blob: 353a95769255c965ce08407a2b0d9694da9c0a77 [file] [log] [blame]
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/scheduler/base/time_domain.h"
#include <set>
#include "components/scheduler/base/task_queue_impl.h"
#include "components/scheduler/base/task_queue_manager_delegate.h"
#include "components/scheduler/base/work_queue.h"
#include "components/scheduler/scheduler_export.h"
namespace scheduler {
TimeDomain::TimeDomain(Observer* observer) : observer_(observer) {}
TimeDomain::~TimeDomain() {
DCHECK(main_thread_checker_.CalledOnValidThread());
}
void TimeDomain::RegisterQueue(internal::TaskQueueImpl* queue) {
DCHECK(main_thread_checker_.CalledOnValidThread());
DCHECK_EQ(queue->GetTimeDomain(), this);
}
void TimeDomain::UnregisterQueue(internal::TaskQueueImpl* queue) {
DCHECK(main_thread_checker_.CalledOnValidThread());
DCHECK_EQ(queue->GetTimeDomain(), this);
UnregisterAsUpdatableTaskQueue(queue);
// We need to remove |task_queue| from delayed_wakeup_multimap_ which is a
// little awkward since it's keyed by time. O(n) running time.
for (DelayedWakeupMultimap::iterator iter = delayed_wakeup_multimap_.begin();
iter != delayed_wakeup_multimap_.end();) {
if (iter->second == queue) {
// O(1) amortized.
iter = delayed_wakeup_multimap_.erase(iter);
} else {
iter++;
}
}
}
void TimeDomain::MigrateQueue(internal::TaskQueueImpl* queue,
TimeDomain* destination_time_domain) {
DCHECK(main_thread_checker_.CalledOnValidThread());
DCHECK_EQ(queue->GetTimeDomain(), this);
DCHECK(destination_time_domain);
// Make sure we remember to update |queue| if it's got incoming immediate
// work.
if (UnregisterAsUpdatableTaskQueue(queue))
destination_time_domain->updatable_queue_set_.insert(queue);
base::TimeTicks destination_now = destination_time_domain->Now();
// We need to remove |task_queue| from delayed_wakeup_multimap_ which is a
// little awkward since it's keyed by time. O(n) running time.
for (DelayedWakeupMultimap::iterator iter = delayed_wakeup_multimap_.begin();
iter != delayed_wakeup_multimap_.end();) {
if (iter->second == queue) {
destination_time_domain->ScheduleDelayedWork(queue, iter->first,
destination_now);
// O(1) amortized.
iter = delayed_wakeup_multimap_.erase(iter);
} else {
iter++;
}
}
}
void TimeDomain::ScheduleDelayedWork(internal::TaskQueueImpl* queue,
base::TimeTicks delayed_run_time,
base::TimeTicks now) {
DCHECK(main_thread_checker_.CalledOnValidThread());
if (delayed_wakeup_multimap_.empty() ||
delayed_run_time < delayed_wakeup_multimap_.begin()->first) {
base::TimeDelta delay = std::max(base::TimeDelta(), delayed_run_time - now);
RequestWakeup(now, delay);
}
delayed_wakeup_multimap_.insert(std::make_pair(delayed_run_time, queue));
if (observer_)
observer_->OnTimeDomainHasDelayedWork();
}
void TimeDomain::RegisterAsUpdatableTaskQueue(internal::TaskQueueImpl* queue) {
{
base::AutoLock lock(newly_updatable_lock_);
newly_updatable_.push_back(queue);
}
if (observer_)
observer_->OnTimeDomainHasImmediateWork();
}
bool TimeDomain::UnregisterAsUpdatableTaskQueue(
internal::TaskQueueImpl* queue) {
DCHECK(main_thread_checker_.CalledOnValidThread());
bool was_updatable = updatable_queue_set_.erase(queue) != 0;
base::AutoLock lock(newly_updatable_lock_);
// Remove all copies of |queue| from |newly_updatable_|.
for (size_t i = 0; i < newly_updatable_.size();) {
if (newly_updatable_[i] == queue) {
// Move last element into slot #i and then compact.
newly_updatable_[i] = newly_updatable_.back();
newly_updatable_.pop_back();
was_updatable = true;
} else {
i++;
}
}
return was_updatable;
}
void TimeDomain::UpdateWorkQueues(
bool should_trigger_wakeup,
const internal::TaskQueueImpl::Task* previous_task,
LazyNow lazy_now) {
DCHECK(main_thread_checker_.CalledOnValidThread());
// Move any ready delayed tasks into the Incoming queues.
