blob: e79e1c739a2c1c45fa5fdfa659e894cc9f7ad153 [file] [log] [blame]
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/asmjs/asm-typer.h"
#include <algorithm>
#include <limits>
#include <memory>
#include <string>
#include "src/v8.h"
#include "src/asmjs/asm-types.h"
#include "src/ast/ast.h"
#include "src/ast/scopes.h"
#include "src/base/bits.h"
#include "src/codegen.h"
#include "src/globals.h"
#include "src/utils.h"
#define FAIL_LINE(line, msg) \
do { \
base::OS::SNPrintF(error_message_, sizeof(error_message_), \
"asm: line %d: %s", (line) + 1, msg); \
return AsmType::None(); \
} while (false)
#define FAIL(node, msg) \
do { \
int line = node->position() == kNoSourcePosition \
? -1 \
: script_->GetLineNumber(node->position()); \
FAIL_LINE(line, msg); \
} while (false)
#define RECURSE(call) \
do { \
if (GetCurrentStackPosition() < stack_limit_) { \
stack_overflow_ = true; \
FAIL(root_, "Stack overflow while parsing asm.js module."); \
} \
\
AsmType* result = (call); \
if (stack_overflow_) { \
return AsmType::None(); \
} \
\
if (result == AsmType::None()) { \
return AsmType::None(); \
} \
} while (false)
namespace v8 {
namespace internal {
namespace wasm {
namespace {
static const uint32_t LargestFixNum = std::numeric_limits<int32_t>::max();
} // namespace
using v8::internal::AstNode;
using v8::internal::GetCurrentStackPosition;
// ----------------------------------------------------------------------------
// Implementation of AsmTyper::FlattenedStatements
AsmTyper::FlattenedStatements::FlattenedStatements(Zone* zone,
ZoneList<Statement*>* s)
: context_stack_(zone) {
context_stack_.emplace_back(Context(s));
}
Statement* AsmTyper::FlattenedStatements::Next() {
for (;;) {
if (context_stack_.empty()) {
return nullptr;
}
Context* current = &context_stack_.back();
if (current->statements_->length() <= current->next_index_) {
context_stack_.pop_back();
continue;
}
Statement* current_statement =
current->statements_->at(current->next_index_++);
if (current_statement->IsBlock()) {
context_stack_.emplace_back(
Context(current_statement->AsBlock()->statements()));
continue;
}
return current_statement;
}
}
// ----------------------------------------------------------------------------
// Implementation of AsmTyper::SourceLayoutTracker
bool AsmTyper::SourceLayoutTracker::IsValid() const {
const Section* kAllSections[] = {&use_asm_, &globals_, &functions_, &tables_,
&exports_};
for (size_t ii = 0; ii < arraysize(kAllSections); ++ii) {
const auto& curr_section = *kAllSections[ii];
for (size_t jj = ii + 1; jj < arraysize(kAllSections); ++jj) {
if (curr_section.IsPrecededBy(*kAllSections[jj])) {
return false;
}
}
}
return true;
}
void AsmTyper::SourceLayoutTracker::Section::AddNewElement(
const AstNode& node) {
const int node_pos = node.position();
if (start_ == kNoSourcePosition) {
start_ = node_pos;
} else {
start_ = std::min(start_, node_pos);
}
if (end_ == kNoSourcePosition) {
end_ = node_pos;
} else {
end_ = std::max(end_, node_pos);
}
}
bool AsmTyper::SourceLayoutTracker::Section::IsPrecededBy(
const Section& other) const {
if (start_ == kNoSourcePosition) {
DCHECK_EQ(end_, kNoSourcePosition);
return false;
}
if (other.start_ == kNoSourcePosition) {
DCHECK_EQ(other.end_, kNoSourcePosition);
return false;
}
DCHECK_LE(start_, end_);
DCHECK_LE(other.start_, other.end_);
return other.start_ <= end_;
}
// ----------------------------------------------------------------------------
// Implementation of AsmTyper::VariableInfo
AsmTyper::VariableInfo* AsmTyper::VariableInfo::ForSpecialSymbol(
Zone* zone, StandardMember standard_member) {
DCHECK(standard_member == kStdlib || standard_member == kFFI ||
standard_member == kHeap || standard_member == kModule);
auto* new_var_info = new (zone) VariableInfo(AsmType::None());
new_var_info->standard_member_ = standard_member;
new_var_info->mutability_ = kImmutableGlobal;
return new_var_info;
}
AsmTyper::VariableInfo* AsmTyper::VariableInfo::Clone(Zone* zone) const {
CHECK(standard_member_ != kNone);
CHECK(!type_->IsA(AsmType::None()));
auto* new_var_info = new (zone) VariableInfo(type_);
new_var_info->standard_member_ = standard_member_;
new_var_info->mutability_ = mutability_;
