blob: bfb833041d1ac9d09db7f7236a3479bed7406919 [file] [log] [blame]
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/assembler-inl.h"
#include "src/wasm/wasm-macro-gen.h"
#include "test/cctest/cctest.h"
#include "test/cctest/compiler/value-helper.h"
#include "test/cctest/wasm/wasm-run-utils.h"
using namespace v8::base;
using namespace v8::internal;
using namespace v8::internal::compiler;
using namespace v8::internal::wasm;
namespace {
typedef float (*FloatUnOp)(float);
typedef float (*FloatBinOp)(float, float);
typedef int32_t (*FloatCompareOp)(float, float);
typedef int32_t (*Int32UnOp)(int32_t);
typedef int32_t (*Int32BinOp)(int32_t, int32_t);
typedef int32_t (*Int32ShiftOp)(int32_t, int);
typedef int16_t (*Int16UnOp)(int16_t);
typedef int16_t (*Int16BinOp)(int16_t, int16_t);
typedef int16_t (*Int16ShiftOp)(int16_t, int);
typedef int8_t (*Int8UnOp)(int8_t);
typedef int8_t (*Int8BinOp)(int8_t, int8_t);
typedef int8_t (*Int8ShiftOp)(int8_t, int);
#if V8_TARGET_ARCH_ARM
// Floating point specific value functions, only used by ARM so far.
int32_t Equal(float a, float b) { return a == b ? 1 : 0; }
int32_t NotEqual(float a, float b) { return a != b ? 1 : 0; }
#endif // V8_TARGET_ARCH_ARM
// Generic expected value functions.
template <typename T>
T Negate(T a) {
return -a;
}
template <typename T>
T Add(T a, T b) {
return a + b;
}
template <typename T>
T Sub(T a, T b) {
return a - b;
}
template <typename T>
T Mul(T a, T b) {
return a * b;
}
template <typename T>
T Div(T a, T b) {
return a / b;
}
template <typename T>
T Minimum(T a, T b) {
return a <= b ? a : b;
}
template <typename T>
T Maximum(T a, T b) {
return a >= b ? a : b;
}
template <typename T>
T UnsignedMinimum(T a, T b) {
using UnsignedT = typename std::make_unsigned<T>::type;
return static_cast<UnsignedT>(a) <= static_cast<UnsignedT>(b) ? a : b;
}
template <typename T>
T UnsignedMaximum(T a, T b) {
using UnsignedT = typename std::make_unsigned<T>::type;
return static_cast<UnsignedT>(a) >= static_cast<UnsignedT>(b) ? a : b;
}
template <typename T>
T Equal(T a, T b) {
return a == b ? 1 : 0;
}
template <typename T>
T NotEqual(T a, T b) {
return a != b ? 1 : 0;
}
template <typename T>
T Greater(T a, T b) {
return a > b ? 1 : 0;
}
template <typename T>
T GreaterEqual(T a, T b) {
return a >= b ? 1 : 0;
}
template <typename T>
T Less(T a, T b) {
return a < b ? 1 : 0;
}
template <typename T>
T LessEqual(T a, T b) {
return a <= b ? 1 : 0;
}
template <typename T>
T UnsignedGreater(T a, T b) {
using UnsignedT = typename std::make_unsigned<T>::type;
return static_cast<UnsignedT>(a) > static_cast<UnsignedT>(b) ? 1 : 0;
}
template <typename T>
T UnsignedGreaterEqual(T a, T b) {
using UnsignedT = typename std::make_unsigned<T>::type;
return static_cast<UnsignedT>(a) >= static_cast<UnsignedT>(b) ? 1 : 0;
}
template <typename T>
T UnsignedLess(T a, T b) {
using UnsignedT = typename std::make_unsigned<T>::type;
return static_cast<UnsignedT>(a) < static_cast<UnsignedT>(b) ? 1 : 0;
}
template <typename T>
T UnsignedLessEqual(T a, T b) {
using UnsignedT = typename std::make_unsigned<T>::type;
return static_cast<UnsignedT>(a) <= static_cast<UnsignedT>(b) ? 1 : 0;
}
template <typename T>
T LogicalShiftLeft(T a, int shift) {
return a << shift;
}
template <typename T>
T LogicalShiftRight(T a, int shift) {
using UnsignedT = typename std::make_unsigned<T>::type;
return static_cast<UnsignedT>(a) >> shift;
}
template <typename T>
int64_t Widen(T value) {
static_assert(sizeof(int64_t) > sizeof(T), "T must be int32_t or smaller");
return static_cast<int64_t>(value);
}
template <typename T>
int64_t UnsignedWiden(T value) {
static_assert(sizeof(int64_t) > sizeof(T), "T must be int32_t or smaller");
using UnsignedT = typename std::make_unsigned<T>::type;
return static_cast<int64_t>(static_cast<UnsignedT>(value));
}
template <typename T>
T Clamp(int64_t value) {
static_assert(sizeof(int64_t) > sizeof(T), "T must be int32_t or smaller");
int64_t min = static_cast<int64_t>(std::numeric_limits<T>::min());
int64_t max = static_cast<int64_t>(std::numeric_limits<T>::max());
int64_t clamped = std::max(min, std::min(max, value));
return static_cast<T>(clamped);
}
template <typename T>
T AddSaturate(T a, T b) {
return Clamp<T>(Widen(a) + Widen(b));
}
template <typename T>
T SubSaturate(T a, T b) {
return Clamp<T>(Widen(a) - Widen(b));
}
template <typename T>
T UnsignedAddSaturate(T a, T b) {
using UnsignedT = typename std::make_unsigned<T>::type;
return Clamp<UnsignedT>(UnsignedWiden(a) + UnsignedWiden(b));
}
template <typename T>
T UnsignedSubSaturate(T a, T b) {
using UnsignedT = typename std::make_unsigned<T>::type;
return Clamp<UnsignedT>(UnsignedWiden(a) - UnsignedWiden(b));
}
template <typename T>
T And(T a, T b) {
return a & b;
}
template <typename T>
T Or(T a, T b) {
return a | b;
}
template <typename T>
T Xor(T a, T b) {
return a ^ b;
}
template <typename T>
T Not(T a) {
return ~a;
}
template <typename T>
T Sqrt(T a) {
return std::sqrt(a);
}
} // namespace
#if !V8_TARGET_ARCH_ARM && !V8_TARGET_ARCH_X64
#define SIMD_LOWERING_TARGET 1
#else
#define SIMD_LOWERING_TARGET 0
#endif // !V8_TARGET_ARCH_ARM && !V8_TARGET_ARCH_X64
// TODO(gdeepti): These are tests using sample values to verify functional
// correctness of opcodes, add more tests for a range of values and macroize
// tests.
// TODO(bbudge) Figure out how to compare floats in Wasm code that can handle
// NaNs. For now, our tests avoid using NaNs.
