blob: d8adba0f2f4d8abad3e216991fa1371cafa7eec2 [file] [log] [blame]
/*
* Copyright (C) 1999 Lars Knoll (knoll@kde.org)
* (C) 1999 Antti Koivisto (koivisto@kde.org)
* (C) 2007 David Smith (catfish.man@gmail.com)
* Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 Apple Inc.
* All rights reserved.
* Copyright (C) Research In Motion Limited 2010. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#include "core/layout/FloatingObjects.h"
#include "core/layout/LayoutBlockFlow.h"
#include "core/layout/LayoutBox.h"
#include "core/layout/LayoutView.h"
#include "core/layout/api/LineLayoutBlockFlow.h"
#include "core/layout/shapes/ShapeOutsideInfo.h"
#include "core/paint/PaintLayer.h"
#include "platform/RuntimeEnabledFeatures.h"
#include "wtf/PtrUtil.h"
#include <algorithm>
#include <memory>
using namespace WTF;
namespace blink {
struct SameSizeAsFloatingObject {
void* pointers[2];
LayoutRect rect;
uint32_t bitfields : 8;
};
static_assert(sizeof(FloatingObject) == sizeof(SameSizeAsFloatingObject),
"FloatingObject should stay small");
FloatingObject::FloatingObject(LayoutBox* layoutObject)
: m_layoutObject(layoutObject),
m_originatingLine(nullptr),
m_shouldPaint(true),
m_isDescendant(false),
m_isPlaced(false),
m_isLowestNonOverhangingFloatInChild(false)
#if ENABLE(ASSERT)
,
m_isInPlacedTree(false)
#endif
{
EFloat type = layoutObject->style()->floating();
DCHECK_NE(type, EFloat::None);
if (type == EFloat::Left)
m_type = FloatLeft;
else if (type == EFloat::Right)
m_type = FloatRight;
}
FloatingObject::FloatingObject(LayoutBox* layoutObject,
Type type,
const LayoutRect& frameRect,
bool shouldPaint,
bool isDescendant,
bool isLowestNonOverhangingFloatInChild,
bool performingUnsafeClone)
: m_layoutObject(layoutObject),
m_originatingLine(nullptr),
m_frameRect(frameRect),
m_type(type),
m_isDescendant(isDescendant),
m_isPlaced(true),
m_isLowestNonOverhangingFloatInChild(isLowestNonOverhangingFloatInChild)
#if ENABLE(ASSERT)
,
m_isInPlacedTree(false)
#endif
{
m_shouldPaint = shouldPaint;
// TODO(chrishtr): Avoid the following hack when performing an unsafe clone.
// This avoids a use-after-free bug due to the fact that we sometimes fail to
// remove floats from their container when detaching (crbug.com/619380).
// This is actually a bug in the floats detach machinery, which needs to be
// fixed, in which case this workaround can be removed. In any case, it should
// be safe because moving floats from one owner to another should cause
// layout, which will in turn update the m_shouldPaint property.
if (!performingUnsafeClone)
m_shouldPaint = m_shouldPaint || shouldPaintForCompositedLayoutPart();
}
bool FloatingObject::shouldPaintForCompositedLayoutPart() {
// HACK: only non-self-painting floats should paint. However, due to the
// fundamental compositing bug, some LayoutPart objects may become
// self-painting due to being composited. This leads to a chicken-egg issue
// because layout may not depend on compositing.
// If this is the case, set shouldPaint() to true even if the layer is
// technically self-painting. This lets the float which contains a LayoutPart
// start painting as soon as it stops being composited, without having to
// re-layout the float.
// This hack can be removed after SPv2.
return m_layoutObject->layer() &&
m_layoutObject->layer()->isSelfPaintingOnlyBecauseIsCompositedPart() &&
!RuntimeEnabledFeatures::slimmingPaintV2Enabled();
}
std::unique_ptr<FloatingObject> FloatingObject::create(
LayoutBox* layoutObject) {
std::unique_ptr<FloatingObject> newObj =
wrapUnique(new FloatingObject(layoutObject));
// If a layer exists, the float will paint itself. Otherwise someone else
// will.
