blob: 9cef256ddbad31b5c92ea199f6aa4c92f00ff4b2 [file] [log] [blame]
/*
* Copyright (C) 2011 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "core/layout/LayoutGrid.h"
#include "core/frame/UseCounter.h"
#include "core/layout/LayoutState.h"
#include "core/layout/TextAutosizer.h"
#include "core/paint/GridPainter.h"
#include "core/paint/PaintLayer.h"
#include "core/style/ComputedStyle.h"
#include "core/style/GridArea.h"
#include "platform/LengthFunctions.h"
#include "wtf/PtrUtil.h"
#include <algorithm>
#include <memory>
namespace blink {
struct ContentAlignmentData {
STACK_ALLOCATED();
public:
ContentAlignmentData(){};
ContentAlignmentData(LayoutUnit position, LayoutUnit distribution)
: positionOffset(position), distributionOffset(distribution) {}
bool isValid() { return positionOffset >= 0 && distributionOffset >= 0; }
LayoutUnit positionOffset = LayoutUnit(-1);
LayoutUnit distributionOffset = LayoutUnit(-1);
};
LayoutGrid::LayoutGrid(Element* element)
: LayoutBlock(element), m_grid(this), m_trackSizingAlgorithm(this, m_grid) {
ASSERT(!childrenInline());
if (!isAnonymous())
UseCounter::count(document(), UseCounter::CSSGridLayout);
}
LayoutGrid::~LayoutGrid() {}
LayoutGrid* LayoutGrid::createAnonymous(Document* document) {
LayoutGrid* layoutGrid = new LayoutGrid(nullptr);
layoutGrid->setDocumentForAnonymous(document);
return layoutGrid;
}
void LayoutGrid::addChild(LayoutObject* newChild, LayoutObject* beforeChild) {
LayoutBlock::addChild(newChild, beforeChild);
// Positioned grid items do not take up space or otherwise participate in the
// layout of the grid, for that reason we don't need to mark the grid as dirty
// when they are added.
if (newChild->isOutOfFlowPositioned())
return;
// The grid needs to be recomputed as it might contain auto-placed items that
// will change their position.
dirtyGrid();
}
void LayoutGrid::removeChild(LayoutObject* child) {
LayoutBlock::removeChild(child);
// Positioned grid items do not take up space or otherwise participate in the
// layout of the grid, for that reason we don't need to mark the grid as dirty
// when they are removed.
if (child->isOutOfFlowPositioned())
return;
// The grid needs to be recomputed as it might contain auto-placed items that
// will change their position.
dirtyGrid();
}
void LayoutGrid::styleDidChange(StyleDifference diff,
const ComputedStyle* oldStyle) {
LayoutBlock::styleDidChange(diff, oldStyle);
if (!oldStyle)
return;
// FIXME: The following checks could be narrowed down if we kept track of
// which type of grid items we have:
// - explicit grid size changes impact negative explicitely positioned and
// auto-placed grid items.
// - named grid lines only impact grid items with named grid lines.
// - auto-flow changes only impacts auto-placed children.
if (explicitGridDidResize(*oldStyle) ||
namedGridLinesDefinitionDidChange(*oldStyle) ||
oldStyle->getGridAutoFlow() != styleRef().getGridAutoFlow() ||
(diff.needsLayout() && (styleRef().gridAutoRepeatColumns().size() ||
styleRef().gridAutoRepeatRows().size())))
dirtyGrid();
}
bool LayoutGrid::explicitGridDidResize(const ComputedStyle& oldStyle) const {
return oldStyle.gridTemplateColumns().size() !=
styleRef().gridTemplateColumns().size() ||
oldStyle.gridTemplateRows().size() !=
styleRef().gridTemplateRows().size() ||
oldStyle.namedGridAreaColumnCount() !=
styleRef().namedGridAreaColumnCount() ||
oldStyle.namedGridAreaRowCount() !=
styleRef().namedGridAreaRowCount() ||
oldStyle.gridAutoRepeatColumns().size() !=
styleRef().gridAutoRepeatColumns().size() ||
oldStyle.gridAutoRepeatRows().size() !=
styleRef().gridAutoRepeatRows().size();
}
bool LayoutGrid::namedGridLinesDefinitionDidChange(
const ComputedStyle& oldStyle) const {
return oldStyle.namedGridRowLines() != styleRef().namedGridRowLines() ||
oldStyle.namedGridColumnLines() != styleRef().namedGridColumnLines();
}
LayoutUnit LayoutGrid::computeTrackBasedLogicalHeight() const {
LayoutUnit logicalHeight;
const Vector<GridTrack>& allRows = m_trackSizingAlgorithm.tracks(ForRows);
for (const auto& row : allRows)
logicalHeight += row.baseSize();
logicalHeight += guttersSize(m_grid, ForRows, 0, allRows.size(), TrackSizing);
return logicalHeight;
}
void LayoutGrid::computeTrackSizesForDefiniteSize(
GridTrackSizingDirection direction,
LayoutUnit availableSpace) {
LayoutUnit freeSpace =
availableSpace - guttersSize(m_grid, direction, 0,
m_grid.numTracks(direction), TrackSizing);
m_trackSizingAlgorithm.setup(direction, numTracks(direction, m_grid),
TrackSizing, availableSpace, freeSpace);
m_trackSizingAlgorithm.run();
#if DCHECK_IS_ON()
DCHECK(m_trackSizingAlgorithm.tracksAreWiderThanMinTrackBreadth());
#endif
}
void LayoutGrid::repeatTracksSizingIfNeeded(LayoutUnit availableSpaceForColumns,
LayoutUnit availableSpaceForRows) {
// In orthogonal flow cases column track's size is determined by using the
// computed row track's size, which it was estimated during the first cycle of
// the sizing algorithm.
// Hence we need to repeat computeUsedBreadthOfGridTracks for both, columns
// and rows, to determine the final values.
// TODO (lajava): orthogonal flows is just one of the cases which may require
// a new cycle of the sizing algorithm; there may be more. In addition, not
// all the cases with orthogonal flows require this extra cycle; we need a
// more specific condition to detect whether child's min-content contribution
// has changed or not.
if (m_grid.hasAnyOrthogonalGridItem()) {
computeTrackSizesForDefiniteSize(ForColumns, availableSpaceForColumns);
computeTrackSizesForDefiniteSize(ForRows, availableSpaceForRows);
}
}
void LayoutGrid::layoutBlock(bool relayoutChildren) {
ASSERT(needsLayout());
// We cannot perform a simplifiedLayout() on a dirty grid that
// has positioned items to be laid out.
if (!relayoutChildren &&
(!m_grid.needsItemsPlacement() || !posChildNeedsLayout()) &&
simplifiedLayout())
return;
SubtreeLayoutScope layoutScope(*this);
{
// LayoutState needs this deliberate scope to pop before updating scroll
// information (which may trigger relayout).
LayoutState state(*this);
LayoutSize previousSize = size();
// We need to clear both own and containingBlock override sizes to
// ensure we get the same result when grid's intrinsic size is
// computed again in the updateLogicalWidth call bellow.
if (sizesLogicalWidthToFitContent(styleRef().logicalWidth()) ||
styleRef().logicalWidth().isIntrinsicOrAuto()) {
for (auto* child = firstInFlowChildBox(); child;
child = child->nextInFlowSiblingBox()) {
if (!isOrthogonalChild(*child))
continue;
child->clearOverrideSize();
child->clearContainingBlockOverrideSize();
child->forceLayout();
}
}
updateLogicalWidth();
m_hasDefiniteLogicalHeight = hasDefiniteLogicalHeight();
TextAutosizer::LayoutScope textAutosizerLayoutScope(this, &layoutScope);
placeItemsOnGrid(m_grid, TrackSizing);
// 1- First, the track sizing algorithm is used to resolve the sizes of the
// grid columns.
// At this point the logical width is always definite as the above call to
// updateLogicalWidth() properly resolves intrinsic sizes. We cannot do the
// same for heights though because many code paths inside
// updateLogicalHeight() require a previous call to setLogicalHeight() to
// resolve heights properly (like for positioned items for example).
LayoutUnit availableSpaceForColumns = availableLogicalWidth();
computeTrackSizesForDefiniteSize(ForColumns, availableSpaceForColumns);
// 2- Next, the track sizing algorithm resolves the sizes of the grid rows,
// using the grid column sizes calculated in the previous step.
if (cachedHasDefiniteLogicalHeight()) {
computeTrackSizesForDefiniteSize(
ForRows, availableLogicalHeight(ExcludeMarginBorderPadding));
} else {
computeTrackSizesForIndefiniteSize(m_trackSizingAlgorithm, ForRows,
m_grid, m_minContentHeight,
m_maxContentHeight);
}
LayoutUnit trackBasedLogicalHeight = computeTrackBasedLogicalHeight() +
borderAndPaddingLogicalHeight() +
scrollbarLogicalHeight();
setLogicalHeight(trackBasedLogicalHeight);
LayoutUnit oldClientAfterEdge = clientLogicalBottom();
updateLogicalHeight();
// Once grid's indefinite height is resolved, we can compute the
// available free space for Content Alignment.
if (!cachedHasDefiniteLogicalHeight()) {
m_trackSizingAlgorithm.freeSpace(ForRows) =
logicalHeight() - trackBasedLogicalHeight;
}
// 3- If the min-content contribution of any grid items have changed based
// on the row sizes calculated in step 2, steps 1 and 2 are repeated with
// the new min-content contribution (once only).
repeatTracksSizingIfNeeded(availableSpaceForColumns,
contentLogicalHeight());
// Grid container should have the minimum height of a line if it's editable.
// That doesn't affect track sizing though.
if (hasLineIfEmpty())
setLogicalHeight(
std::max(logicalHeight(), minimumLogicalHeightForEmptyLine()));
applyStretchAlignmentToTracksIfNeeded(ForColumns);
applyStretchAlignmentToTracksIfNeeded(ForRows);
layoutGridItems();
m_trackSizingAlgorithm.reset();
if (size() != previousSize)
relayoutChildren = true;
layoutPositionedObjects(relayoutChildren || isDocumentElement());
computeOverflow(oldClientAfterEdge);
}
updateLayerTransformAfterLayout();
updateAfterLayout();
clearNeedsLayout();
}
LayoutUnit LayoutGrid::gridGapForDirection(
GridTrackSizingDirection direction,
SizingOperation sizingOperation) const {
LayoutUnit availableSize;
const Length& gap = direction == ForColumns ? styleRef().gridColumnGap()
: styleRef().gridRowGap();
if (sizingOperation == TrackSizing && gap.isPercent())
availableSize = direction == ForColumns
? availableLogicalWidth()
: availableLogicalHeightForPercentageComputation();
// TODO(rego): Maybe we could cache the computed percentage as a performance
// improvement.
return valueForLength(gap, availableSize);
}
LayoutUnit LayoutGrid::guttersSize(const Grid& grid,
GridTrackSizingDirection direction,
size_t startLine,
size_t span,
SizingOperation sizingOperation) const {
if (span <= 1)
return LayoutUnit();
LayoutUnit gap = gridGapForDirection(direction, sizingOperation);
// Fast path, no collapsing tracks.
if (!grid.hasAutoRepeatEmptyTracks(direction))
return gap * (span - 1);
// If there are collapsing tracks we need to be sure that gutters are properly
// collapsed. Apart from that, if we have a collapsed track in the edges of
// the span we're considering, we need to move forward (or backwards) in order
// to know whether the collapsed tracks reach the end of the grid (so the gap
// becomes 0) or there is a non empty track before that.