#define WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lane_value, lane_index) \
WASM_IF(WASM_##LANE_TYPE##_NE(WASM_GET_LOCAL(lane_value), \
WASM_SIMD_##TYPE##_EXTRACT_LANE( \
lane_index, WASM_GET_LOCAL(value))), \
WASM_RETURN1(WASM_ZERO))
#define WASM_SIMD_CHECK4(TYPE, value, LANE_TYPE, lv0, lv1, lv2, lv3) \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv0, 0) \
, WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv1, 1), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv2, 2), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv3, 3)
#define WASM_SIMD_CHECK_SPLAT4(TYPE, value, LANE_TYPE, lv) \
WASM_SIMD_CHECK4(TYPE, value, LANE_TYPE, lv, lv, lv, lv)
#define WASM_SIMD_CHECK8(TYPE, value, LANE_TYPE, lv0, lv1, lv2, lv3, lv4, lv5, \
lv6, lv7) \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv0, 0) \
, WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv1, 1), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv2, 2), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv3, 3), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv4, 4), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv5, 5), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv6, 6), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv7, 7)
#define WASM_SIMD_CHECK_SPLAT8(TYPE, value, LANE_TYPE, lv) \
WASM_SIMD_CHECK8(TYPE, value, LANE_TYPE, lv, lv, lv, lv, lv, lv, lv, lv)
#define WASM_SIMD_CHECK16(TYPE, value, LANE_TYPE, lv0, lv1, lv2, lv3, lv4, \
lv5, lv6, lv7, lv8, lv9, lv10, lv11, lv12, lv13, \
lv14, lv15) \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv0, 0) \
, WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv1, 1), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv2, 2), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv3, 3), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv4, 4), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv5, 5), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv6, 6), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv7, 7), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv8, 8), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv9, 9), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv10, 10), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv11, 11), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv12, 12), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv13, 13), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv14, 14), \
WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv15, 15)
#define WASM_SIMD_CHECK_SPLAT16(TYPE, value, LANE_TYPE, lv) \
WASM_SIMD_CHECK16(TYPE, value, LANE_TYPE, lv, lv, lv, lv, lv, lv, lv, lv, \
lv, lv, lv, lv, lv, lv, lv, lv)
#define WASM_SIMD_CHECK_F32_LANE(TYPE, value, lane_value, lane_index) \
WASM_IF( \
WASM_I32_NE(WASM_I32_REINTERPRET_F32(WASM_GET_LOCAL(lane_value)), \
WASM_I32_REINTERPRET_F32(WASM_SIMD_##TYPE##_EXTRACT_LANE( \
lane_index, WASM_GET_LOCAL(value)))), \
WASM_RETURN1(WASM_ZERO))
#define WASM_SIMD_CHECK4_F32(TYPE, value, lv0, lv1, lv2, lv3) \
WASM_SIMD_CHECK_F32_LANE(TYPE, value, lv0, 0) \
, WASM_SIMD_CHECK_F32_LANE(TYPE, value, lv1, 1), \
WASM_SIMD_CHECK_F32_LANE(TYPE, value, lv2, 2), \
WASM_SIMD_CHECK_F32_LANE(TYPE, value, lv3, 3)
#define WASM_SIMD_CHECK_SPLAT4_F32(TYPE, value, lv) \
WASM_SIMD_CHECK4_F32(TYPE, value, lv, lv, lv, lv)
#define TO_BYTE(val) static_cast<byte>(val)
#define WASM_SIMD_OP(op) kSimdPrefix, TO_BYTE(op)
#define WASM_SIMD_SPLAT(Type, x) x, WASM_SIMD_OP(kExpr##Type##Splat)
#define WASM_SIMD_UNOP(op, x) x, WASM_SIMD_OP(op)
#define WASM_SIMD_BINOP(op, x, y) x, y, WASM_SIMD_OP(op)
#define WASM_SIMD_SHIFT_OP(op, shift, x) x, WASM_SIMD_OP(op), TO_BYTE(shift)
#define WASM_SIMD_SELECT(format, x, y, z) \
x, y, z, WASM_SIMD_OP(kExprS##format##Select)
// Since boolean vectors can't be checked directly, materialize them into
// integer vectors using a Select operation.
#define WASM_SIMD_MATERIALIZE_BOOLS(format, x) \
x, WASM_SIMD_I##format##_SPLAT(WASM_ONE), \
WASM_SIMD_I##format##_SPLAT(WASM_ZERO), \
WASM_SIMD_OP(kExprS##format##Select)
#define WASM_SIMD_F32x4_SPLAT(x) x, WASM_SIMD_OP(kExprF32x4Splat)
#define WASM_SIMD_F32x4_EXTRACT_LANE(lane, x) \
x, WASM_SIMD_OP(kExprF32x4ExtractLane), TO_BYTE(lane)
#define WASM_SIMD_F32x4_REPLACE_LANE(lane, x, y) \
x, y, WASM_SIMD_OP(kExprF32x4ReplaceLane), TO_BYTE(lane)
#define WASM_SIMD_I32x4_SPLAT(x) x, WASM_SIMD_OP(kExprI32x4Splat)
#define WASM_SIMD_I32x4_EXTRACT_LANE(lane, x) \
x, WASM_SIMD_OP(kExprI32x4ExtractLane), TO_BYTE(lane)
#define WASM_SIMD_I32x4_REPLACE_LANE(lane, x, y) \
x, y, WASM_SIMD_OP(kExprI32x4ReplaceLane), TO_BYTE(lane)
#define WASM_SIMD_I16x8_SPLAT(x) x, WASM_SIMD_OP(kExprI16x8Splat)
#define WASM_SIMD_I16x8_EXTRACT_LANE(lane, x) \
x, WASM_SIMD_OP(kExprI16x8ExtractLane), TO_BYTE(lane)
#define WASM_SIMD_I16x8_REPLACE_LANE(lane, x, y) \
x, y, WASM_SIMD_OP(kExprI16x8ReplaceLane), TO_BYTE(lane)
#define WASM_SIMD_I8x16_SPLAT(x) x, WASM_SIMD_OP(kExprI8x16Splat)
#define WASM_SIMD_I8x16_EXTRACT_LANE(lane, x) \
x, WASM_SIMD_OP(kExprI8x16ExtractLane), TO_BYTE(lane)
#define WASM_SIMD_I8x16_REPLACE_LANE(lane, x, y) \
x, y, WASM_SIMD_OP(kExprI8x16ReplaceLane), TO_BYTE(lane)
#define WASM_SIMD_F32x4_FROM_I32x4(x) x, WASM_SIMD_OP(kExprF32x4SConvertI32x4)
#define WASM_SIMD_F32x4_FROM_U32x4(x) x, WASM_SIMD_OP(kExprF32x4UConvertI32x4)
#define WASM_SIMD_I32x4_FROM_F32x4(x) x, WASM_SIMD_OP(kExprI32x4SConvertF32x4)
#define WASM_SIMD_U32x4_FROM_F32x4(x) x, WASM_SIMD_OP(kExprI32x4UConvertF32x4)
#if V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET
WASM_EXEC_COMPILED_TEST(F32x4Splat) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, float> r(kExecuteCompiled);
byte lane_val = 0;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r,
WASM_SET_LOCAL(simd, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(lane_val))),
WASM_SIMD_CHECK_SPLAT4_F32(F32x4, simd, lane_val), WASM_ONE);
FOR_FLOAT32_INPUTS(i) { CHECK_EQ(1, r.Call(*i)); }
}
WASM_EXEC_COMPILED_TEST(F32x4ReplaceLane) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, float, float> r(kExecuteCompiled);
byte old_val = 0;
byte new_val = 1;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(old_val))),
WASM_SET_LOCAL(simd,
WASM_SIMD_F32x4_REPLACE_LANE(0, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK4(F32x4, simd, F32, new_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_F32x4_REPLACE_LANE(1, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK4(F32x4, simd, F32, new_val, new_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_F32x4_REPLACE_LANE(2, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK4(F32x4, simd, F32, new_val, new_val, new_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_F32x4_REPLACE_LANE(3, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK_SPLAT4(F32x4, simd, F32, new_val), WASM_ONE);
CHECK_EQ(1, r.Call(3.14159f, -1.5f));
}
// Tests both signed and unsigned conversion.
