blob: 26f20e377a48ab79121ed8dec75eb7a3b31a0ea9 [file] [log] [blame]
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
// OF THE POSSIBILITY OF SUCH DAMAGE.
// The original source code covered by the above license above has been modified
// significantly by Google Inc.
// Copyright 2014 the V8 project authors. All rights reserved.
#ifndef V8_PPC_ASSEMBLER_PPC_INL_H_
#define V8_PPC_ASSEMBLER_PPC_INL_H_
#include "src/ppc/assembler-ppc.h"
#include "src/assembler.h"
#include "src/debug/debug.h"
#include "src/objects-inl.h"
namespace v8 {
namespace internal {
bool CpuFeatures::SupportsOptimizer() { return true; }
bool CpuFeatures::SupportsWasmSimd128() { return false; }
void RelocInfo::apply(intptr_t delta) {
// absolute code pointer inside code object moves with the code object.
if (IsInternalReference(rmode_)) {
// Jump table entry
Address target = Memory<Address>(pc_);
Memory<Address>(pc_) = target + delta;
} else {
// mov sequence
DCHECK(IsInternalReferenceEncoded(rmode_));
Address target = Assembler::target_address_at(pc_, constant_pool_);
Assembler::set_target_address_at(pc_, constant_pool_, target + delta,
SKIP_ICACHE_FLUSH);
}
}
Address RelocInfo::target_internal_reference() {
if (IsInternalReference(rmode_)) {
// Jump table entry
return Memory<Address>(pc_);
} else {
// mov sequence
DCHECK(IsInternalReferenceEncoded(rmode_));
return Assembler::target_address_at(pc_, constant_pool_);
}
}
Address RelocInfo::target_internal_reference_address() {
DCHECK(IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
return pc_;
}
Address RelocInfo::target_address() {
DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_));
return Assembler::target_address_at(pc_, constant_pool_);
}
Address RelocInfo::target_address_address() {
DCHECK(HasTargetAddressAddress());
if (FLAG_enable_embedded_constant_pool &&
Assembler::IsConstantPoolLoadStart(pc_)) {
// We return the PC for embedded constant pool since this function is used
// by the serializer and expects the address to reside within the code
// object.
return pc_;
}
// Read the address of the word containing the target_address in an
// instruction stream.
// The only architecture-independent user of this function is the serializer.
// The serializer uses it to find out how many raw bytes of instruction to
// output before the next target.
// For an instruction like LIS/ORI where the target bits are mixed into the
// instruction bits, the size of the target will be zero, indicating that the
// serializer should not step forward in memory after a target is resolved
// and written.
return pc_;
}
Address RelocInfo::constant_pool_entry_address() {
if (FLAG_enable_embedded_constant_pool) {
DCHECK(constant_pool_);
ConstantPoolEntry::Access access;
if (Assembler::IsConstantPoolLoadStart(pc_, &access))
return Assembler::target_constant_pool_address_at(
pc_, constant_pool_, access, ConstantPoolEntry::INTPTR);
}
UNREACHABLE();
}
int RelocInfo::target_address_size() { return Assembler::kSpecialTargetSize; }
Address Assembler::target_address_from_return_address(Address pc) {
// Returns the address of the call target from the return address that will
// be returned to after a call.
