURN_ON_EXCEPTION(
isolate(), result, Object::Divide(isolate(), left, right), Object);
break;
case Token::MOD:
ASSIGN_RETURN_ON_EXCEPTION(
isolate(), result, Object::Modulus(isolate(), left, right), Object);
break;
case Token::BIT_OR:
ASSIGN_RETURN_ON_EXCEPTION(
isolate(), result, Object::BitwiseOr(isolate(), left, right), Object);
break;
case Token::BIT_AND:
ASSIGN_RETURN_ON_EXCEPTION(isolate(), result,
Object::BitwiseAnd(isolate(), left, right),
Object);
break;
case Token::BIT_XOR:
ASSIGN_RETURN_ON_EXCEPTION(isolate(), result,
Object::BitwiseXor(isolate(), left, right),
Object);
break;
case Token::SAR:
ASSIGN_RETURN_ON_EXCEPTION(isolate(), result,
Object::ShiftRight(isolate(), left, right),
Object);
break;
case Token::SHR:
ASSIGN_RETURN_ON_EXCEPTION(
isolate(), result, Object::ShiftRightLogical(isolate(), left, right),
Object);
break;
case Token::SHL:
ASSIGN_RETURN_ON_EXCEPTION(
isolate(), result, Object::ShiftLeft(isolate(), left, right), Object);
break;
}
// Do not try to update the target if the code was marked for lazy
// deoptimization. (Since we do not relocate addresses in these
// code objects, an attempt to access the target could fail.)
if (AddressIsDeoptimizedCode()) {
return result;
}
// Compute the new state.
BinaryOpICState old_state(isolate(), target()->extra_ic_state());
state.Update(left, right, result);
// Check if we have a string operation here.
Handle<Code> new_target;
if (!allocation_site.is_null() || state.ShouldCreateAllocationMementos()) {
// Setup the allocation site on-demand.
if (allocation_site.is_null()) {
allocation_site = isolate()->factory()->NewAllocationSite();
}
// Install the stub with an allocation site.
BinaryOpICWithAllocationSiteStub stub(isolate(), state);
new_target = stub.GetCodeCopyFromTemplate(allocation_site);
// Sanity check the trampoline stub.
DCHECK_EQ(*allocation_site, new_target->FindFirstAllocationSite());
} else {
// Install the generic stub.
BinaryOpICStub stub(isolate(), state);
new_target = stub.GetCode();
// Sanity check the generic stub.
DCHECK_NULL(new_target->FindFirstAllocationSite());
}
set_target(*new_target);
if (FLAG_ic_stats &
v8::tracing::TracingCategoryObserver::ENABLED_BY_TRACING) {
auto ic_stats = ICStats::instance();
ic_stats->Begin();
ICInfo& ic_info = ic_stats->Current();
ic_info.type = "BinaryOpIC";
ic_info.state = old_state.ToString();
ic_info.state += " => ";
ic_info.state += state.ToString();
JavaScriptFrame::CollectTopFrameForICStats(isolate());
ic_stats->End();
} else if (FLAG_ic_stats) {
// if (FLAG_trace_ic) {
OFStream os(stdout);
os << "[BinaryOpIC" << old_state << " => " << state << " @ "
<< static_cast<void*>(*new_target) << " <- ";
JavaScriptFrame::PrintTop(isolate(), stdout, false, true);
if (!allocation_site.is_null()) {
os << " using allocation site " << static_cast<void*>(*allocation_site);
}
os << "]" << std::endl;
}
// Patch the inlined smi code as necessary.