WASM_EXEC_COMPILED_TEST(F32x4FromInt32x4) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, float, float> r(kExecuteCompiled);
byte a = 0;
byte expected_signed = 1;
byte expected_unsigned = 2;
byte simd0 = r.AllocateLocal(kWasmS128);
byte simd1 = r.AllocateLocal(kWasmS128);
byte simd2 = r.AllocateLocal(kWasmS128);
BUILD(
r, WASM_SET_LOCAL(simd0, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(simd1, WASM_SIMD_F32x4_FROM_I32x4(WASM_GET_LOCAL(simd0))),
WASM_SIMD_CHECK_SPLAT4_F32(F32x4, simd1, expected_signed),
WASM_SET_LOCAL(simd2, WASM_SIMD_F32x4_FROM_U32x4(WASM_GET_LOCAL(simd0))),
WASM_SIMD_CHECK_SPLAT4_F32(F32x4, simd2, expected_unsigned), WASM_ONE);
FOR_INT32_INPUTS(i) {
CHECK_EQ(1, r.Call(*i, static_cast<float>(*i),
static_cast<float>(static_cast<uint32_t>(*i))));
}
}
void RunF32x4UnOpTest(WasmOpcode simd_op, FloatUnOp expected_op) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, float, float> r(kExecuteCompiled);
byte a = 0;
byte expected = 1;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(simd, WASM_SIMD_UNOP(simd_op, WASM_GET_LOCAL(simd))),
WASM_SIMD_CHECK_SPLAT4_F32(F32x4, simd, expected), WASM_ONE);
FOR_FLOAT32_INPUTS(i) {
if (std::isnan(*i)) continue;
if (std::isnan(expected_op(*i))) continue;
CHECK_EQ(1, r.Call(*i, expected_op(*i)));
}
}
WASM_EXEC_COMPILED_TEST(F32x4Abs) { RunF32x4UnOpTest(kExprF32x4Abs, std::abs); }
WASM_EXEC_COMPILED_TEST(F32x4Neg) { RunF32x4UnOpTest(kExprF32x4Neg, Negate); }
#endif // V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET
#if SIMD_LOWERING_TARGET
WASM_EXEC_COMPILED_TEST(F32x4Sqrt) { RunF32x4UnOpTest(kExprF32x4Sqrt, Sqrt); }
#endif // SIMD_LOWERING_TARGET
#if V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET
void RunF32x4BinOpTest(WasmOpcode simd_op, FloatBinOp expected_op,
bool skip_zero_inputs = false) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, float, float, float> r(kExecuteCompiled);
byte a = 0;
byte b = 1;
byte expected = 2;
byte simd0 = r.AllocateLocal(kWasmS128);
byte simd1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd0, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(simd1, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(b))),
WASM_SET_LOCAL(simd1, WASM_SIMD_BINOP(simd_op, WASM_GET_LOCAL(simd0),
WASM_GET_LOCAL(simd1))),
WASM_SIMD_CHECK_SPLAT4_F32(F32x4, simd1, expected), WASM_ONE);
FOR_FLOAT32_INPUTS(i) {
if (std::isnan(*i)) continue;
FOR_FLOAT32_INPUTS(j) {
if (std::isnan(*j)) continue;
if (skip_zero_inputs && std::fpclassify(*i) == FP_ZERO &&
std::fpclassify(*j) == FP_ZERO)
continue;
float expected = expected_op(*i, *j);
// SIMD on some platforms may handle denormalized numbers differently.
// TODO(bbudge) On platforms that flush denorms to zero, test with
// expected == 0.
if (std::fpclassify(expected) == FP_SUBNORMAL) continue;
if (std::isnan(expected)) continue;
CHECK_EQ(1, r.Call(*i, *j, expected));
}
}
}
WASM_EXEC_COMPILED_TEST(F32x4Add) { RunF32x4BinOpTest(kExprF32x4Add, Add); }
WASM_EXEC_COMPILED_TEST(F32x4Sub) { RunF32x4BinOpTest(kExprF32x4Sub, Sub); }
#endif // V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET
#if SIMD_LOWERING_TARGET
WASM_EXEC_COMPILED_TEST(F32x4Mul) { RunF32x4BinOpTest(kExprF32x4Mul, Mul); }
WASM_EXEC_COMPILED_TEST(F32x4Div) { RunF32x4BinOpTest(kExprF32x4Div, Div); }
WASM_EXEC_COMPILED_TEST(Simd_F32x4_Min) {
RunF32x4BinOpTest(kExprF32x4Min, Minimum, true);
}
WASM_EXEC_COMPILED_TEST(Simd_F32x4_Max) {
RunF32x4BinOpTest(kExprF32x4Max, Maximum, true);
}
#endif // SIMD_LOWERING_TARGET
#if V8_TARGET_ARCH_ARM
void RunF32x4CompareOpTest(WasmOpcode simd_op, FloatCompareOp expected_op) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, float, float, int32_t> r(kExecuteCompiled);
byte a = 0;
byte b = 1;
byte expected = 2;
byte simd0 = r.AllocateLocal(kWasmS128);
byte simd1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd0, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(simd1, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(b))),
WASM_SET_LOCAL(simd1,
WASM_SIMD_MATERIALIZE_BOOLS(
32x4, WASM_SIMD_BINOP(simd_op, WASM_GET_LOCAL(simd0),
WASM_GET_LOCAL(simd1)))),
WASM_SIMD_CHECK_SPLAT4(I32x4, simd1, I32, expected), WASM_ONE);
FOR_FLOAT32_INPUTS(i) {
if (std::isnan(*i)) continue;
FOR_FLOAT32_INPUTS(j) {
if (std::isnan(*j)) continue;
// SIMD on some platforms may handle denormalized numbers differently.
// Check for number pairs that are very close together.
if (std::fpclassify(*i - *j) == FP_SUBNORMAL) continue;
CHECK_EQ(1, r.Call(*i, *j, expected_op(*i, *j)));
}
}
}
WASM_EXEC_COMPILED_TEST(F32x4Equal) {
RunF32x4CompareOpTest(kExprF32x4Eq, Equal);
}
WASM_EXEC_COMPILED_TEST(F32x4NotEqual) {
RunF32x4CompareOpTest(kExprF32x4Ne, NotEqual);
}
#endif // V8_TARGET_ARCH_ARM
WASM_EXEC_COMPILED_TEST(I32x4Splat) {
FLAG_wasm_simd_prototype = true;
// Store SIMD value in a local variable, use extract lane to check lane values
// This test is not a test for ExtractLane as Splat does not create
// interesting SIMD values.
//
// SetLocal(1, I32x4Splat(Local(0)));
// For each lane index
// if(Local(0) != I32x4ExtractLane(Local(1), index)
// return 0
//
// return 1
WasmRunner<int32_t, int32_t> r(kExecuteCompiled);
byte lane_val = 0;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r,
WASM_SET_LOCAL(simd, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(lane_val))),
WASM_SIMD_CHECK_SPLAT4(I32x4, simd, I32, lane_val), WASM_ONE);
FOR_INT32_INPUTS(i) { CHECK_EQ(1, r.Call(*i)); }
}
WASM_EXEC_COMPILED_TEST(I32x4ReplaceLane) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte old_val = 0;
byte new_val = 1;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(old_val))),
WASM_SET_LOCAL(simd,
WASM_SIMD_I32x4_REPLACE_LANE(0, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK4(I32x4, simd, I32, new_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I32x4_REPLACE_LANE(1, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK4(I32x4, simd, I32, new_val, new_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I32x4_REPLACE_LANE(2, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK4(I32x4, simd, I32, new_val, new_val, new_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I32x4_REPLACE_LANE(3, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK_SPLAT4(I32x4, simd, I32, new_val), WASM_ONE);
CHECK_EQ(1, r.Call(1, 2));
}
#if V8_TARGET_ARCH_ARM
WASM_EXEC_COMPILED_TEST(I16x8Splat) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t> r(kExecuteCompiled);
byte lane_val = 0;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r,
WASM_SET_LOCAL(simd, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(lane_val))),
WASM_SIMD_CHECK_SPLAT8(I16x8, simd, I32, lane_val), WASM_ONE);
FOR_INT16_INPUTS(i) { CHECK_EQ(1, r.Call(*i)); }
}
WASM_EXEC_COMPILED_TEST(I16x8ReplaceLane) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte old_val = 0;
byte new_val = 1;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(old_val))),
WASM_SET_LOCAL(simd,
WASM_SIMD_I16x8_REPLACE_LANE(0, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK8(I16x8, simd, I32, new_val, old_val, old_val, old_val,
