blob: c1db2482f03a7655337520cad9c856adfebb7540 [file] [log] [blame]
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/crash/content/browser/crash_handler_host_linux.h"
#include <errno.h>
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <sys/syscall.h>
#include <unistd.h>
#include <utility>
#include "base/bind.h"
#include "base/bind_helpers.h"
#include "base/files/file_path.h"
#include "base/files/file_util.h"
#include "base/files/scoped_file.h"
#include "base/format_macros.h"
#include "base/linux_util.h"
#include "base/location.h"
#include "base/logging.h"
#include "base/memory/ptr_util.h"
#include "base/path_service.h"
#include "base/posix/eintr_wrapper.h"
#include "base/rand_util.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
#include "base/task_scheduler/post_task.h"
#include "base/threading/thread.h"
#include "base/threading/thread_restrictions.h"
#include "base/threading/thread_task_runner_handle.h"
#include "breakpad/src/client/linux/handler/exception_handler.h"
#include "breakpad/src/client/linux/minidump_writer/linux_dumper.h"
#include "breakpad/src/client/linux/minidump_writer/minidump_writer.h"
#include "build/build_config.h"
#include "components/crash/content/app/breakpad_linux_impl.h"
#include "content/public/browser/browser_thread.h"
#if defined(OS_ANDROID) && !defined(__LP64__)
#include <sys/linux-syscalls.h>
#define SYS_read __NR_read
#endif
using content::BrowserThread;
using google_breakpad::ExceptionHandler;
namespace breakpad {
namespace {
const size_t kNumFDs = 1;
// The length of the control message:
const size_t kControlMsgSize =
CMSG_SPACE(kNumFDs * sizeof(int)) + CMSG_SPACE(sizeof(struct ucred));
// The length of the regular payload:
const size_t kCrashContextSize = sizeof(ExceptionHandler::CrashContext);
// Crashing thread might be in "running" state, i.e. after sys_sendmsg() and
// before sys_read(). Retry 3 times with interval of 100 ms when translating
// TID.
const int kNumAttemptsTranslatingTid = 3;
const int kRetryIntervalTranslatingTidInMs = 100;
// Handles the crash dump and frees the allocated BreakpadInfo struct.
void CrashDumpTask(CrashHandlerHostLinux* handler,
std::unique_ptr<BreakpadInfo> info) {
if (handler->IsShuttingDown() && info->upload) {
base::DeleteFile(base::FilePath(info->filename), false);
#if defined(ADDRESS_SANITIZER)
base::DeleteFile(base::FilePath(info->log_filename), false);
#endif
return;
}
HandleCrashDump(*info);
delete[] info->filename;
#if defined(ADDRESS_SANITIZER)
delete[] info->log_filename;
delete[] info->asan_report_str;
#endif
delete[] info->process_type;
delete[] info->distro;
delete info->crash_keys;
}
} // namespace
// Since instances of CrashHandlerHostLinux are leaked, they are only destroyed
// at the end of the processes lifetime, which is greater in span than the
// lifetime of the IO message loop. Thus, all calls to base::Bind() use
// non-refcounted pointers.
CrashHandlerHostLinux::CrashHandlerHostLinux(const std::string& process_type,
const base::FilePath& dumps_path,
bool upload)
: process_type_(process_type),
dumps_path_(dumps_path),
#if !defined(OS_ANDROID)
upload_(upload),
#endif
file_descriptor_watcher_(FROM_HERE),
shutting_down_(false),
blocking_task_runner_(base::CreateSequencedTaskRunnerWithTraits(
{base::MayBlock(), base::TaskPriority::USER_VISIBLE})) {
int fds[2];
// We use SOCK_SEQPACKET rather than SOCK_DGRAM to prevent the process from
// sending datagrams to other sockets on the system. The sandbox may prevent
// the process from calling socket() to create new sockets, but it'll still
// inherit some sockets. With PF_UNIX+SOCK_DGRAM, it can call sendmsg to send
// a datagram to any (abstract) socket on the same system. With
// SOCK_SEQPACKET, this is prevented.