if (!old_state.UseInlinedSmiCode() && state.UseInlinedSmiCode()) {
PatchInlinedSmiCode(isolate(), address(), ENABLE_INLINED_SMI_CHECK);
} else if (old_state.UseInlinedSmiCode() && !state.UseInlinedSmiCode()) {
PatchInlinedSmiCode(isolate(), address(), DISABLE_INLINED_SMI_CHECK);
}
return result;
}
RUNTIME_FUNCTION(Runtime_BinaryOpIC_Miss) {
HandleScope scope(isolate);
DCHECK_EQ(2, args.length());
typedef BinaryOpDescriptor Descriptor;
Handle<Object> left = args.at(Descriptor::kLeft);
Handle<Object> right = args.at(Descriptor::kRight);
BinaryOpIC ic(isolate);
RETURN_RESULT_OR_FAILURE(
isolate, ic.Transition(Handle<AllocationSite>::null(), left, right));
}
RUNTIME_FUNCTION(Runtime_BinaryOpIC_MissWithAllocationSite) {
HandleScope scope(isolate);
DCHECK_EQ(3, args.length());
typedef BinaryOpWithAllocationSiteDescriptor Descriptor;
Handle<AllocationSite> allocation_site =
args.at<AllocationSite>(Descriptor::kAllocationSite);
Handle<Object> left = args.at(Descriptor::kLeft);
Handle<Object> right = args.at(Descriptor::kRight);
BinaryOpIC ic(isolate);
RETURN_RESULT_OR_FAILURE(isolate,
ic.Transition(allocation_site, left, right));
}
Code* CompareIC::GetRawUninitialized(Isolate* isolate, Token::Value op) {
CompareICStub stub(isolate, op, CompareICState::UNINITIALIZED,
CompareICState::UNINITIALIZED,
CompareICState::UNINITIALIZED);
Code* code = NULL;
CHECK(stub.FindCodeInCache(&code));
return code;
}
Code* CompareIC::UpdateCaches(Handle<Object> x, Handle<Object> y) {
HandleScope scope(isolate());
CompareICStub old_stub(target()->stub_key(), isolate());
CompareICState::State new_left =
CompareICState::NewInputState(old_stub.left(), x);
CompareICState::State new_right =
CompareICState::NewInputState(old_stub.right(), y);
CompareICState::State state = CompareICState::TargetState(
isolate(), old_stub.state(), old_stub.left(), old_stub.right(), op_,
HasInlinedSmiCode(address()), x, y);
CompareICStub stub(isolate(), op_, new_left, new_right, state);
if (state == CompareICState::KNOWN_RECEIVER) {
stub.set_known_map(
Handle<Map>(Handle<JSReceiver>::cast(x)->map(), isolate()));
}
Handle<Code> new_target = stub.GetCode();
set_target(*new_target);
if (FLAG_ic_stats &
v8::tracing::TracingCategoryObserver::ENABLED_BY_TRACING) {
auto ic_stats = ICStats::instance();
ic_stats->Begin();
ICInfo& ic_info = ic_stats->Current();
ic_info.type = "CompareIC";
JavaScriptFrame::CollectTopFrameForICStats(isolate());
ic_info.state = "((";
ic_info.state += CompareICState::GetStateName(old_stub.left());
ic_info.state += "+";
ic_info.state += CompareICState::GetStateName(old_stub.right());
ic_info.state += "=";
ic_info.state += CompareICState::GetStateName(old_stub.state());
ic_info.state += ")->(";
ic_info.state += CompareICState::GetStateName(new_left);
ic_info.state += "+";
ic_info.state += CompareICState::GetStateName(new_right);
ic_info.state += "=";
ic_info.state += CompareICState::GetStateName(state);
ic_info.state += "))#";
ic_info.state += Token::Name(op_);
ic_stats->End();
} else if (FLAG_ic_stats) {
// if (FLAG_trace_ic) {
PrintF("[CompareIC in ");
JavaScriptFrame::PrintTop(isolate(), stdout, false, true);
PrintF(" ((%s+%s=%s)->(%s+%s=%s))#%s @ %p]\n",
CompareICState::GetStateName(old_stub.left()),
CompareICState::GetStateName(old_stub.right()),
CompareICState::GetStateName(old_stub.state()),
CompareICState::GetStateName(new_left),
CompareICState::GetStateName(new_right),
CompareICState::GetStateName(state), Token::Name(op_),
static_cast<void*>(*stub.GetCode()));
}
// Activate inlined smi code.
if (old_stub.state() == CompareICState::UNINITIALIZED) {
PatchInlinedSmiCode(isolate(), address(), ENABLE_INLINED_SMI_CHECK);
}
return *new_target;
}
// Used from CompareICStub::GenerateMiss in code-stubs-<arch>.cc.