return new_var_info;
}
void AsmTyper::VariableInfo::SetFirstForwardUse(int source_location) {
DCHECK(source_location_ == -1);
missing_definition_ = true;
source_location_ = source_location;
}
// ----------------------------------------------------------------------------
// Implementation of AsmTyper
AsmTyper::AsmTyper(Isolate* isolate, Zone* zone, Script* script,
FunctionLiteral* root)
: isolate_(isolate),
zone_(zone),
script_(script),
root_(root),
forward_definitions_(zone),
ffi_use_signatures_(zone),
stdlib_types_(zone),
stdlib_math_types_(zone),
module_info_(VariableInfo::ForSpecialSymbol(zone_, kModule)),
global_scope_(ZoneHashMap::kDefaultHashMapCapacity,
ZoneAllocationPolicy(zone)),
local_scope_(ZoneHashMap::kDefaultHashMapCapacity,
ZoneAllocationPolicy(zone)),
stack_limit_(isolate->stack_guard()->real_climit()),
module_node_types_(zone_),
function_node_types_(zone_),
fround_type_(AsmType::FroundType(zone_)),
ffi_type_(AsmType::FFIType(zone_)),
function_pointer_tables_(zone_) {
InitializeStdlib();
}
namespace {
bool ValidAsmIdentifier(Handle<String> name) {
static const char* kInvalidAsmNames[] = {"eval", "arguments"};
for (size_t ii = 0; ii < arraysize(kInvalidAsmNames); ++ii) {
if (strcmp(name->ToCString().get(), kInvalidAsmNames[ii]) == 0) {
return false;
}
}
return true;
}
} // namespace
void AsmTyper::InitializeStdlib() {
auto* d = AsmType::Double();
auto* dq = AsmType::DoubleQ();
auto* dq2d = AsmType::Function(zone_, d);
dq2d->AsFunctionType()->AddArgument(dq);
auto* dqdq2d = AsmType::Function(zone_, d);
dqdq2d->AsFunctionType()->AddArgument(dq);
dqdq2d->AsFunctionType()->AddArgument(dq);
auto* f = AsmType::Float();
auto* fq = AsmType::FloatQ();
auto* fq2f = AsmType::Function(zone_, f);
fq2f->AsFunctionType()->AddArgument(fq);
auto* s = AsmType::Signed();
auto* s2s = AsmType::Function(zone_, s);
s2s->AsFunctionType()->AddArgument(s);
auto* i = AsmType::Int();
auto* i2s = AsmType::Function(zone_, s);
i2s->AsFunctionType()->AddArgument(i);
auto* ii2s = AsmType::Function(zone_, s);
ii2s->AsFunctionType()->AddArgument(i);
ii2s->AsFunctionType()->AddArgument(i);
auto* minmax_d = AsmType::MinMaxType(zone_, d, d);
// *VIOLATION* The float variant is not part of the spec, but firefox accepts
// it.
auto* minmax_f = AsmType::MinMaxType(zone_, f, f);
auto* minmax_i = AsmType::MinMaxType(zone_, s, i);
auto* minmax = AsmType::OverloadedFunction(zone_);
minmax->AsOverloadedFunctionType()->AddOverload(minmax_i);
minmax->AsOverloadedFunctionType()->AddOverload(minmax_f);
minmax->AsOverloadedFunctionType()->AddOverload(minmax_d);
auto* fround = fround_type_;
auto* abs = AsmType::OverloadedFunction(zone_);
abs->AsOverloadedFunctionType()->AddOverload(s2s);
abs->AsOverloadedFunctionType()->AddOverload(dq2d);
abs->AsOverloadedFunctionType()->AddOverload(fq2f);
auto* ceil = AsmType::OverloadedFunction(zone_);
ceil->AsOverloadedFunctionType()->AddOverload(dq2d);
ceil->AsOverloadedFunctionType()->AddOverload(fq2f);
auto* floor = ceil;
auto* sqrt = ceil;
struct StandardMemberInitializer {
const char* name;
StandardMember standard_member;
AsmType* type;
};
const StandardMemberInitializer stdlib[] = {{"Infinity", kInfinity, d},
{"NaN", kNaN, d},
#define ASM_TYPED_ARRAYS(V) \
V(Uint8) \
V(Int8) \
V(Uint16) \
V(Int16) \
V(Uint32) \
V(Int32) \
V(Float32) \
V(Float64)
#define ASM_TYPED_ARRAY(TypeName) \
{#TypeName "Array", kNone, AsmType::TypeName##Array()},
ASM_TYPED_ARRAYS(ASM_TYPED_ARRAY)
#undef ASM_TYPED_ARRAY
};
for (size_t ii = 0; ii < arraysize(stdlib); ++ii) {
stdlib_types_[stdlib[ii].name] = new (zone_) VariableInfo(stdlib[ii].type);
stdlib_types_[stdlib[ii].name]->set_standard_member(
stdlib[ii].standard_member);
stdlib_types_[stdlib[ii].name]->set_mutability(
VariableInfo::kImmutableGlobal);
}
const StandardMemberInitializer math[] = {
{"PI", kMathPI, d},
{"E", kMathE, d},
{"LN2", kMathLN2, d},
{"LN10", kMathLN10, d},
{"LOG2E", kMathLOG2E, d},
{"LOG10E", kMathLOG10E, d},
{"SQRT2", kMathSQRT2, d},
{"SQRT1_2", kMathSQRT1_2, d},
{"imul", kMathImul, ii2s},
{"abs", kMathAbs, abs},
// NOTE: clz32 should return fixnum. The current typer can only return
// Signed, Float, or Double, so it returns Signed in our version of
// asm.js.