CHECK_EQ(0, socketpair(AF_UNIX, SOCK_SEQPACKET, 0, fds));
static const int on = 1;
// Enable passcred on the server end of the socket
CHECK_EQ(0, setsockopt(fds[1], SOL_SOCKET, SO_PASSCRED, &on, sizeof(on)));
process_socket_ = fds[0];
browser_socket_ = fds[1];
BrowserThread::PostTask(
BrowserThread::IO, FROM_HERE,
base::Bind(&CrashHandlerHostLinux::Init, base::Unretained(this)));
}
CrashHandlerHostLinux::~CrashHandlerHostLinux() {
close(process_socket_);
close(browser_socket_);
}
void CrashHandlerHostLinux::StartUploaderThread() {
uploader_thread_ =
base::MakeUnique<base::Thread>(process_type_ + "_crash_uploader");
uploader_thread_->Start();
}
void CrashHandlerHostLinux::Init() {
base::MessageLoopForIO* ml = base::MessageLoopForIO::current();
CHECK(ml->WatchFileDescriptor(
browser_socket_, true /* persistent */,
base::MessageLoopForIO::WATCH_READ,
&file_descriptor_watcher_, this));
ml->AddDestructionObserver(this);
}
void CrashHandlerHostLinux::OnFileCanWriteWithoutBlocking(int fd) {
NOTREACHED();
}
void CrashHandlerHostLinux::OnFileCanReadWithoutBlocking(int fd) {
DCHECK_EQ(browser_socket_, fd);
// A process has crashed and has signaled us by writing a datagram
// to the death signal socket. The datagram contains the crash context needed
// for writing the minidump as well as a file descriptor and a credentials
// block so that they can't lie about their pid.
//
// The message sender is in components/crash/content/app/breakpad_linux.cc.
struct msghdr msg = {0};
struct iovec iov[kCrashIovSize];
auto crash_context = base::MakeUnique<char[]>(kCrashContextSize);
#if defined(ADDRESS_SANITIZER)
auto asan_report = base::MakeUnique<char[]>(kMaxAsanReportSize + 1);
#endif
auto crash_keys = base::MakeUnique<CrashKeyStorage>();
google_breakpad::SerializedNonAllocatingMap* serialized_crash_keys;
size_t crash_keys_size = crash_keys->Serialize(
const_cast<const google_breakpad::SerializedNonAllocatingMap**>(
&serialized_crash_keys));
char* tid_buf_addr = nullptr;
int tid_fd = -1;
uint64_t uptime;
size_t oom_size;
char control[kControlMsgSize];
const ssize_t expected_msg_size =
kCrashContextSize +
sizeof(tid_buf_addr) + sizeof(tid_fd) +
sizeof(uptime) +
#if defined(ADDRESS_SANITIZER)
kMaxAsanReportSize + 1 +
#endif
sizeof(oom_size) +
crash_keys_size;
iov[0].iov_base = crash_context.get();
iov[0].iov_len = kCrashContextSize;
iov[1].iov_base = &tid_buf_addr;
iov[1].iov_len = sizeof(tid_buf_addr);
iov[2].iov_base = &tid_fd;
iov[2].iov_len = sizeof(tid_fd);
iov[3].iov_base = &uptime;
iov[3].iov_len = sizeof(uptime);
iov[4].iov_base = &oom_size;
iov[4].iov_len = sizeof(oom_size);
iov[5].iov_base = serialized_crash_keys;
iov[5].iov_len = crash_keys_size;
#if !defined(ADDRESS_SANITIZER)
static_assert(5 == kCrashIovSize - 1, "kCrashIovSize should equal 6");
#else
iov[6].iov_base = asan_report.get();
iov[6].iov_len = kMaxAsanReportSize + 1;
static_assert(6 == kCrashIovSize - 1, "kCrashIovSize should equal 7");
#endif
msg.msg_iov = iov;
msg.msg_iovlen = kCrashIovSize;
msg.msg_control = control;
msg.msg_controllen = kControlMsgSize;
const ssize_t msg_size = HANDLE_EINTR(recvmsg(browser_socket_, &msg, 0));
if (msg_size < 0) {
LOG(ERROR) << "Error reading from death signal socket. Crash dumping"
<< " is disabled."
<< " msg_size:" << msg_size
<< " errno:" << errno;
file_descriptor_watcher_.StopWatchingFileDescriptor();
return;
}
const bool bad_message = (msg_size != expected_msg_size ||
msg.msg_controllen != kControlMsgSize ||
msg.msg_flags & ~MSG_TRUNC);
base::ScopedFD signal_fd;
pid_t crashing_pid = -1;
if (msg.msg_controllen > 0) {
// Walk the control payload and extract the file descriptor and
// validated pid.
for (struct cmsghdr *hdr = CMSG_FIRSTHDR(&msg); hdr;
hdr = CMSG_NXTHDR(&msg, hdr)) {
if (hdr->cmsg_level != SOL_SOCKET)
continue;
if (hdr->cmsg_type == SCM_RIGHTS) {
const size_t len = hdr->cmsg_len -
(((uint8_t*)CMSG_DATA(hdr)) - (uint8_t*)hdr);
DCHECK_EQ(0U, len % sizeof(int));
const size_t num_fds = len / sizeof(int);
if (num_fds != kNumFDs) {
// A nasty process could try and send us too many descriptors and
// force a leak.