newObj->setShouldPaint(!layoutObject->hasSelfPaintingLayer() ||
newObj->shouldPaintForCompositedLayoutPart());
newObj->setIsDescendant(true);
return newObj;
}
bool FloatingObject::shouldPaint() const {
return m_shouldPaint && !m_layoutObject->hasSelfPaintingLayer();
}
std::unique_ptr<FloatingObject> FloatingObject::copyToNewContainer(
LayoutSize offset,
bool shouldPaint,
bool isDescendant) const {
return wrapUnique(new FloatingObject(
layoutObject(), getType(),
LayoutRect(frameRect().location() - offset, frameRect().size()),
shouldPaint, isDescendant, isLowestNonOverhangingFloatInChild()));
}
std::unique_ptr<FloatingObject> FloatingObject::unsafeClone() const {
std::unique_ptr<FloatingObject> cloneObject = wrapUnique(
new FloatingObject(layoutObject(), getType(), m_frameRect, m_shouldPaint,
m_isDescendant, false, true));
cloneObject->m_isPlaced = m_isPlaced;
return cloneObject;
}
template <FloatingObject::Type FloatTypeValue>
class ComputeFloatOffsetAdapter {
public:
typedef FloatingObjectInterval IntervalType;
ComputeFloatOffsetAdapter(const LayoutBlockFlow* layoutObject,
LayoutUnit lineTop,
LayoutUnit lineBottom,
LayoutUnit offset)
: m_layoutObject(layoutObject),
m_lineTop(lineTop),
m_lineBottom(lineBottom),
m_offset(offset),
m_outermostFloat(nullptr) {}
virtual ~ComputeFloatOffsetAdapter() {}
LayoutUnit lowValue() const { return m_lineTop; }
LayoutUnit highValue() const { return m_lineBottom; }
void collectIfNeeded(const IntervalType&);
LayoutUnit offset() const { return m_offset; }
protected:
virtual bool updateOffsetIfNeeded(const FloatingObject&) = 0;
const LayoutBlockFlow* m_layoutObject;
LayoutUnit m_lineTop;
LayoutUnit m_lineBottom;
LayoutUnit m_offset;
const FloatingObject* m_outermostFloat;
};
template <FloatingObject::Type FloatTypeValue>
class ComputeFloatOffsetForFloatLayoutAdapter
: public ComputeFloatOffsetAdapter<FloatTypeValue> {
public:
ComputeFloatOffsetForFloatLayoutAdapter(const LayoutBlockFlow* layoutObject,
LayoutUnit lineTop,
LayoutUnit lineBottom,
LayoutUnit offset)
: ComputeFloatOffsetAdapter<FloatTypeValue>(layoutObject,
lineTop,
lineBottom,
offset) {}
~ComputeFloatOffsetForFloatLayoutAdapter() override {}
LayoutUnit heightRemaining() const;
protected:
bool updateOffsetIfNeeded(const FloatingObject&) final;
};
template <FloatingObject::Type FloatTypeValue>
class ComputeFloatOffsetForLineLayoutAdapter
: public ComputeFloatOffsetAdapter<FloatTypeValue> {
public:
ComputeFloatOffsetForLineLayoutAdapter(const LayoutBlockFlow* layoutObject,
LayoutUnit lineTop,
LayoutUnit lineBottom,
LayoutUnit offset)
: ComputeFloatOffsetAdapter<FloatTypeValue>(layoutObject,
lineTop,
lineBottom,
offset) {}
~ComputeFloatOffsetForLineLayoutAdapter() override {}
protected:
bool updateOffsetIfNeeded(const FloatingObject&) final;
};
class FindNextFloatLogicalBottomAdapter {
public:
typedef FloatingObjectInterval IntervalType;
FindNextFloatLogicalBottomAdapter(const LayoutBlockFlow& renderer,
LayoutUnit belowLogicalHeight)
: m_layoutObject(renderer),
m_belowLogicalHeight(belowLogicalHeight),
m_aboveLogicalHeight(LayoutUnit::max()),
m_nextLogicalBottom(),
m_nextShapeLogicalBottom() {}
LayoutUnit lowValue() const { return m_belowLogicalHeight; }
LayoutUnit highValue() const { return m_aboveLogicalHeight; }
void collectIfNeeded(const IntervalType&);
LayoutUnit nextLogicalBottom() { return m_nextLogicalBottom; }