LayoutUnit gapAccumulator;
size_t endLine = startLine + span;
for (size_t line = startLine; line < endLine - 1; ++line) {
if (!grid.isEmptyAutoRepeatTrack(direction, line))
gapAccumulator += gap;
}
// The above loop adds one extra gap for trailing collapsed tracks.
if (gapAccumulator && grid.isEmptyAutoRepeatTrack(direction, endLine - 1)) {
DCHECK_GE(gapAccumulator, gap);
gapAccumulator -= gap;
}
// If the startLine is the start line of a collapsed track we need to go
// backwards till we reach a non collapsed track. If we find a non collapsed
// track we need to add that gap.
if (startLine && grid.isEmptyAutoRepeatTrack(direction, startLine)) {
size_t nonEmptyTracksBeforeStartLine = startLine;
auto begin = grid.autoRepeatEmptyTracks(direction)->begin();
for (auto it = begin; *it != startLine; ++it) {
DCHECK(nonEmptyTracksBeforeStartLine);
--nonEmptyTracksBeforeStartLine;
}
if (nonEmptyTracksBeforeStartLine)
gapAccumulator += gap;
}
// If the endLine is the end line of a collapsed track we need to go forward
// till we reach a non collapsed track. If we find a non collapsed track we
// need to add that gap.
if (grid.isEmptyAutoRepeatTrack(direction, endLine - 1)) {
size_t nonEmptyTracksAfterEndLine = grid.numTracks(direction) - endLine;
auto currentEmptyTrack =
grid.autoRepeatEmptyTracks(direction)->find(endLine - 1);
auto endEmptyTrack = grid.autoRepeatEmptyTracks(direction)->end();
// HashSet iterators do not implement operator- so we have to manually
// iterate to know the number of remaining empty tracks.
for (auto it = ++currentEmptyTrack; it != endEmptyTrack; ++it) {
DCHECK(nonEmptyTracksAfterEndLine);
--nonEmptyTracksAfterEndLine;
}
if (nonEmptyTracksAfterEndLine)
gapAccumulator += gap;
}
return gapAccumulator;
}
void LayoutGrid::computeIntrinsicLogicalWidths(
LayoutUnit& minLogicalWidth,
LayoutUnit& maxLogicalWidth) const {
Grid grid(this);
placeItemsOnGrid(grid, IntrinsicSizeComputation);
GridTrackSizingAlgorithm algorithm(this, grid);
computeTrackSizesForIndefiniteSize(algorithm, ForColumns, grid,
minLogicalWidth, maxLogicalWidth);
LayoutUnit scrollbarWidth = LayoutUnit(scrollbarLogicalWidth());
minLogicalWidth += scrollbarWidth;
maxLogicalWidth += scrollbarWidth;
}
void LayoutGrid::computeTrackSizesForIndefiniteSize(
GridTrackSizingAlgorithm& algo,
GridTrackSizingDirection direction,
Grid& grid,
LayoutUnit& minIntrinsicSize,
LayoutUnit& maxIntrinsicSize) const {
algo.setup(direction, numTracks(direction, grid), IntrinsicSizeComputation,
LayoutUnit(), LayoutUnit());
algo.run();
minIntrinsicSize = algo.minContentSize();
maxIntrinsicSize = algo.maxContentSize();
size_t numberOfTracks = algo.tracks(direction).size();
LayoutUnit totalGuttersSize =
guttersSize(grid, direction, 0, numberOfTracks, IntrinsicSizeComputation);
minIntrinsicSize += totalGuttersSize;
maxIntrinsicSize += totalGuttersSize;
#if DCHECK_IS_ON()
DCHECK(algo.tracksAreWiderThanMinTrackBreadth());
#endif
}
LayoutUnit LayoutGrid::computeIntrinsicLogicalContentHeightUsing(
const Length& logicalHeightLength,
LayoutUnit intrinsicContentHeight,
LayoutUnit borderAndPadding) const {
if (logicalHeightLength.isMinContent())
return m_minContentHeight;
if (logicalHeightLength.isMaxContent())
return m_maxContentHeight;
if (logicalHeightLength.isFitContent()) {
if (m_minContentHeight == -1 || m_maxContentHeight == -1)
return LayoutUnit(-1);
LayoutUnit fillAvailableExtent =
containingBlock()->availableLogicalHeight(ExcludeMarginBorderPadding);
return std::min<LayoutUnit>(
m_maxContentHeight, std::max(m_minContentHeight, fillAvailableExtent));
}
if (logicalHeightLength.isFillAvailable())
return containingBlock()->availableLogicalHeight(
ExcludeMarginBorderPadding) -
borderAndPadding;
ASSERT_NOT_REACHED();
return LayoutUnit();
}
static LayoutUnit overrideContainingBlockContentSizeForChild(
const LayoutBox& child,
GridTrackSizingDirection direction) {
return direction == ForColumns
? child.overrideContainingBlockContentLogicalWidth()
: child.overrideContainingBlockContentLogicalHeight();
}
bool LayoutGrid::isOrthogonalChild(const LayoutBox& child) const {
return child.isHorizontalWritingMode() != isHorizontalWritingMode();
}
size_t LayoutGrid::computeAutoRepeatTracksCount(
GridTrackSizingDirection direction,
SizingOperation sizingOperation) const {
bool isRowAxis = direction == ForColumns;
const auto& autoRepeatTracks = isRowAxis ? styleRef().gridAutoRepeatColumns()
: styleRef().gridAutoRepeatRows();
size_t autoRepeatTrackListLength = autoRepeatTracks.size();
if (!autoRepeatTrackListLength)
return 0;
LayoutUnit availableSize;
if (isRowAxis) {
availableSize = sizingOperation == IntrinsicSizeComputation
? LayoutUnit(-1)
: availableLogicalWidth();
} else {
availableSize = availableLogicalHeightForPercentageComputation();
if (availableSize == -1) {
const Length& maxLength = styleRef().logicalMaxHeight();
if (!maxLength.isMaxSizeNone()) {
availableSize = constrainContentBoxLogicalHeightByMinMax(
availableLogicalHeightUsing(maxLength, ExcludeMarginBorderPadding),
LayoutUnit(-1));
}
}
}
bool needsToFulfillMinimumSize = false;
bool indefiniteMainAndMaxSizes = availableSize == LayoutUnit(-1);
if (indefiniteMainAndMaxSizes) {
const Length& minSize = isRowAxis ? styleRef().logicalMinWidth()
: styleRef().logicalMinHeight();
if (!minSize.isSpecified())
return autoRepeatTrackListLength;
LayoutUnit containingBlockAvailableSize =
isRowAxis ? containingBlockLogicalWidthForContent()
: containingBlockLogicalHeightForContent(
ExcludeMarginBorderPadding);
availableSize = valueForLength(minSize, containingBlockAvailableSize);
needsToFulfillMinimumSize = true;
}
LayoutUnit autoRepeatTracksSize;
for (auto autoTrackSize : autoRepeatTracks) {
DCHECK(autoTrackSize.minTrackBreadth().isLength());
DCHECK(!autoTrackSize.minTrackBreadth().isFlex());
bool hasDefiniteMaxTrackSizingFunction =
autoTrackSize.maxTrackBreadth().isLength() &&
!autoTrackSize.maxTrackBreadth().isContentSized();
auto trackLength = hasDefiniteMaxTrackSizingFunction
? autoTrackSize.maxTrackBreadth().length()
: autoTrackSize.minTrackBreadth().length();
autoRepeatTracksSize += valueForLength(trackLength, availableSize);
}
// For the purpose of finding the number of auto-repeated tracks, the UA must
// floor the track size to a UA-specified value to avoid division by zero. It
// is suggested that this floor be 1px.
autoRepeatTracksSize =
std::max<LayoutUnit>(LayoutUnit(1), autoRepeatTracksSize);
// There will be always at least 1 auto-repeat track, so take it already into
// account when computing the total track size.
LayoutUnit tracksSize = autoRepeatTracksSize;
const Vector<GridTrackSize>& trackSizes =
isRowAxis ? styleRef().gridTemplateColumns()
: styleRef().gridTemplateRows();
for (const auto& track : trackSizes) {
bool hasDefiniteMaxTrackBreadth = track.maxTrackBreadth().isLength() &&
!track.maxTrackBreadth().isContentSized();
DCHECK(hasDefiniteMaxTrackBreadth ||
(track.minTrackBreadth().isLength() &&
!track.minTrackBreadth().isContentSized()));
tracksSize += valueForLength(hasDefiniteMaxTrackBreadth
? track.maxTrackBreadth().length()
: track.minTrackBreadth().length(),
availableSize);
}
// Add gutters as if there where only 1 auto repeat track. Gaps between auto
// repeat tracks will be added later when computing the repetitions.
