blob: 568b0cf7d7511d15741e5eee92500980876398dc [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_IA32
#include "src/api-arguments.h"
#include "src/base/adapters.h"
#include "src/code-factory.h"
#include "src/counters.h"
#include "src/debug/debug.h"
#include "src/deoptimizer.h"
#include "src/frame-constants.h"
#include "src/frames.h"
#include "src/macro-assembler-inl.h"
#include "src/objects-inl.h"
#include "src/objects/cell.h"
#include "src/objects/foreign.h"
#include "src/objects/heap-number.h"
#include "src/objects/js-generator.h"
#include "src/objects/smi.h"
#include "src/register-configuration.h"
#include "src/wasm/wasm-linkage.h"
#include "src/wasm/wasm-objects.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address,
ExitFrameType exit_frame_type) {
__ Move(kJavaScriptCallExtraArg1Register,
Immediate(ExternalReference::Create(address)));
if (exit_frame_type == BUILTIN_EXIT) {
__ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame),
RelocInfo::CODE_TARGET);
} else {
DCHECK(exit_frame_type == EXIT);
__ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithExitFrame),
RelocInfo::CODE_TARGET);
}
}
static void GenerateTailCallToReturnedCode(MacroAssembler* masm,
Runtime::FunctionId function_id) {
// ----------- S t a t e -------------
// -- eax : argument count (preserved for callee)
// -- edx : new target (preserved for callee)
// -- edi : target function (preserved for callee)
// -----------------------------------
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Push the number of arguments to the callee.
__ SmiTag(eax);
__ push(eax);
// Push a copy of the target function and the new target.
__ push(edi);
__ push(edx);
// Function is also the parameter to the runtime call.
__ push(edi);
__ CallRuntime(function_id, 1);
__ mov(ecx, eax);
// Restore target function and new target.
__ pop(edx);
__ pop(edi);
__ pop(eax);
__ SmiUntag(eax);
}
static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch");
__ lea(ecx, FieldOperand(ecx, Code::kHeaderSize));
__ jmp(ecx);
}
namespace {
void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax: number of arguments
// -- edi: constructor function
// -- edx: new target
// -- esi: context
// -----------------------------------
// Enter a construct frame.
{
FrameScope scope(masm, StackFrame::CONSTRUCT);
// Preserve the incoming parameters on the stack.
__ SmiTag(eax);
__ push(esi);
__ push(eax);
__ SmiUntag(eax);
// The receiver for the builtin/api call.
__ PushRoot(RootIndex::kTheHoleValue);
// Set up pointer to last argument. We are using esi as scratch register.
__ lea(esi, Operand(ebp, StandardFrameConstants::kCallerSPOffset));
// Copy arguments and receiver to the expression stack.
Label loop, entry;
__ mov(ecx, eax);
// ----------- S t a t e -------------
// -- eax: number of arguments (untagged)
// -- edi: constructor function
// -- edx: new target
// -- esi: pointer to last argument
// -- ecx: counter
// -- sp[0*kPointerSize]: the hole (receiver)
// -- sp[1*kPointerSize]: number of arguments (tagged)
// -- sp[2*kPointerSize]: context
// -----------------------------------
__ jmp(&entry);
__ bind(&loop);
__ push(Operand(esi, ecx, times_4, 0));
__ bind(&entry);
__ dec(ecx);
__ j(greater_equal, &loop);
// Call the function.
// eax: number of arguments (untagged)
// edi: constructor function
// edx: new target
ParameterCount actual(eax);
// Reload context from the frame.
__ mov(esi, Operand(ebp, ConstructFrameConstants::kContextOffset));
__ InvokeFunction(edi, edx, actual, CALL_FUNCTION);
// Restore context from the frame.
__ mov(esi, Operand(ebp, ConstructFrameConstants::kContextOffset));
// Restore smi-tagged arguments count from the frame.
__ mov(edx, Operand(ebp, ConstructFrameConstants::kLengthOffset));
// Leave construct frame.
}
// Remove caller arguments from the stack and return.
STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
__ PopReturnAddressTo(ecx);
__ lea(esp, Operand(esp, edx, times_2, 1 * kPointerSize)); // 1 ~ receiver
__ PushReturnAddressFrom(ecx);
__ ret(0);
}
void Generate_StackOverflowCheck(MacroAssembler* masm, Register num_args,
Register scratch, Label* stack_overflow,
bool include_receiver = false) {
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
ExternalReference real_stack_limit =
ExternalReference::address_of_real_stack_limit(masm->isolate());
// Compute the space that is left as a negative number in scratch. If
// we already overflowed, this will be a positive number.
__ mov(scratch, __ ExternalReferenceAsOperand(real_stack_limit, scratch));
__ sub(scratch, esp);
// Add the size of the arguments.
static_assert(kPointerSize == 4,
"The next instruction assumes kPointerSize == 4");
__ lea(scratch, Operand(scratch, num_args, times_4, 0));
if (include_receiver) {
__ add(scratch, Immediate(kPointerSize));
}
// See if we overflowed, i.e. scratch is positive.
__ cmp(scratch, Immediate(0));
__ j(greater, stack_overflow); // Signed comparison.
}
} // namespace
// The construct stub for ES5 constructor functions and ES6 class constructors.
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax: number of arguments (untagged)
// -- edi: constructor function
// -- edx: new target
// -- esi: context
// -- sp[...]: constructor arguments
// -----------------------------------
// Enter a construct frame.
{
FrameScope scope(masm, StackFrame::CONSTRUCT);
Label post_instantiation_deopt_entry, not_create_implicit_receiver;
// Preserve the incoming parameters on the stack.
__ mov(ecx, eax);
__ SmiTag(ecx);
__ Push(esi);
__ Push(ecx);
__ Push(edi);
__ PushRoot(RootIndex::kTheHoleValue);
__ Push(edx);
// ----------- S t a t e -------------
// -- sp[0*kPointerSize]: new target
// -- sp[1*kPointerSize]: padding
// -- edi and sp[2*kPointerSize]: constructor function
// -- sp[3*kPointerSize]: argument count
// -- sp[4*kPointerSize]: context
// -----------------------------------
__ mov(eax, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ test(FieldOperand(eax, SharedFunctionInfo::kFlagsOffset),
Immediate(SharedFunctionInfo::IsDerivedConstructorBit::kMask));
__ j(not_zero, &not_create_implicit_receiver);
// If not derived class constructor: Allocate the new receiver object.
__ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1,
eax);
__ Call(BUILTIN_CODE(masm->isolate(), FastNewObject),
RelocInfo::CODE_TARGET);
__ jmp(&post_instantiation_deopt_entry, Label::kNear);
// Else: use TheHoleValue as receiver for constructor call
__ bind(&not_create_implicit_receiver);
__ LoadRoot(eax, RootIndex::kTheHoleValue);
// ----------- S t a t e -------------
// -- eax: implicit receiver
// -- Slot 4 / sp[0*kPointerSize]: new target
// -- Slot 3 / sp[1*kPointerSize]: padding
// -- Slot 2 / sp[2*kPointerSize]: constructor function
// -- Slot 1 / sp[3*kPointerSize]: number of arguments (tagged)
// -- Slot 0 / sp[4*kPointerSize]: context
// -----------------------------------
// Deoptimizer enters here.
masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset(
masm->pc_offset());
__ bind(&post_instantiation_deopt_entry);
// Restore new target.
__ Pop(edx);
// Push the allocated receiver to the stack. We need two copies
// because we may have to return the original one and the calling
// conventions dictate that the called function pops the receiver.
__ Push(eax);
__ Push(eax);
// ----------- S t a t e -------------
// -- edx: new target
// -- sp[0*kPointerSize]: implicit receiver
// -- sp[1*kPointerSize]: implicit receiver
// -- sp[2*kPointerSize]: padding
// -- sp[3*kPointerSize]: constructor function
// -- sp[4*kPointerSize]: number of arguments (tagged)
// -- sp[5*kPointerSize]: context
// -----------------------------------
// Restore argument count.
__ mov(eax, Operand(ebp, ConstructFrameConstants::kLengthOffset));
__ SmiUntag(eax);
// Set up pointer to last argument.
__ lea(edi, Operand(ebp, StandardFrameConstants::kCallerSPOffset));
// Check if we have enough stack space to push all arguments.
// Argument count in eax. Clobbers ecx.
Label enough_stack_space, stack_overflow;
Generate_StackOverflowCheck(masm, eax, ecx, &stack_overflow);
__ jmp(&enough_stack_space);
__ bind(&stack_overflow);
// Restore context from the frame.
__ mov(esi, Operand(ebp, ConstructFrameConstants::kContextOffset));
__ CallRuntime(Runtime::kThrowStackOverflow);
// This should be unreachable.
__ int3();
__ bind(&enough_stack_space);
// Copy arguments and receiver to the expression stack.
Label loop, entry;
__ mov(ecx, eax);
// ----------- S t a t e -------------
// -- eax: number of arguments (untagged)
// -- edx: new target
// -- edi: pointer to last argument
// -- ecx: counter (tagged)
// -- sp[0*kPointerSize]: implicit receiver
// -- sp[1*kPointerSize]: implicit receiver
// -- sp[2*kPointerSize]: padding
// -- sp[3*kPointerSize]: constructor function
// -- sp[4*kPointerSize]: number of arguments (tagged)
// -- sp[5*kPointerSize]: context
// -----------------------------------
__ jmp(&entry, Label::kNear);
__ bind(&loop);
__ Push(Operand(edi, ecx, times_pointer_size, 0));
__ bind(&entry);
__ dec(ecx);
__ j(greater_equal, &loop);
// Restore and and call the constructor function.
__ mov(edi, Operand(ebp, ConstructFrameConstants::kConstructorOffset));
ParameterCount actual(eax);
__ InvokeFunction(edi, edx, actual, CALL_FUNCTION);
// ----------- S t a t e -------------
// -- eax: constructor result
// -- sp[0*kPointerSize]: implicit receiver
// -- sp[1*kPointerSize]: padding
// -- sp[2*kPointerSize]: constructor function
// -- sp[3*kPointerSize]: number of arguments
// -- sp[4*kPointerSize]: context
// -----------------------------------
// Store offset of return address for deoptimizer.
masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset(
masm->pc_offset());
// Restore context from the frame.
__ mov(esi, Operand(ebp, ConstructFrameConstants::kContextOffset));
// If the result is an object (in the ECMA sense), we should get rid
// of the receiver and use the result; see ECMA-262 section 13.2.2-7
// on page 74.
Label use_receiver, do_throw, leave_frame;
// If the result is undefined, we jump out to using the implicit receiver.
__ JumpIfRoot(eax, RootIndex::kUndefinedValue, &use_receiver, Label::kNear);
// Otherwise we do a smi check and fall through to check if the return value
// is a valid receiver.
// If the result is a smi, it is *not* an object in the ECMA sense.
__ JumpIfSmi(eax, &use_receiver, Label::kNear);
// If the type of the result (stored in its map) is less than
// FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense.
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ CmpObjectType(eax, FIRST_JS_RECEIVER_TYPE, ecx);
__ j(above_equal, &leave_frame, Label::kNear);
__ jmp(&use_receiver, Label::kNear);
__ bind(&do_throw);
__ CallRuntime(Runtime::kThrowConstructorReturnedNonObject);
// Throw away the result of the constructor invocation and use the
// on-stack receiver as the result.
__ bind(&use_receiver);
__ mov(eax, Operand(esp, 0 * kPointerSize));
__ JumpIfRoot(eax, RootIndex::kTheHoleValue, &do_throw);
__ bind(&leave_frame);
// Restore smi-tagged arguments count from the frame.
__ mov(edx, Operand(ebp, ConstructFrameConstants::kLengthOffset));
// Leave construct frame.
}
// Remove caller arguments from the stack and return.
STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
__ pop(ecx);
__ lea(esp, Operand(esp, edx, times_2, 1 * kPointerSize)); // 1 ~ receiver
__ push(ecx);
__ ret(0);
}
void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) {
Generate_JSBuiltinsConstructStubHelper(masm);
}
void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) {
FrameScope scope(masm, StackFrame::INTERNAL);
__ push(edi);
__ CallRuntime(Runtime::kThrowConstructedNonConstructable);
}
namespace {
// Called with the native C calling convention. The corresponding function
// signature is:
//
// using JSEntryFunction = GeneratedCode<Address(
// Address new_target, Address target, Address receiver, int argc,
// Address** args, Address root_register_value)>;
void Generate_JSEntryVariant(MacroAssembler* masm, StackFrame::Type type,
Builtins::Name entry_trampoline) {
Label invoke, handler_entry, exit;
Label not_outermost_js, not_outermost_js_2;
{ // NOLINT. Scope block confuses linter.
NoRootArrayScope uninitialized_root_register(masm);
// Set up frame.
__ push(ebp);
__ mov(ebp, esp);
// Push marker in two places.
__ push(Immediate(StackFrame::TypeToMarker(type)));
// Reserve a slot for the context. It is filled after the root register has
// been set up.
__ sub(esp, Immediate(kPointerSize));
// Save callee-saved registers (C calling conventions).
__ push(edi);
__ push(esi);
__ push(ebx);
// Initialize the root register based on the given Isolate* argument.
// C calling convention. The sixth argument is passed on the stack.
__ mov(kRootRegister,
Operand(ebp, EntryFrameConstants::kRootRegisterValueOffset));
}
// Save copies of the top frame descriptor on the stack.
ExternalReference c_entry_fp = ExternalReference::Create(
IsolateAddressId::kCEntryFPAddress, masm->isolate());
__ push(__ ExternalReferenceAsOperand(c_entry_fp, edi));
// Store the context address in the previously-reserved slot.
ExternalReference context_address = ExternalReference::Create(
IsolateAddressId::kContextAddress, masm->isolate());
__ mov(edi, __ ExternalReferenceAsOperand(context_address, edi));
static constexpr int kOffsetToContextSlot = -2 * kPointerSize;
__ mov(Operand(ebp, kOffsetToContextSlot), edi);
// If this is the outermost JS call, set js_entry_sp value.
ExternalReference js_entry_sp = ExternalReference::Create(
IsolateAddressId::kJSEntrySPAddress, masm->isolate());
__ cmp(__ ExternalReferenceAsOperand(js_entry_sp, edi), Immediate(0));
__ j(not_equal, &not_outermost_js, Label::kNear);
__ mov(__ ExternalReferenceAsOperand(js_entry_sp, edi), ebp);
__ push(Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME));
__ jmp(&invoke, Label::kNear);
__ bind(&not_outermost_js);
__ push(Immediate(StackFrame::INNER_JSENTRY_FRAME));
// Jump to a faked try block that does the invoke, with a faked catch
// block that sets the pending exception.
__ jmp(&invoke);
__ bind(&handler_entry);
// Store the current pc as the handler offset. It's used later to create the
// handler table.
masm->isolate()->builtins()->SetJSEntryHandlerOffset(handler_entry.pos());
// Caught exception: Store result (exception) in the pending exception
// field in the JSEnv and return a failure sentinel.