LOG(ERROR) << "Death signal contained wrong number of descriptors;"
<< " num_fds:" << num_fds;
for (size_t i = 0; i < num_fds; ++i)
close(reinterpret_cast<int*>(CMSG_DATA(hdr))[i]);
return;
}
DCHECK(!signal_fd.is_valid());
int fd = reinterpret_cast<int*>(CMSG_DATA(hdr))[0];
DCHECK_GE(fd, 0); // The kernel should never send a negative fd.
signal_fd.reset(fd);
} else if (hdr->cmsg_type == SCM_CREDENTIALS) {
DCHECK_EQ(-1, crashing_pid);
const struct ucred *cred =
reinterpret_cast<struct ucred*>(CMSG_DATA(hdr));
crashing_pid = cred->pid;
}
}
}
if (bad_message) {
LOG(ERROR) << "Received death signal message with the wrong size;"
<< " msg.msg_controllen:" << msg.msg_controllen
<< " msg.msg_flags:" << msg.msg_flags
<< " kCrashContextSize:" << kCrashContextSize
<< " kControlMsgSize:" << kControlMsgSize;
return;
}
if (crashing_pid == -1 || !signal_fd.is_valid()) {
LOG(ERROR) << "Death signal message didn't contain all expected control"
<< " messages";
return;
}
// The crashing TID set inside the compromised context via
// sys_gettid() in ExceptionHandler::HandleSignal might be wrong (if
// the kernel supports PID namespacing) and may need to be
// translated.
//
// We expect the crashing thread to be in sys_read(), waiting for us to
// write to |signal_fd|. Most newer kernels where we have the different pid
// namespaces also have /proc/[pid]/syscall, so we can look through
// |actual_crashing_pid|'s thread group and find the thread that's in the
// read syscall with the right arguments.
std::string expected_syscall_data;
// /proc/[pid]/syscall is formatted as follows:
// syscall_number arg1 ... arg6 sp pc
// but we just check syscall_number through arg3.
base::StringAppendF(&expected_syscall_data, "%d 0x%x %p 0x1 ",
SYS_read, tid_fd, tid_buf_addr);
FindCrashingThreadAndDump(crashing_pid,
expected_syscall_data,
std::move(crash_context),
std::move(crash_keys),
#if defined(ADDRESS_SANITIZER)
std::move(asan_report),
#endif
uptime,
oom_size,
signal_fd.release(),
0);
}
void CrashHandlerHostLinux::FindCrashingThreadAndDump(
pid_t crashing_pid,
const std::string& expected_syscall_data,
std::unique_ptr<char[]> crash_context,
std::unique_ptr<CrashKeyStorage> crash_keys,
#if defined(ADDRESS_SANITIZER)
std::unique_ptr<char[]> asan_report,
#endif
uint64_t uptime,
size_t oom_size,
int signal_fd,
int attempt) {
bool syscall_supported = false;
pid_t crashing_tid = base::FindThreadIDWithSyscall(
crashing_pid, expected_syscall_data, &syscall_supported);
++attempt;
if (crashing_tid == -1 && syscall_supported &&
attempt <= kNumAttemptsTranslatingTid) {
LOG(WARNING) << "Could not translate tid, attempt = " << attempt
<< " retry ...";
base::ThreadTaskRunnerHandle::Get()->PostDelayedTask(
FROM_HERE,
base::Bind(&CrashHandlerHostLinux::FindCrashingThreadAndDump,
base::Unretained(this),
crashing_pid,
expected_syscall_data,
base::Passed(&crash_context),
base::Passed(&crash_keys),
#if defined(ADDRESS_SANITIZER)
base::Passed(&asan_report),
#endif
uptime,
oom_size,
signal_fd,
attempt),
base::TimeDelta::FromMilliseconds(kRetryIntervalTranslatingTidInMs));
return;
}
if (crashing_tid == -1) {
// We didn't find the thread we want. Maybe it didn't reach
// sys_read() yet or the thread went away. We'll just take a
// guess here and assume the crashing thread is the thread group
// leader. If procfs syscall is not supported by the kernel, then
// we assume the kernel also does not support TID namespacing and
// trust the TID passed by the crashing process.