LayoutUnit nextShapeLogicalBottom() { return m_nextShapeLogicalBottom; }
private:
const LayoutBlockFlow& m_layoutObject;
LayoutUnit m_belowLogicalHeight;
LayoutUnit m_aboveLogicalHeight;
LayoutUnit m_nextLogicalBottom;
LayoutUnit m_nextShapeLogicalBottom;
};
inline static bool rangesIntersect(LayoutUnit floatTop,
LayoutUnit floatBottom,
LayoutUnit objectTop,
LayoutUnit objectBottom) {
if (objectTop >= floatBottom || objectBottom < floatTop)
return false;
// The top of the object overlaps the float
if (objectTop >= floatTop)
return true;
// The object encloses the float
if (objectTop < floatTop && objectBottom > floatBottom)
return true;
// The bottom of the object overlaps the float
if (objectBottom > objectTop && objectBottom > floatTop &&
objectBottom <= floatBottom)
return true;
return false;
}
inline void FindNextFloatLogicalBottomAdapter::collectIfNeeded(
const IntervalType& interval) {
const FloatingObject& floatingObject = *(interval.data());
if (!rangesIntersect(interval.low(), interval.high(), m_belowLogicalHeight,
m_aboveLogicalHeight))
return;
// All the objects returned from the tree should be already placed.
ASSERT(floatingObject.isPlaced());
ASSERT(rangesIntersect(m_layoutObject.logicalTopForFloat(floatingObject),
m_layoutObject.logicalBottomForFloat(floatingObject),
m_belowLogicalHeight, m_aboveLogicalHeight));
LayoutUnit floatBottom = m_layoutObject.logicalBottomForFloat(floatingObject);
if (ShapeOutsideInfo* shapeOutside =
floatingObject.layoutObject()->shapeOutsideInfo()) {
LayoutUnit shapeBottom =
m_layoutObject.logicalTopForFloat(floatingObject) +
m_layoutObject.marginBeforeForChild(*floatingObject.layoutObject()) +
shapeOutside->shapeLogicalBottom();
// Use the shapeBottom unless it extends outside of the margin box, in which
// case it is clipped.
m_nextShapeLogicalBottom = m_nextShapeLogicalBottom
? std::min(shapeBottom, floatBottom)
: shapeBottom;
} else {
m_nextShapeLogicalBottom =
m_nextShapeLogicalBottom
? std::min(m_nextShapeLogicalBottom, floatBottom)
: floatBottom;
}
m_nextLogicalBottom = m_nextLogicalBottom
? std::min(m_nextLogicalBottom, floatBottom)
: floatBottom;
}
LayoutUnit FloatingObjects::findNextFloatLogicalBottomBelow(
LayoutUnit logicalHeight) {
FindNextFloatLogicalBottomAdapter adapter(*m_layoutObject, logicalHeight);
placedFloatsTree().allOverlapsWithAdapter(adapter);
return adapter.nextShapeLogicalBottom();
}
LayoutUnit FloatingObjects::findNextFloatLogicalBottomBelowForBlock(
LayoutUnit logicalHeight) {
FindNextFloatLogicalBottomAdapter adapter(*m_layoutObject, logicalHeight);
placedFloatsTree().allOverlapsWithAdapter(adapter);
return adapter.nextLogicalBottom();
}
FloatingObjects::~FloatingObjects() {}
void FloatingObjects::clearLineBoxTreePointers() {
// Clear references to originating lines, since the lines are being deleted
FloatingObjectSetIterator end = m_set.end();
for (FloatingObjectSetIterator it = m_set.begin(); it != end; ++it) {
ASSERT(
!((*it)->originatingLine()) ||
(*it)->originatingLine()->getLineLayoutItem().isEqual(m_layoutObject));
(*it)->setOriginatingLine(nullptr);
}
}
FloatingObjects::FloatingObjects(const LayoutBlockFlow* layoutObject,
bool horizontalWritingMode)
: m_placedFloatsTree(UninitializedTree),
m_leftObjectsCount(0),
m_rightObjectsCount(0),
m_horizontalWritingMode(horizontalWritingMode),
m_layoutObject(layoutObject),
m_cachedHorizontalWritingMode(false) {}