ExternalReference pending_exception = ExternalReference::Create(
IsolateAddressId::kPendingExceptionAddress, masm->isolate());
__ mov(__ ExternalReferenceAsOperand(pending_exception, edi), eax);
__ Move(eax, masm->isolate()->factory()->exception());
__ jmp(&exit);
// Invoke: Link this frame into the handler chain.
__ bind(&invoke);
__ PushStackHandler(edi);
// Invoke the function by calling through JS entry trampoline builtin and
// pop the faked function when we return.
Handle<Code> trampoline_code =
masm->isolate()->builtins()->builtin_handle(entry_trampoline);
__ Call(trampoline_code, RelocInfo::CODE_TARGET);
// Unlink this frame from the handler chain.
__ PopStackHandler(edi);
__ bind(&exit);
// Check if the current stack frame is marked as the outermost JS frame.
__ pop(edi);
__ cmp(edi, Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME));
__ j(not_equal, &not_outermost_js_2);
__ mov(__ ExternalReferenceAsOperand(js_entry_sp, edi), Immediate(0));
__ bind(&not_outermost_js_2);
// Restore the top frame descriptor from the stack.
__ pop(__ ExternalReferenceAsOperand(c_entry_fp, edi));
// Restore callee-saved registers (C calling conventions).
__ pop(ebx);
__ pop(esi);
__ pop(edi);
__ add(esp, Immediate(2 * kPointerSize)); // remove markers
// Restore frame pointer and return.
__ pop(ebp);
__ ret(0);
}
} // namespace
void Builtins::Generate_JSEntry(MacroAssembler* masm) {
Generate_JSEntryVariant(masm, StackFrame::ENTRY,
Builtins::kJSEntryTrampoline);
}
void Builtins::Generate_JSConstructEntry(MacroAssembler* masm) {
Generate_JSEntryVariant(masm, StackFrame::CONSTRUCT_ENTRY,
Builtins::kJSConstructEntryTrampoline);
}
void Builtins::Generate_JSRunMicrotasksEntry(MacroAssembler* masm) {
Generate_JSEntryVariant(masm, StackFrame::ENTRY, Builtins::kRunMicrotasks);
}
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
bool is_construct) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
const Register scratch1 = edx;
const Register scratch2 = edi;
// Setup the context (we need to use the caller context from the isolate).
ExternalReference context_address = ExternalReference::Create(
IsolateAddressId::kContextAddress, masm->isolate());
__ mov(esi, __ ExternalReferenceAsOperand(context_address, scratch1));
// Load the previous frame pointer (edx) to access C arguments
__ mov(scratch1, Operand(ebp, 0));
// Push the function and the receiver onto the stack.
__ push(Operand(scratch1, EntryFrameConstants::kFunctionArgOffset));
__ push(Operand(scratch1, EntryFrameConstants::kReceiverArgOffset));
// Load the number of arguments and setup pointer to the arguments.
__ mov(eax, Operand(scratch1, EntryFrameConstants::kArgcOffset));
__ mov(scratch1, Operand(scratch1, EntryFrameConstants::kArgvOffset));
// Check if we have enough stack space to push all arguments.
// Argument count in eax. Clobbers ecx.
Label enough_stack_space, stack_overflow;
Generate_StackOverflowCheck(masm, eax, ecx, &stack_overflow);
__ jmp(&enough_stack_space);
__ bind(&stack_overflow);
__ CallRuntime(Runtime::kThrowStackOverflow);
// This should be unreachable.
__ int3();
__ bind(&enough_stack_space);
// Copy arguments to the stack in a loop.
Label loop, entry;
__ Move(ecx, Immediate(0));
__ jmp(&entry, Label::kNear);
__ bind(&loop);
// Push the parameter from argv.
__ mov(scratch2, Operand(scratch1, ecx, times_4, 0));
__ push(Operand(scratch2, 0)); // dereference handle
__ inc(ecx);
__ bind(&entry);
__ cmp(ecx, eax);
__ j(not_equal, &loop);
// Load the previous frame pointer (ebx) to access C arguments
__ mov(scratch2, Operand(ebp, 0));
// Get the new.target and function from the frame.
__ mov(edx, Operand(scratch2, EntryFrameConstants::kNewTargetArgOffset));
__ mov(edi, Operand(scratch2, EntryFrameConstants::kFunctionArgOffset));
// Invoke the code.
Handle<Code> builtin = is_construct
? BUILTIN_CODE(masm->isolate(), Construct)
: masm->isolate()->builtins()->Call();
__ Call(builtin, RelocInfo::CODE_TARGET);
// Exit the internal frame. Notice that this also removes the empty.
// context and the function left on the stack by the code
// invocation.
}
__ ret(0);
}
void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, false);
}
void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, true);
}
static void GetSharedFunctionInfoBytecode(MacroAssembler* masm,
Register sfi_data,
Register scratch1) {
Label done;
__ CmpObjectType(sfi_data, INTERPRETER_DATA_TYPE, scratch1);
__ j(not_equal, &done, Label::kNear);
__ mov(sfi_data,
FieldOperand(sfi_data, InterpreterData::kBytecodeArrayOffset));
__ bind(&done);
}
// static
void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : the value to pass to the generator
// -- edx : the JSGeneratorObject to resume
// -- esp[0] : return address
// -----------------------------------
__ AssertGeneratorObject(edx);
// Store input value into generator object.
__ mov(FieldOperand(edx, JSGeneratorObject::kInputOrDebugPosOffset), eax);
__ RecordWriteField(edx, JSGeneratorObject::kInputOrDebugPosOffset, eax, ecx,
kDontSaveFPRegs);
// Load suspended function and context.
__ mov(edi, FieldOperand(edx, JSGeneratorObject::kFunctionOffset));
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
// Flood function if we are stepping.
Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator;
Label stepping_prepared;
ExternalReference debug_hook =
ExternalReference::debug_hook_on_function_call_address(masm->isolate());
__ cmpb(__ ExternalReferenceAsOperand(debug_hook, ecx), Immediate(0));
__ j(not_equal, &prepare_step_in_if_stepping);
// Flood function if we need to continue stepping in the suspended generator.
ExternalReference debug_suspended_generator =
ExternalReference::debug_suspended_generator_address(masm->isolate());
__ cmp(edx, __ ExternalReferenceAsOperand(debug_suspended_generator, ecx));
__ j(equal, &prepare_step_in_suspended_generator);
__ bind(&stepping_prepared);
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack limit".
Label stack_overflow;
__ CompareRealStackLimit(esp);
__ j(below, &stack_overflow);
// Pop return address.
__ PopReturnAddressTo(eax);
// Push receiver.
__ Push(FieldOperand(edx, JSGeneratorObject::kReceiverOffset));
// ----------- S t a t e -------------
// -- eax : return address
// -- edx : the JSGeneratorObject to resume
// -- edi : generator function
// -- esi : generator context
// -- esp[0] : generator receiver
// -----------------------------------
{
__ movd(xmm0, ebx);
// Copy the function arguments from the generator object's register file.
__ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ movzx_w(ecx, FieldOperand(
ecx, SharedFunctionInfo::kFormalParameterCountOffset));
__ mov(ebx,
FieldOperand(edx, JSGeneratorObject::kParametersAndRegistersOffset));
{
Label done_loop, loop;
__ Set(edi, 0);
__ bind(&loop);
__ cmp(edi, ecx);
__ j(greater_equal, &done_loop);
__ Push(
FieldOperand(ebx, edi, times_pointer_size, FixedArray::kHeaderSize));
__ add(edi, Immediate(1));
__ jmp(&loop);
__ bind(&done_loop);
}
// Restore registers.
__ mov(edi, FieldOperand(edx, JSGeneratorObject::kFunctionOffset));
__ movd(ebx, xmm0);
}
// Underlying function needs to have bytecode available.
if (FLAG_debug_code) {
__ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kFunctionDataOffset));
__ Push(eax);
GetSharedFunctionInfoBytecode(masm, ecx, eax);
__ Pop(eax);
__ CmpObjectType(ecx, BYTECODE_ARRAY_TYPE, ecx);
__ Assert(equal, AbortReason::kMissingBytecodeArray);
}
// Resume (Ignition/TurboFan) generator object.
{
__ PushReturnAddressFrom(eax);
__ mov(eax, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ movzx_w(eax, FieldOperand(
eax, SharedFunctionInfo::kFormalParameterCountOffset));
// We abuse new.target both to indicate that this is a resume call and to
// pass in the generator object. In ordinary calls, new.target is always
// undefined because generator functions are non-constructable.
static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch");
__ mov(ecx, FieldOperand(edi, JSFunction::kCodeOffset));
__ add(ecx, Immediate(Code::kHeaderSize - kHeapObjectTag));
__ jmp(ecx);
}
__ bind(&prepare_step_in_if_stepping);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(edx);
__ Push(edi);
// Push hole as receiver since we do not use it for stepping.
__ PushRoot(RootIndex::kTheHoleValue);
__ CallRuntime(Runtime::kDebugOnFunctionCall);
__ Pop(edx);
__ mov(edi, FieldOperand(edx, JSGeneratorObject::kFunctionOffset));
}
__ jmp(&stepping_prepared);
__ bind(&prepare_step_in_suspended_generator);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(edx);
__ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator);
__ Pop(edx);
__ mov(edi, FieldOperand(edx, JSGeneratorObject::kFunctionOffset));
}
__ jmp(&stepping_prepared);
__ bind(&stack_overflow);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ int3(); // This should be unreachable.
}
}
static void ReplaceClosureCodeWithOptimizedCode(MacroAssembler* masm,
Register optimized_code,
Register closure,
Register scratch1,
Register scratch2) {
// Store the optimized code in the closure.
__ mov(FieldOperand(closure, JSFunction::kCodeOffset), optimized_code);
__ mov(scratch1, optimized_code); // Write barrier clobbers scratch1 below.
__ RecordWriteField(closure, JSFunction::kCodeOffset, scratch1, scratch2,
kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
}
static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch1,
Register scratch2) {
Register args_count = scratch1;
Register return_pc = scratch2;
// Get the arguments + receiver count.
__ mov(args_count,
Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ mov(args_count,
FieldOperand(args_count, BytecodeArray::kParameterSizeOffset));
// Leave the frame (also dropping the register file).
__ leave();
// Drop receiver + arguments.
__ pop(return_pc);
__ add(esp, args_count);
__ push(return_pc);
}
// Tail-call |function_id| if |smi_entry| == |marker|
static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm,
Register smi_entry,
OptimizationMarker marker,
Runtime::FunctionId function_id) {
Label no_match;
__ cmp(smi_entry, Immediate(Smi::FromEnum(marker)));
__ j(not_equal, &no_match, Label::kNear);
GenerateTailCallToReturnedCode(masm, function_id);
__ bind(&no_match);
}
static void MaybeTailCallOptimizedCodeSlot(MacroAssembler* masm,
Register scratch) {
// ----------- S t a t e -------------
// -- eax : argument count (preserved for callee if needed, and caller)
// -- edx : new target (preserved for callee if needed, and caller)
// -- edi : target function (preserved for callee if needed, and caller)
// -- ecx : feedback vector (also used as scratch, value is not preserved)
// -----------------------------------
DCHECK(!AreAliased(eax, edx, edi, scratch));
Label optimized_code_slot_is_weak_ref, fallthrough;
Register closure = edi;
// Scratch contains feedback_vector.
Register feedback_vector = scratch;
// Load the optimized code from the feedback vector and re-use the register.
Register optimized_code_entry = scratch;
__ mov(optimized_code_entry,
FieldOperand(feedback_vector, FeedbackVector::kOptimizedCodeOffset));
// Check if the code entry is a Smi. If yes, we interpret it as an
// optimisation marker. Otherwise, interpret it as a weak reference to a code
// object.
__ JumpIfNotSmi(optimized_code_entry, &optimized_code_slot_is_weak_ref);
{
// Optimized code slot is an optimization marker.
// Fall through if no optimization trigger.
__ cmp(optimized_code_entry,
Immediate(Smi::FromEnum(OptimizationMarker::kNone)));
__ j(equal, &fallthrough);
// TODO(v8:8394): The logging of first execution will break if
// feedback vectors are not allocated. We need to find a different way of
// logging these events if required.
TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry,
OptimizationMarker::kLogFirstExecution,
Runtime::kFunctionFirstExecution);
TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry,
OptimizationMarker::kCompileOptimized,
Runtime::kCompileOptimized_NotConcurrent);
TailCallRuntimeIfMarkerEquals(
masm, optimized_code_entry,
OptimizationMarker::kCompileOptimizedConcurrent,
Runtime::kCompileOptimized_Concurrent);
{
// Otherwise, the marker is InOptimizationQueue, so fall through hoping
// that an interrupt will eventually update the slot with optimized code.
if (FLAG_debug_code) {
__ cmp(
optimized_code_entry,
Immediate(Smi::FromEnum(OptimizationMarker::kInOptimizationQueue)));
__ Assert(equal, AbortReason::kExpectedOptimizationSentinel);
}
__ jmp(&fallthrough);
}
}
{
// Optimized code slot is a weak reference.
__ bind(&optimized_code_slot_is_weak_ref);
__ LoadWeakValue(optimized_code_entry, &fallthrough);
__ push(eax);
__ push(edx);
// Check if the optimized code is marked for deopt. If it is, bailout to a
// given label.
Label found_deoptimized_code;
__ mov(eax,
FieldOperand(optimized_code_entry, Code::kCodeDataContainerOffset));
__ test(FieldOperand(eax, CodeDataContainer::kKindSpecificFlagsOffset),
Immediate(1 << Code::kMarkedForDeoptimizationBit));
__ j(not_zero, &found_deoptimized_code);
// Optimized code is good, get it into the closure and link the closure into
// the optimized functions list, then tail call the optimized code.
ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure,
edx, eax);
static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch");
__ Move(ecx, optimized_code_entry);
__ add(ecx, Immediate(Code::kHeaderSize - kHeapObjectTag));
__ pop(edx);
__ pop(eax);
__ jmp(ecx);
// Optimized code slot contains deoptimized code, evict it and re-enter the
// closure's code.
__ bind(&found_deoptimized_code);
__ pop(edx);
__ pop(eax);
GenerateTailCallToReturnedCode(masm, Runtime::kEvictOptimizedCodeSlot);
}
// Fall-through if the optimized code cell is clear and there is no
// optimization marker.
__ bind(&fallthrough);
}
// Advance the current bytecode offset. This simulates what all bytecode
// handlers do upon completion of the underlying operation. Will bail out to a
// label if the bytecode (without prefix) is a return bytecode.
static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm,
Register bytecode_array,
Register bytecode_offset,
Register scratch1, Register scratch2,
Label* if_return) {
Register bytecode_size_table = scratch1;
Register bytecode = scratch2;
DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode_size_table,
bytecode));
__ Move(bytecode_size_table,
Immediate(ExternalReference::bytecode_size_table_address()));
// Load the current bytecode.