WakeupReadyDelayedQueues(&lazy_now, should_trigger_wakeup, previous_task);
MoveNewlyUpdatableQueuesIntoUpdatableQueueSet();
auto iter = updatable_queue_set_.begin();
while (iter != updatable_queue_set_.end()) {
internal::TaskQueueImpl* queue = *iter++;
// NOTE Update work queue may erase itself from |updatable_queue_set_|.
// This is fine, erasing an element won't invalidate any interator, as long
// as the iterator isn't the element being delated.
if (queue->immediate_work_queue()->Empty())
queue->UpdateImmediateWorkQueue(should_trigger_wakeup, previous_task);
}
}
void TimeDomain::MoveNewlyUpdatableQueuesIntoUpdatableQueueSet() {
DCHECK(main_thread_checker_.CalledOnValidThread());
base::AutoLock lock(newly_updatable_lock_);
while (!newly_updatable_.empty()) {
updatable_queue_set_.insert(newly_updatable_.back());
newly_updatable_.pop_back();
}
}
void TimeDomain::WakeupReadyDelayedQueues(
LazyNow* lazy_now,
bool should_trigger_wakeup,
const internal::TaskQueueImpl::Task* previous_task) {
DCHECK(main_thread_checker_.CalledOnValidThread());
// Wake up any queues with pending delayed work. Note std::multipmap stores
// the elements sorted by key, so the begin() iterator points to the earliest
// queue to wakeup.
std::set<internal::TaskQueueImpl*> dedup_set;
while (!delayed_wakeup_multimap_.empty()) {
DelayedWakeupMultimap::iterator next_wakeup =
delayed_wakeup_multimap_.begin();
if (next_wakeup->first > lazy_now->Now())
break;
// A queue could have any number of delayed tasks pending so it's worthwhile
// deduping calls to UpdateDelayedWorkQueue since it takes a lock.
// NOTE the order in which these are called matters since the order
// in which EnqueueTaskLocks is called is respected when choosing which
// queue to execute a task from.
if (dedup_set.insert(next_wakeup->second).second) {
next_wakeup->second->UpdateDelayedWorkQueue(
lazy_now, should_trigger_wakeup, previous_task);
}
delayed_wakeup_multimap_.erase(next_wakeup);
}
}
void TimeDomain::ClearExpiredWakeups() {
DCHECK(main_thread_checker_.CalledOnValidThread());
LazyNow lazy_now(CreateLazyNow());
while (!delayed_wakeup_multimap_.empty()) {
DelayedWakeupMultimap::iterator next_wakeup =
delayed_wakeup_multimap_.begin();
if (next_wakeup->first > lazy_now.Now())
break;
delayed_wakeup_multimap_.erase(next_wakeup);
}
}
bool TimeDomain::NextScheduledRunTime(base::TimeTicks* out_time) const {
DCHECK(main_thread_checker_.CalledOnValidThread());
if (delayed_wakeup_multimap_.empty())
return false;
*out_time = delayed_wakeup_multimap_.begin()->first;
return true;
}
bool TimeDomain::NextScheduledTaskQueue(TaskQueue** out_task_queue) const {
DCHECK(main_thread_checker_.CalledOnValidThread());
if (delayed_wakeup_multimap_.empty())
return false;
*out_task_queue = delayed_wakeup_multimap_.begin()->second;
return true;
}
void TimeDomain::AsValueInto(base::trace_event::TracedValue* state) const {
state->BeginDictionary();
state->SetString("name", GetName());
state->BeginArray("updatable_queue_set");
for (auto* queue : updatable_queue_set_)
state->AppendString(queue->GetName());
state->EndArray();
state->SetInteger("registered_delay_count", delayed_wakeup_multimap_.size());
if (!delayed_wakeup_multimap_.empty()) {
base::TimeDelta delay = delayed_wakeup_multimap_.begin()->first - Now();
state->SetDouble("next_delay_ms", delay.InMillisecondsF());
}
AsValueIntoInternal(state);
state->EndDictionary();
}
} // namespace scheduler