LayoutUnit gapSize = gridGapForDirection(direction, sizingOperation);
tracksSize += gapSize * trackSizes.size();
LayoutUnit freeSpace = availableSize - tracksSize;
if (freeSpace <= 0)
return autoRepeatTrackListLength;
size_t repetitions =
1 + (freeSpace / (autoRepeatTracksSize + gapSize)).toInt();
// Provided the grid container does not have a definite size or max-size in
// the relevant axis, if the min size is definite then the number of
// repetitions is the largest possible positive integer that fulfills that
// minimum requirement.
if (needsToFulfillMinimumSize)
++repetitions;
return repetitions * autoRepeatTrackListLength;
}
std::unique_ptr<OrderedTrackIndexSet>
LayoutGrid::computeEmptyTracksForAutoRepeat(
Grid& grid,
GridTrackSizingDirection direction) const {
bool isRowAxis = direction == ForColumns;
if ((isRowAxis && styleRef().gridAutoRepeatColumnsType() != AutoFit) ||
(!isRowAxis && styleRef().gridAutoRepeatRowsType() != AutoFit))
return nullptr;
std::unique_ptr<OrderedTrackIndexSet> emptyTrackIndexes;
size_t insertionPoint = isRowAxis
? styleRef().gridAutoRepeatColumnsInsertionPoint()
: styleRef().gridAutoRepeatRowsInsertionPoint();
size_t firstAutoRepeatTrack =
insertionPoint + std::abs(grid.smallestTrackStart(direction));
size_t lastAutoRepeatTrack =
firstAutoRepeatTrack + grid.autoRepeatTracks(direction);
if (!grid.hasGridItems()) {
emptyTrackIndexes = WTF::wrapUnique(new OrderedTrackIndexSet);
for (size_t trackIndex = firstAutoRepeatTrack;
trackIndex < lastAutoRepeatTrack; ++trackIndex)
emptyTrackIndexes->insert(trackIndex);
} else {
for (size_t trackIndex = firstAutoRepeatTrack;
trackIndex < lastAutoRepeatTrack; ++trackIndex) {
GridIterator iterator(grid, direction, trackIndex);
if (!iterator.nextGridItem()) {
if (!emptyTrackIndexes)
emptyTrackIndexes = WTF::wrapUnique(new OrderedTrackIndexSet);
emptyTrackIndexes->insert(trackIndex);
}
}
}
return emptyTrackIndexes;
}
size_t LayoutGrid::clampAutoRepeatTracks(GridTrackSizingDirection direction,
size_t autoRepeatTracks) const {
if (!autoRepeatTracks)
return 0;
size_t insertionPoint = direction == ForColumns
? styleRef().gridAutoRepeatColumnsInsertionPoint()
: styleRef().gridAutoRepeatRowsInsertionPoint();
if (insertionPoint == 0)
return std::min<size_t>(autoRepeatTracks, kGridMaxTracks);
if (insertionPoint >= kGridMaxTracks)
return 0;
return std::min(autoRepeatTracks,
static_cast<size_t>(kGridMaxTracks) - insertionPoint);
}
void LayoutGrid::placeItemsOnGrid(Grid& grid,
SizingOperation sizingOperation) const {
size_t autoRepeatRows =
computeAutoRepeatTracksCount(ForRows, sizingOperation);
size_t autoRepeatColumns =
computeAutoRepeatTracksCount(ForColumns, sizingOperation);
autoRepeatRows = clampAutoRepeatTracks(ForRows, autoRepeatRows);
autoRepeatColumns = clampAutoRepeatTracks(ForColumns, autoRepeatColumns);
if (autoRepeatRows != grid.autoRepeatTracks(ForRows) ||
autoRepeatColumns != grid.autoRepeatTracks(ForColumns)) {
grid.setNeedsItemsPlacement(true);
grid.setAutoRepeatTracks(autoRepeatRows, autoRepeatColumns);
}
if (!grid.needsItemsPlacement())
return;
DCHECK(!grid.hasGridItems());
populateExplicitGridAndOrderIterator(grid);
Vector<LayoutBox*> autoMajorAxisAutoGridItems;
Vector<LayoutBox*> specifiedMajorAxisAutoGridItems;
#if DCHECK_IS_ON()
DCHECK(!grid.hasAnyGridItemPaintOrder());
#endif
DCHECK(!grid.hasAnyOrthogonalGridItem());
bool hasAnyOrthogonalGridItem = false;
size_t childIndex = 0;
for (LayoutBox* child = grid.orderIterator().first(); child;
child = grid.orderIterator().next()) {
if (child->isOutOfFlowPositioned())
continue;
hasAnyOrthogonalGridItem =
hasAnyOrthogonalGridItem || isOrthogonalChild(*child);
grid.setGridItemPaintOrder(*child, childIndex++);
GridArea area = grid.gridItemArea(*child);
if (!area.rows.isIndefinite())
area.rows.translate(abs(grid.smallestTrackStart(ForRows)));
if (!area.columns.isIndefinite())
area.columns.translate(abs(grid.smallestTrackStart(ForColumns)));
if (area.rows.isIndefinite() || area.columns.isIndefinite()) {
grid.setGridItemArea(*child, area);
GridSpan majorAxisPositions =
(autoPlacementMajorAxisDirection() == ForColumns) ? area.columns
: area.rows;
if (majorAxisPositions.isIndefinite())
autoMajorAxisAutoGridItems.push_back(child);
else
specifiedMajorAxisAutoGridItems.push_back(child);
continue;
}
grid.insert(*child, area);
}
grid.setHasAnyOrthogonalGridItem(hasAnyOrthogonalGridItem);
#if DCHECK_IS_ON()
if (grid.hasGridItems()) {
DCHECK_GE(grid.numTracks(ForRows),
GridPositionsResolver::explicitGridRowCount(
*style(), grid.autoRepeatTracks(ForRows)));
DCHECK_GE(grid.numTracks(ForColumns),
GridPositionsResolver::explicitGridColumnCount(
*style(), grid.autoRepeatTracks(ForColumns)));
}
#endif
placeSpecifiedMajorAxisItemsOnGrid(grid, specifiedMajorAxisAutoGridItems);
placeAutoMajorAxisItemsOnGrid(grid, autoMajorAxisAutoGridItems);
// Compute collapsable tracks for auto-fit.
grid.setAutoRepeatEmptyColumns(
computeEmptyTracksForAutoRepeat(grid, ForColumns));
grid.setAutoRepeatEmptyRows(computeEmptyTracksForAutoRepeat(grid, ForRows));
grid.setNeedsItemsPlacement(false);
#if DCHECK_IS_ON()
for (LayoutBox* child = grid.orderIterator().first(); child;
child = grid.orderIterator().next()) {
if (child->isOutOfFlowPositioned())
continue;
GridArea area = grid.gridItemArea(*child);
ASSERT(area.rows.isTranslatedDefinite() &&
area.columns.isTranslatedDefinite());
}
#endif
}
void LayoutGrid::populateExplicitGridAndOrderIterator(Grid& grid) const {
OrderIteratorPopulator populator(grid.orderIterator());
int smallestRowStart = 0;
int smallestColumnStart = 0;
size_t autoRepeatRows = grid.autoRepeatTracks(ForRows);
size_t autoRepeatColumns = grid.autoRepeatTracks(ForColumns);
size_t maximumRowIndex =
GridPositionsResolver::explicitGridRowCount(*style(), autoRepeatRows);
size_t maximumColumnIndex = GridPositionsResolver::explicitGridColumnCount(
*style(), autoRepeatColumns);
for (LayoutBox* child = firstInFlowChildBox(); child;
child = child->nextInFlowSiblingBox()) {
populator.collectChild(child);
// This function bypasses the cache (gridItemArea()) as it is used to
// build it.
GridSpan rowPositions =
GridPositionsResolver::resolveGridPositionsFromStyle(
*style(), *child, ForRows, autoRepeatRows);
GridSpan columnPositions =
GridPositionsResolver::resolveGridPositionsFromStyle(
*style(), *child, ForColumns, autoRepeatColumns);
grid.setGridItemArea(*child, GridArea(rowPositions, columnPositions));
// |positions| is 0 if we need to run the auto-placement algorithm.
if (!rowPositions.isIndefinite()) {
smallestRowStart =
std::min(smallestRowStart, rowPositions.untranslatedStartLine());
maximumRowIndex =
std::max<int>(maximumRowIndex, rowPositions.untranslatedEndLine());
} else {
// Grow the grid for items with a definite row span, getting the largest
// such span.
size_t spanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(
*style(), *child, ForRows);
maximumRowIndex = std::max(maximumRowIndex, spanSize);
}
if (!columnPositions.isIndefinite()) {
smallestColumnStart = std::min(smallestColumnStart,
columnPositions.untranslatedStartLine());
maximumColumnIndex = std::max<int>(maximumColumnIndex,
columnPositions.untranslatedEndLine());
} else {
// Grow the grid for items with a definite column span, getting the
// largest such span.
size_t spanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(
*style(), *child, ForColumns);
maximumColumnIndex = std::max(maximumColumnIndex, spanSize);
}
}
grid.setSmallestTracksStart(smallestRowStart, smallestColumnStart);
grid.ensureGridSize(maximumRowIndex + abs(smallestRowStart),
maximumColumnIndex + abs(smallestColumnStart));
}
std::unique_ptr<GridArea>
LayoutGrid::createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(
const Grid& grid,
const LayoutBox& gridItem,
GridTrackSizingDirection specifiedDirection,
const GridSpan& specifiedPositions) const {
GridTrackSizingDirection crossDirection =
specifiedDirection == ForColumns ? ForRows : ForColumns;
const size_t endOfCrossDirection = grid.numTracks(crossDirection);
size_t crossDirectionSpanSize =
GridPositionsResolver::spanSizeForAutoPlacedItem(*style(), gridItem,
crossDirection);
GridSpan crossDirectionPositions = GridSpan::translatedDefiniteGridSpan(
endOfCrossDirection, endOfCrossDirection + crossDirectionSpanSize);
return WTF::wrapUnique(
new GridArea(specifiedDirection == ForColumns ? crossDirectionPositions
: specifiedPositions,
specifiedDirection == ForColumns ? specifiedPositions
: crossDirectionPositions));
}
void LayoutGrid::placeSpecifiedMajorAxisItemsOnGrid(
Grid& grid,
const Vector<LayoutBox*>& autoGridItems) const {
bool isForColumns = autoPlacementMajorAxisDirection() == ForColumns;
bool isGridAutoFlowDense = style()->isGridAutoFlowAlgorithmDense();
// Mapping between the major axis tracks (rows or columns) and the last
// auto-placed item's position inserted on that track. This is needed to
// implement "sparse" packing for items locked to a given track.