__ movzx_b(bytecode, Operand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, times_1, 0));
// Check if the bytecode is a Wide or ExtraWide prefix bytecode.
Label process_bytecode, extra_wide;
STATIC_ASSERT(0 == static_cast<int>(interpreter::Bytecode::kWide));
STATIC_ASSERT(1 == static_cast<int>(interpreter::Bytecode::kExtraWide));
STATIC_ASSERT(2 == static_cast<int>(interpreter::Bytecode::kDebugBreakWide));
STATIC_ASSERT(3 ==
static_cast<int>(interpreter::Bytecode::kDebugBreakExtraWide));
__ cmp(bytecode, Immediate(0x3));
__ j(above, &process_bytecode, Label::kNear);
__ test(bytecode, Immediate(0x1));
__ j(not_equal, &extra_wide, Label::kNear);
// Load the next bytecode and update table to the wide scaled table.
__ inc(bytecode_offset);
__ movzx_b(bytecode, Operand(bytecode_array, bytecode_offset, times_1, 0));
__ add(bytecode_size_table,
Immediate(kIntSize * interpreter::Bytecodes::kBytecodeCount));
__ jmp(&process_bytecode, Label::kNear);
__ bind(&extra_wide);
// Load the next bytecode and update table to the extra wide scaled table.
__ inc(bytecode_offset);
__ movzx_b(bytecode, Operand(bytecode_array, bytecode_offset, times_1, 0));
__ add(bytecode_size_table,
Immediate(2 * kIntSize * interpreter::Bytecodes::kBytecodeCount));
__ bind(&process_bytecode);
// Bailout to the return label if this is a return bytecode.
#define JUMP_IF_EQUAL(NAME) \
__ cmp(bytecode, \
Immediate(static_cast<int>(interpreter::Bytecode::k##NAME))); \
__ j(equal, if_return);
RETURN_BYTECODE_LIST(JUMP_IF_EQUAL)
#undef JUMP_IF_EQUAL
// Otherwise, load the size of the current bytecode and advance the offset.
__ add(bytecode_offset, Operand(bytecode_size_table, bytecode, times_4, 0));
}
// Generate code for entering a JS function with the interpreter.
// On entry to the function the receiver and arguments have been pushed on the
// stack left to right. The actual argument count matches the formal parameter
// count expected by the function.
//
// The live registers are:
// o edi: the JS function object being called
// o edx: the incoming new target or generator object
// o esi: our context
// o ebp: the caller's frame pointer
// o esp: stack pointer (pointing to return address)
//
// The function builds an interpreter frame. See InterpreterFrameConstants in
// frames.h for its layout.
void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
Register closure = edi;
// The bytecode array could have been flushed from the shared function info,
// if so, call into CompileLazy.
Label compile_lazy;
__ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kFunctionDataOffset));
GetSharedFunctionInfoBytecode(masm, ecx, eax);
__ CmpObjectType(ecx, BYTECODE_ARRAY_TYPE, eax);
__ j(not_equal, &compile_lazy);
Register feedback_vector = ecx;
Label push_stack_frame;
// Load feedback vector and check if it is valid. If valid, check for
// optimized code and update invocation count. Otherwise, setup the stack
// frame.
__ mov(feedback_vector,
FieldOperand(closure, JSFunction::kFeedbackCellOffset));
__ mov(feedback_vector, FieldOperand(feedback_vector, Cell::kValueOffset));
__ JumpIfRoot(feedback_vector, RootIndex::kUndefinedValue, &push_stack_frame);
// Read off the optimized code slot in the closure's feedback vector, and if
// there is optimized code or an optimization marker, call that instead.
MaybeTailCallOptimizedCodeSlot(masm, ecx);
// Load the feedback vector and increment the invocation count.
__ mov(feedback_vector,
FieldOperand(closure, JSFunction::kFeedbackCellOffset));
__ mov(feedback_vector, FieldOperand(feedback_vector, Cell::kValueOffset));
__ inc(FieldOperand(feedback_vector, FeedbackVector::kInvocationCountOffset));
// Open a frame scope to indicate that there is a frame on the stack. The
// MANUAL indicates that the scope shouldn't actually generate code to set
// up the frame (that is done below).
__ bind(&push_stack_frame);
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ push(ebp); // Caller's frame pointer.
__ mov(ebp, esp);
__ push(esi); // Callee's context.
__ push(edi); // Callee's JS function.
// Get the bytecode array from the function object and load it into
// kInterpreterBytecodeArrayRegister.
__ mov(eax, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ mov(kInterpreterBytecodeArrayRegister,
FieldOperand(eax, SharedFunctionInfo::kFunctionDataOffset));
GetSharedFunctionInfoBytecode(masm, kInterpreterBytecodeArrayRegister, eax);
// Check function data field is actually a BytecodeArray object.
if (FLAG_debug_code) {
__ AssertNotSmi(kInterpreterBytecodeArrayRegister);
__ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE,
eax);
__ Assert(
equal,
AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
}
// Reset code age.
__ mov_b(FieldOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kBytecodeAgeOffset),
Immediate(BytecodeArray::kNoAgeBytecodeAge));
// Push bytecode array.
__ push(kInterpreterBytecodeArrayRegister);
// Push Smi tagged initial bytecode array offset.
__ push(Immediate(Smi::FromInt(BytecodeArray::kHeaderSize - kHeapObjectTag)));
// Allocate the local and temporary register file on the stack.
{
// Load frame size from the BytecodeArray object.
Register frame_size = ecx;
__ mov(frame_size, FieldOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kFrameSizeOffset));
// Do a stack check to ensure we don't go over the limit.
Label ok;
__ mov(eax, esp);
__ sub(eax, frame_size);
__ CompareRealStackLimit(eax);
__ j(above_equal, &ok);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ bind(&ok);
// If ok, push undefined as the initial value for all register file entries.
Label loop_header;
Label loop_check;
__ Move(eax, masm->isolate()->factory()->undefined_value());
__ jmp(&loop_check);
__ bind(&loop_header);
// TODO(rmcilroy): Consider doing more than one push per loop iteration.
__ push(eax);
// Continue loop if not done.
__ bind(&loop_check);
__ sub(frame_size, Immediate(kPointerSize));
__ j(greater_equal, &loop_header);
}
// If the bytecode array has a valid incoming new target or generator object
// register, initialize it with incoming value which was passed in edx.
Label no_incoming_new_target_or_generator_register;
__ mov(eax, FieldOperand(
kInterpreterBytecodeArrayRegister,
BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset));
__ test(eax, eax);
__ j(zero, &no_incoming_new_target_or_generator_register);
__ mov(Operand(ebp, eax, times_pointer_size, 0), edx);
__ bind(&no_incoming_new_target_or_generator_register);
// Load accumulator and bytecode offset into registers.
__ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue);
__ mov(kInterpreterBytecodeOffsetRegister,
Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag));
// Load the dispatch table into a register and dispatch to the bytecode
// handler at the current bytecode offset.
Label do_dispatch;
__ bind(&do_dispatch);
__ Move(kInterpreterDispatchTableRegister,
Immediate(ExternalReference::interpreter_dispatch_table_address(
masm->isolate())));
__ movzx_b(ecx, Operand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, times_1, 0));
__ mov(
kJavaScriptCallCodeStartRegister,
Operand(kInterpreterDispatchTableRegister, ecx, times_pointer_size, 0));
__ call(kJavaScriptCallCodeStartRegister);
masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset());
// Any returns to the entry trampoline are either due to the return bytecode
// or the interpreter tail calling a builtin and then a dispatch.
// Get bytecode array and bytecode offset from the stack frame.
__ mov(kInterpreterBytecodeArrayRegister,
Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ mov(kInterpreterBytecodeOffsetRegister,
Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ SmiUntag(kInterpreterBytecodeOffsetRegister);
// Either return, or advance to the next bytecode and dispatch.
Label do_return;
AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, ecx,
kInterpreterDispatchTableRegister, &do_return);
__ jmp(&do_dispatch);
__ bind(&do_return);
// The return value is in eax.
LeaveInterpreterFrame(masm, edx, ecx);
__ ret(0);
__ bind(&compile_lazy);
GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy);
__ int3(); // Should not return.
}
static void Generate_InterpreterPushArgs(MacroAssembler* masm,
Register array_limit,
Register start_address) {
// ----------- S t a t e -------------
// -- start_address : Pointer to the last argument in the args array.
// -- array_limit : Pointer to one before the first argument in the
// args array.
// -----------------------------------
Label loop_header, loop_check;
__ jmp(&loop_check);
__ bind(&loop_header);
__ Push(Operand(start_address, 0));
__ sub(start_address, Immediate(kPointerSize));
__ bind(&loop_check);
__ cmp(start_address, array_limit);
__ j(greater, &loop_header, Label::kNear);
}
// static
void Builtins::Generate_InterpreterPushArgsThenCallImpl(
MacroAssembler* masm, ConvertReceiverMode receiver_mode,
InterpreterPushArgsMode mode) {
DCHECK(mode != InterpreterPushArgsMode::kArrayFunction);
// ----------- S t a t e -------------
// -- eax : the number of arguments (not including the receiver)
// -- ecx : the address of the first argument to be pushed. Subsequent
// arguments should be consecutive above this, in the same order as
// they are to be pushed onto the stack.
// -- edi : the target to call (can be any Object).
// -----------------------------------
const Register scratch = edx;
const Register argv = ecx;
Label stack_overflow;
// Add a stack check before pushing the arguments.
Generate_StackOverflowCheck(masm, eax, scratch, &stack_overflow, true);
__ movd(xmm0, eax); // Spill number of arguments.
// Compute the expected number of arguments.
__ mov(scratch, eax);
__ add(scratch, Immediate(1)); // Add one for receiver.
// Pop return address to allow tail-call after pushing arguments.
__ PopReturnAddressTo(eax);
// Push "undefined" as the receiver arg if we need to.
if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) {
__ PushRoot(RootIndex::kUndefinedValue);
__ sub(scratch, Immediate(1)); // Subtract one for receiver.
}
// Find the address of the last argument.
__ shl(scratch, kPointerSizeLog2);
__ neg(scratch);
__ add(scratch, argv);
Generate_InterpreterPushArgs(masm, scratch, argv);
// Call the target.
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
__ Pop(ecx); // Pass the spread in a register
__ PushReturnAddressFrom(eax);
__ movd(eax, xmm0); // Restore number of arguments.
__ sub(eax, Immediate(1)); // Subtract one for spread
__ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread),
RelocInfo::CODE_TARGET);
} else {
__ PushReturnAddressFrom(eax);
__ movd(eax, xmm0); // Restore number of arguments.
__ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny),
RelocInfo::CODE_TARGET);
}
__ bind(&stack_overflow);
{
__ TailCallRuntime(Runtime::kThrowStackOverflow);
// This should be unreachable.
__ int3();
}
}
namespace {
// This function modifies start_addr, and only reads the contents of num_args
// register. scratch1 and scratch2 are used as temporary registers.
void Generate_InterpreterPushZeroAndArgsAndReturnAddress(
MacroAssembler* masm, Register num_args, Register start_addr,
Register scratch1, Register scratch2, int num_slots_to_move,
Label* stack_overflow) {
// We have to move return address and the temporary registers above it
// before we can copy arguments onto the stack. To achieve this:
// Step 1: Increment the stack pointer by num_args + 1 (for receiver).
// Step 2: Move the return address and values around it to the top of stack.
// Step 3: Copy the arguments into the correct locations.
// current stack =====> required stack layout
// | | | return addr | (2) <-- esp (1)
// | | | addtl. slot |
// | | | arg N | (3)
// | | | .... |
// | | | arg 1 |
// | return addr | <-- esp | arg 0 |
// | addtl. slot | | receiver slot |
// Check for stack overflow before we increment the stack pointer.
Generate_StackOverflowCheck(masm, num_args, scratch1, stack_overflow, true);
// Step 1 - Update the stack pointer.
__ lea(scratch1, Operand(num_args, times_4, kPointerSize));
__ AllocateStackFrame(scratch1);
// Step 2 move return_address and slots around it to the correct locations.
// Move from top to bottom, otherwise we may overwrite when num_args = 0 or 1,
// basically when the source and destination overlap. We at least need one
// extra slot for receiver, so no extra checks are required to avoid copy.
for (int i = 0; i < num_slots_to_move + 1; i++) {
__ mov(scratch1,
Operand(esp, num_args, times_pointer_size, (i + 1) * kPointerSize));
__ mov(Operand(esp, i * kPointerSize), scratch1);
}
// Step 3 copy arguments to correct locations.
// Slot meant for receiver contains return address. Reset it so that
// we will not incorrectly interpret return address as an object.
__ mov(Operand(esp, num_args, times_pointer_size,
(num_slots_to_move + 1) * kPointerSize),
Immediate(0));
__ mov(scratch1, num_args);
Label loop_header, loop_check;
__ jmp(&loop_check);
__ bind(&loop_header);
__ mov(scratch2, Operand(start_addr, 0));
__ mov(Operand(esp, scratch1, times_pointer_size,
num_slots_to_move * kPointerSize),
scratch2);
__ sub(start_addr, Immediate(kPointerSize));
__ sub(scratch1, Immediate(1));
__ bind(&loop_check);
__ cmp(scratch1, Immediate(0));
__ j(greater, &loop_header, Label::kNear);
}
} // end anonymous namespace
// static
void Builtins::Generate_InterpreterPushArgsThenConstructImpl(
MacroAssembler* masm, InterpreterPushArgsMode mode) {
// ----------- S t a t e -------------
// -- eax : the number of arguments (not including the receiver)
// -- ecx : the address of the first argument to be pushed. Subsequent
// arguments should be consecutive above this, in the same order
// as they are to be pushed onto the stack.
// -- esp[0] : return address
// -- esp[4] : allocation site feedback (if available or undefined)
// -- esp[8] : the new target
// -- esp[12] : the constructor
// -----------------------------------
Label stack_overflow;
// Push arguments and move return address and stack spill slots to the top of
// stack. The eax register is readonly. The ecx register will be modified. edx
// and edi are used as scratch registers.
Generate_InterpreterPushZeroAndArgsAndReturnAddress(
masm, eax, ecx, edx, edi,
InterpreterPushArgsThenConstructDescriptor::kStackArgumentsCount,
&stack_overflow);
// Call the appropriate constructor. eax and ecx already contain intended
// values, remaining registers still need to be initialized from the stack.
if (mode == InterpreterPushArgsMode::kArrayFunction) {
// Tail call to the array construct stub (still in the caller context at
// this point).