old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I16x8_REPLACE_LANE(1, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK8(I16x8, simd, I32, new_val, new_val, old_val, old_val,
old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I16x8_REPLACE_LANE(2, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK8(I16x8, simd, I32, new_val, new_val, new_val, old_val,
old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I16x8_REPLACE_LANE(3, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK8(I16x8, simd, I32, new_val, new_val, new_val, new_val,
old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I16x8_REPLACE_LANE(4, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK8(I16x8, simd, I32, new_val, new_val, new_val, new_val,
new_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I16x8_REPLACE_LANE(5, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK8(I16x8, simd, I32, new_val, new_val, new_val, new_val,
new_val, new_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I16x8_REPLACE_LANE(6, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK8(I16x8, simd, I32, new_val, new_val, new_val, new_val,
new_val, new_val, new_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I16x8_REPLACE_LANE(7, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK_SPLAT8(I16x8, simd, I32, new_val), WASM_ONE);
CHECK_EQ(1, r.Call(1, 2));
}
WASM_EXEC_COMPILED_TEST(I8x16Splat) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t> r(kExecuteCompiled);
byte lane_val = 0;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r,
WASM_SET_LOCAL(simd, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(lane_val))),
WASM_SIMD_CHECK_SPLAT8(I8x16, simd, I32, lane_val), WASM_ONE);
FOR_INT8_INPUTS(i) { CHECK_EQ(1, r.Call(*i)); }
}
WASM_EXEC_COMPILED_TEST(I8x16ReplaceLane) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte old_val = 0;
byte new_val = 1;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(old_val))),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(0, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, old_val, old_val, old_val,
old_val, old_val, old_val, old_val, old_val, old_val,
old_val, old_val, old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(1, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, old_val, old_val,
old_val, old_val, old_val, old_val, old_val, old_val,
old_val, old_val, old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(2, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, old_val,
old_val, old_val, old_val, old_val, old_val, old_val,
old_val, old_val, old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(3, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val,
old_val, old_val, old_val, old_val, old_val, old_val,
old_val, old_val, old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(4, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val,
new_val, old_val, old_val, old_val, old_val, old_val,
old_val, old_val, old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(5, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val,
new_val, new_val, old_val, old_val, old_val, old_val,
old_val, old_val, old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(6, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val,
new_val, new_val, new_val, old_val, old_val, old_val,
old_val, old_val, old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(7, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val,
new_val, new_val, new_val, new_val, old_val, old_val,
old_val, old_val, old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(8, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val,
new_val, new_val, new_val, new_val, new_val, old_val,
old_val, old_val, old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(9, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val,
new_val, new_val, new_val, new_val, new_val, new_val,
old_val, old_val, old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(10, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val,
new_val, new_val, new_val, new_val, new_val, new_val,
new_val, old_val, old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(11, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val,
new_val, new_val, new_val, new_val, new_val, new_val,
new_val, new_val, old_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(12, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val,
new_val, new_val, new_val, new_val, new_val, new_val,
new_val, new_val, new_val, old_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(13, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val,
new_val, new_val, new_val, new_val, new_val, new_val,
new_val, new_val, new_val, new_val, old_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(14, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val,
new_val, new_val, new_val, new_val, new_val, new_val,
new_val, new_val, new_val, new_val, new_val, old_val),
WASM_SET_LOCAL(simd,
WASM_SIMD_I8x16_REPLACE_LANE(15, WASM_GET_LOCAL(simd),
WASM_GET_LOCAL(new_val))),
WASM_SIMD_CHECK_SPLAT16(I8x16, simd, I32, new_val), WASM_ONE);
CHECK_EQ(1, r.Call(1, 2));
}
#endif // V8_TARGET_ARCH_ARM
#if V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET
// Determines if conversion from float to int will be valid.
bool CanRoundToZeroAndConvert(double val, bool unsigned_integer) {
const double max_uint = static_cast<double>(0xffffffffu);
const double max_int = static_cast<double>(kMaxInt);
const double min_int = static_cast<double>(kMinInt);
// Check for NaN.
if (val != val) {
return false;
}
// Round to zero and check for overflow. This code works because 32 bit
// integers can be exactly represented by ieee-754 64bit floating-point
// values.
return unsigned_integer ? (val < (max_uint + 1.0)) && (val > -1)
: (val < (max_int + 1.0)) && (val > (min_int - 1.0));
}
int ConvertInvalidValue(double val, bool unsigned_integer) {
if (val != val) {
return 0;
} else {
if (unsigned_integer) {
return (val < 0) ? 0 : 0xffffffffu;
} else {
return (val < 0) ? kMinInt : kMaxInt;
}
}
}
int32_t ConvertToInt(double val, bool unsigned_integer) {
int32_t result =
unsigned_integer ? static_cast<uint32_t>(val) : static_cast<int32_t>(val);
if (!CanRoundToZeroAndConvert(val, unsigned_integer)) {
result = ConvertInvalidValue(val, unsigned_integer);
}
return result;
}
// Tests both signed and unsigned conversion.
WASM_EXEC_COMPILED_TEST(I32x4FromFloat32x4) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, float, int32_t, int32_t> r(kExecuteCompiled);
byte a = 0;
byte expected_signed = 1;
byte expected_unsigned = 2;
byte simd0 = r.AllocateLocal(kWasmS128);
byte simd1 = r.AllocateLocal(kWasmS128);
byte simd2 = r.AllocateLocal(kWasmS128);
BUILD(
r, WASM_SET_LOCAL(simd0, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(simd1, WASM_SIMD_I32x4_FROM_F32x4(WASM_GET_LOCAL(simd0))),
WASM_SIMD_CHECK_SPLAT4(I32x4, simd1, I32, expected_signed),
WASM_SET_LOCAL(simd2, WASM_SIMD_U32x4_FROM_F32x4(WASM_GET_LOCAL(simd0))),
WASM_SIMD_CHECK_SPLAT4(I32x4, simd2, I32, expected_unsigned), WASM_ONE);