// See http://dev.w3.org/csswg/css-grid/#auto-placement-algo
HashMap<unsigned, unsigned, DefaultHash<unsigned>::Hash,
WTF::UnsignedWithZeroKeyHashTraits<unsigned>>
minorAxisCursors;
for (const auto& autoGridItem : autoGridItems) {
GridSpan majorAxisPositions =
grid.gridItemSpan(*autoGridItem, autoPlacementMajorAxisDirection());
ASSERT(majorAxisPositions.isTranslatedDefinite());
DCHECK(!grid.gridItemSpan(*autoGridItem, autoPlacementMinorAxisDirection())
.isTranslatedDefinite());
size_t minorAxisSpanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(
*style(), *autoGridItem, autoPlacementMinorAxisDirection());
unsigned majorAxisInitialPosition = majorAxisPositions.startLine();
GridIterator iterator(
grid, autoPlacementMajorAxisDirection(), majorAxisPositions.startLine(),
isGridAutoFlowDense ? 0
: minorAxisCursors.at(majorAxisInitialPosition));
std::unique_ptr<GridArea> emptyGridArea = iterator.nextEmptyGridArea(
majorAxisPositions.integerSpan(), minorAxisSpanSize);
if (!emptyGridArea) {
emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(
grid, *autoGridItem, autoPlacementMajorAxisDirection(),
majorAxisPositions);
}
grid.insert(*autoGridItem, *emptyGridArea);
if (!isGridAutoFlowDense)
minorAxisCursors.set(majorAxisInitialPosition,
isForColumns ? emptyGridArea->rows.startLine()
: emptyGridArea->columns.startLine());
}
}
void LayoutGrid::placeAutoMajorAxisItemsOnGrid(
Grid& grid,
const Vector<LayoutBox*>& autoGridItems) const {
std::pair<size_t, size_t> autoPlacementCursor = std::make_pair(0, 0);
bool isGridAutoFlowDense = style()->isGridAutoFlowAlgorithmDense();
for (const auto& autoGridItem : autoGridItems) {
placeAutoMajorAxisItemOnGrid(grid, *autoGridItem, autoPlacementCursor);
// If grid-auto-flow is dense, reset auto-placement cursor.
if (isGridAutoFlowDense) {
autoPlacementCursor.first = 0;
autoPlacementCursor.second = 0;
}
}
}
void LayoutGrid::placeAutoMajorAxisItemOnGrid(
Grid& grid,
LayoutBox& gridItem,
std::pair<size_t, size_t>& autoPlacementCursor) const {
GridSpan minorAxisPositions =
grid.gridItemSpan(gridItem, autoPlacementMinorAxisDirection());
DCHECK(!grid.gridItemSpan(gridItem, autoPlacementMajorAxisDirection())
.isTranslatedDefinite());
size_t majorAxisSpanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(
*style(), gridItem, autoPlacementMajorAxisDirection());
const size_t endOfMajorAxis =
grid.numTracks(autoPlacementMajorAxisDirection());
size_t majorAxisAutoPlacementCursor =
autoPlacementMajorAxisDirection() == ForColumns
? autoPlacementCursor.second
: autoPlacementCursor.first;
size_t minorAxisAutoPlacementCursor =
autoPlacementMajorAxisDirection() == ForColumns
? autoPlacementCursor.first
: autoPlacementCursor.second;
std::unique_ptr<GridArea> emptyGridArea;
if (minorAxisPositions.isTranslatedDefinite()) {
// Move to the next track in major axis if initial position in minor axis is
// before auto-placement cursor.
if (minorAxisPositions.startLine() < minorAxisAutoPlacementCursor)
majorAxisAutoPlacementCursor++;
if (majorAxisAutoPlacementCursor < endOfMajorAxis) {
GridIterator iterator(grid, autoPlacementMinorAxisDirection(),
minorAxisPositions.startLine(),
majorAxisAutoPlacementCursor);
emptyGridArea = iterator.nextEmptyGridArea(
minorAxisPositions.integerSpan(), majorAxisSpanSize);
}
if (!emptyGridArea) {
emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(
grid, gridItem, autoPlacementMinorAxisDirection(),
minorAxisPositions);
}
} else {
size_t minorAxisSpanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(
*style(), gridItem, autoPlacementMinorAxisDirection());
for (size_t majorAxisIndex = majorAxisAutoPlacementCursor;
majorAxisIndex < endOfMajorAxis; ++majorAxisIndex) {
GridIterator iterator(grid, autoPlacementMajorAxisDirection(),
majorAxisIndex, minorAxisAutoPlacementCursor);
emptyGridArea =
iterator.nextEmptyGridArea(majorAxisSpanSize, minorAxisSpanSize);
if (emptyGridArea) {
// Check that it fits in the minor axis direction, as we shouldn't grow
// in that direction here (it was already managed in
// populateExplicitGridAndOrderIterator()).
size_t minorAxisFinalPositionIndex =
autoPlacementMinorAxisDirection() == ForColumns
? emptyGridArea->columns.endLine()
: emptyGridArea->rows.endLine();
const size_t endOfMinorAxis =
grid.numTracks(autoPlacementMinorAxisDirection());
if (minorAxisFinalPositionIndex <= endOfMinorAxis)
break;
// Discard empty grid area as it does not fit in the minor axis
// direction. We don't need to create a new empty grid area yet as we
// might find a valid one in the next iteration.
emptyGridArea = nullptr;
}
// As we're moving to the next track in the major axis we should reset the
// auto-placement cursor in the minor axis.
minorAxisAutoPlacementCursor = 0;
}
if (!emptyGridArea)
emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(
grid, gridItem, autoPlacementMinorAxisDirection(),
GridSpan::translatedDefiniteGridSpan(0, minorAxisSpanSize));
}
grid.insert(gridItem, *emptyGridArea);
// Move auto-placement cursor to the new position.
autoPlacementCursor.first = emptyGridArea->rows.startLine();
autoPlacementCursor.second = emptyGridArea->columns.startLine();
}
GridTrackSizingDirection LayoutGrid::autoPlacementMajorAxisDirection() const {
return style()->isGridAutoFlowDirectionColumn() ? ForColumns : ForRows;
}
GridTrackSizingDirection LayoutGrid::autoPlacementMinorAxisDirection() const {
return style()->isGridAutoFlowDirectionColumn() ? ForRows : ForColumns;
}
void LayoutGrid::dirtyGrid() {
if (m_grid.needsItemsPlacement())
return;
m_grid.setNeedsItemsPlacement(true);
m_gridItemsOverflowingGridArea.resize(0);
}
Vector<LayoutUnit> LayoutGrid::trackSizesForComputedStyle(
GridTrackSizingDirection direction) const {
bool isRowAxis = direction == ForColumns;
auto& positions = isRowAxis ? m_columnPositions : m_rowPositions;
size_t numPositions = positions.size();
LayoutUnit offsetBetweenTracks =
isRowAxis ? m_offsetBetweenColumns : m_offsetBetweenRows;
Vector<LayoutUnit> tracks;
if (numPositions < 2)
return tracks;
DCHECK(!m_grid.needsItemsPlacement());
bool hasCollapsedTracks = m_grid.hasAutoRepeatEmptyTracks(direction);
LayoutUnit gap = !hasCollapsedTracks
? gridGapForDirection(direction, TrackSizing)
: LayoutUnit();
tracks.reserveCapacity(numPositions - 1);
for (size_t i = 0; i < numPositions - 2; ++i)
tracks.push_back(positions[i + 1] - positions[i] - offsetBetweenTracks -
gap);
tracks.push_back(positions[numPositions - 1] - positions[numPositions - 2]);
if (!hasCollapsedTracks)
return tracks;
size_t remainingEmptyTracks = m_grid.autoRepeatEmptyTracks(direction)->size();
size_t lastLine = tracks.size();
gap = gridGapForDirection(direction, TrackSizing);
for (size_t i = 1; i < lastLine; ++i) {
if (m_grid.isEmptyAutoRepeatTrack(direction, i - 1)) {
--remainingEmptyTracks;
} else {
// Remove the gap between consecutive non empty tracks. Remove it also
// just once for an arbitrary number of empty tracks between two non empty
// ones.
bool allRemainingTracksAreEmpty = remainingEmptyTracks == (lastLine - i);
if (!allRemainingTracksAreEmpty ||
!m_grid.isEmptyAutoRepeatTrack(direction, i))
tracks[i - 1] -= gap;
}
}
return tracks;
}
static const StyleContentAlignmentData& contentAlignmentNormalBehavior() {
static const StyleContentAlignmentData normalBehavior = {
ContentPositionNormal, ContentDistributionStretch};
return normalBehavior;
}
void LayoutGrid::applyStretchAlignmentToTracksIfNeeded(
GridTrackSizingDirection direction) {
LayoutUnit& availableSpace = m_trackSizingAlgorithm.freeSpace(direction);
if (availableSpace <= 0 ||
(direction == ForColumns &&
styleRef().resolvedJustifyContentDistribution(
contentAlignmentNormalBehavior()) != ContentDistributionStretch) ||
(direction == ForRows &&
styleRef().resolvedAlignContentDistribution(
contentAlignmentNormalBehavior()) != ContentDistributionStretch))
return;
// Spec defines auto-sized tracks as the ones with an 'auto' max-sizing
// function.
Vector<GridTrack>& allTracks = m_trackSizingAlgorithm.tracks(direction);
Vector<unsigned> autoSizedTracksIndex;
for (unsigned i = 0; i < allTracks.size(); ++i) {
const GridTrackSize& trackSize =
m_trackSizingAlgorithm.gridTrackSize(direction, i, TrackSizing);
if (trackSize.hasAutoMaxTrackBreadth())
autoSizedTracksIndex.push_back(i);
}
unsigned numberOfAutoSizedTracks = autoSizedTracksIndex.size();
if (numberOfAutoSizedTracks < 1)
return;
LayoutUnit sizeToIncrease = availableSpace / numberOfAutoSizedTracks;
for (const auto& trackIndex : autoSizedTracksIndex) {
GridTrack* track = allTracks.data() + trackIndex;
LayoutUnit baseSize = track->baseSize() + sizeToIncrease;
track->setBaseSize(baseSize);
}
availableSpace = LayoutUnit();
}
void LayoutGrid::layoutGridItems() {
populateGridPositionsForDirection(ForColumns);
populateGridPositionsForDirection(ForRows);
m_gridItemsOverflowingGridArea.resize(0);
for (LayoutBox* child = firstChildBox(); child;
child = child->nextSiblingBox()) {
if (child->isOutOfFlowPositioned()) {
prepareChildForPositionedLayout(*child);
continue;
}
// Because the grid area cannot be styled, we don't need to adjust
// the grid breadth to account for 'box-sizing'.