__ movd(xmm0, eax); // Spill number of arguments.
__ PopReturnAddressTo(eax);
__ Pop(kJavaScriptCallExtraArg1Register);
__ Pop(kJavaScriptCallNewTargetRegister);
__ Pop(kJavaScriptCallTargetRegister);
__ PushReturnAddressFrom(eax);
__ AssertFunction(kJavaScriptCallTargetRegister);
__ AssertUndefinedOrAllocationSite(kJavaScriptCallExtraArg1Register, eax);
__ movd(eax, xmm0); // Reload number of arguments.
__ Jump(BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl),
RelocInfo::CODE_TARGET);
} else if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
__ movd(xmm0, eax); // Spill number of arguments.
__ PopReturnAddressTo(eax);
__ Drop(1); // The allocation site is unused.
__ Pop(kJavaScriptCallNewTargetRegister);
__ Pop(kJavaScriptCallTargetRegister);
__ Pop(ecx); // Pop the spread (i.e. the first argument), overwriting ecx.
__ PushReturnAddressFrom(eax);
__ movd(eax, xmm0); // Reload number of arguments.
__ sub(eax, Immediate(1)); // The actual argc thus decrements by one.
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread),
RelocInfo::CODE_TARGET);
} else {
DCHECK_EQ(InterpreterPushArgsMode::kOther, mode);
__ PopReturnAddressTo(ecx);
__ Drop(1); // The allocation site is unused.
__ Pop(kJavaScriptCallNewTargetRegister);
__ Pop(kJavaScriptCallTargetRegister);
__ PushReturnAddressFrom(ecx);
__ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
}
__ bind(&stack_overflow);
__ TailCallRuntime(Runtime::kThrowStackOverflow);
__ int3();
}
static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) {
// Set the return address to the correct point in the interpreter entry
// trampoline.
Label builtin_trampoline, trampoline_loaded;
Smi interpreter_entry_return_pc_offset(
masm->isolate()->heap()->interpreter_entry_return_pc_offset());
DCHECK_NE(interpreter_entry_return_pc_offset, Smi::kZero);
static constexpr Register scratch = ecx;
// If the SFI function_data is an InterpreterData, the function will have a
// custom copy of the interpreter entry trampoline for profiling. If so,
// get the custom trampoline, otherwise grab the entry address of the global
// trampoline.
__ mov(scratch, Operand(ebp, StandardFrameConstants::kFunctionOffset));
__ mov(scratch, FieldOperand(scratch, JSFunction::kSharedFunctionInfoOffset));
__ mov(scratch,
FieldOperand(scratch, SharedFunctionInfo::kFunctionDataOffset));
__ Push(eax);
__ CmpObjectType(scratch, INTERPRETER_DATA_TYPE, eax);
__ j(not_equal, &builtin_trampoline, Label::kNear);
__ mov(scratch,
FieldOperand(scratch, InterpreterData::kInterpreterTrampolineOffset));
__ add(scratch, Immediate(Code::kHeaderSize - kHeapObjectTag));
__ jmp(&trampoline_loaded, Label::kNear);
__ bind(&builtin_trampoline);
__ mov(scratch,
__ ExternalReferenceAsOperand(
ExternalReference::
address_of_interpreter_entry_trampoline_instruction_start(
masm->isolate()),
scratch));
__ bind(&trampoline_loaded);
__ Pop(eax);
__ add(scratch, Immediate(interpreter_entry_return_pc_offset->value()));
__ push(scratch);
// Initialize the dispatch table register.
__ Move(kInterpreterDispatchTableRegister,
Immediate(ExternalReference::interpreter_dispatch_table_address(
masm->isolate())));
// Get the bytecode array pointer from the frame.
__ mov(kInterpreterBytecodeArrayRegister,
Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp));
if (FLAG_debug_code) {
// Check function data field is actually a BytecodeArray object.
__ AssertNotSmi(kInterpreterBytecodeArrayRegister);
__ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE,
scratch);
__ Assert(
equal,
AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
}
// Get the target bytecode offset from the frame.
__ mov(kInterpreterBytecodeOffsetRegister,
Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ SmiUntag(kInterpreterBytecodeOffsetRegister);
// Dispatch to the target bytecode.
__ movzx_b(scratch, Operand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, times_1, 0));
__ mov(kJavaScriptCallCodeStartRegister,
Operand(kInterpreterDispatchTableRegister, scratch, times_pointer_size,
0));
__ jmp(kJavaScriptCallCodeStartRegister);
}
void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) {
// Get bytecode array and bytecode offset from the stack frame.
__ mov(kInterpreterBytecodeArrayRegister,
Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ mov(kInterpreterBytecodeOffsetRegister,
Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ SmiUntag(kInterpreterBytecodeOffsetRegister);
// Advance to the next bytecode.
Label if_return;
AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, ecx, esi,
&if_return);
// Convert new bytecode offset to a Smi and save in the stackframe.
__ mov(ecx, kInterpreterBytecodeOffsetRegister);
__ SmiTag(ecx);
__ mov(Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp), ecx);
Generate_InterpreterEnterBytecode(masm);
// We should never take the if_return path.
__ bind(&if_return);
__ Abort(AbortReason::kInvalidBytecodeAdvance);
}
void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) {
Generate_InterpreterEnterBytecode(masm);
}
void Builtins::Generate_InstantiateAsmJs(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : argument count (preserved for callee)
// -- edx : new target (preserved for callee)
// -- edi : target function (preserved for callee)
// -----------------------------------
Label failed;
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Preserve argument count for later compare.
__ mov(ecx, eax);
// Push the number of arguments to the callee.
__ SmiTag(eax);
__ push(eax);
// Push a copy of the target function and the new target.
__ push(edi);
__ push(edx);
// The function.
__ push(edi);
// Copy arguments from caller (stdlib, foreign, heap).
Label args_done;
for (int j = 0; j < 4; ++j) {
Label over;
if (j < 3) {
__ cmp(ecx, Immediate(j));
__ j(not_equal, &over, Label::kNear);
}
for (int i = j - 1; i >= 0; --i) {
__ Push(Operand(
ebp, StandardFrameConstants::kCallerSPOffset + i * kPointerSize));
}
for (int i = 0; i < 3 - j; ++i) {
__ PushRoot(RootIndex::kUndefinedValue);
}
if (j < 3) {
__ jmp(&args_done, Label::kNear);
__ bind(&over);
}
}
__ bind(&args_done);
// Call runtime, on success unwind frame, and parent frame.
__ CallRuntime(Runtime::kInstantiateAsmJs, 4);
// A smi 0 is returned on failure, an object on success.
__ JumpIfSmi(eax, &failed, Label::kNear);
__ Drop(2);
__ Pop(ecx);
__ SmiUntag(ecx);
scope.GenerateLeaveFrame();
__ PopReturnAddressTo(edx);
__ inc(ecx);
__ lea(esp, Operand(esp, ecx, times_pointer_size, 0));
__ PushReturnAddressFrom(edx);
__ ret(0);
__ bind(&failed);
// Restore target function and new target.
__ pop(edx);
__ pop(edi);
__ pop(eax);
__ SmiUntag(eax);
}
// On failure, tail call back to regular js by re-calling the function
// which has be reset to the compile lazy builtin.
static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch");
__ mov(ecx, FieldOperand(edi, JSFunction::kCodeOffset));
__ add(ecx, Immediate(Code::kHeaderSize - kHeapObjectTag));
__ jmp(ecx);
}
namespace {
void Generate_ContinueToBuiltinHelper(MacroAssembler* masm,
bool java_script_builtin,
bool with_result) {
const RegisterConfiguration* config(RegisterConfiguration::Default());
int allocatable_register_count = config->num_allocatable_general_registers();
if (with_result) {
// Overwrite the hole inserted by the deoptimizer with the return value from
// the LAZY deopt point.
__ mov(Operand(esp,
config->num_allocatable_general_registers() * kPointerSize +
BuiltinContinuationFrameConstants::kFixedFrameSize),
eax);
}
for (int i = allocatable_register_count - 1; i >= 0; --i) {
int code = config->GetAllocatableGeneralCode(i);
__ pop(Register::from_code(code));
if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) {
__ SmiUntag(Register::from_code(code));
}
}
__ mov(
ebp,
Operand(esp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp));
const int offsetToPC =
BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp - kPointerSize;
__ pop(Operand(esp, offsetToPC));
__ Drop(offsetToPC / kPointerSize);
__ add(Operand(esp, 0), Immediate(Code::kHeaderSize - kHeapObjectTag));
__ ret(0);
}
} // namespace
void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, false, false);
}
void Builtins::Generate_ContinueToCodeStubBuiltinWithResult(
MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, false, true);
}
void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, true, false);
}
void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult(
MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, true, true);
}
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kNotifyDeoptimized);
// Tear down internal frame.
}
DCHECK_EQ(kInterpreterAccumulatorRegister.code(), eax.code());
__ mov(eax, Operand(esp, 1 * kPointerSize));
__ ret(1 * kPointerSize); // Remove eax.
}
// static
void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : argc
// -- esp[0] : return address
// -- esp[4] : argArray
// -- esp[8] : thisArg
// -- esp[12] : receiver
// -----------------------------------
// 1. Load receiver into xmm0, argArray into edx (if present), remove all
// arguments from the stack (including the receiver), and push thisArg (if
// present) instead.
{
Label no_arg_array, no_this_arg;
// Spill receiver to allow the usage of edi as a scratch register.
__ movd(xmm0, Operand(esp, eax, times_pointer_size, kPointerSize));
__ LoadRoot(edx, RootIndex::kUndefinedValue);
__ mov(edi, edx);
__ test(eax, eax);
__ j(zero, &no_this_arg, Label::kNear);
{
__ mov(edi, Operand(esp, eax, times_pointer_size, 0));
__ cmp(eax, Immediate(1));
__ j(equal, &no_arg_array, Label::kNear);
__ mov(edx, Operand(esp, eax, times_pointer_size, -kPointerSize));
__ bind(&no_arg_array);
}
__ bind(&no_this_arg);
__ PopReturnAddressTo(ecx);
__ lea(esp, Operand(esp, eax, times_pointer_size, kPointerSize));
__ Push(edi);
__ PushReturnAddressFrom(ecx);
// Restore receiver to edi.
__ movd(edi, xmm0);
}
// ----------- S t a t e -------------
// -- edx : argArray
// -- edi : receiver
// -- esp[0] : return address
// -- esp[4] : thisArg
// -----------------------------------
// 2. We don't need to check explicitly for callable receiver here,
// since that's the first thing the Call/CallWithArrayLike builtins
// will do.
// 3. Tail call with no arguments if argArray is null or undefined.
Label no_arguments;
__ JumpIfRoot(edx, RootIndex::kNullValue, &no_arguments, Label::kNear);
__ JumpIfRoot(edx, RootIndex::kUndefinedValue, &no_arguments, Label::kNear);
// 4a. Apply the receiver to the given argArray.
__ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
RelocInfo::CODE_TARGET);
// 4b. The argArray is either null or undefined, so we tail call without any
// arguments to the receiver.
__ bind(&no_arguments);
{
__ Set(eax, 0);
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
}
// static
void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) {
// Stack Layout:
// esp[0] : Return address
// esp[8] : Argument n
// esp[16] : Argument n-1
// ...
// esp[8 * n] : Argument 1
// esp[8 * (n + 1)] : Receiver (callable to call)
//
// eax contains the number of arguments, n, not counting the receiver.
//
// 1. Make sure we have at least one argument.
{
Label done;
__ test(eax, eax);
__ j(not_zero, &done, Label::kNear);
__ PopReturnAddressTo(edx);
__ PushRoot(RootIndex::kUndefinedValue);
__ PushReturnAddressFrom(edx);
__ inc(eax);
__ bind(&done);
}
// 2. Get the callable to call (passed as receiver) from the stack.
__ mov(edi, Operand(esp, eax, times_pointer_size, kPointerSize));
// 3. Shift arguments and return address one slot down on the stack
// (overwriting the original receiver). Adjust argument count to make
// the original first argument the new receiver.
{
Label loop;
__ mov(ecx, eax);
__ bind(&loop);
__ mov(edx, Operand(esp, ecx, times_pointer_size, 0));
__ mov(Operand(esp, ecx, times_pointer_size, kPointerSize), edx);
__ dec(ecx);
__ j(not_sign, &loop); // While non-negative (to copy return address).
__ pop(edx); // Discard copy of return address.
__ dec(eax); // One fewer argument (first argument is new receiver).
}
// 4. Call the callable.
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : argc
// -- esp[0] : return address
// -- esp[4] : argumentsList
// -- esp[8] : thisArgument
// -- esp[12] : target
// -- esp[16] : receiver
// -----------------------------------
// 1. Load target into edi (if present), argumentsList into edx (if present),
// remove all arguments from the stack (including the receiver), and push
// thisArgument (if present) instead.
{
Label done;
__ LoadRoot(edi, RootIndex::kUndefinedValue);
__ mov(edx, edi);
__ mov(ecx, edi);
__ cmp(eax, Immediate(1));
__ j(below, &done, Label::kNear);
__ mov(edi, Operand(esp, eax, times_pointer_size, -0 * kPointerSize));
__ j(equal, &done, Label::kNear);
__ mov(ecx, Operand(esp, eax, times_pointer_size, -1 * kPointerSize));
__ cmp(eax, Immediate(3));
__ j(below, &done, Label::kNear);
__ mov(edx, Operand(esp, eax, times_pointer_size, -2 * kPointerSize));
__ bind(&done);
// Spill argumentsList to use edx as a scratch register.
__ movd(xmm0, edx);
__ PopReturnAddressTo(edx);
__ lea(esp, Operand(esp, eax, times_pointer_size, kPointerSize));
__ Push(ecx);
__ PushReturnAddressFrom(edx);
// Restore argumentsList.
__ movd(edx, xmm0);
}
// ----------- S t a t e -------------
// -- edx : argumentsList
// -- edi : target
// -- esp[0] : return address
// -- esp[4] : thisArgument
// -----------------------------------
// 2. We don't need to check explicitly for callable target here,
// since that's the first thing the Call/CallWithArrayLike builtins
// will do.
// 3. Apply the target to the given argumentsList.
__ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : argc
// -- esp[0] : return address
// -- esp[4] : new.target (optional)
// -- esp[8] : argumentsList
// -- esp[12] : target
// -- esp[16] : receiver
// -----------------------------------
// 1. Load target into edi (if present), argumentsList into ecx (if present),
// new.target into edx (if present, otherwise use target), remove all
// arguments from the stack (including the receiver), and push thisArgument
// (if present) instead.
{
Label done;
__ LoadRoot(edi, RootIndex::kUndefinedValue);
__ mov(edx, edi);
__ mov(ecx, edi);
__ cmp(eax, Immediate(1));
__ j(below, &done, Label::kNear);
__ mov(edi, Operand(esp, eax, times_pointer_size, -0 * kPointerSize));
__ mov(edx, edi);
__ j(equal, &done, Label::kNear);
__ mov(ecx, Operand(esp, eax, times_pointer_size, -1 * kPointerSize));
__ cmp(eax, Immediate(3));
__ j(below, &done, Label::kNear);
__ mov(edx, Operand(esp, eax, times_pointer_size, -2 * kPointerSize));
__ bind(&done);
// Spill argumentsList to use ecx as a scratch register.
__ movd(xmm0, ecx);
__ PopReturnAddressTo(ecx);
__ lea(esp, Operand(esp, eax, times_pointer_size, kPointerSize));
__ PushRoot(RootIndex::kUndefinedValue);
__ PushReturnAddressFrom(ecx);
// Restore argumentsList.