// Call sequence is :
// mov ip, @ call address
// mtlr ip
// blrl
// @ return address
int len;
ConstantPoolEntry::Access access;
if (FLAG_enable_embedded_constant_pool &&
IsConstantPoolLoadEnd(pc - 3 * kInstrSize, &access)) {
len = (access == ConstantPoolEntry::OVERFLOWED) ? 2 : 1;
} else {
len = kMovInstructionsNoConstantPool;
}
return pc - (len + 2) * kInstrSize;
}
Address Assembler::return_address_from_call_start(Address pc) {
int len;
ConstantPoolEntry::Access access;
if (FLAG_enable_embedded_constant_pool &&
IsConstantPoolLoadStart(pc, &access)) {
len = (access == ConstantPoolEntry::OVERFLOWED) ? 2 : 1;
} else {
len = kMovInstructionsNoConstantPool;
}
return pc + (len + 2) * kInstrSize;
}
HeapObject RelocInfo::target_object() {
DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
return HeapObject::cast(
Object(Assembler::target_address_at(pc_, constant_pool_)));
}
Handle<HeapObject> RelocInfo::target_object_handle(Assembler* origin) {
DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
return Handle<HeapObject>(reinterpret_cast<Address*>(
Assembler::target_address_at(pc_, constant_pool_)));
}
void RelocInfo::set_target_object(Heap* heap, HeapObject target,
WriteBarrierMode write_barrier_mode,
ICacheFlushMode icache_flush_mode) {
DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
Assembler::set_target_address_at(pc_, constant_pool_, target->ptr(),
icache_flush_mode);
if (write_barrier_mode == UPDATE_WRITE_BARRIER && !host().is_null()) {
WriteBarrierForCode(host(), this, target);
}
}
Address RelocInfo::target_external_reference() {
DCHECK(rmode_ == EXTERNAL_REFERENCE);
return Assembler::target_address_at(pc_, constant_pool_);
}
void RelocInfo::set_target_external_reference(
Address target, ICacheFlushMode icache_flush_mode) {
DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
Assembler::set_target_address_at(pc_, constant_pool_, target,
icache_flush_mode);
}
Address RelocInfo::target_runtime_entry(Assembler* origin) {
DCHECK(IsRuntimeEntry(rmode_));
return target_address();
}
void RelocInfo::set_target_runtime_entry(Address target,
WriteBarrierMode write_barrier_mode,
ICacheFlushMode icache_flush_mode) {
DCHECK(IsRuntimeEntry(rmode_));
if (target_address() != target)
set_target_address(target, write_barrier_mode, icache_flush_mode);
}
Address RelocInfo::target_off_heap_target() {
DCHECK(IsOffHeapTarget(rmode_));
return Assembler::target_address_at(pc_, constant_pool_);
}
void RelocInfo::WipeOut() {
DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_) ||
IsOffHeapTarget(rmode_));
if (IsInternalReference(rmode_)) {
// Jump table entry
Memory<Address>(pc_) = kNullAddress;
} else if (IsInternalReferenceEncoded(rmode_) || IsOffHeapTarget(rmode_)) {
// mov sequence
// Currently used only by deserializer, no need to flush.
Assembler::set_target_address_at(pc_, constant_pool_, kNullAddress,
SKIP_ICACHE_FLUSH);
} else {
Assembler::set_target_address_at(pc_, constant_pool_, kNullAddress);
}
}
Operand::Operand(Register rm) : rm_(rm), rmode_(RelocInfo::NONE) {}
void Assembler::UntrackBranch() {
DCHECK(!trampoline_emitted_);
DCHECK_GT(tracked_branch_count_, 0);
int count = --tracked_branch_count_;
if (count == 0) {
// Reset
next_trampoline_check_ = kMaxInt;
} else {
next_trampoline_check_ += kTrampolineSlotsSize;
}
}
// Fetch the 32bit value from the FIXED_SEQUENCE lis/ori
Address Assembler::target_address_at(Address pc, Address constant_pool) {
if (FLAG_enable_embedded_constant_pool && constant_pool) {
ConstantPoolEntry::Access access;
if (IsConstantPoolLoadStart(pc, &access))
return Memory<Address>(target_constant_pool_address_at(
pc, constant_pool, access, ConstantPoolEntry::INTPTR));
}
Instr instr1 = instr_at(pc);
Instr instr2 = instr_at(pc + kInstrSize);
// Interpret 2 instructions generated by lis/ori
if (IsLis(instr1) && IsOri(instr2)) {
#if V8_TARGET_ARCH_PPC64
Instr instr4 = instr_at(pc + (3 * kInstrSize));
Instr instr5 = instr_at(pc + (4 * kInstrSize));
// Assemble the 64 bit value.
