blob: afb0548b235b205b155422ec40822fdb4a8eea4f [file] [log] [blame]
// Copyright 2016 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef NGConstraintSpace_h
#define NGConstraintSpace_h
#include "base/optional.h"
#include "third_party/blink/renderer/core/core_export.h"
#include "third_party/blink/renderer/core/layout/ng/exclusions/ng_exclusion_space.h"
#include "third_party/blink/renderer/core/layout/ng/geometry/ng_bfc_offset.h"
#include "third_party/blink/renderer/core/layout/ng/geometry/ng_logical_size.h"
#include "third_party/blink/renderer/core/layout/ng/geometry/ng_margin_strut.h"
#include "third_party/blink/renderer/core/layout/ng/geometry/ng_physical_size.h"
#include "third_party/blink/renderer/core/layout/ng/inline/ng_baseline.h"
#include "third_party/blink/renderer/core/layout/ng/ng_floats_utils.h"
#include "third_party/blink/renderer/platform/text/text_direction.h"
#include "third_party/blink/renderer/platform/text/writing_mode.h"
#include "third_party/blink/renderer/platform/wtf/ref_counted.h"
#include "third_party/blink/renderer/platform/wtf/text/wtf_string.h"
namespace blink {
class LayoutBox;
class NGConstraintSpaceBuilder;
enum NGFragmentationType {
kFragmentNone,
kFragmentPage,
kFragmentColumn,
kFragmentRegion
};
// Tables have two passes, a "measure" phase (for determining the table row
// height), and a "layout" phase.
// See: https://drafts.csswg.org/css-tables-3/#row-layout
//
// This enum is used for communicating to *direct* children of table cells,
// which layout phase the table cell is in.
enum NGTableCellChildLayoutPhase {
kNotTableCellChild, // The node isn't a table cell child.
kMeasure, // The node is a table cell child, in the "measure" phase.
kLayout // The node is a table cell child, in the "layout" phase.
};
// The NGConstraintSpace represents a set of constraints and available space
// which a layout algorithm may produce a NGFragment within.
class CORE_EXPORT NGConstraintSpace final {
USING_FAST_MALLOC(NGConstraintSpace);
public:
enum ConstraintSpaceFlags {
kOrthogonalWritingModeRoot = 1 << 0,
kFixedSizeInline = 1 << 1,
kFixedSizeBlock = 1 << 2,
kFixedSizeBlockIsDefinite = 1 << 3,
kShrinkToFit = 1 << 4,
kIntermediateLayout = 1 << 5,
kSeparateLeadingFragmentainerMargins = 1 << 6,
kNewFormattingContext = 1 << 7,
kAnonymous = 1 << 8,
kUseFirstLineStyle = 1 << 9,
kForceClearance = 1 << 10,
// Size of bitfield used to store the flags.
kNumberOfConstraintSpaceFlags = 11
};
NGConstraintSpace() {}
NGConstraintSpace(const NGConstraintSpace&) = default;
NGConstraintSpace(NGConstraintSpace&&) = default;
NGConstraintSpace& operator=(const NGConstraintSpace&) = default;
NGConstraintSpace& operator=(NGConstraintSpace&&) = default;
// Creates NGConstraintSpace representing LayoutObject's containing block.
// This should live on NGBlockNode or another layout bridge and probably take
// a root NGConstraintSpace.
static NGConstraintSpace CreateFromLayoutObject(const LayoutBox&);
const NGExclusionSpace& ExclusionSpace() const { return exclusion_space_; }
TextDirection Direction() const {
return static_cast<TextDirection>(direction_);
}
WritingMode GetWritingMode() const {
return static_cast<WritingMode>(writing_mode_);
}
bool IsOrthogonalWritingModeRoot() const {
return HasFlag(kOrthogonalWritingModeRoot);
}
// The size to use for percentage resolution.
// See: https://drafts.csswg.org/css-sizing/#percentage-sizing
NGLogicalSize PercentageResolutionSize() const {
return percentage_resolution_size_;
}
// The size to use for percentage resolution of replaced elements.
NGLogicalSize ReplacedPercentageResolutionSize() const {
return replaced_percentage_resolution_size_;
}
// The size to use for percentage resolution for margin/border/padding.
// They are always get computed relative to the inline size, in the parent
// writing mode.