__ movd(ecx, xmm0);
}
// ----------- S t a t e -------------
// -- ecx : argumentsList
// -- edx : new.target
// -- edi : target
// -- esp[0] : return address
// -- esp[4] : receiver (undefined)
// -----------------------------------
// 2. We don't need to check explicitly for constructor target here,
// since that's the first thing the Construct/ConstructWithArrayLike
// builtins will do.
// 3. We don't need to check explicitly for constructor new.target here,
// since that's the second thing the Construct/ConstructWithArrayLike
// builtins will do.
// 4. Construct the target with the given new.target and argumentsList.
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike),
RelocInfo::CODE_TARGET);
}
void Builtins::Generate_InternalArrayConstructor(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : argc
// -- esp[0] : return address
// -- esp[4] : last argument
// -----------------------------------
Label generic_array_code;
if (FLAG_debug_code) {
// Initial map for the builtin InternalArray function should be a map.
__ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a nullptr and a Smi.
__ test(ecx, Immediate(kSmiTagMask));
__ Assert(not_zero,
AbortReason::kUnexpectedInitialMapForInternalArrayFunction);
__ CmpObjectType(ecx, MAP_TYPE, ecx);
__ Assert(equal,
AbortReason::kUnexpectedInitialMapForInternalArrayFunction);
}
// Run the native code for the InternalArray function called as a normal
// function.
__ Jump(BUILTIN_CODE(masm->isolate(), InternalArrayConstructorImpl),
RelocInfo::CODE_TARGET);
}
static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
__ push(ebp);
__ mov(ebp, esp);
// Store the arguments adaptor context sentinel.
__ push(Immediate(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
// Push the function on the stack.
__ push(edi);
// Preserve the number of arguments on the stack. Must preserve eax,
// ebx and ecx because these registers are used when copying the
// arguments and the receiver.
STATIC_ASSERT(kSmiTagSize == 1);
__ lea(edi, Operand(eax, eax, times_1, kSmiTag));
__ push(edi);
__ Push(Immediate(0)); // Padding.
}
static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
// Retrieve the number of arguments from the stack.
__ mov(edi, Operand(ebp, ArgumentsAdaptorFrameConstants::kLengthOffset));
// Leave the frame.
__ leave();
// Remove caller arguments from the stack.
STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
__ PopReturnAddressTo(ecx);
__ lea(esp, Operand(esp, edi, times_2, 1 * kPointerSize)); // 1 ~ receiver
__ PushReturnAddressFrom(ecx);
}
// static
void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm,
Handle<Code> code) {
// ----------- S t a t e -------------
// -- edi : target
// -- esi : context for the Call / Construct builtin
// -- eax : number of parameters on the stack (not including the receiver)
// -- ecx : len (number of elements to from args)
// -- ecx : new.target (checked to be constructor or undefined)
// -- esp[4] : arguments list (a FixedArray)
// -- esp[0] : return address.
// -----------------------------------
// We need to preserve eax, edi, esi and ebx.
__ movd(xmm0, edx);
__ movd(xmm1, edi);
__ movd(xmm2, eax);
__ movd(xmm3, esi); // Spill the context.
const Register kArgumentsList = esi;
const Register kArgumentsLength = ecx;
__ PopReturnAddressTo(edx);
__ pop(kArgumentsList);
__ PushReturnAddressFrom(edx);
if (masm->emit_debug_code()) {
// Allow kArgumentsList to be a FixedArray, or a FixedDoubleArray if
// kArgumentsLength == 0.
Label ok, fail;
__ AssertNotSmi(kArgumentsList);
__ mov(edx, FieldOperand(kArgumentsList, HeapObject::kMapOffset));
__ CmpInstanceType(edx, FIXED_ARRAY_TYPE);
__ j(equal, &ok);
__ CmpInstanceType(edx, FIXED_DOUBLE_ARRAY_TYPE);
__ j(not_equal, &fail);
__ cmp(kArgumentsLength, 0);
__ j(equal, &ok);
// Fall through.
__ bind(&fail);
__ Abort(AbortReason::kOperandIsNotAFixedArray);
__ bind(&ok);
}
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack limit".
Label stack_overflow;
Generate_StackOverflowCheck(masm, kArgumentsLength, edx, &stack_overflow);
// Push additional arguments onto the stack.
{
__ PopReturnAddressTo(edx);
__ Move(eax, Immediate(0));
Label done, push, loop;
__ bind(&loop);
__ cmp(eax, kArgumentsLength);
__ j(equal, &done, Label::kNear);
// Turn the hole into undefined as we go.
__ mov(edi, FieldOperand(kArgumentsList, eax, times_pointer_size,
FixedArray::kHeaderSize));
__ CompareRoot(edi, RootIndex::kTheHoleValue);
__ j(not_equal, &push, Label::kNear);
__ LoadRoot(edi, RootIndex::kUndefinedValue);
__ bind(&push);
__ Push(edi);
__ inc(eax);
__ jmp(&loop);
__ bind(&done);
__ PushReturnAddressFrom(edx);
}
// Restore eax, edi and edx.
__ movd(esi, xmm3); // Restore the context.
__ movd(eax, xmm2);
__ movd(edi, xmm1);
__ movd(edx, xmm0);
// Compute the actual parameter count.
__ add(eax, kArgumentsLength);
// Tail-call to the actual Call or Construct builtin.
__ Jump(code, RelocInfo::CODE_TARGET);
__ bind(&stack_overflow);
__ movd(esi, xmm3); // Restore the context.
__ TailCallRuntime(Runtime::kThrowStackOverflow);
}
// static
void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm,
CallOrConstructMode mode,
Handle<Code> code) {
// ----------- S t a t e -------------
// -- eax : the number of arguments (not including the receiver)
// -- edi : the target to call (can be any Object)
// -- esi : context for the Call / Construct builtin
// -- edx : the new target (for [[Construct]] calls)
// -- ecx : start index (to support rest parameters)
// -----------------------------------
__ movd(xmm0, esi); // Spill the context.
Register scratch = esi;
// Check if new.target has a [[Construct]] internal method.
if (mode == CallOrConstructMode::kConstruct) {
Label new_target_constructor, new_target_not_constructor;
__ JumpIfSmi(edx, &new_target_not_constructor, Label::kNear);
__ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset));
__ test_b(FieldOperand(scratch, Map::kBitFieldOffset),
Immediate(Map::IsConstructorBit::kMask));
__ j(not_zero, &new_target_constructor, Label::kNear);
__ bind(&new_target_not_constructor);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterFrame(StackFrame::INTERNAL);
__ Push(edx);
__ movd(esi, xmm0); // Restore the context.
__ CallRuntime(Runtime::kThrowNotConstructor);
}
__ bind(&new_target_constructor);
}
__ movd(xmm1, edx); // Preserve new.target (in case of [[Construct]]).
// Check if we have an arguments adaptor frame below the function frame.
Label arguments_adaptor, arguments_done;
__ mov(scratch, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
__ cmp(Operand(scratch, CommonFrameConstants::kContextOrFrameTypeOffset),
Immediate(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
__ j(equal, &arguments_adaptor, Label::kNear);
{
__ mov(edx, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
__ mov(edx, FieldOperand(edx, JSFunction::kSharedFunctionInfoOffset));
__ movzx_w(edx, FieldOperand(
edx, SharedFunctionInfo::kFormalParameterCountOffset));
__ mov(scratch, ebp);
}
__ jmp(&arguments_done, Label::kNear);
__ bind(&arguments_adaptor);
{
// Just load the length from the ArgumentsAdaptorFrame.
__ mov(edx,
Operand(scratch, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ SmiUntag(edx);
}
__ bind(&arguments_done);
Label stack_done, stack_overflow;
__ sub(edx, ecx);
__ j(less_equal, &stack_done);
{
Generate_StackOverflowCheck(masm, edx, ecx, &stack_overflow);
// Forward the arguments from the caller frame.
{
Label loop;
__ add(eax, edx);
__ PopReturnAddressTo(ecx);
__ bind(&loop);
{
__ Push(Operand(scratch, edx, times_pointer_size, 1 * kPointerSize));
__ dec(edx);
__ j(not_zero, &loop);
}
__ PushReturnAddressFrom(ecx);
}
}
__ bind(&stack_done);
__ movd(edx, xmm1); // Restore new.target (in case of [[Construct]]).
__ movd(esi, xmm0); // Restore the context.
// Tail-call to the {code} handler.
__ Jump(code, RelocInfo::CODE_TARGET);
__ bind(&stack_overflow);
__ movd(esi, xmm0); // Restore the context.
__ TailCallRuntime(Runtime::kThrowStackOverflow);
}
// static
void Builtins::Generate_CallFunction(MacroAssembler* masm,
ConvertReceiverMode mode) {
// ----------- S t a t e -------------
// -- eax : the number of arguments (not including the receiver)
// -- edi : the function to call (checked to be a JSFunction)
// -----------------------------------
__ AssertFunction(edi);
// See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
// Check that the function is not a "classConstructor".
Label class_constructor;
__ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ test(FieldOperand(edx, SharedFunctionInfo::kFlagsOffset),
Immediate(SharedFunctionInfo::IsClassConstructorBit::kMask));
__ j(not_zero, &class_constructor);
// Enter the context of the function; ToObject has to run in the function
// context, and we also need to take the global proxy from the function
// context in case of conversion.
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
// We need to convert the receiver for non-native sloppy mode functions.
Label done_convert;
__ test(FieldOperand(edx, SharedFunctionInfo::kFlagsOffset),
Immediate(SharedFunctionInfo::IsNativeBit::kMask |
SharedFunctionInfo::IsStrictBit::kMask));
__ j(not_zero, &done_convert);
{
// ----------- S t a t e -------------
// -- eax : the number of arguments (not including the receiver)
// -- edx : the shared function info.
// -- edi : the function to call (checked to be a JSFunction)
// -- esi : the function context.
// -----------------------------------
if (mode == ConvertReceiverMode::kNullOrUndefined) {
// Patch receiver to global proxy.
__ LoadGlobalProxy(ecx);
} else {
Label convert_to_object, convert_receiver;
__ mov(ecx, Operand(esp, eax, times_pointer_size, kPointerSize));
__ JumpIfSmi(ecx, &convert_to_object, Label::kNear);
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ CmpObjectType(ecx, FIRST_JS_RECEIVER_TYPE, ecx); // Clobbers ecx.
__ j(above_equal, &done_convert);
// Reload the receiver (it was clobbered by CmpObjectType).
__ mov(ecx, Operand(esp, eax, times_pointer_size, kPointerSize));
if (mode != ConvertReceiverMode::kNotNullOrUndefined) {
Label convert_global_proxy;
__ JumpIfRoot(ecx, RootIndex::kUndefinedValue, &convert_global_proxy,
Label::kNear);
__ JumpIfNotRoot(ecx, RootIndex::kNullValue, &convert_to_object,
Label::kNear);
__ bind(&convert_global_proxy);
{
// Patch receiver to global proxy.
__ LoadGlobalProxy(ecx);
}
__ jmp(&convert_receiver);
}
__ bind(&convert_to_object);
{
// Convert receiver using ToObject.
// TODO(bmeurer): Inline the allocation here to avoid building the frame
// in the fast case? (fall back to AllocateInNewSpace?)
FrameScope scope(masm, StackFrame::INTERNAL);
__ SmiTag(eax);
__ Push(eax);
__ Push(edi);
__ mov(eax, ecx);
__ Push(esi);
__ Call(BUILTIN_CODE(masm->isolate(), ToObject),
RelocInfo::CODE_TARGET);
__ Pop(esi);
__ mov(ecx, eax);
__ Pop(edi);
__ Pop(eax);
__ SmiUntag(eax);
}
__ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ bind(&convert_receiver);
}
__ mov(Operand(esp, eax, times_pointer_size, kPointerSize), ecx);
}
__ bind(&done_convert);
// ----------- S t a t e -------------
// -- eax : the number of arguments (not including the receiver)
// -- edx : the shared function info.
// -- edi : the function to call (checked to be a JSFunction)
// -- esi : the function context.
// -----------------------------------
__ movzx_w(
ecx, FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset));
ParameterCount actual(eax);
ParameterCount expected(ecx);
__ InvokeFunctionCode(edi, no_reg, expected, actual, JUMP_FUNCTION);
// The function is a "classConstructor", need to raise an exception.
__ bind(&class_constructor);
{
FrameScope frame(masm, StackFrame::INTERNAL);
__ push(edi);
__ CallRuntime(Runtime::kThrowConstructorNonCallableError);
}
}
namespace {
void Generate_PushBoundArguments(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : the number of arguments (not including the receiver)
// -- edx : new.target (only in case of [[Construct]])
// -- edi : target (checked to be a JSBoundFunction)
// -----------------------------------
__ movd(xmm0, edx); // Spill edx.
// Load [[BoundArguments]] into ecx and length of that into edx.
Label no_bound_arguments;
__ mov(ecx, FieldOperand(edi, JSBoundFunction::kBoundArgumentsOffset));
__ mov(edx, FieldOperand(ecx, FixedArray::kLengthOffset));
__ SmiUntag(edx);
__ test(edx, edx);
__ j(zero, &no_bound_arguments);
{
// ----------- S t a t e -------------
// -- eax : the number of arguments (not including the receiver)
// -- xmm0 : new.target (only in case of [[Construct]])
// -- edi : target (checked to be a JSBoundFunction)
// -- ecx : the [[BoundArguments]] (implemented as FixedArray)
// -- edx : the number of [[BoundArguments]]
// -----------------------------------
// Reserve stack space for the [[BoundArguments]].
{
Label done;
__ lea(ecx, Operand(edx, times_pointer_size, 0));
__ sub(esp, ecx);
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack
// limit".
__ CompareRealStackLimit(esp);
__ j(above_equal, &done, Label::kNear);
// Restore the stack pointer.
__ lea(esp, Operand(esp, edx, times_pointer_size, 0));
{
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterFrame(StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
}
__ bind(&done);
}
// Adjust effective number of arguments to include return address.
__ inc(eax);
// Relocate arguments and return address down the stack.
{
Label loop;
__ Set(ecx, 0);
__ lea(edx, Operand(esp, edx, times_pointer_size, 0));
__ bind(&loop);
__ movd(xmm1, Operand(edx, ecx, times_pointer_size, 0));
__ movd(Operand(esp, ecx, times_pointer_size, 0), xmm1);
__ inc(ecx);
__ cmp(ecx, eax);
__ j(less, &loop);
}
// Copy [[BoundArguments]] to the stack (below the arguments).
{
Label loop;
__ mov(ecx, FieldOperand(edi, JSBoundFunction::kBoundArgumentsOffset));
__ mov(edx, FieldOperand(ecx, FixedArray::kLengthOffset));
__ SmiUntag(edx);
__ bind(&loop);
__ dec(edx);
__ movd(xmm1, FieldOperand(ecx, edx, times_pointer_size,
FixedArray::kHeaderSize));
__ movd(Operand(esp, eax, times_pointer_size, 0), xmm1);
__ lea(eax, Operand(eax, 1));
__ j(greater, &loop);
}
// Adjust effective number of arguments (eax contains the number of
// arguments from the call plus return address plus the number of
// [[BoundArguments]]), so we need to subtract one for the return address.