LayoutUnit oldOverrideContainingBlockContentLogicalWidth =
child->hasOverrideContainingBlockLogicalWidth()
? child->overrideContainingBlockContentLogicalWidth()
: LayoutUnit();
LayoutUnit oldOverrideContainingBlockContentLogicalHeight =
child->hasOverrideContainingBlockLogicalHeight()
? child->overrideContainingBlockContentLogicalHeight()
: LayoutUnit();
LayoutUnit overrideContainingBlockContentLogicalWidth =
gridAreaBreadthForChildIncludingAlignmentOffsets(*child, ForColumns);
LayoutUnit overrideContainingBlockContentLogicalHeight =
gridAreaBreadthForChildIncludingAlignmentOffsets(*child, ForRows);
if (oldOverrideContainingBlockContentLogicalWidth !=
overrideContainingBlockContentLogicalWidth ||
(oldOverrideContainingBlockContentLogicalHeight !=
overrideContainingBlockContentLogicalHeight &&
child->hasRelativeLogicalHeight()))
child->setNeedsLayout(LayoutInvalidationReason::GridChanged);
child->setOverrideContainingBlockContentLogicalWidth(
overrideContainingBlockContentLogicalWidth);
child->setOverrideContainingBlockContentLogicalHeight(
overrideContainingBlockContentLogicalHeight);
// Stretching logic might force a child layout, so we need to run it before
// the layoutIfNeeded call to avoid unnecessary relayouts. This might imply
// that child margins, needed to correctly determine the available space
// before stretching, are not set yet.
applyStretchAlignmentToChildIfNeeded(*child);
child->layoutIfNeeded();
// We need pending layouts to be done in order to compute auto-margins
// properly.
updateAutoMarginsInColumnAxisIfNeeded(*child);
updateAutoMarginsInRowAxisIfNeeded(*child);
const GridArea& area = m_grid.gridItemArea(*child);
#if DCHECK_IS_ON()
DCHECK(area.columns.startLine() <
m_trackSizingAlgorithm.tracks(ForColumns).size());
DCHECK(area.rows.startLine() <
m_trackSizingAlgorithm.tracks(ForRows).size());
#endif
child->setLogicalLocation(findChildLogicalPosition(*child));
// Keep track of children overflowing their grid area as we might need to
// paint them even if the grid-area is not visible. Using physical
// dimensions for simplicity, so we can forget about orthogonalty.
LayoutUnit childGridAreaHeight =
isHorizontalWritingMode() ? overrideContainingBlockContentLogicalHeight
: overrideContainingBlockContentLogicalWidth;
LayoutUnit childGridAreaWidth =
isHorizontalWritingMode() ? overrideContainingBlockContentLogicalWidth
: overrideContainingBlockContentLogicalHeight;
LayoutRect gridAreaRect(
gridAreaLogicalPosition(area),
LayoutSize(childGridAreaWidth, childGridAreaHeight));
if (!gridAreaRect.contains(child->frameRect()))
m_gridItemsOverflowingGridArea.push_back(child);
}
}
void LayoutGrid::prepareChildForPositionedLayout(LayoutBox& child) {
ASSERT(child.isOutOfFlowPositioned());
child.containingBlock()->insertPositionedObject(&child);
PaintLayer* childLayer = child.layer();
childLayer->setStaticInlinePosition(LayoutUnit(borderStart()));
childLayer->setStaticBlockPosition(LayoutUnit(borderBefore()));
}
void LayoutGrid::layoutPositionedObjects(bool relayoutChildren,
PositionedLayoutBehavior info) {
TrackedLayoutBoxListHashSet* positionedDescendants = positionedObjects();
if (!positionedDescendants)
return;
for (auto* child : *positionedDescendants) {
if (isOrthogonalChild(*child)) {
// FIXME: Properly support orthogonal writing mode.
layoutPositionedObject(child, relayoutChildren, info);
continue;
}
LayoutUnit columnOffset = LayoutUnit();
LayoutUnit columnBreadth = LayoutUnit();
offsetAndBreadthForPositionedChild(*child, ForColumns, columnOffset,
columnBreadth);
LayoutUnit rowOffset = LayoutUnit();
LayoutUnit rowBreadth = LayoutUnit();
offsetAndBreadthForPositionedChild(*child, ForRows, rowOffset, rowBreadth);
child->setOverrideContainingBlockContentLogicalWidth(columnBreadth);
child->setOverrideContainingBlockContentLogicalHeight(rowBreadth);
child->setExtraInlineOffset(columnOffset);
child->setExtraBlockOffset(rowOffset);
if (child->parent() == this) {
PaintLayer* childLayer = child->layer();
childLayer->setStaticInlinePosition(borderStart() + columnOffset);
childLayer->setStaticBlockPosition(borderBefore() + rowOffset);
}
layoutPositionedObject(child, relayoutChildren, info);
}
}
void LayoutGrid::offsetAndBreadthForPositionedChild(
const LayoutBox& child,
GridTrackSizingDirection direction,
LayoutUnit& offset,
LayoutUnit& breadth) {
ASSERT(!isOrthogonalChild(child));
bool isForColumns = direction == ForColumns;
GridSpan positions = GridPositionsResolver::resolveGridPositionsFromStyle(
*style(), child, direction, autoRepeatCountForDirection(direction));
if (positions.isIndefinite()) {
offset = LayoutUnit();
breadth = isForColumns ? clientLogicalWidth() : clientLogicalHeight();
return;
}
// For positioned items we cannot use GridSpan::translate(). Because we could
// end up with negative values, as the positioned items do not create implicit
// tracks per spec.
int smallestStart = abs(m_grid.smallestTrackStart(direction));
int startLine = positions.untranslatedStartLine() + smallestStart;
int endLine = positions.untranslatedEndLine() + smallestStart;
GridPosition startPosition = isForColumns ? child.style()->gridColumnStart()
: child.style()->gridRowStart();
GridPosition endPosition = isForColumns ? child.style()->gridColumnEnd()
: child.style()->gridRowEnd();
int lastLine = numTracks(direction, m_grid);
bool startIsAuto =
startPosition.isAuto() ||
(startPosition.isNamedGridArea() &&
!NamedLineCollection::isValidNamedLineOrArea(
startPosition.namedGridLine(), styleRef(),
GridPositionsResolver::initialPositionSide(direction))) ||
(startLine < 0) || (startLine > lastLine);
bool endIsAuto = endPosition.isAuto() ||
(endPosition.isNamedGridArea() &&
!NamedLineCollection::isValidNamedLineOrArea(
endPosition.namedGridLine(), styleRef(),
GridPositionsResolver::finalPositionSide(direction))) ||
(endLine < 0) || (endLine > lastLine);
LayoutUnit start;
if (!startIsAuto) {
if (isForColumns) {
if (styleRef().isLeftToRightDirection())
start = m_columnPositions[startLine] - borderLogicalLeft();
else
start = logicalWidth() -
translateRTLCoordinate(m_columnPositions[startLine]) -
borderLogicalRight();
} else {
start = m_rowPositions[startLine] - borderBefore();
}
}
LayoutUnit end = isForColumns ? clientLogicalWidth() : clientLogicalHeight();
if (!endIsAuto) {
if (isForColumns) {
if (styleRef().isLeftToRightDirection())
end = m_columnPositions[endLine] - borderLogicalLeft();
else
end = logicalWidth() -
translateRTLCoordinate(m_columnPositions[endLine]) -
borderLogicalRight();
} else {
end = m_rowPositions[endLine] - borderBefore();
}
// These vectors store line positions including gaps, but we shouldn't
// consider them for the edges of the grid.
if (endLine > 0 && endLine < lastLine) {
DCHECK(!m_grid.needsItemsPlacement());
end -= guttersSize(m_grid, direction, endLine - 1, 2, TrackSizing);
end -= isForColumns ? m_offsetBetweenColumns : m_offsetBetweenRows;
}
}
breadth = std::max(end - start, LayoutUnit());
offset = start;
if (isForColumns && !styleRef().isLeftToRightDirection() &&
!child.styleRef().hasStaticInlinePosition(
child.isHorizontalWritingMode())) {
// If the child doesn't have a static inline position (i.e. "left" and/or
// "right" aren't "auto", we need to calculate the offset from the left
// (even if we're in RTL).
if (endIsAuto) {
offset = LayoutUnit();
} else {
offset = translateRTLCoordinate(m_columnPositions[endLine]) -
borderLogicalLeft();
if (endLine > 0 && endLine < lastLine) {
DCHECK(!m_grid.needsItemsPlacement());
offset += guttersSize(m_grid, direction, endLine - 1, 2, TrackSizing);
offset += isForColumns ? m_offsetBetweenColumns : m_offsetBetweenRows;
}
}
}
}
LayoutUnit LayoutGrid::gridAreaBreadthForChildIncludingAlignmentOffsets(
const LayoutBox& child,
GridTrackSizingDirection direction) const {
// We need the cached value when available because Content Distribution
// alignment properties may have some influence in the final grid area
// breadth.
const Vector<GridTrack>& tracks = m_trackSizingAlgorithm.tracks(direction);
const GridSpan& span =
m_trackSizingAlgorithm.grid().gridItemSpan(child, direction);
const Vector<LayoutUnit>& linePositions =
(direction == ForColumns) ? m_columnPositions : m_rowPositions;
LayoutUnit initialTrackPosition = linePositions[span.startLine()];
LayoutUnit finalTrackPosition = linePositions[span.endLine() - 1];
// Track Positions vector stores the 'start' grid line of each track, so we
// have to add last track's baseSize.
return finalTrackPosition - initialTrackPosition +
tracks[span.endLine() - 1].baseSize();
}
void LayoutGrid::populateGridPositionsForDirection(
GridTrackSizingDirection direction) {
// Since we add alignment offsets and track gutters, grid lines are not always
// adjacent. Hence we will have to assume from now on that we just store
// positions of the initial grid lines of each track, except the last one,
// which is the only one considered as a final grid line of a track.