void FloatingObjects::clear() {
m_set.clear();
m_placedFloatsTree.clear();
m_leftObjectsCount = 0;
m_rightObjectsCount = 0;
markLowestFloatLogicalBottomCacheAsDirty();
}
LayoutUnit FloatingObjects::lowestFloatLogicalBottom(
FloatingObject::Type floatType) {
bool isInHorizontalWritingMode = m_horizontalWritingMode;
if (floatType != FloatingObject::FloatLeftRight) {
if (hasLowestFloatLogicalBottomCached(isInHorizontalWritingMode, floatType))
return getCachedlowestFloatLogicalBottom(floatType);
} else {
if (hasLowestFloatLogicalBottomCached(isInHorizontalWritingMode,
FloatingObject::FloatLeft) &&
hasLowestFloatLogicalBottomCached(isInHorizontalWritingMode,
FloatingObject::FloatRight)) {
return std::max(
getCachedlowestFloatLogicalBottom(FloatingObject::FloatLeft),
getCachedlowestFloatLogicalBottom(FloatingObject::FloatRight));
}
}
LayoutUnit lowestFloatBottom;
const FloatingObjectSet& floatingObjectSet = set();
FloatingObjectSetIterator end = floatingObjectSet.end();
if (floatType == FloatingObject::FloatLeftRight) {
FloatingObject* lowestFloatingObjectLeft = nullptr;
FloatingObject* lowestFloatingObjectRight = nullptr;
LayoutUnit lowestFloatBottomLeft;
LayoutUnit lowestFloatBottomRight;
for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end;
++it) {
FloatingObject& floatingObject = *it->get();
if (floatingObject.isPlaced()) {
FloatingObject::Type curType = floatingObject.getType();
LayoutUnit curFloatLogicalBottom =
m_layoutObject->logicalBottomForFloat(floatingObject);
if (curType & FloatingObject::FloatLeft &&
curFloatLogicalBottom > lowestFloatBottomLeft) {
lowestFloatBottomLeft = curFloatLogicalBottom;
lowestFloatingObjectLeft = &floatingObject;
}
if (curType & FloatingObject::FloatRight &&
curFloatLogicalBottom > lowestFloatBottomRight) {
lowestFloatBottomRight = curFloatLogicalBottom;
lowestFloatingObjectRight = &floatingObject;
}
}
}
lowestFloatBottom = std::max(lowestFloatBottomLeft, lowestFloatBottomRight);
setCachedLowestFloatLogicalBottom(isInHorizontalWritingMode,
FloatingObject::FloatLeft,
lowestFloatingObjectLeft);
setCachedLowestFloatLogicalBottom(isInHorizontalWritingMode,
FloatingObject::FloatRight,
lowestFloatingObjectRight);
} else {
FloatingObject* lowestFloatingObject = nullptr;
for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end;
++it) {
FloatingObject& floatingObject = *it->get();
if (floatingObject.isPlaced() && floatingObject.getType() == floatType) {
if (m_layoutObject->logicalBottomForFloat(floatingObject) >
lowestFloatBottom) {
lowestFloatingObject = &floatingObject;
lowestFloatBottom =
m_layoutObject->logicalBottomForFloat(floatingObject);
}
}
}
setCachedLowestFloatLogicalBottom(isInHorizontalWritingMode, floatType,
lowestFloatingObject);
}
return lowestFloatBottom;
}
bool FloatingObjects::hasLowestFloatLogicalBottomCached(
bool isHorizontal,
FloatingObject::Type type) const {
int floatIndex = static_cast<int>(type) - 1;
ASSERT(floatIndex < static_cast<int>(sizeof(m_lowestFloatBottomCache) /
sizeof(FloatBottomCachedValue)));
ASSERT(floatIndex >= 0);
return (m_cachedHorizontalWritingMode == isHorizontal &&
!m_lowestFloatBottomCache[floatIndex].dirty);
}
LayoutUnit FloatingObjects::getCachedlowestFloatLogicalBottom(
FloatingObject::Type type) const {
int floatIndex = static_cast<int>(type) - 1;
ASSERT(floatIndex < static_cast<int>(sizeof(m_lowestFloatBottomCache) /
sizeof(FloatBottomCachedValue)));