LOG(WARNING) << "Could not translate tid - assuming crashing thread is "
"thread group leader; syscall_supported=" << syscall_supported;
crashing_tid = crashing_pid;
}
ExceptionHandler::CrashContext* bad_context =
reinterpret_cast<ExceptionHandler::CrashContext*>(crash_context.get());
bad_context->tid = crashing_tid;
auto info = base::MakeUnique<BreakpadInfo>();
info->fd = -1;
info->process_type_length = process_type_.length();
// Freed in CrashDumpTask().
char* process_type_str = new char[info->process_type_length + 1];
process_type_.copy(process_type_str, info->process_type_length);
process_type_str[info->process_type_length] = '\0';
info->process_type = process_type_str;
// Memory released from std::unique_ptrs below are also freed in
// CrashDumpTask().
info->crash_keys = crash_keys.release();
#if defined(ADDRESS_SANITIZER)
asan_report[kMaxAsanReportSize] = '\0';
info->asan_report_str = asan_report.release();
info->asan_report_length = strlen(info->asan_report_str);
#endif
info->process_start_time = uptime;
info->oom_size = oom_size;
#if defined(OS_ANDROID)
// Nothing gets uploaded in android.
info->upload = false;
#else
info->upload = upload_;
#endif
BreakpadInfo* info_ptr = info.get();
blocking_task_runner_->PostTaskAndReply(
FROM_HERE,
base::BindOnce(&CrashHandlerHostLinux::WriteDumpFile,
base::Unretained(this), info_ptr,
base::Passed(&crash_context), crashing_pid),
base::BindOnce(&CrashHandlerHostLinux::QueueCrashDumpTask,
base::Unretained(this), base::Passed(&info), signal_fd));
}
void CrashHandlerHostLinux::WriteDumpFile(BreakpadInfo* info,
std::unique_ptr<char[]> crash_context,
pid_t crashing_pid) {
base::ThreadRestrictions::AssertIOAllowed();
// Set |info->distro| here because base::GetLinuxDistro() needs to run on a
// blocking sequence.
std::string distro = base::GetLinuxDistro();
info->distro_length = distro.length();
// Freed in CrashDumpTask().
char* distro_str = new char[info->distro_length + 1];
distro.copy(distro_str, info->distro_length);
distro_str[info->distro_length] = '\0';
info->distro = distro_str;
base::FilePath dumps_path("/tmp");
PathService::Get(base::DIR_TEMP, &dumps_path);
if (!info->upload)
dumps_path = dumps_path_;
const std::string minidump_filename =
base::StringPrintf("%s/chromium-%s-minidump-%016" PRIx64 ".dmp",
dumps_path.value().c_str(),
process_type_.c_str(),
base::RandUint64());
if (!google_breakpad::WriteMinidump(minidump_filename.c_str(),
kMaxMinidumpFileSize,
crashing_pid,
crash_context.get(),
kCrashContextSize,
google_breakpad::MappingList(),
google_breakpad::AppMemoryList())) {
LOG(ERROR) << "Failed to write crash dump for pid " << crashing_pid;
}
#if defined(ADDRESS_SANITIZER)
// Create a temporary file holding the AddressSanitizer report.
const base::FilePath log_path =
base::FilePath(minidump_filename).ReplaceExtension("log");
base::WriteFile(log_path, info->asan_report_str, info->asan_report_length);
#endif
// Freed in CrashDumpTask().
char* minidump_filename_str = new char[minidump_filename.length() + 1];
minidump_filename.copy(minidump_filename_str, minidump_filename.length());
minidump_filename_str[minidump_filename.length()] = '\0';
info->filename = minidump_filename_str;
#if defined(ADDRESS_SANITIZER)
// Freed in CrashDumpTask().
char* minidump_log_filename_str = new char[minidump_filename.length() + 1];
minidump_filename.copy(minidump_log_filename_str, minidump_filename.length());
memcpy(minidump_log_filename_str + minidump_filename.length() - 3, "log", 3);
minidump_log_filename_str[minidump_filename.length()] = '\0';
info->log_filename = minidump_log_filename_str;
#endif
info->pid = crashing_pid;
}
void CrashHandlerHostLinux::QueueCrashDumpTask(
std::unique_ptr<BreakpadInfo> info,
int signal_fd) {
DCHECK_CURRENTLY_ON(BrowserThread::IO);
// Send the done signal to the process: it can exit now.
struct msghdr msg = {0};
struct iovec done_iov;
done_iov.iov_base = const_cast<char*>("\x42");
done_iov.iov_len = 1;
msg.msg_iov = &done_iov;
msg.msg_iovlen = 1;
HANDLE_EINTR(sendmsg(signal_fd, &msg, MSG_DONTWAIT | MSG_NOSIGNAL));
close(signal_fd);
uploader_thread_->task_runner()->PostTask(
FROM_HERE,
base::Bind(&CrashDumpTask, base::Unretained(this), base::Passed(&info)));
}
void CrashHandlerHostLinux::WillDestroyCurrentMessageLoop() {
file_descriptor_watcher_.StopWatchingFileDescriptor();
// If we are quitting and there are crash dumps in the queue, turn them into
// no-ops.
shutting_down_ = true;
uploader_thread_->Stop();
}
bool CrashHandlerHostLinux::IsShuttingDown() const {
return shutting_down_;
}
} // namespace breakpad