// The grid container's frame elements (border, padding and <content-position>
// offset) are sensible to the inline-axis flow direction. However, column
// lines positions are 'direction' unaware. This simplification allows us to
// use the same indexes to identify the columns independently on the
// inline-axis direction.
bool isRowAxis = direction == ForColumns;
auto& tracks = m_trackSizingAlgorithm.tracks(direction);
size_t numberOfTracks = tracks.size();
size_t numberOfLines = numberOfTracks + 1;
size_t lastLine = numberOfLines - 1;
ContentAlignmentData offset = computeContentPositionAndDistributionOffset(
direction, m_trackSizingAlgorithm.freeSpace(direction), numberOfTracks);
auto& positions = isRowAxis ? m_columnPositions : m_rowPositions;
positions.resize(numberOfLines);
auto borderAndPadding =
isRowAxis ? borderAndPaddingLogicalLeft() : borderAndPaddingBefore();
positions[0] = borderAndPadding + offset.positionOffset;
const Grid& grid = m_trackSizingAlgorithm.grid();
if (numberOfLines > 1) {
// If we have collapsed tracks we just ignore gaps here and add them later
// as we might not compute the gap between two consecutive tracks without
// examining the surrounding ones.
bool hasCollapsedTracks = grid.hasAutoRepeatEmptyTracks(direction);
LayoutUnit gap = !hasCollapsedTracks
? gridGapForDirection(direction, TrackSizing)
: LayoutUnit();
size_t nextToLastLine = numberOfLines - 2;
for (size_t i = 0; i < nextToLastLine; ++i)
positions[i + 1] =
positions[i] + offset.distributionOffset + tracks[i].baseSize() + gap;
positions[lastLine] =
positions[nextToLastLine] + tracks[nextToLastLine].baseSize();
// Adjust collapsed gaps. Collapsed tracks cause the surrounding gutters to
// collapse (they coincide exactly) except on the edges of the grid where
// they become 0.
if (hasCollapsedTracks) {
gap = gridGapForDirection(direction, TrackSizing);
size_t remainingEmptyTracks =
grid.autoRepeatEmptyTracks(direction)->size();
LayoutUnit gapAccumulator;
for (size_t i = 1; i < lastLine; ++i) {
if (grid.isEmptyAutoRepeatTrack(direction, i - 1)) {
--remainingEmptyTracks;
} else {
// Add gap between consecutive non empty tracks. Add it also just once
// for an arbitrary number of empty tracks between two non empty ones.
bool allRemainingTracksAreEmpty =
remainingEmptyTracks == (lastLine - i);
if (!allRemainingTracksAreEmpty ||
!grid.isEmptyAutoRepeatTrack(direction, i))
gapAccumulator += gap;
}
positions[i] += gapAccumulator;
}
positions[lastLine] += gapAccumulator;
}
}
auto& offsetBetweenTracks =
isRowAxis ? m_offsetBetweenColumns : m_offsetBetweenRows;
offsetBetweenTracks = offset.distributionOffset;
}
static LayoutUnit computeOverflowAlignmentOffset(OverflowAlignment overflow,
LayoutUnit trackSize,
LayoutUnit childSize) {
LayoutUnit offset = trackSize - childSize;
switch (overflow) {
case OverflowAlignmentSafe:
// If overflow is 'safe', we have to make sure we don't overflow the
// 'start' edge (potentially cause some data loss as the overflow is
// unreachable).
return offset.clampNegativeToZero();
case OverflowAlignmentUnsafe:
case OverflowAlignmentDefault:
// If we overflow our alignment container and overflow is 'true'
// (default), we ignore the overflow and just return the value regardless
// (which may cause data loss as we overflow the 'start' edge).
return offset;
}
ASSERT_NOT_REACHED();
return LayoutUnit();
}
// FIXME: This logic is shared by LayoutFlexibleBox, so it should be moved to
// LayoutBox.
LayoutUnit LayoutGrid::marginLogicalHeightForChild(
const LayoutBox& child) const {
return isHorizontalWritingMode() ? child.marginHeight() : child.marginWidth();
}
LayoutUnit LayoutGrid::computeMarginLogicalSizeForChild(
MarginDirection forDirection,
const LayoutBox& child) const {
if (!child.styleRef().hasMargin())
return LayoutUnit();
bool isRowAxis = forDirection == InlineDirection;
LayoutUnit marginStart;
LayoutUnit marginEnd;
LayoutUnit logicalSize =
isRowAxis ? child.logicalWidth() : child.logicalHeight();
Length marginStartLength = isRowAxis ? child.styleRef().marginStart()
: child.styleRef().marginBefore();
Length marginEndLength =
isRowAxis ? child.styleRef().marginEnd() : child.styleRef().marginAfter();
child.computeMarginsForDirection(
forDirection, this, child.containingBlockLogicalWidthForContent(),
logicalSize, marginStart, marginEnd, marginStartLength, marginEndLength);
return marginStart + marginEnd;
}
LayoutUnit LayoutGrid::availableAlignmentSpaceForChildBeforeStretching(
LayoutUnit gridAreaBreadthForChild,
const LayoutBox& child) const {
// Because we want to avoid multiple layouts, stretching logic might be
// performed before children are laid out, so we can't use the child cached
// values. Hence, we need to compute margins in order to determine the
// available height before stretching.
return gridAreaBreadthForChild -
(child.needsLayout()
? computeMarginLogicalSizeForChild(BlockDirection, child)
: marginLogicalHeightForChild(child));
}
StyleSelfAlignmentData LayoutGrid::alignSelfForChild(
const LayoutBox& child) const {
if (!child.isAnonymous()) {
return child.styleRef().resolvedAlignSelf(
selfAlignmentNormalBehavior(&child));
}
// All the 'auto' values has been solved by the StyleAdjuster, but it's
// possible that some grid items generate Anonymous boxes, which need to be
// solved during layout.
return child.styleRef().resolvedAlignSelf(selfAlignmentNormalBehavior(&child),
style());
}
StyleSelfAlignmentData LayoutGrid::justifySelfForChild(
const LayoutBox& child) const {
if (!child.isAnonymous()) {
return child.styleRef().resolvedJustifySelf(
selfAlignmentNormalBehavior(&child));
}
// All the 'auto' values has been solved by the StyleAdjuster, but it's
// possible that some grid items generate Anonymous boxes, which need to be
// solved during layout.
return child.styleRef().resolvedJustifySelf(
selfAlignmentNormalBehavior(&child), style());
}
GridTrackSizingDirection LayoutGrid::flowAwareDirectionForChild(
const LayoutBox& child,
GridTrackSizingDirection direction) const {
return !isOrthogonalChild(child)
? direction
: (direction == ForColumns ? ForRows : ForColumns);
}
// FIXME: This logic is shared by LayoutFlexibleBox, so it should be moved to
// LayoutBox.
void LayoutGrid::applyStretchAlignmentToChildIfNeeded(LayoutBox& child) {
// We clear height override values because we will decide now whether it's
// allowed or not, evaluating the conditions which might have changed since
// the old values were set.
child.clearOverrideLogicalContentHeight();
GridTrackSizingDirection childBlockDirection =
flowAwareDirectionForChild(child, ForRows);
bool blockFlowIsColumnAxis = childBlockDirection == ForRows;
bool allowedToStretchChildBlockSize =
blockFlowIsColumnAxis ? allowedToStretchChildAlongColumnAxis(child)
: allowedToStretchChildAlongRowAxis(child);
if (allowedToStretchChildBlockSize) {
LayoutUnit stretchedLogicalHeight =
availableAlignmentSpaceForChildBeforeStretching(
overrideContainingBlockContentSizeForChild(child,
childBlockDirection),
child);
LayoutUnit desiredLogicalHeight = child.constrainLogicalHeightByMinMax(
stretchedLogicalHeight, LayoutUnit(-1));
child.setOverrideLogicalContentHeight(
(desiredLogicalHeight - child.borderAndPaddingLogicalHeight())
.clampNegativeToZero());
if (desiredLogicalHeight != child.logicalHeight()) {
// TODO (lajava): Can avoid laying out here in some cases. See
// https://webkit.org/b/87905.
child.setLogicalHeight(LayoutUnit());
child.setNeedsLayout(LayoutInvalidationReason::GridChanged);
}
}
}
// TODO(lajava): This logic is shared by LayoutFlexibleBox, so it should be
// moved to LayoutBox.
bool LayoutGrid::hasAutoMarginsInColumnAxis(const LayoutBox& child) const {
if (isHorizontalWritingMode())
return child.styleRef().marginTop().isAuto() ||
child.styleRef().marginBottom().isAuto();
return child.styleRef().marginLeft().isAuto() ||
child.styleRef().marginRight().isAuto();
}
// TODO(lajava): This logic is shared by LayoutFlexibleBox, so it should be
// moved to LayoutBox.
bool LayoutGrid::hasAutoMarginsInRowAxis(const LayoutBox& child) const {
if (isHorizontalWritingMode())
return child.styleRef().marginLeft().isAuto() ||
child.styleRef().marginRight().isAuto();
return child.styleRef().marginTop().isAuto() ||
child.styleRef().marginBottom().isAuto();
}
// TODO(lajava): This logic is shared by LayoutFlexibleBox, so it should be
// moved to LayoutBox.
DISABLE_CFI_PERF
void LayoutGrid::updateAutoMarginsInRowAxisIfNeeded(LayoutBox& child) {
ASSERT(!child.isOutOfFlowPositioned());
LayoutUnit availableAlignmentSpace =
child.overrideContainingBlockContentLogicalWidth() -
child.logicalWidth() - child.marginLogicalWidth();
if (availableAlignmentSpace <= 0)
return;
Length marginStart = child.style()->marginStartUsing(style());
Length marginEnd = child.style()->marginEndUsing(style());
if (marginStart.isAuto() && marginEnd.isAuto()) {
child.setMarginStart(availableAlignmentSpace / 2, style());
child.setMarginEnd(availableAlignmentSpace / 2, style());
} else if (marginStart.isAuto()) {
child.setMarginStart(availableAlignmentSpace, style());
} else if (marginEnd.isAuto()) {
child.setMarginEnd(availableAlignmentSpace, style());
}
}
// TODO(lajava): This logic is shared by LayoutFlexibleBox, so it should be
// moved to LayoutBox.
DISABLE_CFI_PERF
void LayoutGrid::updateAutoMarginsInColumnAxisIfNeeded(LayoutBox& child) {
ASSERT(!child.isOutOfFlowPositioned());
LayoutUnit availableAlignmentSpace =
child.overrideContainingBlockContentLogicalHeight() -
child.logicalHeight() - child.marginLogicalHeight();
if (availableAlignmentSpace <= 0)
return;
Length marginBefore = child.style()->marginBeforeUsing(style());
Length marginAfter = child.style()->marginAfterUsing(style());
if (marginBefore.isAuto() && marginAfter.isAuto()) {
child.setMarginBefore(availableAlignmentSpace / 2, style());
child.setMarginAfter(availableAlignmentSpace / 2, style());
} else if (marginBefore.isAuto()) {
child.setMarginBefore(availableAlignmentSpace, style());
} else if (marginAfter.isAuto()) {
child.setMarginAfter(availableAlignmentSpace, style());
}
}
// TODO(lajava): This logic is shared by LayoutFlexibleBox, so it might be
// refactored somehow.
static int synthesizedBaselineFromContentBox(const LayoutBox& box,
LineDirectionMode direction) {
if (direction == HorizontalLine) {
return (box.size().height() - box.borderBottom() - box.paddingBottom() -
box.horizontalScrollbarHeight())
.toInt();
}
return (box.size().width() - box.borderLeft() - box.paddingLeft() -
box.verticalScrollbarWidth())
.toInt();
}
static int synthesizedBaselineFromBorderBox(const LayoutBox& box,
LineDirectionMode direction) {
return (direction == HorizontalLine ? box.size().height()
: box.size().width())
.toInt();
}
// TODO(lajava): This logic is shared by LayoutFlexibleBox, so it might be
// refactored somehow.