__ dec(eax);
}
__ bind(&no_bound_arguments);
__ movd(edx, xmm0); // Reload edx.
}
} // namespace
// static
void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : the number of arguments (not including the receiver)
// -- edi : the function to call (checked to be a JSBoundFunction)
// -----------------------------------
__ AssertBoundFunction(edi);
// Patch the receiver to [[BoundThis]].
__ mov(ecx, FieldOperand(edi, JSBoundFunction::kBoundThisOffset));
__ mov(Operand(esp, eax, times_pointer_size, kPointerSize), ecx);
// Push the [[BoundArguments]] onto the stack.
Generate_PushBoundArguments(masm);
// Call the [[BoundTargetFunction]] via the Call builtin.
__ mov(edi, FieldOperand(edi, JSBoundFunction::kBoundTargetFunctionOffset));
__ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny),
RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) {
// ----------- S t a t e -------------
// -- eax : the number of arguments (not including the receiver)
// -- edi : the target to call (can be any Object).
// -----------------------------------
Label non_callable, non_function, non_smi, non_jsfunction,
non_jsboundfunction;
__ JumpIfSmi(edi, &non_callable);
__ bind(&non_smi);
__ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
__ j(not_equal, &non_jsfunction);
__ Jump(masm->isolate()->builtins()->CallFunction(mode),
RelocInfo::CODE_TARGET);
__ bind(&non_jsfunction);
__ CmpInstanceType(ecx, JS_BOUND_FUNCTION_TYPE);
__ j(not_equal, &non_jsboundfunction);
__ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction),
RelocInfo::CODE_TARGET);
// Check if target is a proxy and call CallProxy external builtin
__ bind(&non_jsboundfunction);
__ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
Immediate(Map::IsCallableBit::kMask));
__ j(zero, &non_callable);
// Call CallProxy external builtin
__ CmpInstanceType(ecx, JS_PROXY_TYPE);
__ j(not_equal, &non_function);
__ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET);
// 2. Call to something else, which might have a [[Call]] internal method (if
// not we raise an exception).
__ bind(&non_function);
// Overwrite the original receiver with the (original) target.
__ mov(Operand(esp, eax, times_pointer_size, kPointerSize), edi);
// Let the "call_as_function_delegate" take care of the rest.
__ LoadGlobalFunction(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, edi);
__ Jump(masm->isolate()->builtins()->CallFunction(
ConvertReceiverMode::kNotNullOrUndefined),
RelocInfo::CODE_TARGET);
// 3. Call to something that is not callable.
__ bind(&non_callable);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(edi);
__ CallRuntime(Runtime::kThrowCalledNonCallable);
}
}
// static
void Builtins::Generate_ConstructFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : the number of arguments (not including the receiver)
// -- edx : the new target (checked to be a constructor)
// -- edi : the constructor to call (checked to be a JSFunction)
// -----------------------------------
__ AssertConstructor(edi);
__ AssertFunction(edi);
Label call_generic_stub;
// Jump to JSBuiltinsConstructStub or JSConstructStubGeneric.
__ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ test(FieldOperand(ecx, SharedFunctionInfo::kFlagsOffset),
Immediate(SharedFunctionInfo::ConstructAsBuiltinBit::kMask));
__ j(zero, &call_generic_stub, Label::kNear);
// Calling convention for function specific ConstructStubs require
// ecx to contain either an AllocationSite or undefined.
__ LoadRoot(ecx, RootIndex::kUndefinedValue);
__ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub),
RelocInfo::CODE_TARGET);
__ bind(&call_generic_stub);
// Calling convention for function specific ConstructStubs require
// ecx to contain either an AllocationSite or undefined.
__ LoadRoot(ecx, RootIndex::kUndefinedValue);
__ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric),
RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : the number of arguments (not including the receiver)
// -- edx : the new target (checked to be a constructor)
// -- edi : the constructor to call (checked to be a JSBoundFunction)
// -----------------------------------
__ AssertConstructor(edi);
__ AssertBoundFunction(edi);
// Push the [[BoundArguments]] onto the stack.
Generate_PushBoundArguments(masm);
// Patch new.target to [[BoundTargetFunction]] if new.target equals target.
{
Label done;
__ cmp(edi, edx);
__ j(not_equal, &done, Label::kNear);
__ mov(edx, FieldOperand(edi, JSBoundFunction::kBoundTargetFunctionOffset));
__ bind(&done);
}
// Construct the [[BoundTargetFunction]] via the Construct builtin.
__ mov(edi, FieldOperand(edi, JSBoundFunction::kBoundTargetFunctionOffset));
__ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_Construct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : the number of arguments (not including the receiver)
// -- edx : the new target (either the same as the constructor or
// the JSFunction on which new was invoked initially)
// -- edi : the constructor to call (can be any Object)
// -----------------------------------
// Check if target is a Smi.
Label non_constructor, non_proxy, non_jsfunction, non_jsboundfunction;
__ JumpIfSmi(edi, &non_constructor);
// Check if target has a [[Construct]] internal method.
__ mov(ecx, FieldOperand(edi, HeapObject::kMapOffset));
__ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
Immediate(Map::IsConstructorBit::kMask));
__ j(zero, &non_constructor);
// Dispatch based on instance type.
__ CmpInstanceType(ecx, JS_FUNCTION_TYPE);
__ j(not_equal, &non_jsfunction);
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction),
RelocInfo::CODE_TARGET);
// Only dispatch to bound functions after checking whether they are
// constructors.
__ bind(&non_jsfunction);
__ CmpInstanceType(ecx, JS_BOUND_FUNCTION_TYPE);
__ j(not_equal, &non_jsboundfunction);
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction),
RelocInfo::CODE_TARGET);
// Only dispatch to proxies after checking whether they are constructors.
__ bind(&non_jsboundfunction);
__ CmpInstanceType(ecx, JS_PROXY_TYPE);
__ j(not_equal, &non_proxy);
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy),
RelocInfo::CODE_TARGET);
// Called Construct on an exotic Object with a [[Construct]] internal method.
__ bind(&non_proxy);
{
// Overwrite the original receiver with the (original) target.
__ mov(Operand(esp, eax, times_pointer_size, kPointerSize), edi);
// Let the "call_as_constructor_delegate" take care of the rest.
__ LoadGlobalFunction(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, edi);
__ Jump(masm->isolate()->builtins()->CallFunction(),
RelocInfo::CODE_TARGET);
}
// Called Construct on an Object that doesn't have a [[Construct]] internal
// method.
__ bind(&non_constructor);
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable),
RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : actual number of arguments
// -- ecx : expected number of arguments
// -- edx : new target (passed through to callee)
// -- edi : function (passed through to callee)
// -----------------------------------
const Register kExpectedNumberOfArgumentsRegister = ecx;
Label invoke, dont_adapt_arguments, stack_overflow, enough, too_few;
__ cmp(kExpectedNumberOfArgumentsRegister,
SharedFunctionInfo::kDontAdaptArgumentsSentinel);
__ j(equal, &dont_adapt_arguments);
__ cmp(eax, kExpectedNumberOfArgumentsRegister);
__ j(less, &too_few);
{ // Enough parameters: Actual >= expected.
__ bind(&enough);
EnterArgumentsAdaptorFrame(masm);
// edi is used as a scratch register. It should be restored from the frame
// when needed.
Generate_StackOverflowCheck(masm, kExpectedNumberOfArgumentsRegister, edi,
&stack_overflow);
// Copy receiver and all expected arguments.
const int offset = StandardFrameConstants::kCallerSPOffset;
__ lea(edi, Operand(ebp, eax, times_4, offset));
__ mov(eax, -1); // account for receiver
Label copy;
__ bind(&copy);
__ inc(eax);
__ push(Operand(edi, 0));
__ sub(edi, Immediate(kPointerSize));
__ cmp(eax, kExpectedNumberOfArgumentsRegister);
__ j(less, &copy);
// eax now contains the expected number of arguments.
__ jmp(&invoke);
}
{ // Too few parameters: Actual < expected.
__ bind(&too_few);
EnterArgumentsAdaptorFrame(masm);
// edi is used as a scratch register. It should be restored from the frame
// when needed.
Generate_StackOverflowCheck(masm, kExpectedNumberOfArgumentsRegister, edi,
&stack_overflow);
// Remember expected arguments in xmm0.
__ movd(xmm0, kExpectedNumberOfArgumentsRegister);
// Copy receiver and all actual arguments.
const int offset = StandardFrameConstants::kCallerSPOffset;
__ lea(edi, Operand(ebp, eax, times_4, offset));
// ecx = expected - actual.
__ sub(kExpectedNumberOfArgumentsRegister, eax);
// eax = -actual - 1
__ neg(eax);
__ sub(eax, Immediate(1));
Label copy;
__ bind(&copy);
__ inc(eax);
__ push(Operand(edi, 0));
__ sub(edi, Immediate(kPointerSize));
__ test(eax, eax);
__ j(not_zero, &copy);
// Fill remaining expected arguments with undefined values.
Label fill;
__ bind(&fill);
__ inc(eax);
__ Push(Immediate(masm->isolate()->factory()->undefined_value()));
__ cmp(eax, kExpectedNumberOfArgumentsRegister);
__ j(less, &fill);
// Restore expected arguments.
__ movd(eax, xmm0);
}
// Call the entry point.
__ bind(&invoke);
// Restore function pointer.
__ mov(edi, Operand(ebp, ArgumentsAdaptorFrameConstants::kFunctionOffset));
// eax : expected number of arguments
// edx : new target (passed through to callee)
// edi : function (passed through to callee)
static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch");
__ mov(ecx, FieldOperand(edi, JSFunction::kCodeOffset));
__ add(ecx, Immediate(Code::kHeaderSize - kHeapObjectTag));
__ call(ecx);
// Store offset of return address for deoptimizer.
masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
// Leave frame and return.
LeaveArgumentsAdaptorFrame(masm);
__ ret(0);
// -------------------------------------------
// Dont adapt arguments.
// -------------------------------------------
__ bind(&dont_adapt_arguments);
static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch");
__ mov(ecx, FieldOperand(edi, JSFunction::kCodeOffset));
__ add(ecx, Immediate(Code::kHeaderSize - kHeapObjectTag));
__ jmp(ecx);
__ bind(&stack_overflow);
{
FrameScope frame(masm, StackFrame::MANUAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ int3();
}
}
void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) {
// Lookup the function in the JavaScript frame.
__ mov(eax, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
__ mov(eax, Operand(eax, JavaScriptFrameConstants::kFunctionOffset));
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Pass function as argument.
__ push(eax);
__ CallRuntime(Runtime::kCompileForOnStackReplacement);
}
Label skip;
// If the code object is null, just return to the caller.
__ cmp(eax, Immediate(0));
__ j(not_equal, &skip, Label::kNear);
__ ret(0);
__ bind(&skip);
// Drop the handler frame that is be sitting on top of the actual
// JavaScript frame. This is the case then OSR is triggered from bytecode.
__ leave();
// Load deoptimization data from the code object.
__ mov(ecx, Operand(eax, Code::kDeoptimizationDataOffset - kHeapObjectTag));
// Load the OSR entrypoint offset from the deoptimization data.
__ mov(ecx, Operand(ecx, FixedArray::OffsetOfElementAt(
DeoptimizationData::kOsrPcOffsetIndex) -
kHeapObjectTag));
__ SmiUntag(ecx);
// Compute the target address = code_obj + header_size + osr_offset
__ lea(eax, Operand(eax, ecx, times_1, Code::kHeaderSize - kHeapObjectTag));
// Overwrite the return address on the stack.
__ mov(Operand(esp, 0), eax);
// And "return" to the OSR entry point of the function.
__ ret(0);
}
void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) {
// The function index was put in edi by the jump table trampoline.
// Convert to Smi for the runtime call.
__ SmiTag(kWasmCompileLazyFuncIndexRegister);
{
HardAbortScope hard_abort(masm); // Avoid calls to Abort.
FrameScope scope(masm, StackFrame::WASM_COMPILE_LAZY);
// Save all parameter registers (see wasm-linkage.cc). They might be
// overwritten in the runtime call below. We don't have any callee-saved
// registers in wasm, so no need to store anything else.
static_assert(WasmCompileLazyFrameConstants::kNumberOfSavedGpParamRegs ==
arraysize(wasm::kGpParamRegisters),
"frame size mismatch");
for (Register reg : wasm::kGpParamRegisters) {
__ Push(reg);
}
static_assert(WasmCompileLazyFrameConstants::kNumberOfSavedFpParamRegs ==
arraysize(wasm::kFpParamRegisters),
"frame size mismatch");
__ sub(esp, Immediate(kSimd128Size * arraysize(wasm::kFpParamRegisters)));
int offset = 0;
for (DoubleRegister reg : wasm::kFpParamRegisters) {
__ movdqu(Operand(esp, offset), reg);
offset += kSimd128Size;
}
// Push the WASM instance as an explicit argument to WasmCompileLazy.
__ Push(kWasmInstanceRegister);
// Push the function index as second argument.
__ Push(kWasmCompileLazyFuncIndexRegister);
// Load the correct CEntry builtin from the instance object.
__ mov(ecx, FieldOperand(kWasmInstanceRegister,
WasmInstanceObject::kCEntryStubOffset));
// Initialize the JavaScript context with 0. CEntry will use it to
// set the current context on the isolate.
__ Move(kContextRegister, Smi::zero());
{
// At this point, ebx has been spilled to the stack but is not yet
// overwritten with another value. We can still use it as kRootRegister.
__ CallRuntimeWithCEntry(Runtime::kWasmCompileLazy, ecx);
}
// The entrypoint address is the return value.
__ mov(edi, kReturnRegister0);
// Restore registers.
for (DoubleRegister reg : base::Reversed(wasm::kFpParamRegisters)) {
offset -= kSimd128Size;
__ movdqu(reg, Operand(esp, offset));
}
DCHECK_EQ(0, offset);
__ add(esp, Immediate(kSimd128Size * arraysize(wasm::kFpParamRegisters)));
for (Register reg : base::Reversed(wasm::kGpParamRegisters)) {
__ Pop(reg);
}
}
// Finally, jump to the entrypoint.