uint64_t hi = (static_cast<uint32_t>((instr1 & kImm16Mask) << 16) |
static_cast<uint32_t>(instr2 & kImm16Mask));
uint64_t lo = (static_cast<uint32_t>((instr4 & kImm16Mask) << 16) |
static_cast<uint32_t>(instr5 & kImm16Mask));
return static_cast<Address>((hi << 32) | lo);
#else
// Assemble the 32 bit value.
return static_cast<Address>(((instr1 & kImm16Mask) << 16) |
(instr2 & kImm16Mask));
#endif
}
UNREACHABLE();
}
#if V8_TARGET_ARCH_PPC64
const uint32_t kLoadIntptrOpcode = LD;
#else
const uint32_t kLoadIntptrOpcode = LWZ;
#endif
// Constant pool load sequence detection:
// 1) REGULAR access:
// load <dst>, kConstantPoolRegister + <offset>
//
// 2) OVERFLOWED access:
// addis <scratch>, kConstantPoolRegister, <offset_high>
// load <dst>, <scratch> + <offset_low>
bool Assembler::IsConstantPoolLoadStart(Address pc,
ConstantPoolEntry::Access* access) {
Instr instr = instr_at(pc);
uint32_t opcode = instr & kOpcodeMask;
if (GetRA(instr) != kConstantPoolRegister) return false;
bool overflowed = (opcode == ADDIS);
#ifdef DEBUG
if (overflowed) {
opcode = instr_at(pc + kInstrSize) & kOpcodeMask;
}
DCHECK(opcode == kLoadIntptrOpcode || opcode == LFD);
#endif
if (access) {
*access = (overflowed ? ConstantPoolEntry::OVERFLOWED
: ConstantPoolEntry::REGULAR);
}
return true;
}
bool Assembler::IsConstantPoolLoadEnd(Address pc,
ConstantPoolEntry::Access* access) {
Instr instr = instr_at(pc);
uint32_t opcode = instr & kOpcodeMask;
bool overflowed = false;
if (!(opcode == kLoadIntptrOpcode || opcode == LFD)) return false;
if (GetRA(instr) != kConstantPoolRegister) {
instr = instr_at(pc - kInstrSize);
opcode = instr & kOpcodeMask;
if ((opcode != ADDIS) || GetRA(instr) != kConstantPoolRegister) {
return false;
}
overflowed = true;
}
if (access) {
*access = (overflowed ? ConstantPoolEntry::OVERFLOWED
: ConstantPoolEntry::REGULAR);
}
return true;
}
int Assembler::GetConstantPoolOffset(Address pc,
ConstantPoolEntry::Access access,
ConstantPoolEntry::Type type) {
bool overflowed = (access == ConstantPoolEntry::OVERFLOWED);
#ifdef DEBUG
ConstantPoolEntry::Access access_check =
static_cast<ConstantPoolEntry::Access>(-1);
DCHECK(IsConstantPoolLoadStart(pc, &access_check));
DCHECK(access_check == access);
#endif
int offset;
if (overflowed) {
offset = (instr_at(pc) & kImm16Mask) << 16;
offset += SIGN_EXT_IMM16(instr_at(pc + kInstrSize) & kImm16Mask);
DCHECK(!is_int16(offset));
} else {
offset = SIGN_EXT_IMM16((instr_at(pc) & kImm16Mask));
}
return offset;
}
void Assembler::PatchConstantPoolAccessInstruction(
int pc_offset, int offset, ConstantPoolEntry::Access access,
ConstantPoolEntry::Type type) {
Address pc = reinterpret_cast<Address>(buffer_start_) + pc_offset;
bool overflowed = (access == ConstantPoolEntry::OVERFLOWED);
CHECK(overflowed != is_int16(offset));
#ifdef DEBUG
ConstantPoolEntry::Access access_check =
static_cast<ConstantPoolEntry::Access>(-1);
DCHECK(IsConstantPoolLoadStart(pc, &access_check));
DCHECK(access_check == access);
#endif
if (overflowed) {
int hi_word = static_cast<int>(offset >> 16);
int lo_word = static_cast<int>(offset & 0xffff);
if (lo_word & 0x8000) hi_word++;
Instr instr1 = instr_at(pc);
Instr instr2 = instr_at(pc + kInstrSize);
instr1 &= ~kImm16Mask;
instr1 |= (hi_word & kImm16Mask);
instr2 &= ~kImm16Mask;
instr2 |= (lo_word & kImm16Mask);
instr_at_put(pc, instr1);
instr_at_put(pc + kInstrSize, instr2);
} else {
Instr instr = instr_at(pc);
instr &= ~kImm16Mask;
instr |= (offset & kImm16Mask);
instr_at_put(pc, instr);
}
}
Address Assembler::target_constant_pool_address_at(
Address pc, Address constant_pool, ConstantPoolEntry::Access access,
ConstantPoolEntry::Type type) {
Address addr = constant_pool;
DCHECK(addr);
addr += GetConstantPoolOffset(pc, access, type);
return addr;
}
// This sets the branch destination (which gets loaded at the call address).