ASSERT(floatIndex >= 0);
if (!m_lowestFloatBottomCache[floatIndex].floatingObject)
return LayoutUnit();
return m_layoutObject->logicalBottomForFloat(
*m_lowestFloatBottomCache[floatIndex].floatingObject);
}
void FloatingObjects::setCachedLowestFloatLogicalBottom(
bool isHorizontal,
FloatingObject::Type type,
FloatingObject* floatingObject) {
int floatIndex = static_cast<int>(type) - 1;
ASSERT(floatIndex < static_cast<int>(sizeof(m_lowestFloatBottomCache) /
sizeof(FloatBottomCachedValue)));
ASSERT(floatIndex >= 0);
m_cachedHorizontalWritingMode = isHorizontal;
m_lowestFloatBottomCache[floatIndex].floatingObject = floatingObject;
m_lowestFloatBottomCache[floatIndex].dirty = false;
}
FloatingObject* FloatingObjects::lowestFloatingObject() const {
bool isInHorizontalWritingMode = m_horizontalWritingMode;
if (!hasLowestFloatLogicalBottomCached(isInHorizontalWritingMode,
FloatingObject::FloatLeft) &&
!hasLowestFloatLogicalBottomCached(isInHorizontalWritingMode,
FloatingObject::FloatRight))
return nullptr;
FloatingObject* lowestLeftObject = m_lowestFloatBottomCache[0].floatingObject;
FloatingObject* lowestRightObject =
m_lowestFloatBottomCache[1].floatingObject;
LayoutUnit lowestFloatBottomLeft =
lowestLeftObject
? m_layoutObject->logicalBottomForFloat(*lowestLeftObject)
: LayoutUnit();
LayoutUnit lowestFloatBottomRight =
lowestRightObject
? m_layoutObject->logicalBottomForFloat(*lowestRightObject)
: LayoutUnit();
if (lowestFloatBottomLeft > lowestFloatBottomRight)
return lowestLeftObject;
return lowestRightObject;
}
void FloatingObjects::markLowestFloatLogicalBottomCacheAsDirty() {
for (size_t i = 0;
i < sizeof(m_lowestFloatBottomCache) / sizeof(FloatBottomCachedValue);
++i)
m_lowestFloatBottomCache[i].dirty = true;
}
void FloatingObjects::moveAllToFloatInfoMap(LayoutBoxToFloatInfoMap& map) {
while (!m_set.isEmpty()) {
std::unique_ptr<FloatingObject> floatingObject = m_set.takeFirst();
LayoutBox* layoutObject = floatingObject->layoutObject();
map.add(layoutObject, std::move(floatingObject));
}
clear();
}
inline void FloatingObjects::increaseObjectsCount(FloatingObject::Type type) {
if (type == FloatingObject::FloatLeft)
m_leftObjectsCount++;
else
m_rightObjectsCount++;
}
inline void FloatingObjects::decreaseObjectsCount(FloatingObject::Type type) {
if (type == FloatingObject::FloatLeft)
m_leftObjectsCount--;
else
m_rightObjectsCount--;
}
inline FloatingObjectInterval FloatingObjects::intervalForFloatingObject(
FloatingObject& floatingObject) {
if (m_horizontalWritingMode)
return FloatingObjectInterval(floatingObject.frameRect().y(),
floatingObject.frameRect().maxY(),
&floatingObject);
return FloatingObjectInterval(floatingObject.frameRect().x(),
floatingObject.frameRect().maxX(),
&floatingObject);
}
void FloatingObjects::addPlacedObject(FloatingObject& floatingObject) {
ASSERT(!floatingObject.isInPlacedTree());
floatingObject.setIsPlaced(true);
if (m_placedFloatsTree.isInitialized())
m_placedFloatsTree.add(intervalForFloatingObject(floatingObject));
#if ENABLE(ASSERT)
floatingObject.setIsInPlacedTree(true);
#endif
markLowestFloatLogicalBottomCacheAsDirty();
}
void FloatingObjects::removePlacedObject(FloatingObject& floatingObject) {
ASSERT(floatingObject.isPlaced() && floatingObject.isInPlacedTree());
if (m_placedFloatsTree.isInitialized()) {
bool removed =
m_placedFloatsTree.remove(intervalForFloatingObject(floatingObject));