int LayoutGrid::baselinePosition(FontBaseline,
bool,
LineDirectionMode direction,
LinePositionMode mode) const {
DCHECK_EQ(mode, PositionOnContainingLine);
int baseline = firstLineBoxBaseline();
// We take content-box's bottom if no valid baseline.
if (baseline == -1)
baseline = synthesizedBaselineFromContentBox(*this, direction);
return baseline + beforeMarginInLineDirection(direction);
}
bool LayoutGrid::isInlineBaselineAlignedChild(const LayoutBox* child) const {
return alignSelfForChild(*child).position() == ItemPositionBaseline &&
!isOrthogonalChild(*child) && !hasAutoMarginsInColumnAxis(*child);
}
int LayoutGrid::firstLineBoxBaseline() const {
if (isWritingModeRoot() || !m_grid.hasGridItems())
return -1;
const LayoutBox* baselineChild = nullptr;
const LayoutBox* firstChild = nullptr;
bool isBaselineAligned = false;
// Finding the first grid item in grid order.
for (size_t column = 0;
!isBaselineAligned && column < m_grid.numTracks(ForColumns); column++) {
for (size_t index = 0; index < m_grid.cell(0, column).size(); index++) {
const LayoutBox* child = m_grid.cell(0, column)[index];
DCHECK(!child->isOutOfFlowPositioned());
// If an item participates in baseline alignmen, we select such item.
if (isInlineBaselineAlignedChild(child)) {
// TODO (lajava): self-baseline and content-baseline alignment
// still not implemented.
baselineChild = child;
isBaselineAligned = true;
break;
}
if (!baselineChild) {
// Use dom order for items in the same cell.
if (!firstChild || (m_grid.gridItemPaintOrder(*child) <
m_grid.gridItemPaintOrder(*firstChild)))
firstChild = child;
}
}
if (!baselineChild && firstChild)
baselineChild = firstChild;
}
if (!baselineChild)
return -1;
int baseline = isOrthogonalChild(*baselineChild)
? -1
: baselineChild->firstLineBoxBaseline();
// We take border-box's bottom if no valid baseline.
if (baseline == -1) {
// TODO (lajava): We should pass |direction| into
// firstLineBoxBaseline and stop bailing out if we're a writing
// mode root. This would also fix some cases where the grid is
// orthogonal to its container.
LineDirectionMode direction =
isHorizontalWritingMode() ? HorizontalLine : VerticalLine;
return (synthesizedBaselineFromBorderBox(*baselineChild, direction) +
baselineChild->logicalTop())
.toInt();
}
return (baseline + baselineChild->logicalTop()).toInt();
}
int LayoutGrid::inlineBlockBaseline(LineDirectionMode direction) const {
int baseline = firstLineBoxBaseline();
if (baseline != -1)
return baseline;
int marginHeight =
(direction == HorizontalLine ? marginTop() : marginRight()).toInt();
return synthesizedBaselineFromContentBox(*this, direction) + marginHeight;
}
GridAxisPosition LayoutGrid::columnAxisPositionForChild(
const LayoutBox& child) const {
bool hasSameWritingMode =
child.styleRef().getWritingMode() == styleRef().getWritingMode();
bool childIsLTR = child.styleRef().isLeftToRightDirection();
switch (alignSelfForChild(child).position()) {
case ItemPositionSelfStart:
// TODO (lajava): Should we implement this logic in a generic utility
// function?
// Aligns the alignment subject to be flush with the edge of the alignment
// container corresponding to the alignment subject's 'start' side in the
// column axis.
if (isOrthogonalChild(child)) {
// If orthogonal writing-modes, self-start will be based on the child's
// inline-axis direction (inline-start), because it's the one parallel
// to the column axis.
if (styleRef().isFlippedBlocksWritingMode())
return childIsLTR ? GridAxisEnd : GridAxisStart;
return childIsLTR ? GridAxisStart : GridAxisEnd;
}
// self-start is based on the child's block-flow direction. That's why we
// need to check against the grid container's block-flow direction.
return hasSameWritingMode ? GridAxisStart : GridAxisEnd;
case ItemPositionSelfEnd:
// TODO (lajava): Should we implement this logic in a generic utility
// function?
// Aligns the alignment subject to be flush with the edge of the alignment
// container corresponding to the alignment subject's 'end' side in the
// column axis.
if (isOrthogonalChild(child)) {
// If orthogonal writing-modes, self-end will be based on the child's
// inline-axis direction, (inline-end) because it's the one parallel to
// the column axis.
if (styleRef().isFlippedBlocksWritingMode())
return childIsLTR ? GridAxisStart : GridAxisEnd;
return childIsLTR ? GridAxisEnd : GridAxisStart;
}
// self-end is based on the child's block-flow direction. That's why we
// need to check against the grid container's block-flow direction.
return hasSameWritingMode ? GridAxisEnd : GridAxisStart;
case ItemPositionLeft:
// Aligns the alignment subject to be flush with the alignment container's
// 'line-left' edge. The alignment axis (column axis) is always orthogonal
// to the inline axis, hence this value behaves as 'start'.
return GridAxisStart;
case ItemPositionRight:
// Aligns the alignment subject to be flush with the alignment container's
// 'line-right' edge. The alignment axis (column axis) is always
// orthogonal to the inline axis, hence this value behaves as 'start'.
return GridAxisStart;
case ItemPositionCenter:
return GridAxisCenter;
// Only used in flex layout, otherwise equivalent to 'start'.
case ItemPositionFlexStart:
// Aligns the alignment subject to be flush with the alignment container's
// 'start' edge (block-start) in the column axis.
case ItemPositionStart:
return GridAxisStart;
// Only used in flex layout, otherwise equivalent to 'end'.
case ItemPositionFlexEnd:
// Aligns the alignment subject to be flush with the alignment container's
// 'end' edge (block-end) in the column axis.
case ItemPositionEnd:
return GridAxisEnd;
case ItemPositionStretch:
return GridAxisStart;
case ItemPositionBaseline:
case ItemPositionLastBaseline:
// FIXME: These two require implementing Baseline Alignment. For now, we
// always 'start' align the child. crbug.com/234191
return GridAxisStart;
case ItemPositionAuto:
case ItemPositionNormal:
break;
}
ASSERT_NOT_REACHED();
return GridAxisStart;
}
GridAxisPosition LayoutGrid::rowAxisPositionForChild(
const LayoutBox& child) const {
bool hasSameDirection =
child.styleRef().direction() == styleRef().direction();
bool gridIsLTR = styleRef().isLeftToRightDirection();
switch (justifySelfForChild(child).position()) {
case ItemPositionSelfStart:
// TODO (lajava): Should we implement this logic in a generic utility
// function?
// Aligns the alignment subject to be flush with the edge of the alignment
// container corresponding to the alignment subject's 'start' side in the
// row axis.
if (isOrthogonalChild(child)) {
// If orthogonal writing-modes, self-start will be based on the child's
// block-axis direction, because it's the one parallel to the row axis.
if (child.styleRef().isFlippedBlocksWritingMode())
return gridIsLTR ? GridAxisEnd : GridAxisStart;
return gridIsLTR ? GridAxisStart : GridAxisEnd;
}
// self-start is based on the child's inline-flow direction. That's why we
// need to check against the grid container's direction.
return hasSameDirection ? GridAxisStart : GridAxisEnd;
case ItemPositionSelfEnd:
// TODO (lajava): Should we implement this logic in a generic utility
// function?
// Aligns the alignment subject to be flush with the edge of the alignment
// container corresponding to the alignment subject's 'end' side in the
// row axis.
if (isOrthogonalChild(child)) {
// If orthogonal writing-modes, self-end will be based on the child's
// block-axis direction, because it's the one parallel to the row axis.
if (child.styleRef().isFlippedBlocksWritingMode())
return gridIsLTR ? GridAxisStart : GridAxisEnd;
return gridIsLTR ? GridAxisEnd : GridAxisStart;
}
// self-end is based on the child's inline-flow direction. That's why we
// need to check against the grid container's direction.
return hasSameDirection ? GridAxisEnd : GridAxisStart;
case ItemPositionLeft:
// Aligns the alignment subject to be flush with the alignment container's
// 'line-left' edge. We want the physical 'left' side, so we have to take
// account, container's inline-flow direction.
return gridIsLTR ? GridAxisStart : GridAxisEnd;
case ItemPositionRight:
// Aligns the alignment subject to be flush with the alignment container's
// 'line-right' edge. We want the physical 'right' side, so we have to
// take account, container's inline-flow direction.
return gridIsLTR ? GridAxisEnd : GridAxisStart;
case ItemPositionCenter:
return GridAxisCenter;
// Only used in flex layout, otherwise equivalent to 'start'.
case ItemPositionFlexStart:
// Aligns the alignment subject to be flush with the alignment container's
// 'start' edge (inline-start) in the row axis.
case ItemPositionStart:
return GridAxisStart;
// Only used in flex layout, otherwise equivalent to 'end'.
case ItemPositionFlexEnd:
// Aligns the alignment subject to be flush with the alignment container's
// 'end' edge (inline-end) in the row axis.
case ItemPositionEnd:
return GridAxisEnd;
case ItemPositionStretch:
return GridAxisStart;
case ItemPositionBaseline:
case ItemPositionLastBaseline:
// FIXME: These two require implementing Baseline Alignment. For now, we
// always 'start' align the child. crbug.com/234191
return GridAxisStart;
case ItemPositionAuto:
case ItemPositionNormal:
break;
}
ASSERT_NOT_REACHED();
return GridAxisStart;
}
LayoutUnit LayoutGrid::columnAxisOffsetForChild(const LayoutBox& child) const {
const GridSpan& rowsSpan =
m_trackSizingAlgorithm.grid().gridItemSpan(child, ForRows);
size_t childStartLine = rowsSpan.startLine();
LayoutUnit startOfRow = m_rowPositions[childStartLine];
LayoutUnit startPosition = startOfRow + marginBeforeForChild(child);
if (hasAutoMarginsInColumnAxis(child))
return startPosition;
GridAxisPosition axisPosition = columnAxisPositionForChild(child);
switch (axisPosition) {
case GridAxisStart:
return startPosition;
case GridAxisEnd:
case GridAxisCenter: {
size_t childEndLine = rowsSpan.endLine();
LayoutUnit endOfRow = m_rowPositions[childEndLine];
// m_rowPositions include distribution offset (because of content
// alignment) and gutters so we need to subtract them to get the actual
// end position for a given row (this does not have to be done for the
// last track as there are no more m_columnPositions after it).