FOR_FLOAT32_INPUTS(i) {
int32_t signed_value = ConvertToInt(*i, false);
int32_t unsigned_value = ConvertToInt(*i, true);
CHECK_EQ(1, r.Call(*i, signed_value, unsigned_value));
}
}
void RunI32x4UnOpTest(WasmOpcode simd_op, Int32UnOp expected_op) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte a = 0;
byte expected = 1;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(simd, WASM_SIMD_UNOP(simd_op, WASM_GET_LOCAL(simd))),
WASM_SIMD_CHECK_SPLAT4(I32x4, simd, I32, expected), WASM_ONE);
FOR_INT32_INPUTS(i) { CHECK_EQ(1, r.Call(*i, expected_op(*i))); }
}
WASM_EXEC_COMPILED_TEST(I32x4Neg) { RunI32x4UnOpTest(kExprI32x4Neg, Negate); }
WASM_EXEC_COMPILED_TEST(S128Not) { RunI32x4UnOpTest(kExprS128Not, Not); }
#endif // V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET
void RunI32x4BinOpTest(WasmOpcode simd_op, Int32BinOp expected_op) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte a = 0;
byte b = 1;
byte expected = 2;
byte simd0 = r.AllocateLocal(kWasmS128);
byte simd1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd0, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(simd1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(b))),
WASM_SET_LOCAL(simd1, WASM_SIMD_BINOP(simd_op, WASM_GET_LOCAL(simd0),
WASM_GET_LOCAL(simd1))),
WASM_SIMD_CHECK_SPLAT4(I32x4, simd1, I32, expected), WASM_ONE);
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) { CHECK_EQ(1, r.Call(*i, *j, expected_op(*i, *j))); }
}
}
WASM_EXEC_COMPILED_TEST(I32x4Add) { RunI32x4BinOpTest(kExprI32x4Add, Add); }
WASM_EXEC_COMPILED_TEST(I32x4Sub) { RunI32x4BinOpTest(kExprI32x4Sub, Sub); }
#if V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET
WASM_EXEC_COMPILED_TEST(I32x4Mul) { RunI32x4BinOpTest(kExprI32x4Mul, Mul); }
WASM_EXEC_COMPILED_TEST(S128And) { RunI32x4BinOpTest(kExprS128And, And); }
WASM_EXEC_COMPILED_TEST(S128Or) { RunI32x4BinOpTest(kExprS128Or, Or); }
WASM_EXEC_COMPILED_TEST(S128Xor) { RunI32x4BinOpTest(kExprS128Xor, Xor); }
WASM_EXEC_COMPILED_TEST(I32x4Min) {
RunI32x4BinOpTest(kExprI32x4MinS, Minimum);
}
WASM_EXEC_COMPILED_TEST(I32x4Max) {
RunI32x4BinOpTest(kExprI32x4MaxS, Maximum);
}
WASM_EXEC_COMPILED_TEST(Ui32x4Min) {
RunI32x4BinOpTest(kExprI32x4MinU, UnsignedMinimum);
}
WASM_EXEC_COMPILED_TEST(Ui32x4Max) {
RunI32x4BinOpTest(kExprI32x4MaxU, UnsignedMaximum);
}
#endif // V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET
#if V8_TARGET_ARCH_ARM
void RunI32x4CompareOpTest(WasmOpcode simd_op, Int32BinOp expected_op) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte a = 0;
byte b = 1;
byte expected = 2;
byte simd0 = r.AllocateLocal(kWasmS128);
byte simd1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd0, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(simd1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(b))),
WASM_SET_LOCAL(simd1,
WASM_SIMD_MATERIALIZE_BOOLS(
32x4, WASM_SIMD_BINOP(simd_op, WASM_GET_LOCAL(simd0),
WASM_GET_LOCAL(simd1)))),
WASM_SIMD_CHECK_SPLAT4(I32x4, simd1, I32, expected), WASM_ONE);
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) { CHECK_EQ(1, r.Call(*i, *j, expected_op(*i, *j))); }
}
}
WASM_EXEC_COMPILED_TEST(I32x4Equal) {
RunI32x4CompareOpTest(kExprI32x4Eq, Equal);
}
WASM_EXEC_COMPILED_TEST(I32x4NotEqual) {
RunI32x4CompareOpTest(kExprI32x4Ne, NotEqual);
}
WASM_EXEC_COMPILED_TEST(I32x4Greater) {
RunI32x4CompareOpTest(kExprI32x4GtS, Greater);
}
WASM_EXEC_COMPILED_TEST(I32x4GreaterEqual) {
RunI32x4CompareOpTest(kExprI32x4GeS, GreaterEqual);
}
WASM_EXEC_COMPILED_TEST(I32x4Less) {
RunI32x4CompareOpTest(kExprI32x4LtS, Less);
}
WASM_EXEC_COMPILED_TEST(I32x4LessEqual) {
RunI32x4CompareOpTest(kExprI32x4LeS, LessEqual);
}
WASM_EXEC_COMPILED_TEST(Ui32x4Greater) {
RunI32x4CompareOpTest(kExprI32x4GtU, UnsignedGreater);
}
WASM_EXEC_COMPILED_TEST(Ui32x4GreaterEqual) {
RunI32x4CompareOpTest(kExprI32x4GeU, UnsignedGreaterEqual);
}
WASM_EXEC_COMPILED_TEST(Ui32x4Less) {
RunI32x4CompareOpTest(kExprI32x4LtU, UnsignedLess);
}
WASM_EXEC_COMPILED_TEST(Ui32x4LessEqual) {
RunI32x4CompareOpTest(kExprI32x4LeU, UnsignedLessEqual);
}
#endif // V8_TARGET_ARCH_ARM
#if V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET
void RunI32x4ShiftOpTest(WasmOpcode simd_op, Int32ShiftOp expected_op,
int shift) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte a = 0;
byte expected = 1;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(
simd, WASM_SIMD_SHIFT_OP(simd_op, shift, WASM_GET_LOCAL(simd))),
WASM_SIMD_CHECK_SPLAT4(I32x4, simd, I32, expected), WASM_ONE);
FOR_INT32_INPUTS(i) { CHECK_EQ(1, r.Call(*i, expected_op(*i, shift))); }
}
WASM_EXEC_COMPILED_TEST(I32x4Shl) {
RunI32x4ShiftOpTest(kExprI32x4Shl, LogicalShiftLeft, 1);
}
WASM_EXEC_COMPILED_TEST(I32x4ShrS) {
RunI32x4ShiftOpTest(kExprI32x4ShrS, ArithmeticShiftRight, 1);
}
WASM_EXEC_COMPILED_TEST(I32x4ShrU) {
RunI32x4ShiftOpTest(kExprI32x4ShrU, LogicalShiftRight, 1);
}
#endif // V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET
#if V8_TARGET_ARCH_ARM
void RunI16x8UnOpTest(WasmOpcode simd_op, Int16UnOp expected_op) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte a = 0;
byte expected = 1;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(simd, WASM_SIMD_UNOP(simd_op, WASM_GET_LOCAL(simd))),
WASM_SIMD_CHECK_SPLAT8(I16x8, simd, I32, expected), WASM_ONE);
FOR_INT16_INPUTS(i) { CHECK_EQ(1, r.Call(*i, expected_op(*i))); }
}
WASM_EXEC_COMPILED_TEST(I16x8Neg) { RunI16x8UnOpTest(kExprI16x8Neg, Negate); }
void RunI16x8BinOpTest(WasmOpcode simd_op, Int16BinOp expected_op) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte a = 0;
byte b = 1;
byte expected = 2;
byte simd0 = r.AllocateLocal(kWasmS128);
byte simd1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd0, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(simd1, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(b))),
WASM_SET_LOCAL(simd1, WASM_SIMD_BINOP(simd_op, WASM_GET_LOCAL(simd0),
WASM_GET_LOCAL(simd1))),
WASM_SIMD_CHECK_SPLAT8(I16x8, simd1, I32, expected), WASM_ONE);
FOR_INT16_INPUTS(i) {
FOR_INT16_INPUTS(j) { CHECK_EQ(1, r.Call(*i, *j, expected_op(*i, *j))); }
}
}
WASM_EXEC_COMPILED_TEST(I16x8Add) { RunI16x8BinOpTest(kExprI16x8Add, Add); }
WASM_EXEC_COMPILED_TEST(I16x8AddSaturate) {
RunI16x8BinOpTest(kExprI16x8AddSaturateS, AddSaturate);
}
WASM_EXEC_COMPILED_TEST(I16x8Sub) { RunI16x8BinOpTest(kExprI16x8Sub, Sub); }
WASM_EXEC_COMPILED_TEST(I16x8SubSaturate) {
RunI16x8BinOpTest(kExprI16x8SubSaturateS, SubSaturate);
}
WASM_EXEC_COMPILED_TEST(I16x8Mul) { RunI16x8BinOpTest(kExprI16x8Mul, Mul); }
WASM_EXEC_COMPILED_TEST(I16x8Min) {
RunI16x8BinOpTest(kExprI16x8MinS, Minimum);
}
WASM_EXEC_COMPILED_TEST(I16x8Max) {
RunI16x8BinOpTest(kExprI16x8MaxS, Maximum);
}
WASM_EXEC_COMPILED_TEST(Ui16x8AddSaturate) {
RunI16x8BinOpTest(kExprI16x8AddSaturateU, UnsignedAddSaturate);
}
WASM_EXEC_COMPILED_TEST(Ui16x8SubSaturate) {
RunI16x8BinOpTest(kExprI16x8SubSaturateU, UnsignedSubSaturate);
}
WASM_EXEC_COMPILED_TEST(Ui16x8Min) {
RunI16x8BinOpTest(kExprI16x8MinU, UnsignedMinimum);
}
WASM_EXEC_COMPILED_TEST(Ui16x8Max) {
RunI16x8BinOpTest(kExprI16x8MaxU, UnsignedMaximum);