ASSERT_UNUSED(removed, removed);
}
floatingObject.setIsPlaced(false);
#if ENABLE(ASSERT)
floatingObject.setIsInPlacedTree(false);
#endif
markLowestFloatLogicalBottomCacheAsDirty();
}
FloatingObject* FloatingObjects::add(
std::unique_ptr<FloatingObject> floatingObject) {
FloatingObject* newObject = floatingObject.release();
increaseObjectsCount(newObject->getType());
m_set.add(wrapUnique(newObject));
if (newObject->isPlaced())
addPlacedObject(*newObject);
markLowestFloatLogicalBottomCacheAsDirty();
return newObject;
}
void FloatingObjects::remove(FloatingObject* toBeRemoved) {
decreaseObjectsCount(toBeRemoved->getType());
std::unique_ptr<FloatingObject> floatingObject = m_set.take(toBeRemoved);
ASSERT(floatingObject->isPlaced() || !floatingObject->isInPlacedTree());
if (floatingObject->isPlaced())
removePlacedObject(*floatingObject);
markLowestFloatLogicalBottomCacheAsDirty();
ASSERT(!floatingObject->originatingLine());
}
void FloatingObjects::computePlacedFloatsTree() {
ASSERT(!m_placedFloatsTree.isInitialized());
if (m_set.isEmpty())
return;
m_placedFloatsTree.initIfNeeded(m_layoutObject->view()->intervalArena());
FloatingObjectSetIterator it = m_set.begin();
FloatingObjectSetIterator end = m_set.end();
for (; it != end; ++it) {
FloatingObject& floatingObject = *it->get();
if (floatingObject.isPlaced())
m_placedFloatsTree.add(intervalForFloatingObject(floatingObject));
}
}
LayoutUnit FloatingObjects::logicalLeftOffsetForPositioningFloat(
LayoutUnit fixedOffset,
LayoutUnit logicalTop,
LayoutUnit* heightRemaining) {
ComputeFloatOffsetForFloatLayoutAdapter<FloatingObject::FloatLeft> adapter(
m_layoutObject, logicalTop, logicalTop, fixedOffset);
placedFloatsTree().allOverlapsWithAdapter(adapter);
if (heightRemaining)
*heightRemaining = adapter.heightRemaining();
return adapter.offset();
}
LayoutUnit FloatingObjects::logicalRightOffsetForPositioningFloat(
LayoutUnit fixedOffset,
LayoutUnit logicalTop,
LayoutUnit* heightRemaining) {
ComputeFloatOffsetForFloatLayoutAdapter<FloatingObject::FloatRight> adapter(
m_layoutObject, logicalTop, logicalTop, fixedOffset);
placedFloatsTree().allOverlapsWithAdapter(adapter);
if (heightRemaining)
*heightRemaining = adapter.heightRemaining();
return std::min(fixedOffset, adapter.offset());
}
LayoutUnit FloatingObjects::logicalLeftOffset(LayoutUnit fixedOffset,
LayoutUnit logicalTop,
LayoutUnit logicalHeight) {
ComputeFloatOffsetForLineLayoutAdapter<FloatingObject::FloatLeft> adapter(
m_layoutObject, logicalTop, logicalTop + logicalHeight, fixedOffset);
placedFloatsTree().allOverlapsWithAdapter(adapter);
return adapter.offset();
}
LayoutUnit FloatingObjects::logicalRightOffset(LayoutUnit fixedOffset,
LayoutUnit logicalTop,
LayoutUnit logicalHeight) {
ComputeFloatOffsetForLineLayoutAdapter<FloatingObject::FloatRight> adapter(
m_layoutObject, logicalTop, logicalTop + logicalHeight, fixedOffset);
placedFloatsTree().allOverlapsWithAdapter(adapter);
return std::min(fixedOffset, adapter.offset());
}
FloatingObjects::FloatBottomCachedValue::FloatBottomCachedValue()
: floatingObject(nullptr), dirty(true) {}
template <>
inline bool ComputeFloatOffsetForFloatLayoutAdapter<FloatingObject::FloatLeft>::
updateOffsetIfNeeded(const FloatingObject& floatingObject) {
LayoutUnit logicalRight =
m_layoutObject->logicalRightForFloat(floatingObject);
if (logicalRight > m_offset) {
m_offset = logicalRight;