LayoutUnit trackGap = gridGapForDirection(ForRows, TrackSizing);
if (childEndLine < m_rowPositions.size() - 1) {
endOfRow -= trackGap;
endOfRow -= m_offsetBetweenRows;
}
LayoutUnit columnAxisChildSize =
isOrthogonalChild(child)
? child.logicalWidth() + child.marginLogicalWidth()
: child.logicalHeight() + child.marginLogicalHeight();
OverflowAlignment overflow = alignSelfForChild(child).overflow();
LayoutUnit offsetFromStartPosition = computeOverflowAlignmentOffset(
overflow, endOfRow - startOfRow, columnAxisChildSize);
return startPosition + (axisPosition == GridAxisEnd
? offsetFromStartPosition
: offsetFromStartPosition / 2);
}
}
ASSERT_NOT_REACHED();
return LayoutUnit();
}
LayoutUnit LayoutGrid::rowAxisOffsetForChild(const LayoutBox& child) const {
const GridSpan& columnsSpan =
m_trackSizingAlgorithm.grid().gridItemSpan(child, ForColumns);
size_t childStartLine = columnsSpan.startLine();
LayoutUnit startOfColumn = m_columnPositions[childStartLine];
LayoutUnit startPosition = startOfColumn + marginStartForChild(child);
if (hasAutoMarginsInRowAxis(child))
return startPosition;
GridAxisPosition axisPosition = rowAxisPositionForChild(child);
switch (axisPosition) {
case GridAxisStart:
return startPosition;
case GridAxisEnd:
case GridAxisCenter: {
size_t childEndLine = columnsSpan.endLine();
LayoutUnit endOfColumn = m_columnPositions[childEndLine];
// m_columnPositions include distribution offset (because of content
// alignment) and gutters so we need to subtract them to get the actual
// end position for a given column (this does not have to be done for the
// last track as there are no more m_columnPositions after it).
LayoutUnit trackGap = gridGapForDirection(ForColumns, TrackSizing);
if (childEndLine < m_columnPositions.size() - 1) {
endOfColumn -= trackGap;
endOfColumn -= m_offsetBetweenColumns;
}
LayoutUnit rowAxisChildSize =
isOrthogonalChild(child)
? child.logicalHeight() + child.marginLogicalHeight()
: child.logicalWidth() + child.marginLogicalWidth();
OverflowAlignment overflow = justifySelfForChild(child).overflow();
LayoutUnit offsetFromStartPosition = computeOverflowAlignmentOffset(
overflow, endOfColumn - startOfColumn, rowAxisChildSize);
return startPosition + (axisPosition == GridAxisEnd
? offsetFromStartPosition
: offsetFromStartPosition / 2);
}
}
ASSERT_NOT_REACHED();
return LayoutUnit();
}
ContentPosition static resolveContentDistributionFallback(
ContentDistributionType distribution) {
switch (distribution) {
case ContentDistributionSpaceBetween:
return ContentPositionStart;
case ContentDistributionSpaceAround:
return ContentPositionCenter;
case ContentDistributionSpaceEvenly:
return ContentPositionCenter;
case ContentDistributionStretch:
return ContentPositionStart;
case ContentDistributionDefault:
return ContentPositionNormal;
}
ASSERT_NOT_REACHED();
return ContentPositionNormal;
}
static ContentAlignmentData contentDistributionOffset(
const LayoutUnit& availableFreeSpace,
ContentPosition& fallbackPosition,
ContentDistributionType distribution,
unsigned numberOfGridTracks) {
if (distribution != ContentDistributionDefault &&
fallbackPosition == ContentPositionNormal)
fallbackPosition = resolveContentDistributionFallback(distribution);
if (availableFreeSpace <= 0)
return {};
LayoutUnit distributionOffset;
switch (distribution) {
case ContentDistributionSpaceBetween:
if (numberOfGridTracks < 2)
return {};
return {LayoutUnit(), availableFreeSpace / (numberOfGridTracks - 1)};
case ContentDistributionSpaceAround:
if (numberOfGridTracks < 1)
return {};
distributionOffset = availableFreeSpace / numberOfGridTracks;
return {distributionOffset / 2, distributionOffset};
case ContentDistributionSpaceEvenly:
distributionOffset = availableFreeSpace / (numberOfGridTracks + 1);
return {distributionOffset, distributionOffset};
case ContentDistributionStretch:
case ContentDistributionDefault:
return {};
}
ASSERT_NOT_REACHED();
return {};
}
ContentAlignmentData LayoutGrid::computeContentPositionAndDistributionOffset(
GridTrackSizingDirection direction,
const LayoutUnit& availableFreeSpace,
unsigned numberOfGridTracks) const {
bool isRowAxis = direction == ForColumns;
ContentPosition position = isRowAxis
? styleRef().resolvedJustifyContentPosition(
contentAlignmentNormalBehavior())
: styleRef().resolvedAlignContentPosition(
contentAlignmentNormalBehavior());
ContentDistributionType distribution =
isRowAxis
? styleRef().resolvedJustifyContentDistribution(
contentAlignmentNormalBehavior())
: styleRef().resolvedAlignContentDistribution(
contentAlignmentNormalBehavior());
// If <content-distribution> value can't be applied, 'position' will become
// the associated <content-position> fallback value.
ContentAlignmentData contentAlignment = contentDistributionOffset(
availableFreeSpace, position, distribution, numberOfGridTracks);
if (contentAlignment.isValid())
return contentAlignment;
OverflowAlignment overflow =
isRowAxis ? styleRef().justifyContentOverflowAlignment()
: styleRef().alignContentOverflowAlignment();
// TODO (lajava): Default value for overflow isn't exaclty as 'unsafe'.
// https://drafts.csswg.org/css-align/#overflow-values
if (availableFreeSpace == 0 ||
(availableFreeSpace < 0 && overflow == OverflowAlignmentSafe))
return {LayoutUnit(), LayoutUnit()};
switch (position) {
case ContentPositionLeft:
// The align-content's axis is always orthogonal to the inline-axis.
return {LayoutUnit(), LayoutUnit()};
case ContentPositionRight:
if (isRowAxis)
return {availableFreeSpace, LayoutUnit()};
// The align-content's axis is always orthogonal to the inline-axis.
return {LayoutUnit(), LayoutUnit()};
case ContentPositionCenter:
return {availableFreeSpace / 2, LayoutUnit()};
// Only used in flex layout, for other layout, it's equivalent to 'End'.
case ContentPositionFlexEnd:
case ContentPositionEnd:
if (isRowAxis)
return {styleRef().isLeftToRightDirection() ? availableFreeSpace
: LayoutUnit(),
LayoutUnit()};
return {availableFreeSpace, LayoutUnit()};
// Only used in flex layout, for other layout, it's equivalent to 'Start'.
case ContentPositionFlexStart:
case ContentPositionStart:
if (isRowAxis)
return {styleRef().isLeftToRightDirection() ? LayoutUnit()
: availableFreeSpace,
LayoutUnit()};
return {LayoutUnit(), LayoutUnit()};
case ContentPositionBaseline:
case ContentPositionLastBaseline:
// FIXME: These two require implementing Baseline Alignment. For now, we
// always 'start' align the child. crbug.com/234191
if (isRowAxis)
return {styleRef().isLeftToRightDirection() ? LayoutUnit()
: availableFreeSpace,
LayoutUnit()};
return {LayoutUnit(), LayoutUnit()};
case ContentPositionNormal:
break;
}
ASSERT_NOT_REACHED();
return {LayoutUnit(), LayoutUnit()};
}
LayoutUnit LayoutGrid::translateRTLCoordinate(LayoutUnit coordinate) const {
ASSERT(!styleRef().isLeftToRightDirection());
LayoutUnit alignmentOffset = m_columnPositions[0];
LayoutUnit rightGridEdgePosition =
m_columnPositions[m_columnPositions.size() - 1];
return rightGridEdgePosition + alignmentOffset - coordinate;
}
LayoutPoint LayoutGrid::findChildLogicalPosition(const LayoutBox& child) const {
LayoutUnit columnAxisOffset = columnAxisOffsetForChild(child);
LayoutUnit rowAxisOffset = rowAxisOffsetForChild(child);
// We stored m_columnPosition's data ignoring the direction, hence we might
// need now to translate positions from RTL to LTR, as it's more convenient
// for painting.
if (!style()->isLeftToRightDirection())
rowAxisOffset = translateRTLCoordinate(rowAxisOffset) -
(isOrthogonalChild(child) ? child.logicalHeight()
: child.logicalWidth());
// "In the positioning phase [...] calculations are performed according to the
// writing mode of the containing block of the box establishing the orthogonal
// flow." However, the resulting LayoutPoint will be used in
// 'setLogicalPosition' in order to set the child's logical position, which
// will only take into account the child's writing-mode.
LayoutPoint childLocation(rowAxisOffset, columnAxisOffset);
return isOrthogonalChild(child) ? childLocation.transposedPoint()
: childLocation;
}
LayoutPoint LayoutGrid::gridAreaLogicalPosition(const GridArea& area) const {
LayoutUnit columnAxisOffset = m_rowPositions[area.rows.startLine()];
LayoutUnit rowAxisOffset = m_columnPositions[area.columns.startLine()];
// See comment in findChildLogicalPosition() about why we need sometimes to
// translate from RTL to LTR the rowAxisOffset coordinate.
return LayoutPoint(style()->isLeftToRightDirection()
? rowAxisOffset
: translateRTLCoordinate(rowAxisOffset),
columnAxisOffset);
}
void LayoutGrid::paintChildren(const PaintInfo& paintInfo,
const LayoutPoint& paintOffset) const {
DCHECK(!m_grid.needsItemsPlacement());
if (m_grid.hasGridItems())
GridPainter(*this).paintChildren(paintInfo, paintOffset);
}
bool LayoutGrid::cachedHasDefiniteLogicalHeight() const {
SECURITY_DCHECK(m_hasDefiniteLogicalHeight);
return m_hasDefiniteLogicalHeight.value();
}
size_t LayoutGrid::numTracks(GridTrackSizingDirection direction,
const Grid& grid) const {
// Due to limitations in our internal representation, we cannot know the
// number of columns from m_grid *if* there is no row (because m_grid would be
// empty). That's why in that case we need to get it from the style. Note that
// we know for sure that there are't any implicit tracks, because not having
// rows implies that there are no "normal" children (out-of-flow children are
// not stored in m_grid).
DCHECK(!grid.needsItemsPlacement());
if (direction == ForRows)
return grid.numTracks(ForRows);
return grid.numTracks(ForRows)
? grid.numTracks(ForColumns)
: GridPositionsResolver::explicitGridColumnCount(
styleRef(), grid.autoRepeatTracks(ForColumns));
}
} // namespace blink