__ jmp(edi);
}
void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size,
SaveFPRegsMode save_doubles, ArgvMode argv_mode,
bool builtin_exit_frame) {
// eax: number of arguments including receiver
// edx: pointer to C function
// ebp: frame pointer (restored after C call)
// esp: stack pointer (restored after C call)
// esi: current context (C callee-saved)
// edi: JS function of the caller (C callee-saved)
//
// If argv_mode == kArgvInRegister:
// ecx: pointer to the first argument
STATIC_ASSERT(eax == kRuntimeCallArgCountRegister);
STATIC_ASSERT(ecx == kRuntimeCallArgvRegister);
STATIC_ASSERT(edx == kRuntimeCallFunctionRegister);
STATIC_ASSERT(esi == kContextRegister);
STATIC_ASSERT(edi == kJSFunctionRegister);
DCHECK(!AreAliased(kRuntimeCallArgCountRegister, kRuntimeCallArgvRegister,
kRuntimeCallFunctionRegister, kContextRegister,
kJSFunctionRegister, kRootRegister));
// Reserve space on the stack for the three arguments passed to the call. If
// result size is greater than can be returned in registers, also reserve
// space for the hidden argument for the result location, and space for the
// result itself.
int arg_stack_space = 3;
// Enter the exit frame that transitions from JavaScript to C++.
if (argv_mode == kArgvInRegister) {
DCHECK(save_doubles == kDontSaveFPRegs);
DCHECK(!builtin_exit_frame);
__ EnterApiExitFrame(arg_stack_space, edi);
// Move argc and argv into the correct registers.
__ mov(esi, ecx);
__ mov(edi, eax);
} else {
__ EnterExitFrame(
arg_stack_space, save_doubles == kSaveFPRegs,
builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT);
}
// edx: pointer to C function
// ebp: frame pointer (restored after C call)
// esp: stack pointer (restored after C call)
// edi: number of arguments including receiver (C callee-saved)
// esi: pointer to the first argument (C callee-saved)
// Result returned in eax, or eax+edx if result size is 2.
// Check stack alignment.
if (FLAG_debug_code) {
__ CheckStackAlignment();
}
// Call C function.
__ mov(Operand(esp, 0 * kPointerSize), edi); // argc.
__ mov(Operand(esp, 1 * kPointerSize), esi); // argv.
__ Move(ecx, Immediate(ExternalReference::isolate_address(masm->isolate())));
__ mov(Operand(esp, 2 * kPointerSize), ecx);
__ call(kRuntimeCallFunctionRegister);
// Result is in eax or edx:eax - do not destroy these registers!
// Check result for exception sentinel.
Label exception_returned;
__ CompareRoot(eax, RootIndex::kException);
__ j(equal, &exception_returned);
// Check that there is no pending exception, otherwise we
// should have returned the exception sentinel.
if (FLAG_debug_code) {
__ push(edx);
__ LoadRoot(edx, RootIndex::kTheHoleValue);
Label okay;
ExternalReference pending_exception_address = ExternalReference::Create(
IsolateAddressId::kPendingExceptionAddress, masm->isolate());
__ cmp(edx, __ ExternalReferenceAsOperand(pending_exception_address, ecx));
// Cannot use check here as it attempts to generate call into runtime.
__ j(equal, &okay, Label::kNear);
__ int3();
__ bind(&okay);
__ pop(edx);
}
// Exit the JavaScript to C++ exit frame.
__ LeaveExitFrame(save_doubles == kSaveFPRegs, argv_mode == kArgvOnStack);
__ ret(0);
// Handling of exception.
__ bind(&exception_returned);
ExternalReference pending_handler_context_address = ExternalReference::Create(
IsolateAddressId::kPendingHandlerContextAddress, masm->isolate());
ExternalReference pending_handler_entrypoint_address =
ExternalReference::Create(
IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate());
ExternalReference pending_handler_fp_address = ExternalReference::Create(
IsolateAddressId::kPendingHandlerFPAddress, masm->isolate());
ExternalReference pending_handler_sp_address = ExternalReference::Create(
IsolateAddressId::kPendingHandlerSPAddress, masm->isolate());
// Ask the runtime for help to determine the handler. This will set eax to
// contain the current pending exception, don't clobber it.
ExternalReference find_handler =
ExternalReference::Create(Runtime::kUnwindAndFindExceptionHandler);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ PrepareCallCFunction(3, eax);
__ mov(Operand(esp, 0 * kPointerSize), Immediate(0)); // argc.
__ mov(Operand(esp, 1 * kPointerSize), Immediate(0)); // argv.
__ Move(esi,
Immediate(ExternalReference::isolate_address(masm->isolate())));
__ mov(Operand(esp, 2 * kPointerSize), esi);
__ CallCFunction(find_handler, 3);
}
// Retrieve the handler context, SP and FP.
__ mov(esp, __ ExternalReferenceAsOperand(pending_handler_sp_address, esi));
__ mov(ebp, __ ExternalReferenceAsOperand(pending_handler_fp_address, esi));
__ mov(esi,
__ ExternalReferenceAsOperand(pending_handler_context_address, esi));
// If the handler is a JS frame, restore the context to the frame. Note that
// the context will be set to (esi == 0) for non-JS frames.
Label skip;
__ test(esi, esi);
__ j(zero, &skip, Label::kNear);
__ mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi);
__ bind(&skip);
// Compute the handler entry address and jump to it.
__ mov(edi, __ ExternalReferenceAsOperand(pending_handler_entrypoint_address,
edi));
__ jmp(edi);
}
void Builtins::Generate_DoubleToI(MacroAssembler* masm) {
Label check_negative, process_64_bits, done;
// Account for return address and saved regs.
const int kArgumentOffset = 4 * kPointerSize;
MemOperand mantissa_operand(MemOperand(esp, kArgumentOffset));
MemOperand exponent_operand(
MemOperand(esp, kArgumentOffset + kDoubleSize / 2));
// The result is returned on the stack.
MemOperand return_operand = mantissa_operand;
Register scratch1 = ebx;
// Since we must use ecx for shifts below, use some other register (eax)
// to calculate the result.
Register result_reg = eax;
// Save ecx if it isn't the return register and therefore volatile, or if it
// is the return register, then save the temp register we use in its stead for
// the result.
Register save_reg = eax;
__ push(ecx);
__ push(scratch1);
__ push(save_reg);
__ mov(scratch1, mantissa_operand);
if (CpuFeatures::IsSupported(SSE3)) {
CpuFeatureScope scope(masm, SSE3);
// Load x87 register with heap number.
__ fld_d(mantissa_operand);
}
__ mov(ecx, exponent_operand);
__ and_(ecx, HeapNumber::kExponentMask);
__ shr(ecx, HeapNumber::kExponentShift);
__ lea(result_reg, MemOperand(ecx, -HeapNumber::kExponentBias));
__ cmp(result_reg, Immediate(HeapNumber::kMantissaBits));
__ j(below, &process_64_bits);
// Result is entirely in lower 32-bits of mantissa
int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize;
if (CpuFeatures::IsSupported(SSE3)) {
__ fstp(0);
}
__ sub(ecx, Immediate(delta));
__ xor_(result_reg, result_reg);
__ cmp(ecx, Immediate(31));
__ j(above, &done);
__ shl_cl(scratch1);
__ jmp(&check_negative);
__ bind(&process_64_bits);
if (CpuFeatures::IsSupported(SSE3)) {
CpuFeatureScope scope(masm, SSE3);
// Reserve space for 64 bit answer.
__ sub(esp, Immediate(kDoubleSize)); // Nolint.
// Do conversion, which cannot fail because we checked the exponent.
__ fisttp_d(Operand(esp, 0));
__ mov(result_reg, Operand(esp, 0)); // Load low word of answer as result
__ add(esp, Immediate(kDoubleSize));
__ jmp(&done);
} else {
// Result must be extracted from shifted 32-bit mantissa
__ sub(ecx, Immediate(delta));
__ neg(ecx);
__ mov(result_reg, exponent_operand);
__ and_(result_reg,
Immediate(static_cast<uint32_t>(Double::kSignificandMask >> 32)));
__ add(result_reg,
Immediate(static_cast<uint32_t>(Double::kHiddenBit >> 32)));
__ shrd_cl(scratch1, result_reg);
__ shr_cl(result_reg);
__ test(ecx, Immediate(32));
__ cmov(not_equal, scratch1, result_reg);
}
// If the double was negative, negate the integer result.
__ bind(&check_negative);
__ mov(result_reg, scratch1);
__ neg(result_reg);
__ cmp(exponent_operand, Immediate(0));
__ cmov(greater, result_reg, scratch1);
// Restore registers
__ bind(&done);
__ mov(return_operand, result_reg);
__ pop(save_reg);
__ pop(scratch1);
__ pop(ecx);
__ ret(0);
}
void Builtins::Generate_MathPowInternal(MacroAssembler* masm) {
const Register exponent = eax;
const Register scratch = ecx;
const XMMRegister double_result = xmm3;
const XMMRegister double_base = xmm2;
const XMMRegister double_exponent = xmm1;
const XMMRegister double_scratch = xmm4;
Label call_runtime, done, exponent_not_smi, int_exponent;
// Save 1 in double_result - we need this several times later on.
__ mov(scratch, Immediate(1));
__ Cvtsi2sd(double_result, scratch);
Label fast_power, try_arithmetic_simplification;
__ DoubleToI(exponent, double_exponent, double_scratch,
&try_arithmetic_simplification, &try_arithmetic_simplification);
__ jmp(&int_exponent);
__ bind(&try_arithmetic_simplification);
// Skip to runtime if possibly NaN (indicated by the indefinite integer).
__ cvttsd2si(exponent, Operand(double_exponent));
__ cmp(exponent, Immediate(0x1));
__ j(overflow, &call_runtime);
// Using FPU instructions to calculate power.
Label fast_power_failed;
__ bind(&fast_power);
__ fnclex(); // Clear flags to catch exceptions later.
// Transfer (B)ase and (E)xponent onto the FPU register stack.
__ sub(esp, Immediate(kDoubleSize));
__ movsd(Operand(esp, 0), double_exponent);
__ fld_d(Operand(esp, 0)); // E
__ movsd(Operand(esp, 0), double_base);
__ fld_d(Operand(esp, 0)); // B, E
// Exponent is in st(1) and base is in st(0)
// B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B)
// FYL2X calculates st(1) * log2(st(0))
__ fyl2x(); // X
__ fld(0); // X, X
__ frndint(); // rnd(X), X
__ fsub(1); // rnd(X), X-rnd(X)
__ fxch(1); // X - rnd(X), rnd(X)
// F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1
__ f2xm1(); // 2^(X-rnd(X)) - 1, rnd(X)
__ fld1(); // 1, 2^(X-rnd(X)) - 1, rnd(X)
__ faddp(1); // 2^(X-rnd(X)), rnd(X)
// FSCALE calculates st(0) * 2^st(1)
__ fscale(); // 2^X, rnd(X)
__ fstp(1); // 2^X
// Bail out to runtime in case of exceptions in the status word.
__ fnstsw_ax();
__ test_b(eax, Immediate(0x5F)); // We check for all but precision exception.
__ j(not_zero, &fast_power_failed, Label::kNear);
__ fstp_d(Operand(esp, 0));
__ movsd(double_result, Operand(esp, 0));
__ add(esp, Immediate(kDoubleSize));
__ jmp(&done);
__ bind(&fast_power_failed);
__ fninit();
__ add(esp, Immediate(kDoubleSize));
__ jmp(&call_runtime);
// Calculate power with integer exponent.
__ bind(&int_exponent);
const XMMRegister double_scratch2 = double_exponent;
__ mov(scratch, exponent); // Back up exponent.
__ movsd(double_scratch, double_base); // Back up base.
__ movsd(double_scratch2, double_result); // Load double_exponent with 1.
// Get absolute value of exponent.
Label no_neg, while_true, while_false;
__ test(scratch, scratch);
__ j(positive, &no_neg, Label::kNear);
__ neg(scratch);
__ bind(&no_neg);
__ j(zero, &while_false, Label::kNear);
__ shr(scratch, 1);
// Above condition means CF==0 && ZF==0. This means that the
// bit that has been shifted out is 0 and the result is not 0.
__ j(above, &while_true, Label::kNear);
__ movsd(double_result, double_scratch);
__ j(zero, &while_false, Label::kNear);
__ bind(&while_true);
__ shr(scratch, 1);
__ mulsd(double_scratch, double_scratch);
__ j(above, &while_true, Label::kNear);
__ mulsd(double_result, double_scratch);
__ j(not_zero, &while_true);
__ bind(&while_false);
// scratch has the original value of the exponent - if the exponent is
// negative, return 1/result.
__ test(exponent, exponent);
__ j(positive, &done);
__ divsd(double_scratch2, double_result);
__ movsd(double_result, double_scratch2);
// Test whether result is zero. Bail out to check for subnormal result.
// Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
__ xorps(double_scratch2, double_scratch2);
__ ucomisd(double_scratch2, double_result); // Result cannot be NaN.
// double_exponent aliased as double_scratch2 has already been overwritten
// and may not have contained the exponent value in the first place when the
// exponent is a smi. We reset it with exponent value before bailing out.
__ j(not_equal, &done);
__ Cvtsi2sd(double_exponent, exponent);
// Returning or bailing out.
__ bind(&call_runtime);
{
AllowExternalCallThatCantCauseGC scope(masm);
__ PrepareCallCFunction(4, scratch);
__ movsd(Operand(esp, 0 * kDoubleSize), double_base);
__ movsd(Operand(esp, 1 * kDoubleSize), double_exponent);
__ CallCFunction(ExternalReference::power_double_double_function(), 4);
}
// Return value is in st(0) on ia32.
// Store it into the (fixed) result register.
__ sub(esp, Immediate(kDoubleSize));
__ fstp_d(Operand(esp, 0));
__ movsd(double_result, Operand(esp, 0));
__ add(esp, Immediate(kDoubleSize));
__ bind(&done);
__ ret(0);
}
void Builtins::Generate_InternalArrayConstructorImpl(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : argc
// -- edi : constructor
// -- esp[0] : return address
// -- esp[4] : last argument
// -----------------------------------
if (FLAG_debug_code) {
// The array construct code is only set for the global and natives
// builtin Array functions which always have maps.
// Initial map for the builtin Array function should be a map.
__ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a nullptr and a Smi.
__ test(ecx, Immediate(kSmiTagMask));
__ Assert(not_zero, AbortReason::kUnexpectedInitialMapForArrayFunction);
__ CmpObjectType(ecx, MAP_TYPE, ecx);
__ Assert(equal, AbortReason::kUnexpectedInitialMapForArrayFunction);
// Figure out the right elements kind
__ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
// Load the map's "bit field 2" into |result|. We only need the first byte,
// but the following masking takes care of that anyway.
__ mov(ecx, FieldOperand(ecx, Map::kBitField2Offset));
// Retrieve elements_kind from bit field 2.
__ DecodeField<Map::ElementsKindBits>(ecx);
// Initial elements kind should be packed elements.
__ cmp(ecx, Immediate(PACKED_ELEMENTS));
__ Assert(equal, AbortReason::kInvalidElementsKindForInternalPackedArray);
// No arguments should be passed.
__ test(eax, eax);
__ Assert(zero, AbortReason::kWrongNumberOfArgumentsForInternalPackedArray);
}
__ Jump(
BUILTIN_CODE(masm->isolate(), InternalArrayNoArgumentConstructor_Packed),
RelocInfo::CODE_TARGET);
}
namespace {
// Generates an Operand for saving parameters after PrepareCallApiFunction.
