blob: 16aa53b30e0c64b2149ddc10562620bdad505819 [file] [log] [blame]
/*
* Copyright (C) 2013 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "core/animation/AnimationEffectReadOnly.h"
#include "core/animation/Animation.h"
#include "core/animation/AnimationEffectTiming.h"
#include "core/animation/ComputedTimingProperties.h"
#include "core/animation/TimingCalculations.h"
namespace blink {
namespace {
Timing::FillMode resolvedFillMode(Timing::FillMode fillMode, bool isAnimation) {
if (fillMode != Timing::FillMode::AUTO)
return fillMode;
if (isAnimation)
return Timing::FillMode::NONE;
return Timing::FillMode::BOTH;
}
} // namespace
AnimationEffectReadOnly::AnimationEffectReadOnly(const Timing& timing,
EventDelegate* eventDelegate)
: m_animation(nullptr),
m_timing(timing),
m_eventDelegate(eventDelegate),
m_calculated(),
m_needsUpdate(true),
m_lastUpdateTime(nullValue()) {
m_timing.assertValid();
}
double AnimationEffectReadOnly::iterationDuration() const {
double result = std::isnan(m_timing.iterationDuration)
? intrinsicIterationDuration()
: m_timing.iterationDuration;
DCHECK_GE(result, 0);
return result;
}
double AnimationEffectReadOnly::repeatedDuration() const {
const double result =
multiplyZeroAlwaysGivesZero(iterationDuration(), m_timing.iterationCount);
DCHECK_GE(result, 0);
return result;
}
double AnimationEffectReadOnly::activeDurationInternal() const {
const double result =
m_timing.playbackRate
? repeatedDuration() / std::abs(m_timing.playbackRate)
: std::numeric_limits<double>::infinity();
DCHECK_GE(result, 0);
return result;
}
void AnimationEffectReadOnly::updateSpecifiedTiming(const Timing& timing) {
// FIXME: Test whether the timing is actually different?
m_timing = timing;
invalidate();
if (m_animation)
m_animation->setOutdated();
specifiedTimingChanged();
}
void AnimationEffectReadOnly::getComputedTiming(
ComputedTimingProperties& computedTiming) {
// ComputedTimingProperties members.
computedTiming.setEndTime(endTimeInternal() * 1000);
computedTiming.setActiveDuration(activeDurationInternal() * 1000);
if (ensureCalculated().isInEffect) {
computedTiming.setLocalTime(ensureCalculated().localTime * 1000);
computedTiming.setProgress(ensureCalculated().progress);
computedTiming.setCurrentIteration(ensureCalculated().currentIteration);
} else {
computedTiming.setLocalTimeToNull();
computedTiming.setProgressToNull();
computedTiming.setCurrentIterationToNull();
}
// KeyframeEffectOptions members.
computedTiming.setDelay(specifiedTiming().startDelay * 1000);
computedTiming.setEndDelay(specifiedTiming().endDelay * 1000);
computedTiming.setFill(Timing::fillModeString(
resolvedFillMode(specifiedTiming().fillMode, isKeyframeEffect())));
computedTiming.setIterationStart(specifiedTiming().iterationStart);
computedTiming.setIterations(specifiedTiming().iterationCount);
UnrestrictedDoubleOrString duration;
duration.setUnrestrictedDouble(iterationDuration() * 1000);
computedTiming.setDuration(duration);
computedTiming.setDirection(
Timing::playbackDirectionString(specifiedTiming().direction));
computedTiming.setEasing(specifiedTiming().timingFunction->toString());
}
ComputedTimingProperties AnimationEffectReadOnly::getComputedTiming() {
ComputedTimingProperties result;
getComputedTiming(result);
return result;
}
void AnimationEffectReadOnly::updateInheritedTime(
double inheritedTime,
TimingUpdateReason reason) const {
bool needsUpdate = m_needsUpdate ||
(m_lastUpdateTime != inheritedTime &&
!(isNull(m_lastUpdateTime) && isNull(inheritedTime))) ||
(animation() && animation()->effectSuppressed());
m_needsUpdate = false;
m_lastUpdateTime = inheritedTime;
const double localTime = inheritedTime;
double timeToNextIteration = std::numeric_limits<double>::infinity();
if (needsUpdate) {
const double activeDuration = this->activeDurationInternal();
const Phase currentPhase =
calculatePhase(activeDuration, localTime, m_timing);
// FIXME: parentPhase depends on groups being implemented.