{"clz32", kMathClz32, i2s},
{"ceil", kMathCeil, ceil},
{"floor", kMathFloor, floor},
{"fround", kMathFround, fround},
{"pow", kMathPow, dqdq2d},
{"exp", kMathExp, dq2d},
{"log", kMathLog, dq2d},
{"min", kMathMin, minmax},
{"max", kMathMax, minmax},
{"sqrt", kMathSqrt, sqrt},
{"cos", kMathCos, dq2d},
{"sin", kMathSin, dq2d},
{"tan", kMathTan, dq2d},
{"acos", kMathAcos, dq2d},
{"asin", kMathAsin, dq2d},
{"atan", kMathAtan, dq2d},
{"atan2", kMathAtan2, dqdq2d},
};
for (size_t ii = 0; ii < arraysize(math); ++ii) {
stdlib_math_types_[math[ii].name] = new (zone_) VariableInfo(math[ii].type);
stdlib_math_types_[math[ii].name]->set_standard_member(
math[ii].standard_member);
stdlib_math_types_[math[ii].name]->set_mutability(
VariableInfo::kImmutableGlobal);
}
}
// Used for 5.5 GlobalVariableTypeAnnotations
AsmTyper::VariableInfo* AsmTyper::ImportLookup(Property* import) {
auto* obj = import->obj();
auto* key = import->key()->AsLiteral();
ObjectTypeMap* stdlib = &stdlib_types_;
if (auto* obj_as_property = obj->AsProperty()) {
// This can only be stdlib.Math
auto* math_name = obj_as_property->key()->AsLiteral();
if (math_name == nullptr || !math_name->IsPropertyName()) {
return nullptr;
}
if (!math_name->AsPropertyName()->IsUtf8EqualTo(CStrVector("Math"))) {
return nullptr;
}
auto* stdlib_var_proxy = obj_as_property->obj()->AsVariableProxy();
if (stdlib_var_proxy == nullptr) {
return nullptr;
}
obj = stdlib_var_proxy;
stdlib = &stdlib_math_types_;
}
auto* obj_as_var_proxy = obj->AsVariableProxy();
if (obj_as_var_proxy == nullptr) {
return nullptr;
}
auto* obj_info = Lookup(obj_as_var_proxy->var());
if (obj_info == nullptr) {
return nullptr;
}
if (obj_info->IsFFI()) {
// For FFI we can't validate import->key, so assume this is OK.
return obj_info;
}
std::unique_ptr<char[]> aname = key->AsPropertyName()->ToCString();
ObjectTypeMap::iterator i = stdlib->find(std::string(aname.get()));
if (i == stdlib->end()) {
return nullptr;
}
stdlib_uses_.insert(i->second->standard_member());
return i->second;
}
AsmTyper::VariableInfo* AsmTyper::Lookup(Variable* variable) const {
const ZoneHashMap* scope = in_function_ ? &local_scope_ : &global_scope_;
ZoneHashMap::Entry* entry =
scope->Lookup(variable, ComputePointerHash(variable));
if (entry == nullptr && in_function_) {
entry = global_scope_.Lookup(variable, ComputePointerHash(variable));
}
if (entry == nullptr && !module_name_.is_null() &&
module_name_->Equals(*variable->name())) {
return module_info_;
}
return entry ? reinterpret_cast<VariableInfo*>(entry->value) : nullptr;
}
void AsmTyper::AddForwardReference(VariableProxy* proxy, VariableInfo* info) {
info->SetFirstForwardUse(proxy->position() == kNoSourcePosition
? -1
: script_->GetLineNumber(proxy->position()));
forward_definitions_.push_back(info);
}
bool AsmTyper::AddGlobal(Variable* variable, VariableInfo* info) {
// We can't DCHECK(!in_function_) because function may actually install global
// names (forward defined functions and function tables.)