LayoutUnit PercentageResolutionInlineSizeForParentWritingMode() const {
if (!IsOrthogonalWritingModeRoot())
return PercentageResolutionSize().inline_size;
if (PercentageResolutionSize().block_size != NGSizeIndefinite)
return PercentageResolutionSize().block_size;
// TODO(mstensho): Figure out why we get here. It seems wrong, but we do get
// here in some grid layout situations.
return LayoutUnit();
}
// The available space size.
// See: https://drafts.csswg.org/css-sizing/#available
NGLogicalSize AvailableSize() const { return available_size_; }
NGPhysicalSize InitialContainingBlockSize() const {
return initial_containing_block_size_;
}
LayoutUnit FragmentainerBlockSize() const {
return fragmentainer_block_size_;
}
// Return the block space that was available in the current fragmentainer at
// the start of the current block formatting context. Note that if the start
// of the current block formatting context is in a previous fragmentainer, the
// size of the current fragmentainer is returned instead.
LayoutUnit FragmentainerSpaceAtBfcStart() const {
DCHECK(HasBlockFragmentation());
return fragmentainer_space_at_bfc_start_;
}
// Whether the current constraint space is for the newly established
// Formatting Context.
bool IsNewFormattingContext() const { return HasFlag(kNewFormattingContext); }
// Return true if we are to separate (i.e. honor, rather than collapse)
// block-start margins at the beginning of fragmentainers. This only makes a
// difference if we're block-fragmented (pagination, multicol, etc.). Then
// block-start margins at the beginning of a fragmentainers are to be
// truncated to 0 if they occur after a soft (unforced) break.
bool HasSeparateLeadingFragmentainerMargins() const {
return HasFlag(kSeparateLeadingFragmentainerMargins);
}
// Whether the fragment produced from layout should be anonymous, (e.g. it
// may be a column in a multi-column layout). In such cases it shouldn't have
// any borders or padding.
bool IsAnonymous() const { return HasFlag(kAnonymous); }
// Whether to use the ':first-line' style or not.
// Note, this is not about the first line of the content to layout, but
// whether the constraint space itself is on the first line, such as when it's
// an inline block.
// Also note this is true only when the document has ':first-line' rules.
bool UseFirstLineStyle() const { return HasFlag(kUseFirstLineStyle); }
// Some layout modes “stretch” their children to a fixed size (e.g. flex,
// grid). These flags represented whether a layout needs to produce a
// fragment that satisfies a fixed constraint in the inline and block
// direction respectively.
//
// If these flags are true, the AvailableSize() is interpreted as the fixed
// border-box size of this box in the respective dimension.
bool IsFixedSizeInline() const { return HasFlag(kFixedSizeInline); }
bool IsFixedSizeBlock() const { return HasFlag(kFixedSizeBlock); }
// Whether a fixed block size should be considered definite.
bool FixedSizeBlockIsDefinite() const {
return HasFlag(kFixedSizeBlockIsDefinite);
}
// Whether an auto inline-size should be interpreted as shrink-to-fit
// (ie. fit-content). This is used for inline-block, floats, etc.
bool IsShrinkToFit() const { return HasFlag(kShrinkToFit); }
// Whether this constraint space is used for an intermediate layout in a
// multi-pass layout. In such a case, we should not copy back the resulting
// layout data to the legacy tree or create a paint fragment from it.
bool IsIntermediateLayout() const { return HasFlag(kIntermediateLayout); }
// If specified a layout should produce a Fragment which fragments at the
// blockSize if possible.
NGFragmentationType BlockFragmentationType() const {
return static_cast<NGFragmentationType>(
block_direction_fragmentation_type_);
}
// Return true if this constraint space participates in a fragmentation
// context.
bool HasBlockFragmentation() const {
return BlockFragmentationType() != kFragmentNone;
}
// Returns if this node is a table cell child, and which table layout phase
// is occurring.
NGTableCellChildLayoutPhase TableCellChildLayoutPhase() const {
return static_cast<NGTableCellChildLayoutPhase>(
table_cell_child_layout_phase_);
}
NGMarginStrut MarginStrut() const { return margin_strut_; }
// The BfcOffset is where the MarginStrut is placed within the block
// formatting context.
//
// The current layout or a descendant layout may "resolve" the BFC offset,
// i.e. decide where the current fragment should be placed within the BFC.
//
// This is done by:
// bfc_block_offset =
// space.BfcOffset().block_offset + space.MarginStrut().Sum();
//
// The BFC offset can get "resolved" in many circumstances (including, but
// not limited to):
// - block_start border or padding in the current layout.
// - Text content, atomic inlines, (see NGLineBreaker).