}
void RunI16x8CompareOpTest(WasmOpcode simd_op, Int16BinOp expected_op) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte a = 0;
byte b = 1;
byte expected = 2;
byte simd0 = r.AllocateLocal(kWasmS128);
byte simd1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd0, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(simd1, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(b))),
WASM_SET_LOCAL(simd1,
WASM_SIMD_MATERIALIZE_BOOLS(
16x8, WASM_SIMD_BINOP(simd_op, WASM_GET_LOCAL(simd0),
WASM_GET_LOCAL(simd1)))),
WASM_SIMD_CHECK_SPLAT8(I16x8, simd1, I32, expected), WASM_ONE);
FOR_INT16_INPUTS(i) {
FOR_INT16_INPUTS(j) { CHECK_EQ(1, r.Call(*i, *j, expected_op(*i, *j))); }
}
}
WASM_EXEC_COMPILED_TEST(I16x8Equal) {
RunI16x8CompareOpTest(kExprI16x8Eq, Equal);
}
WASM_EXEC_COMPILED_TEST(I16x8NotEqual) {
RunI16x8CompareOpTest(kExprI16x8Ne, NotEqual);
}
WASM_EXEC_COMPILED_TEST(I16x8Greater) {
RunI16x8CompareOpTest(kExprI16x8GtS, Greater);
}
WASM_EXEC_COMPILED_TEST(I16x8GreaterEqual) {
RunI16x8CompareOpTest(kExprI16x8GeS, GreaterEqual);
}
WASM_EXEC_COMPILED_TEST(I16x8Less) {
RunI16x8CompareOpTest(kExprI16x8LtS, Less);
}
WASM_EXEC_COMPILED_TEST(I16x8LessEqual) {
RunI16x8CompareOpTest(kExprI16x8LeS, LessEqual);
}
WASM_EXEC_COMPILED_TEST(Ui16x8Greater) {
RunI16x8CompareOpTest(kExprI16x8GtU, UnsignedGreater);
}
WASM_EXEC_COMPILED_TEST(Ui16x8GreaterEqual) {
RunI16x8CompareOpTest(kExprI16x8GeU, UnsignedGreaterEqual);
}
WASM_EXEC_COMPILED_TEST(Ui16x8Less) {
RunI16x8CompareOpTest(kExprI16x8LtU, UnsignedLess);
}
WASM_EXEC_COMPILED_TEST(Ui16x8LessEqual) {
RunI16x8CompareOpTest(kExprI16x8LeU, UnsignedLessEqual);
}
void RunI16x8ShiftOpTest(WasmOpcode simd_op, Int16ShiftOp expected_op,
int shift) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte a = 0;
byte expected = 1;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(
simd, WASM_SIMD_SHIFT_OP(simd_op, shift, WASM_GET_LOCAL(simd))),
WASM_SIMD_CHECK_SPLAT8(I16x8, simd, I32, expected), WASM_ONE);
FOR_INT16_INPUTS(i) { CHECK_EQ(1, r.Call(*i, expected_op(*i, shift))); }
}
WASM_EXEC_COMPILED_TEST(I16x8Shl) {
RunI16x8ShiftOpTest(kExprI16x8Shl, LogicalShiftLeft, 1);
}
WASM_EXEC_COMPILED_TEST(I16x8ShrS) {
RunI16x8ShiftOpTest(kExprI16x8ShrS, ArithmeticShiftRight, 1);
}
WASM_EXEC_COMPILED_TEST(I16x8ShrU) {
RunI16x8ShiftOpTest(kExprI16x8ShrU, LogicalShiftRight, 1);
}
void RunI8x16UnOpTest(WasmOpcode simd_op, Int8UnOp expected_op) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte a = 0;
byte expected = 1;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(simd, WASM_SIMD_UNOP(simd_op, WASM_GET_LOCAL(simd))),
WASM_SIMD_CHECK_SPLAT16(I8x16, simd, I32, expected), WASM_ONE);
FOR_INT8_INPUTS(i) { CHECK_EQ(1, r.Call(*i, expected_op(*i))); }
}
WASM_EXEC_COMPILED_TEST(I8x16Neg) { RunI8x16UnOpTest(kExprI8x16Neg, Negate); }
void RunI8x16BinOpTest(WasmOpcode simd_op, Int8BinOp expected_op) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte a = 0;
byte b = 1;
byte expected = 2;
byte simd0 = r.AllocateLocal(kWasmS128);
byte simd1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd0, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(simd1, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(b))),
WASM_SET_LOCAL(simd1, WASM_SIMD_BINOP(simd_op, WASM_GET_LOCAL(simd0),
WASM_GET_LOCAL(simd1))),
WASM_SIMD_CHECK_SPLAT16(I8x16, simd1, I32, expected), WASM_ONE);
FOR_INT8_INPUTS(i) {
FOR_INT8_INPUTS(j) { CHECK_EQ(1, r.Call(*i, *j, expected_op(*i, *j))); }
}
}
WASM_EXEC_COMPILED_TEST(I8x16Add) { RunI8x16BinOpTest(kExprI8x16Add, Add); }
WASM_EXEC_COMPILED_TEST(I8x16AddSaturate) {
RunI8x16BinOpTest(kExprI8x16AddSaturateS, AddSaturate);
}
WASM_EXEC_COMPILED_TEST(I8x16Sub) { RunI8x16BinOpTest(kExprI8x16Sub, Sub); }
WASM_EXEC_COMPILED_TEST(I8x16SubSaturate) {
RunI8x16BinOpTest(kExprI8x16SubSaturateS, SubSaturate);
}
WASM_EXEC_COMPILED_TEST(I8x16Mul) { RunI8x16BinOpTest(kExprI8x16Mul, Mul); }
WASM_EXEC_COMPILED_TEST(I8x16Min) {
RunI8x16BinOpTest(kExprI8x16MinS, Minimum);
}
WASM_EXEC_COMPILED_TEST(I8x16Max) {
RunI8x16BinOpTest(kExprI8x16MaxS, Maximum);
}
WASM_EXEC_COMPILED_TEST(Ui8x16AddSaturate) {
RunI8x16BinOpTest(kExprI8x16AddSaturateU, UnsignedAddSaturate);
}
WASM_EXEC_COMPILED_TEST(Ui8x16SubSaturate) {
RunI8x16BinOpTest(kExprI8x16SubSaturateU, UnsignedSubSaturate);
}
WASM_EXEC_COMPILED_TEST(Ui8x16Min) {
RunI8x16BinOpTest(kExprI8x16MinU, UnsignedMinimum);
}
WASM_EXEC_COMPILED_TEST(Ui8x16Max) {
RunI8x16BinOpTest(kExprI8x16MaxU, UnsignedMaximum);
}
void RunI8x16CompareOpTest(WasmOpcode simd_op, Int8BinOp expected_op) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte a = 0;
byte b = 1;
byte expected = 2;
byte simd0 = r.AllocateLocal(kWasmS128);
byte simd1 = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd0, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(simd1, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(b))),
WASM_SET_LOCAL(simd1,
WASM_SIMD_MATERIALIZE_BOOLS(
8x16, WASM_SIMD_BINOP(simd_op, WASM_GET_LOCAL(simd0),
WASM_GET_LOCAL(simd1)))),
WASM_SIMD_CHECK_SPLAT16(I8x16, simd1, I32, expected), WASM_ONE);
FOR_INT8_INPUTS(i) {
FOR_INT8_INPUTS(j) { CHECK_EQ(1, r.Call(*i, *j, expected_op(*i, *j))); }
}
}
WASM_EXEC_COMPILED_TEST(I8x16Equal) {
RunI8x16CompareOpTest(kExprI8x16Eq, Equal);
}
WASM_EXEC_COMPILED_TEST(I8x16NotEqual) {
RunI8x16CompareOpTest(kExprI8x16Ne, NotEqual);
}
WASM_EXEC_COMPILED_TEST(I8x16Greater) {
RunI8x16CompareOpTest(kExprI8x16GtS, Greater);
}
WASM_EXEC_COMPILED_TEST(I8x16GreaterEqual) {
RunI8x16CompareOpTest(kExprI8x16GeS, GreaterEqual);
}
WASM_EXEC_COMPILED_TEST(I8x16Less) {
RunI8x16CompareOpTest(kExprI8x16LtS, Less);
}
WASM_EXEC_COMPILED_TEST(I8x16LessEqual) {
RunI8x16CompareOpTest(kExprI8x16LeS, LessEqual);
}
WASM_EXEC_COMPILED_TEST(Ui8x16Greater) {
RunI8x16CompareOpTest(kExprI8x16GtU, UnsignedGreater);
}
WASM_EXEC_COMPILED_TEST(Ui8x16GreaterEqual) {
RunI8x16CompareOpTest(kExprI8x16GeU, UnsignedGreaterEqual);
}
WASM_EXEC_COMPILED_TEST(Ui8x16Less) {
RunI8x16CompareOpTest(kExprI8x16LtU, UnsignedLess);
}
WASM_EXEC_COMPILED_TEST(Ui8x16LessEqual) {
RunI8x16CompareOpTest(kExprI8x16LeU, UnsignedLessEqual);
}
void RunI8x16ShiftOpTest(WasmOpcode simd_op, Int8ShiftOp expected_op,
int shift) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t, int32_t> r(kExecuteCompiled);
byte a = 0;
byte expected = 1;
byte simd = r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(a))),
WASM_SET_LOCAL(
simd, WASM_SIMD_SHIFT_OP(simd_op, shift, WASM_GET_LOCAL(simd))),
WASM_SIMD_CHECK_SPLAT16(I8x16, simd, I32, expected), WASM_ONE);
FOR_INT8_INPUTS(i) { CHECK_EQ(1, r.Call(*i, expected_op(*i, shift))); }
}
WASM_EXEC_COMPILED_TEST(I8x16Shl) {
RunI8x16ShiftOpTest(kExprI8x16Shl, LogicalShiftLeft, 1);
}
WASM_EXEC_COMPILED_TEST(I8x16ShrS) {
RunI8x16ShiftOpTest(kExprI8x16ShrS, ArithmeticShiftRight, 1);
}
WASM_EXEC_COMPILED_TEST(I8x16ShrU) {
RunI8x16ShiftOpTest(kExprI8x16ShrU, LogicalShiftRight, 1);
}
// Test Select by making a mask where the first two lanes are true and the rest
// false, and comparing for non-equality with zero to materialize a bool vector.