const AnimationEffectReadOnly::Phase parentPhase =
AnimationEffectReadOnly::PhaseActive;
const double activeTime = calculateActiveTime(
activeDuration, resolvedFillMode(m_timing.fillMode, isKeyframeEffect()),
localTime, parentPhase, currentPhase, m_timing);
double currentIteration;
double progress;
if (const double iterationDuration = this->iterationDuration()) {
const double startOffset = multiplyZeroAlwaysGivesZero(
m_timing.iterationStart, iterationDuration);
DCHECK_GE(startOffset, 0);
const double scaledActiveTime = calculateScaledActiveTime(
activeDuration, activeTime, startOffset, m_timing);
const double iterationTime = calculateIterationTime(
iterationDuration, repeatedDuration(), scaledActiveTime, startOffset,
currentPhase, m_timing);
currentIteration = calculateCurrentIteration(
iterationDuration, iterationTime, scaledActiveTime, m_timing);
const double transformedTime = calculateTransformedTime(
currentIteration, iterationDuration, iterationTime, m_timing);
// The infinite iterationDuration case here is a workaround because
// the specified behaviour does not handle infinite durations well.
// There is an open issue against the spec to fix this:
// https://github.com/w3c/web-animations/issues/142
if (!std::isfinite(iterationDuration))
progress = fmod(m_timing.iterationStart, 1.0);
else
progress = transformedTime / iterationDuration;
if (!isNull(iterationTime)) {
timeToNextIteration = (iterationDuration - iterationTime) /
std::abs(m_timing.playbackRate);
if (activeDuration - activeTime < timeToNextIteration)
timeToNextIteration = std::numeric_limits<double>::infinity();
}
} else {
const double localIterationDuration = 1;
const double localRepeatedDuration =
localIterationDuration * m_timing.iterationCount;
DCHECK_GE(localRepeatedDuration, 0);
const double localActiveDuration =
m_timing.playbackRate
? localRepeatedDuration / std::abs(m_timing.playbackRate)
: std::numeric_limits<double>::infinity();
DCHECK_GE(localActiveDuration, 0);
const double localLocalTime =
localTime < m_timing.startDelay
? localTime
: localActiveDuration + m_timing.startDelay;
const AnimationEffectReadOnly::Phase localCurrentPhase =
calculatePhase(localActiveDuration, localLocalTime, m_timing);
const double localActiveTime = calculateActiveTime(
localActiveDuration,
resolvedFillMode(m_timing.fillMode, isKeyframeEffect()),
localLocalTime, parentPhase, localCurrentPhase, m_timing);
const double startOffset =
m_timing.iterationStart * localIterationDuration;
DCHECK_GE(startOffset, 0);
const double scaledActiveTime = calculateScaledActiveTime(
localActiveDuration, localActiveTime, startOffset, m_timing);
const double iterationTime = calculateIterationTime(
localIterationDuration, localRepeatedDuration, scaledActiveTime,
startOffset, currentPhase, m_timing);
currentIteration = calculateCurrentIteration(
localIterationDuration, iterationTime, scaledActiveTime, m_timing);
progress = calculateTransformedTime(
currentIteration, localIterationDuration, iterationTime, m_timing);
}
m_calculated.currentIteration = currentIteration;
m_calculated.progress = progress;
m_calculated.phase = currentPhase;
m_calculated.isInEffect = !isNull(activeTime);
m_calculated.isInPlay = getPhase() == PhaseActive;
m_calculated.isCurrent = getPhase() == PhaseBefore || isInPlay();
m_calculated.localTime = m_lastUpdateTime;
}
// Test for events even if timing didn't need an update as the animation may
// have gained a start time.
// FIXME: Refactor so that we can DCHECK(m_animation) here, this is currently
// required to be nullable for testing.
if (reason == TimingUpdateForAnimationFrame &&
(!m_animation || m_animation->hasStartTime() || m_animation->paused())) {
if (m_eventDelegate)
m_eventDelegate->onEventCondition(*this);
}
if (needsUpdate) {
// FIXME: This probably shouldn't be recursive.
updateChildrenAndEffects();
m_calculated.timeToForwardsEffectChange =
calculateTimeToEffectChange(true, localTime, timeToNextIteration);
m_calculated.timeToReverseEffectChange =
calculateTimeToEffectChange(false, localTime, timeToNextIteration);
}
}
const AnimationEffectReadOnly::CalculatedTiming&
AnimationEffectReadOnly::ensureCalculated() const {
if (!m_animation)
return m_calculated;
if (m_animation->outdated())
m_animation->update(TimingUpdateOnDemand);
DCHECK(!m_animation->outdated());
return m_calculated;
}
AnimationEffectTiming* AnimationEffectReadOnly::timing() {
return AnimationEffectTiming::create(this);
}
DEFINE_TRACE(AnimationEffectReadOnly) {
visitor->trace(m_animation);
visitor->trace(m_eventDelegate);
}
} // namespace blink