// - The current layout having a block_size.
// - Clearance before a child.
NGBfcOffset BfcOffset() const { return bfc_offset_; }
// If present, and the current layout hasn't resolved its BFC offset yet (see
// BfcOffset), the layout should position all of its unpositioned floats at
// this offset. This value is the BFC offset that we calculated in the
// previous pass, a pass which aborted once the BFC offset got resolved,
// because we had walked past content (i.e. floats) that depended on it being
// resolved.
//
// This value should be propogated to child layouts if the current layout
// hasn't resolved its BFC offset yet.
//
// This value is calculated *after* an initial pass of the tree, and should
// only be present during subsequent passes.
base::Optional<LayoutUnit> FloatsBfcBlockOffset() const {
return floats_bfc_block_offset_;
}
// Return the types (none, left, right, both) of preceding adjoining
// floats. These are floats that are added while the in-flow BFC offset is
// still unknown. The floats may or may not be unpositioned (pending). That
// depends on which layout pass we're in. They are typically positioned if
// FloatsBfcOffset() is known. Adjoining floats should be treated differently
// when calculating clearance on a block with adjoining block-start margin.
// (in such cases we will know up front that the block will need clearance,
// since, if it doesn't, the float will be pulled along with the block, and
// the block will fail to clear).
NGFloatTypes AdjoiningFloatTypes() const { return adjoining_floats_; }
bool HasClearanceOffset() const {
return clearance_offset_ != LayoutUnit::Min();
}
LayoutUnit ClearanceOffset() const { return clearance_offset_; }
// Return true if the fragment needs to have clearance applied to it,
// regardless of its hypothetical position. The fragment will then go exactly
// below the relevant floats. This happens when a cleared child gets separated
// from floats that would otherwise be adjoining; example:
//
// <div id="container">
// <div id="float" style="float:left; width:100px; height:100px;"></div>
// <div id="clearee" style="clear:left; margin-top:12345px;">text</div>
// </div>
//
// Clearance separates #clearee from #container, and #float is positioned at
// the block-start content edge of #container. Without clearance, margins
// would have been adjoining and the large margin on #clearee would have
// pulled both #container and #float along with it. No margin, no matter how
// large, would ever be able to pull #clearee below the float then. But we
// have clearance, the margins are separated, and in this case we know that we
// have clearance even before we have laid out (because of the adjoing
// float). So it would just be wrong to check for clearance when we position
// #clearee. Nothing can prevent clearance here. A large margin on the cleared
// child will be canceled out with negative clearance.
bool ShouldForceClearance() const { return HasFlag(kForceClearance); }
const NGBaselineRequestList BaselineRequests() const {
return NGBaselineRequestList(baseline_requests_);
}
bool operator==(const NGConstraintSpace&) const;
bool operator!=(const NGConstraintSpace& other) const {
return !(*this == other);
}
String ToString() const;
private:
friend class NGConstraintSpaceBuilder;
// Default constructor.
// is_new_fc is technically redundant, but simplifies the code here a bit.
NGConstraintSpace(WritingMode out_writing_mode,
bool is_new_fc,
NGConstraintSpaceBuilder& builder);
bool HasFlag(ConstraintSpaceFlags mask) const {
return flags_ & static_cast<unsigned>(mask);
}
NGLogicalSize available_size_;
NGLogicalSize percentage_resolution_size_;
NGLogicalSize replaced_percentage_resolution_size_;
NGPhysicalSize initial_containing_block_size_;
NGMarginStrut margin_strut_;
NGBfcOffset bfc_offset_;
base::Optional<LayoutUnit> floats_bfc_block_offset_;
NGExclusionSpace exclusion_space_;
LayoutUnit fragmentainer_block_size_;
LayoutUnit fragmentainer_space_at_bfc_start_;
LayoutUnit clearance_offset_;
unsigned block_direction_fragmentation_type_ : 2;
unsigned table_cell_child_layout_phase_ : 2; // NGTableCellChildLayoutPhase
unsigned adjoining_floats_ : 2; // NGFloatTypes
unsigned writing_mode_ : 3;
unsigned direction_ : 1;
unsigned flags_ : kNumberOfConstraintSpaceFlags; // ConstraintSpaceFlags
unsigned baseline_requests_ : NGBaselineRequestList::kSerializedBits;
};
inline std::ostream& operator<<(std::ostream& stream,
const NGConstraintSpace& value) {
return stream << value.ToString();
}
} // namespace blink
#endif // NGConstraintSpace_h