// This is for calls and branches within generated code. The serializer
// has already deserialized the mov instructions etc.
// There is a FIXED_SEQUENCE assumption here
void Assembler::deserialization_set_special_target_at(
Address instruction_payload, Code code, Address target) {
set_target_address_at(instruction_payload,
!code.is_null() ? code->constant_pool() : kNullAddress,
target);
}
int Assembler::deserialization_special_target_size(
Address instruction_payload) {
return kSpecialTargetSize;
}
void Assembler::deserialization_set_target_internal_reference_at(
Address pc, Address target, RelocInfo::Mode mode) {
if (RelocInfo::IsInternalReferenceEncoded(mode)) {
set_target_address_at(pc, kNullAddress, target, SKIP_ICACHE_FLUSH);
} else {
Memory<Address>(pc) = target;
}
}
// This code assumes the FIXED_SEQUENCE of lis/ori
void Assembler::set_target_address_at(Address pc, Address constant_pool,
Address target,
ICacheFlushMode icache_flush_mode) {
if (FLAG_enable_embedded_constant_pool && constant_pool) {
ConstantPoolEntry::Access access;
if (IsConstantPoolLoadStart(pc, &access)) {
Memory<Address>(target_constant_pool_address_at(
pc, constant_pool, access, ConstantPoolEntry::INTPTR)) = target;
return;
}
}
Instr instr1 = instr_at(pc);
Instr instr2 = instr_at(pc + kInstrSize);
// Interpret 2 instructions generated by lis/ori
if (IsLis(instr1) && IsOri(instr2)) {
#if V8_TARGET_ARCH_PPC64
Instr instr4 = instr_at(pc + (3 * kInstrSize));
Instr instr5 = instr_at(pc + (4 * kInstrSize));
// Needs to be fixed up when mov changes to handle 64-bit values.
uint32_t* p = reinterpret_cast<uint32_t*>(pc);
uintptr_t itarget = static_cast<uintptr_t>(target);
instr5 &= ~kImm16Mask;
instr5 |= itarget & kImm16Mask;
itarget = itarget >> 16;
instr4 &= ~kImm16Mask;
instr4 |= itarget & kImm16Mask;
itarget = itarget >> 16;
instr2 &= ~kImm16Mask;
instr2 |= itarget & kImm16Mask;
itarget = itarget >> 16;
instr1 &= ~kImm16Mask;
instr1 |= itarget & kImm16Mask;
itarget = itarget >> 16;
*p = instr1;
*(p + 1) = instr2;
*(p + 3) = instr4;
*(p + 4) = instr5;
if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
Assembler::FlushICache(p, 5 * kInstrSize);
}
#else
uint32_t* p = reinterpret_cast<uint32_t*>(pc);
uint32_t itarget = static_cast<uint32_t>(target);
int lo_word = itarget & kImm16Mask;
int hi_word = itarget >> 16;
instr1 &= ~kImm16Mask;
instr1 |= hi_word;
instr2 &= ~kImm16Mask;
instr2 |= lo_word;
*p = instr1;
*(p + 1) = instr2;
if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
Assembler::FlushICache(p, 2 * kInstrSize);
}
#endif
return;
}
UNREACHABLE();
}
} // namespace internal
} // namespace v8
#endif // V8_PPC_ASSEMBLER_PPC_INL_H_