return true;
}
return false;
}
template <>
inline bool ComputeFloatOffsetForFloatLayoutAdapter<
FloatingObject::FloatRight>::updateOffsetIfNeeded(const FloatingObject&
floatingObject) {
LayoutUnit logicalLeft = m_layoutObject->logicalLeftForFloat(floatingObject);
if (logicalLeft < m_offset) {
m_offset = logicalLeft;
return true;
}
return false;
}
template <FloatingObject::Type FloatTypeValue>
LayoutUnit ComputeFloatOffsetForFloatLayoutAdapter<
FloatTypeValue>::heightRemaining() const {
return this->m_outermostFloat
? this->m_layoutObject->logicalBottomForFloat(
*this->m_outermostFloat) -
this->m_lineTop
: LayoutUnit(1);
}
template <FloatingObject::Type FloatTypeValue>
DISABLE_CFI_PERF inline void
ComputeFloatOffsetAdapter<FloatTypeValue>::collectIfNeeded(
const IntervalType& interval) {
const FloatingObject& floatingObject = *(interval.data());
if (floatingObject.getType() != FloatTypeValue ||
!rangesIntersect(interval.low(), interval.high(), m_lineTop,
m_lineBottom))
return;
// Make sure the float hasn't changed since it was added to the placed floats
// tree.
ASSERT(floatingObject.isPlaced());
ASSERT(interval.low() == m_layoutObject->logicalTopForFloat(floatingObject));
ASSERT(interval.high() ==
m_layoutObject->logicalBottomForFloat(floatingObject));
bool floatIsNewExtreme = updateOffsetIfNeeded(floatingObject);
if (floatIsNewExtreme)
m_outermostFloat = &floatingObject;
}
template <>
inline bool ComputeFloatOffsetForLineLayoutAdapter<FloatingObject::FloatLeft>::
updateOffsetIfNeeded(const FloatingObject& floatingObject) {
LayoutUnit logicalRight =
m_layoutObject->logicalRightForFloat(floatingObject);
if (ShapeOutsideInfo* shapeOutside =
floatingObject.layoutObject()->shapeOutsideInfo()) {
ShapeOutsideDeltas shapeDeltas =
shapeOutside->computeDeltasForContainingBlockLine(
LineLayoutBlockFlow(const_cast<LayoutBlockFlow*>(m_layoutObject)),
floatingObject, m_lineTop, m_lineBottom - m_lineTop);
if (!shapeDeltas.lineOverlapsShape())
return false;
logicalRight += shapeDeltas.rightMarginBoxDelta();
}
if (logicalRight > m_offset) {
m_offset = logicalRight;
return true;
}
return false;
}
template <>
inline bool ComputeFloatOffsetForLineLayoutAdapter<FloatingObject::FloatRight>::
updateOffsetIfNeeded(const FloatingObject& floatingObject) {
LayoutUnit logicalLeft = m_layoutObject->logicalLeftForFloat(floatingObject);
if (ShapeOutsideInfo* shapeOutside =
floatingObject.layoutObject()->shapeOutsideInfo()) {
ShapeOutsideDeltas shapeDeltas =
shapeOutside->computeDeltasForContainingBlockLine(
LineLayoutBlockFlow(const_cast<LayoutBlockFlow*>(m_layoutObject)),
floatingObject, m_lineTop, m_lineBottom - m_lineTop);
if (!shapeDeltas.lineOverlapsShape())
return false;
logicalLeft += shapeDeltas.leftMarginBoxDelta();
}
if (logicalLeft < m_offset) {
m_offset = logicalLeft;
return true;
}
return false;
}
#ifndef NDEBUG
// These helpers are only used by the PODIntervalTree for debugging purposes.
String ValueToString<LayoutUnit>::toString(const LayoutUnit value) {
return String::number(value.toFloat());
}
String ValueToString<FloatingObject*>::toString(
const FloatingObject* floatingObject) {
return String::format("%p (%gx%g %gx%g)", floatingObject,
floatingObject->frameRect().x().toFloat(),
floatingObject->frameRect().y().toFloat(),
floatingObject->frameRect().maxX().toFloat(),
floatingObject->frameRect().maxY().toFloat());
}
#endif
} // namespace blink