RUNTIME_FUNCTION(Runtime_CompareIC_Miss) {
HandleScope scope(isolate);
DCHECK(args.length() == 3);
CompareIC ic(isolate, static_cast<Token::Value>(args.smi_at(2)));
return ic.UpdateCaches(args.at(0), args.at(1));
}
RUNTIME_FUNCTION(Runtime_Unreachable) {
UNREACHABLE();
CHECK(false);
return isolate->heap()->undefined_value();
}
Handle<Object> ToBooleanIC::ToBoolean(Handle<Object> object) {
ToBooleanICStub stub(isolate(), extra_ic_state());
bool to_boolean_value = stub.UpdateStatus(object);
Handle<Code> code = stub.GetCode();
set_target(*code);
return isolate()->factory()->ToBoolean(to_boolean_value);
}
RUNTIME_FUNCTION(Runtime_ToBooleanIC_Miss) {
DCHECK(args.length() == 1);
HandleScope scope(isolate);
Handle<Object> object = args.at(0);
ToBooleanIC ic(isolate);
return *ic.ToBoolean(object);
}
RUNTIME_FUNCTION(Runtime_StoreCallbackProperty) {
Handle<JSObject> receiver = args.at<JSObject>(0);
Handle<JSObject> holder = args.at<JSObject>(1);
Handle<HeapObject> callback_or_cell = args.at<HeapObject>(2);
Handle<Name> name = args.at<Name>(3);
Handle<Object> value = args.at(4);
CONVERT_LANGUAGE_MODE_ARG_CHECKED(language_mode, 5);
HandleScope scope(isolate);
if (V8_UNLIKELY(FLAG_runtime_stats)) {
RETURN_RESULT_OR_FAILURE(
isolate, Runtime::SetObjectProperty(isolate, receiver, name, value,
language_mode));
}
Handle<AccessorInfo> callback(
callback_or_cell->IsWeakCell()
? AccessorInfo::cast(WeakCell::cast(*callback_or_cell)->value())
: AccessorInfo::cast(*callback_or_cell));
DCHECK(callback->IsCompatibleReceiver(*receiver));
Address setter_address = v8::ToCData<Address>(callback->setter());
v8::AccessorNameSetterCallback fun =
FUNCTION_CAST<v8::AccessorNameSetterCallback>(setter_address);
DCHECK(fun != NULL);
Object::ShouldThrow should_throw =
is_sloppy(language_mode) ? Object::DONT_THROW : Object::THROW_ON_ERROR;
PropertyCallbackArguments custom_args(isolate, callback->data(), *receiver,
*holder, should_throw);
custom_args.Call(fun, name, value);
RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
return *value;
}
/**
* Attempts to load a property with an interceptor (which must be present),
* but doesn't search the prototype chain.
*
* Returns |Heap::no_interceptor_result_sentinel()| if interceptor doesn't
* provide any value for the given name.
*/
RUNTIME_FUNCTION(Runtime_LoadPropertyWithInterceptorOnly) {
DCHECK(args.length() == NamedLoadHandlerCompiler::kInterceptorArgsLength);
Handle<Name> name =
args.at<Name>(NamedLoadHandlerCompiler::kInterceptorArgsNameIndex);
Handle<Object> receiver =
args.at(NamedLoadHandlerCompiler::kInterceptorArgsThisIndex);
Handle<JSObject> holder =
args.at<JSObject>(NamedLoadHandlerCompiler::kInterceptorArgsHolderIndex);
HandleScope scope(isolate);
if (!receiver->IsJSReceiver()) {
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, receiver, Object::ConvertReceiver(isolate, receiver));
}
InterceptorInfo* interceptor = holder->GetNamedInterceptor();
PropertyCallbackArguments arguments(isolate, interceptor->data(), *receiver,
*holder, Object::DONT_THROW);
v8::GenericNamedPropertyGetterCallback getter =
v8::ToCData<v8::GenericNamedPropertyGetterCallback>(
interceptor->getter());
Handle<Object> result = arguments.Call(getter, name);
RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
if (!result.is_null()) return *result;
return isolate->heap()->no_interceptor_result_sentinel();
}
/**
* Loads a property with an interceptor performing post interceptor
* lookup if interceptor failed.