#define WASM_SIMD_SELECT_TEST(format) \
WASM_EXEC_COMPILED_TEST(S##format##Select) { \
FLAG_wasm_simd_prototype = true; \
WasmRunner<int32_t, int32_t, int32_t> r(kExecuteCompiled); \
byte val1 = 0; \
byte val2 = 1; \
byte src1 = r.AllocateLocal(kWasmS128); \
byte src2 = r.AllocateLocal(kWasmS128); \
byte zero = r.AllocateLocal(kWasmS128); \
byte mask = r.AllocateLocal(kWasmS128); \
BUILD(r, WASM_SET_LOCAL( \
src1, WASM_SIMD_I##format##_SPLAT(WASM_GET_LOCAL(val1))), \
WASM_SET_LOCAL(src2, \
WASM_SIMD_I##format##_SPLAT(WASM_GET_LOCAL(val2))), \
WASM_SET_LOCAL(zero, WASM_SIMD_I##format##_SPLAT(WASM_ZERO)), \
WASM_SET_LOCAL(mask, WASM_SIMD_I##format##_REPLACE_LANE( \
1, WASM_GET_LOCAL(zero), WASM_I32V(-1))), \
WASM_SET_LOCAL(mask, WASM_SIMD_I##format##_REPLACE_LANE( \
2, WASM_GET_LOCAL(mask), WASM_I32V(-1))), \
WASM_SET_LOCAL( \
mask, \
WASM_SIMD_SELECT(format, WASM_SIMD_BINOP(kExprI##format##Ne, \
WASM_GET_LOCAL(mask), \
WASM_GET_LOCAL(zero)), \
WASM_GET_LOCAL(src1), WASM_GET_LOCAL(src2))), \
WASM_SIMD_CHECK_LANE(I##format, mask, I32, val2, 0), \
WASM_SIMD_CHECK_LANE(I##format, mask, I32, val1, 1), \
WASM_SIMD_CHECK_LANE(I##format, mask, I32, val1, 2), \
WASM_SIMD_CHECK_LANE(I##format, mask, I32, val2, 3), WASM_ONE); \
\
CHECK_EQ(1, r.Call(0x12, 0x34)); \
}
WASM_SIMD_SELECT_TEST(32x4)
WASM_SIMD_SELECT_TEST(16x8)
WASM_SIMD_SELECT_TEST(8x16)
#endif // V8_TARGET_ARCH_ARM
#if SIMD_LOWERING_TARGET
WASM_EXEC_COMPILED_TEST(SimdI32x4ExtractWithF32x4) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t> r(kExecuteCompiled);
BUILD(r, WASM_IF_ELSE_I(
WASM_I32_EQ(WASM_SIMD_I32x4_EXTRACT_LANE(
0, WASM_SIMD_F32x4_SPLAT(WASM_F32(30.5))),
WASM_I32_REINTERPRET_F32(WASM_F32(30.5))),
WASM_I32V(1), WASM_I32V(0)));
FOR_INT32_INPUTS(i) { CHECK_EQ(1, r.Call()); }
}
WASM_EXEC_COMPILED_TEST(SimdF32x4ExtractWithI32x4) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t> r(kExecuteCompiled);
BUILD(r,
WASM_IF_ELSE_I(WASM_F32_EQ(WASM_SIMD_F32x4_EXTRACT_LANE(
0, WASM_SIMD_I32x4_SPLAT(WASM_I32V(15))),
WASM_F32_REINTERPRET_I32(WASM_I32V(15))),
WASM_I32V(1), WASM_I32V(0)));
FOR_INT32_INPUTS(i) { CHECK_EQ(1, r.Call()); }
}
WASM_EXEC_COMPILED_TEST(SimdF32x4AddWithI32x4) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t> r(kExecuteCompiled);
BUILD(r,
WASM_IF_ELSE_I(
WASM_F32_EQ(
WASM_SIMD_F32x4_EXTRACT_LANE(
0, WASM_SIMD_BINOP(kExprF32x4Add,
WASM_SIMD_I32x4_SPLAT(WASM_I32V(32)),
WASM_SIMD_I32x4_SPLAT(WASM_I32V(19)))),
WASM_F32_ADD(WASM_F32_REINTERPRET_I32(WASM_I32V(32)),
WASM_F32_REINTERPRET_I32(WASM_I32V(19)))),
WASM_I32V(1), WASM_I32V(0)));
FOR_INT32_INPUTS(i) { CHECK_EQ(1, r.Call()); }
}
WASM_EXEC_COMPILED_TEST(SimdI32x4AddWithF32x4) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t> r(kExecuteCompiled);
BUILD(r,
WASM_IF_ELSE_I(
WASM_I32_EQ(
WASM_SIMD_I32x4_EXTRACT_LANE(
0, WASM_SIMD_BINOP(kExprI32x4Add,
WASM_SIMD_F32x4_SPLAT(WASM_F32(21.25)),
WASM_SIMD_F32x4_SPLAT(WASM_F32(31.5)))),
WASM_I32_ADD(WASM_I32_REINTERPRET_F32(WASM_F32(21.25)),
WASM_I32_REINTERPRET_F32(WASM_F32(31.5)))),
WASM_I32V(1), WASM_I32V(0)));
FOR_INT32_INPUTS(i) { CHECK_EQ(1, r.Call()); }
}
#endif // SIMD_LOWERING_TARGET
#if V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET
WASM_EXEC_COMPILED_TEST(SimdI32x4Local) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t> r(kExecuteCompiled);
r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(0, WASM_SIMD_I32x4_SPLAT(WASM_I32V(31))),
WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_GET_LOCAL(0)));
FOR_INT32_INPUTS(i) { CHECK_EQ(31, r.Call()); }
}
WASM_EXEC_COMPILED_TEST(SimdI32x4SplatFromExtract) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t> r(kExecuteCompiled);
r.AllocateLocal(kWasmI32);
r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(0, WASM_SIMD_I32x4_EXTRACT_LANE(
0, WASM_SIMD_I32x4_SPLAT(WASM_I32V(76)))),
WASM_SET_LOCAL(1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(0))),
WASM_SIMD_I32x4_EXTRACT_LANE(1, WASM_GET_LOCAL(1)));
FOR_INT32_INPUTS(i) { CHECK_EQ(76, r.Call()); }
}
WASM_EXEC_COMPILED_TEST(SimdI32x4For) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t> r(kExecuteCompiled);
r.AllocateLocal(kWasmI32);
r.AllocateLocal(kWasmS128);
BUILD(r,
WASM_SET_LOCAL(1, WASM_SIMD_I32x4_SPLAT(WASM_I32V(31))),
WASM_SET_LOCAL(1, WASM_SIMD_I32x4_REPLACE_LANE(1, WASM_GET_LOCAL(1),
WASM_I32V(53))),
WASM_SET_LOCAL(1, WASM_SIMD_I32x4_REPLACE_LANE(2, WASM_GET_LOCAL(1),
WASM_I32V(23))),
WASM_SET_LOCAL(0, WASM_I32V(0)),
WASM_LOOP(
WASM_SET_LOCAL(
1, WASM_SIMD_BINOP(kExprI32x4Add, WASM_GET_LOCAL(1),
WASM_SIMD_I32x4_SPLAT(WASM_I32V(1)))),
WASM_IF(WASM_I32_NE(WASM_INC_LOCAL(0), WASM_I32V(5)), WASM_BR(1))),
WASM_SET_LOCAL(0, WASM_I32V(1)),
WASM_IF(WASM_I32_NE(WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_GET_LOCAL(1)),