Operand ApiParameterOperand(int index) {
return Operand(esp, index * kPointerSize);
}
// Prepares stack to put arguments (aligns and so on). Reserves
// space for return value if needed (assumes the return value is a handle).
// Arguments must be stored in ApiParameterOperand(0), ApiParameterOperand(1)
// etc. Saves context (esi). If space was reserved for return value then
// stores the pointer to the reserved slot into esi.
void PrepareCallApiFunction(MacroAssembler* masm, int argc, Register scratch) {
__ EnterApiExitFrame(argc, scratch);
if (__ emit_debug_code()) {
__ mov(esi, Immediate(bit_cast<int32_t>(kZapValue)));
}
}
// Calls an API function. Allocates HandleScope, extracts returned value
// from handle and propagates exceptions. Clobbers esi, edi and
// caller-save registers. Restores context. On return removes
// stack_space * kPointerSize (GCed).
void CallApiFunctionAndReturn(MacroAssembler* masm, Register function_address,
ExternalReference thunk_ref,
Operand thunk_last_arg, int stack_space,
Operand* stack_space_operand,
Operand return_value_operand) {
Isolate* isolate = masm->isolate();
ExternalReference next_address =
ExternalReference::handle_scope_next_address(isolate);
ExternalReference limit_address =
ExternalReference::handle_scope_limit_address(isolate);
ExternalReference level_address =
ExternalReference::handle_scope_level_address(isolate);
DCHECK(edx == function_address);
// Allocate HandleScope in callee-save registers.
__ add(__ ExternalReferenceAsOperand(level_address, esi), Immediate(1));
__ mov(esi, __ ExternalReferenceAsOperand(next_address, esi));
__ mov(edi, __ ExternalReferenceAsOperand(limit_address, edi));
if (FLAG_log_timer_events) {
FrameScope frame(masm, StackFrame::MANUAL);
__ PushSafepointRegisters();
__ PrepareCallCFunction(1, eax);
__ Move(Operand(esp, 0),
Immediate(ExternalReference::isolate_address(isolate)));
__ CallCFunction(ExternalReference::log_enter_external_function(), 1);
__ PopSafepointRegisters();
}
Label profiler_disabled;
Label end_profiler_check;
__ Move(eax, Immediate(ExternalReference::is_profiling_address(isolate)));
__ cmpb(Operand(eax, 0), Immediate(0));
__ j(zero, &profiler_disabled);
// Additional parameter is the address of the actual getter function.
__ mov(thunk_last_arg, function_address);
// Call the api function.
__ Move(eax, Immediate(thunk_ref));
__ call(eax);
__ jmp(&end_profiler_check);
__ bind(&profiler_disabled);
// Call the api function.
__ call(function_address);
__ bind(&end_profiler_check);
if (FLAG_log_timer_events) {
FrameScope frame(masm, StackFrame::MANUAL);
__ PushSafepointRegisters();
__ PrepareCallCFunction(1, eax);
__ mov(eax, Immediate(ExternalReference::isolate_address(isolate)));
__ mov(Operand(esp, 0), eax);
__ CallCFunction(ExternalReference::log_leave_external_function(), 1);
__ PopSafepointRegisters();
}
Label prologue;
// Load the value from ReturnValue
__ mov(eax, return_value_operand);
Label promote_scheduled_exception;
Label delete_allocated_handles;
Label leave_exit_frame;
__ bind(&prologue);
// No more valid handles (the result handle was the last one). Restore
// previous handle scope.
__ mov(__ ExternalReferenceAsOperand(next_address, ecx), esi);
__ sub(__ ExternalReferenceAsOperand(level_address, ecx), Immediate(1));
__ Assert(above_equal, AbortReason::kInvalidHandleScopeLevel);
__ cmp(edi, __ ExternalReferenceAsOperand(limit_address, ecx));
__ j(not_equal, &delete_allocated_handles);
// Leave the API exit frame.
__ bind(&leave_exit_frame);
if (stack_space_operand != nullptr) {
DCHECK_EQ(stack_space, 0);
__ mov(edx, *stack_space_operand);
}
__ LeaveApiExitFrame();
// Check if the function scheduled an exception.
ExternalReference scheduled_exception_address =
ExternalReference::scheduled_exception_address(isolate);
__ mov(ecx, __ ExternalReferenceAsOperand(scheduled_exception_address, ecx));
__ CompareRoot(ecx, RootIndex::kTheHoleValue);
__ j(not_equal, &promote_scheduled_exception);
#if DEBUG
// Check if the function returned a valid JavaScript value.
Label ok;
Register return_value = eax;
Register map = ecx;
__ JumpIfSmi(return_value, &ok, Label::kNear);
__ mov(map, FieldOperand(return_value, HeapObject::kMapOffset));
__ CmpInstanceType(map, LAST_NAME_TYPE);
__ j(below_equal, &ok, Label::kNear);
__ CmpInstanceType(map, FIRST_JS_RECEIVER_TYPE);
__ j(above_equal, &ok, Label::kNear);
__ CompareRoot(map, RootIndex::kHeapNumberMap);
__ j(equal, &ok, Label::kNear);
__ CompareRoot(return_value, RootIndex::kUndefinedValue);
__ j(equal, &ok, Label::kNear);
__ CompareRoot(return_value, RootIndex::kTrueValue);
__ j(equal, &ok, Label::kNear);
__ CompareRoot(return_value, RootIndex::kFalseValue);
__ j(equal, &ok, Label::kNear);
__ CompareRoot(return_value, RootIndex::kNullValue);
__ j(equal, &ok, Label::kNear);
__ Abort(AbortReason::kAPICallReturnedInvalidObject);
__ bind(&ok);
#endif
if (stack_space_operand == nullptr) {
DCHECK_NE(stack_space, 0);
__ ret(stack_space * kPointerSize);
} else {
DCHECK_EQ(0, stack_space);
__ pop(ecx);
__ add(esp, edx);
__ jmp(ecx);
}
// Re-throw by promoting a scheduled exception.
__ bind(&promote_scheduled_exception);
__ TailCallRuntime(Runtime::kPromoteScheduledException);
// HandleScope limit has changed. Delete allocated extensions.
ExternalReference delete_extensions =
ExternalReference::delete_handle_scope_extensions();
__ bind(&delete_allocated_handles);
__ mov(__ ExternalReferenceAsOperand(limit_address, ecx), edi);
__ mov(edi, eax);
__ Move(eax, Immediate(ExternalReference::isolate_address(isolate)));
__ mov(Operand(esp, 0), eax);
__ Move(eax, Immediate(delete_extensions));
__ call(eax);
__ mov(eax, edi);
__ jmp(&leave_exit_frame);
}
} // namespace
void Builtins::Generate_CallApiCallback(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- esi : kTargetContext
// -- edx : kApiFunctionAddress
// -- ecx : kArgc
// --
// -- esp[0] : return address
// -- esp[4] : last argument
// -- ...
// -- esp[argc * 4] : first argument
// -- esp[(argc + 1) * 4] : receiver
// -- esp[(argc + 2) * 4] : kHolder
// -- esp[(argc + 3) * 4] : kCallData
// -----------------------------------
Register api_function_address = edx;
Register argc = ecx;
Register scratch = eax;
DCHECK(!AreAliased(api_function_address, argc, scratch));
// Stack offsets (without argc).
static constexpr int kReceiverOffset = kPointerSize;
static constexpr int kHolderOffset = kReceiverOffset + kPointerSize;
static constexpr int kCallDataOffset = kHolderOffset + kPointerSize;
// Extra stack arguments are: the receiver, kHolder, kCallData.
static constexpr int kExtraStackArgumentCount = 3;
typedef FunctionCallbackArguments FCA;
STATIC_ASSERT(FCA::kArgsLength == 6);
STATIC_ASSERT(FCA::kNewTargetIndex == 5);
STATIC_ASSERT(FCA::kDataIndex == 4);
STATIC_ASSERT(FCA::kReturnValueOffset == 3);
STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
STATIC_ASSERT(FCA::kIsolateIndex == 1);
STATIC_ASSERT(FCA::kHolderIndex == 0);
// Set up FunctionCallbackInfo's implicit_args on the stack as follows:
//
// Current state:
// esp[0]: return address
//
// Target state:
// esp[0 * kPointerSize]: return address
// esp[1 * kPointerSize]: kHolder
// esp[2 * kPointerSize]: kIsolate
// esp[3 * kPointerSize]: undefined (kReturnValueDefaultValue)
// esp[4 * kPointerSize]: undefined (kReturnValue)
// esp[5 * kPointerSize]: kData
// esp[6 * kPointerSize]: undefined (kNewTarget)
// Reserve space on the stack.
__ sub(esp, Immediate(FCA::kArgsLength * kPointerSize));
// Return address (the old stack location is overwritten later on).
__ mov(scratch, Operand(esp, FCA::kArgsLength * kPointerSize));
__ mov(Operand(esp, 0 * kPointerSize), scratch);
// kHolder.
__ mov(scratch, Operand(esp, argc, times_pointer_size,
FCA::kArgsLength * kPointerSize + kHolderOffset));
__ mov(Operand(esp, 1 * kPointerSize), scratch);
// kIsolate.
__ Move(scratch,
Immediate(ExternalReference::isolate_address(masm->isolate())));
__ mov(Operand(esp, 2 * kPointerSize), scratch);
// kReturnValueDefaultValue, kReturnValue, and kNewTarget.
__ LoadRoot(scratch, RootIndex::kUndefinedValue);
__ mov(Operand(esp, 3 * kPointerSize), scratch);
__ mov(Operand(esp, 4 * kPointerSize), scratch);
__ mov(Operand(esp, 6 * kPointerSize), scratch);
// kData.
__ mov(scratch, Operand(esp, argc, times_pointer_size,
FCA::kArgsLength * kPointerSize + kCallDataOffset));
__ mov(Operand(esp, 5 * kPointerSize), scratch);
// Keep a pointer to kHolder (= implicit_args) in a scratch register.
// We use it below to set up the FunctionCallbackInfo object.
__ lea(scratch, Operand(esp, 1 * kPointerSize));
// The API function takes a reference to v8::Arguments. If the CPU profiler
// is enabled, a wrapper function will be called and we need to pass
// the address of the callback as an additional parameter. Always allocate
// space for it.
static constexpr int kApiArgc = 1 + 1;
// Allocate the v8::Arguments structure in the arguments' space since
// it's not controlled by GC.
static constexpr int kApiStackSpace = 4;
PrepareCallApiFunction(masm, kApiArgc + kApiStackSpace, edi);
// FunctionCallbackInfo::implicit_args_ (points at kHolder as set up above).
__ mov(ApiParameterOperand(kApiArgc + 0), scratch);
// FunctionCallbackInfo::values_ (points at the first varargs argument passed
// on the stack).
__ lea(scratch, Operand(scratch, argc, times_pointer_size,
(FCA::kArgsLength - 1) * kPointerSize));
__ mov(ApiParameterOperand(kApiArgc + 1), scratch);
// FunctionCallbackInfo::length_.
__ mov(ApiParameterOperand(kApiArgc + 2), argc);
// We also store the number of bytes to drop from the stack after returning
// from the API function here.
__ lea(scratch,
Operand(argc, times_pointer_size,
(FCA::kArgsLength + kExtraStackArgumentCount) * kPointerSize));
__ mov(ApiParameterOperand(kApiArgc + 3), scratch);
// v8::InvocationCallback's argument.
__ lea(scratch, ApiParameterOperand(kApiArgc + 0));
__ mov(ApiParameterOperand(0), scratch);
ExternalReference thunk_ref = ExternalReference::invoke_function_callback();
// There are two stack slots above the arguments we constructed on the stack:
// the stored ebp (pushed by EnterApiExitFrame), and the return address.
static constexpr int kStackSlotsAboveFCA = 2;
Operand return_value_operand(
ebp, (kStackSlotsAboveFCA + FCA::kReturnValueOffset) * kPointerSize);
static constexpr int kUseStackSpaceOperand = 0;
Operand stack_space_operand = ApiParameterOperand(kApiArgc + 3);
CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
ApiParameterOperand(1), kUseStackSpaceOperand,
&stack_space_operand, return_value_operand);
}
void Builtins::Generate_CallApiGetter(MacroAssembler* masm) {
// Build v8::PropertyCallbackInfo::args_ array on the stack and push property
// name below the exit frame to make GC aware of them.
STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);
Register receiver = ApiGetterDescriptor::ReceiverRegister();
Register holder = ApiGetterDescriptor::HolderRegister();
Register callback = ApiGetterDescriptor::CallbackRegister();
Register scratch = edi;
DCHECK(!AreAliased(receiver, holder, callback, scratch));
__ pop(scratch); // Pop return address to extend the frame.
__ push(receiver);
__ push(FieldOperand(callback, AccessorInfo::kDataOffset));
__ PushRoot(RootIndex::kUndefinedValue); // ReturnValue
// ReturnValue default value
__ PushRoot(RootIndex::kUndefinedValue);
__ Push(Immediate(ExternalReference::isolate_address(masm->isolate())));
__ push(holder);
__ push(Immediate(Smi::zero())); // should_throw_on_error -> false
__ push(FieldOperand(callback, AccessorInfo::kNameOffset));
__ push(scratch); // Restore return address.
// v8::PropertyCallbackInfo::args_ array and name handle.
const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
// Allocate v8::PropertyCallbackInfo object, arguments for callback and
// space for optional callback address parameter (in case CPU profiler is
// active) in non-GCed stack space.
const int kApiArgc = 3 + 1;
PrepareCallApiFunction(masm, kApiArgc, scratch);
// Load address of v8::PropertyAccessorInfo::args_ array. The value in ebp
// here corresponds to esp + kPointersize before PrepareCallApiFunction.
__ lea(scratch, Operand(ebp, kPointerSize + 2 * kPointerSize));
// Create v8::PropertyCallbackInfo object on the stack and initialize
// it's args_ field.
Operand info_object = ApiParameterOperand(3);
__ mov(info_object, scratch);
// Name as handle.
__ sub(scratch, Immediate(kPointerSize));
__ mov(ApiParameterOperand(0), scratch);
// Arguments pointer.
__ lea(scratch, info_object);
__ mov(ApiParameterOperand(1), scratch);
// Reserve space for optional callback address parameter.
Operand thunk_last_arg = ApiParameterOperand(2);
ExternalReference thunk_ref =
ExternalReference::invoke_accessor_getter_callback();
__ mov(scratch, FieldOperand(callback, AccessorInfo::kJsGetterOffset));
Register function_address = edx;
__ mov(function_address,
FieldOperand(scratch, Foreign::kForeignAddressOffset));
// +3 is to skip prolog, return address and name handle.
Operand return_value_operand(
ebp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize);
Operand* const kUseStackSpaceConstant = nullptr;
CallApiFunctionAndReturn(masm, function_address, thunk_ref, thunk_last_arg,
kStackUnwindSpace, kUseStackSpaceConstant,
return_value_operand);
}
void Builtins::Generate_DirectCEntry(MacroAssembler* masm) {
__ int3(); // Unused on this architecture.
}
#undef __
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_IA32