*/
RUNTIME_FUNCTION(Runtime_LoadPropertyWithInterceptor) {
HandleScope scope(isolate);
DCHECK(args.length() == NamedLoadHandlerCompiler::kInterceptorArgsLength);
Handle<Name> name =
args.at<Name>(NamedLoadHandlerCompiler::kInterceptorArgsNameIndex);
Handle<Object> receiver =
args.at(NamedLoadHandlerCompiler::kInterceptorArgsThisIndex);
Handle<JSObject> holder =
args.at<JSObject>(NamedLoadHandlerCompiler::kInterceptorArgsHolderIndex);
if (!receiver->IsJSReceiver()) {
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, receiver, Object::ConvertReceiver(isolate, receiver));
}
InterceptorInfo* interceptor = holder->GetNamedInterceptor();
PropertyCallbackArguments arguments(isolate, interceptor->data(), *receiver,
*holder, Object::DONT_THROW);
v8::GenericNamedPropertyGetterCallback getter =
v8::ToCData<v8::GenericNamedPropertyGetterCallback>(
interceptor->getter());
Handle<Object> result = arguments.Call(getter, name);
RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
if (!result.is_null()) return *result;
LookupIterator it(receiver, name, holder);
// Skip any lookup work until we hit the (possibly non-masking) interceptor.
while (it.state() != LookupIterator::INTERCEPTOR ||
!it.GetHolder<JSObject>().is_identical_to(holder)) {
DCHECK(it.state() != LookupIterator::ACCESS_CHECK || it.HasAccess());
it.Next();
}
// Skip past the interceptor.
it.Next();
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, Object::GetProperty(&it));
if (it.IsFound()) return *result;
LoadICNexus nexus(isolate);
LoadIC ic(IC::NO_EXTRA_FRAME, isolate, &nexus);
// It could actually be any kind of LoadICs here but the predicate handles
// all the cases properly.
if (!ic.ShouldThrowReferenceError()) {
return isolate->heap()->undefined_value();
}
// Throw a reference error.
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewReferenceError(MessageTemplate::kNotDefined, it.name()));
}
RUNTIME_FUNCTION(Runtime_StorePropertyWithInterceptor) {
HandleScope scope(isolate);
DCHECK(args.length() == 3);
StoreICNexus nexus(isolate);
StoreIC ic(IC::NO_EXTRA_FRAME, isolate, &nexus);
Handle<JSObject> receiver = args.at<JSObject>(0);
Handle<Name> name = args.at<Name>(1);
Handle<Object> value = args.at(2);
DCHECK(receiver->HasNamedInterceptor());
InterceptorInfo* interceptor = receiver->GetNamedInterceptor();
DCHECK(!interceptor->non_masking());
PropertyCallbackArguments arguments(isolate, interceptor->data(), *receiver,
*receiver, Object::DONT_THROW);
v8::GenericNamedPropertySetterCallback setter =
v8::ToCData<v8::GenericNamedPropertySetterCallback>(
interceptor->setter());
Handle<Object> result = arguments.Call(setter, name, value);
RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
if (!result.is_null()) return *value;
LookupIterator it(receiver, name, receiver);
// Skip past any access check on the receiver.
if (it.state() == LookupIterator::ACCESS_CHECK) {
DCHECK(it.HasAccess());
it.Next();
}
// Skip past the interceptor on the receiver.
DCHECK_EQ(LookupIterator::INTERCEPTOR, it.state());
it.Next();
MAYBE_RETURN(Object::SetProperty(&it, value, ic.language_mode(),
JSReceiver::CERTAINLY_NOT_STORE_FROM_KEYED),
isolate->heap()->exception());
return *value;
}
RUNTIME_FUNCTION(Runtime_LoadElementWithInterceptor) {
// TODO(verwaest): This should probably get the holder and receiver as input.
HandleScope scope(isolate);
Handle<JSObject> receiver = args.at<JSObject>(0);
DCHECK(args.smi_at(1) >= 0);
uint32_t index = args.smi_at(1);
InterceptorInfo* interceptor = receiver->GetIndexedInterceptor();
PropertyCallbackArguments arguments(isolate, interceptor->data(), *receiver,
*receiver, Object::DONT_THROW);
v8::IndexedPropertyGetterCallback getter =
v8::ToCData<v8::IndexedPropertyGetterCallback>(interceptor->getter());
Handle<Object> result = arguments.Call(getter, index);
RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
if (result.is_null()) {
LookupIterator it(isolate, receiver, index, receiver);
DCHECK_EQ(LookupIterator::INTERCEPTOR, it.state());
it.Next();
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result,
Object::GetProperty(&it));
}
return *result;
}
} // namespace internal
} // namespace v8