WASM_I32V(36)),
WASM_SET_LOCAL(0, WASM_I32V(0))),
WASM_IF(WASM_I32_NE(WASM_SIMD_I32x4_EXTRACT_LANE(1, WASM_GET_LOCAL(1)),
WASM_I32V(58)),
WASM_SET_LOCAL(0, WASM_I32V(0))),
WASM_IF(WASM_I32_NE(WASM_SIMD_I32x4_EXTRACT_LANE(2, WASM_GET_LOCAL(1)),
WASM_I32V(28)),
WASM_SET_LOCAL(0, WASM_I32V(0))),
WASM_IF(WASM_I32_NE(WASM_SIMD_I32x4_EXTRACT_LANE(3, WASM_GET_LOCAL(1)),
WASM_I32V(36)),
WASM_SET_LOCAL(0, WASM_I32V(0))),
WASM_GET_LOCAL(0));
FOR_INT32_INPUTS(i) { CHECK_EQ(1, r.Call()); }
}
WASM_EXEC_COMPILED_TEST(SimdF32x4For) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t> r(kExecuteCompiled);
r.AllocateLocal(kWasmI32);
r.AllocateLocal(kWasmS128);
BUILD(r, WASM_SET_LOCAL(1, WASM_SIMD_F32x4_SPLAT(WASM_F32(21.25))),
WASM_SET_LOCAL(1, WASM_SIMD_F32x4_REPLACE_LANE(3, WASM_GET_LOCAL(1),
WASM_F32(19.5))),
WASM_SET_LOCAL(0, WASM_I32V(0)),
WASM_LOOP(
WASM_SET_LOCAL(
1, WASM_SIMD_BINOP(kExprF32x4Add, WASM_GET_LOCAL(1),
WASM_SIMD_F32x4_SPLAT(WASM_F32(2.0)))),
WASM_IF(WASM_I32_NE(WASM_INC_LOCAL(0), WASM_I32V(3)), WASM_BR(1))),
WASM_SET_LOCAL(0, WASM_I32V(1)),
WASM_IF(WASM_F32_NE(WASM_SIMD_F32x4_EXTRACT_LANE(0, WASM_GET_LOCAL(1)),
WASM_F32(27.25)),
WASM_SET_LOCAL(0, WASM_I32V(0))),
WASM_IF(WASM_F32_NE(WASM_SIMD_F32x4_EXTRACT_LANE(3, WASM_GET_LOCAL(1)),
WASM_F32(25.5)),
WASM_SET_LOCAL(0, WASM_I32V(0))),
WASM_GET_LOCAL(0));
FOR_INT32_INPUTS(i) { CHECK_EQ(1, r.Call()); }
}
#endif // V8_TARGET_ARCH_ARM || SIMD_LOWERING_TARGET
#if SIMD_LOWERING_TARGET
WASM_EXEC_COMPILED_TEST(SimdI32x4GetGlobal) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t> r(kExecuteCompiled);
int32_t* global = r.module().AddGlobal<int32_t>(kWasmS128);
*(global) = 0;
*(global + 1) = 1;
*(global + 2) = 2;
*(global + 3) = 3;
r.AllocateLocal(kWasmI32);
BUILD(
r, WASM_SET_LOCAL(1, WASM_I32V(1)),
WASM_IF(WASM_I32_NE(WASM_I32V(0),
WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_GET_GLOBAL(0))),
WASM_SET_LOCAL(1, WASM_I32V(0))),
WASM_IF(WASM_I32_NE(WASM_I32V(1),
WASM_SIMD_I32x4_EXTRACT_LANE(1, WASM_GET_GLOBAL(0))),
WASM_SET_LOCAL(1, WASM_I32V(0))),
WASM_IF(WASM_I32_NE(WASM_I32V(2),
WASM_SIMD_I32x4_EXTRACT_LANE(2, WASM_GET_GLOBAL(0))),
WASM_SET_LOCAL(1, WASM_I32V(0))),
WASM_IF(WASM_I32_NE(WASM_I32V(3),
WASM_SIMD_I32x4_EXTRACT_LANE(3, WASM_GET_GLOBAL(0))),
WASM_SET_LOCAL(1, WASM_I32V(0))),
WASM_GET_LOCAL(1));
FOR_INT32_INPUTS(i) { CHECK_EQ(1, r.Call(0)); }
}
WASM_EXEC_COMPILED_TEST(SimdI32x4SetGlobal) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t> r(kExecuteCompiled);
int32_t* global = r.module().AddGlobal<int32_t>(kWasmS128);
BUILD(r, WASM_SET_GLOBAL(0, WASM_SIMD_I32x4_SPLAT(WASM_I32V(23))),
WASM_SET_GLOBAL(0, WASM_SIMD_I32x4_REPLACE_LANE(1, WASM_GET_GLOBAL(0),
WASM_I32V(34))),
WASM_SET_GLOBAL(0, WASM_SIMD_I32x4_REPLACE_LANE(2, WASM_GET_GLOBAL(0),
WASM_I32V(45))),
WASM_SET_GLOBAL(0, WASM_SIMD_I32x4_REPLACE_LANE(3, WASM_GET_GLOBAL(0),
WASM_I32V(56))),
WASM_I32V(1));
FOR_INT32_INPUTS(i) { CHECK_EQ(1, r.Call(0)); }
CHECK_EQ(*global, 23);
CHECK_EQ(*(global + 1), 34);
CHECK_EQ(*(global + 2), 45);
CHECK_EQ(*(global + 3), 56);
}
WASM_EXEC_COMPILED_TEST(SimdF32x4GetGlobal) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t> r(kExecuteCompiled);
float* global = r.module().AddGlobal<float>(kWasmS128);
*(global) = 0.0;
*(global + 1) = 1.5;
*(global + 2) = 2.25;
*(global + 3) = 3.5;
r.AllocateLocal(kWasmI32);
BUILD(
r, WASM_SET_LOCAL(1, WASM_I32V(1)),
WASM_IF(WASM_F32_NE(WASM_F32(0.0),
WASM_SIMD_F32x4_EXTRACT_LANE(0, WASM_GET_GLOBAL(0))),
WASM_SET_LOCAL(1, WASM_I32V(0))),
WASM_IF(WASM_F32_NE(WASM_F32(1.5),
WASM_SIMD_F32x4_EXTRACT_LANE(1, WASM_GET_GLOBAL(0))),
WASM_SET_LOCAL(1, WASM_I32V(0))),
WASM_IF(WASM_F32_NE(WASM_F32(2.25),
WASM_SIMD_F32x4_EXTRACT_LANE(2, WASM_GET_GLOBAL(0))),
WASM_SET_LOCAL(1, WASM_I32V(0))),
WASM_IF(WASM_F32_NE(WASM_F32(3.5),
WASM_SIMD_F32x4_EXTRACT_LANE(3, WASM_GET_GLOBAL(0))),
WASM_SET_LOCAL(1, WASM_I32V(0))),
WASM_GET_LOCAL(1));
FOR_INT32_INPUTS(i) { CHECK_EQ(1, r.Call(0)); }
}
WASM_EXEC_COMPILED_TEST(SimdF32x4SetGlobal) {
FLAG_wasm_simd_prototype = true;
WasmRunner<int32_t, int32_t> r(kExecuteCompiled);
float* global = r.module().AddGlobal<float>(kWasmS128);
BUILD(r, WASM_SET_GLOBAL(0, WASM_SIMD_F32x4_SPLAT(WASM_F32(13.5))),
WASM_SET_GLOBAL(0, WASM_SIMD_F32x4_REPLACE_LANE(1, WASM_GET_GLOBAL(0),
WASM_F32(45.5))),
WASM_SET_GLOBAL(0, WASM_SIMD_F32x4_REPLACE_LANE(2, WASM_GET_GLOBAL(0),
WASM_F32(32.25))),
WASM_SET_GLOBAL(0, WASM_SIMD_F32x4_REPLACE_LANE(3, WASM_GET_GLOBAL(0),
WASM_F32(65.0))),
WASM_I32V(1));
FOR_INT32_INPUTS(i) { CHECK_EQ(1, r.Call(0)); }
CHECK_EQ(*global, 13.5);
CHECK_EQ(*(global + 1), 45.5);
CHECK_EQ(*(global + 2), 32.25);
CHECK_EQ(*(global + 3), 65.0);
}
#endif // SIMD_LOWERING_TARGET