DCHECK(info->mutability() != VariableInfo::kInvalidMutability);
DCHECK(info->IsGlobal());
DCHECK(ValidAsmIdentifier(variable->name()));
if (!module_name_.is_null() && module_name_->Equals(*variable->name())) {
return false;
}
ZoneHashMap::Entry* entry = global_scope_.LookupOrInsert(
variable, ComputePointerHash(variable), ZoneAllocationPolicy(zone_));
if (entry->value != nullptr) {
return false;
}
entry->value = info;
return true;
}
bool AsmTyper::AddLocal(Variable* variable, VariableInfo* info) {
DCHECK(in_function_);
DCHECK(info->mutability() != VariableInfo::kInvalidMutability);
DCHECK(!info->IsGlobal());
DCHECK(ValidAsmIdentifier(variable->name()));
ZoneHashMap::Entry* entry = local_scope_.LookupOrInsert(
variable, ComputePointerHash(variable), ZoneAllocationPolicy(zone_));
if (entry->value != nullptr) {
return false;
}
entry->value = info;
return true;
}
void AsmTyper::SetTypeOf(AstNode* node, AsmType* type) {
DCHECK_NE(type, AsmType::None());
if (in_function_) {
DCHECK(function_node_types_.find(node) == function_node_types_.end());
function_node_types_.insert(std::make_pair(node, type));
} else {
DCHECK(module_node_types_.find(node) == module_node_types_.end());
module_node_types_.insert(std::make_pair(node, type));
}
}
AsmType* AsmTyper::TypeOf(AstNode* node) const {
auto node_type_iter = function_node_types_.find(node);
if (node_type_iter != function_node_types_.end()) {
return node_type_iter->second;
}
node_type_iter = module_node_types_.find(node);
if (node_type_iter != module_node_types_.end()) {
return node_type_iter->second;
}
// Sometimes literal nodes are not added to the node_type_ map simply because
// their are not visited with ValidateExpression().
if (auto* literal = node->AsLiteral()) {
if (literal->raw_value()->ContainsDot()) {
return AsmType::Double();
}
uint32_t u;
if (literal->value()->ToUint32(&u)) {
if (u > LargestFixNum) {
return AsmType::Unsigned();
}
return AsmType::FixNum();
}
int32_t i;
if (literal->value()->ToInt32(&i)) {
return AsmType::Signed();
}
}
return AsmType::None();
}
AsmType* AsmTyper::TypeOf(Variable* v) const { return Lookup(v)->type(); }
AsmTyper::StandardMember AsmTyper::VariableAsStandardMember(Variable* var) {
auto* var_info = Lookup(var);
if (var_info == nullptr) {
return kNone;
}
StandardMember member = var_info->standard_member();
return member;
}
bool AsmTyper::Validate() {
return ValidateBeforeFunctionsPhase() &&
!AsmType::None()->IsExactly(ValidateModuleFunctions(root_)) &&
ValidateAfterFunctionsPhase();
}
bool AsmTyper::ValidateBeforeFunctionsPhase() {
if (!AsmType::None()->IsExactly(ValidateModuleBeforeFunctionsPhase(root_))) {
return true;
}
return false;
}
bool AsmTyper::ValidateInnerFunction(FunctionDeclaration* fun_decl) {
if (!AsmType::None()->IsExactly(ValidateModuleFunction(fun_decl))) {
return true;
}
return false;
}
bool AsmTyper::ValidateAfterFunctionsPhase() {
if (!AsmType::None()->IsExactly(ValidateModuleAfterFunctionsPhase(root_))) {
return true;
}
return false;
}
void AsmTyper::ClearFunctionNodeTypes() { function_node_types_.clear(); }
namespace {
bool IsUseAsmDirective(Statement* first_statement) {
ExpressionStatement* use_asm = first_statement->AsExpressionStatement();
if (use_asm == nullptr) {
return false;
}
Literal* use_asm_literal = use_asm->expression()->AsLiteral();
if (use_asm_literal == nullptr) {
return false;
}
return use_asm_literal->raw_value()->AsString()->IsOneByteEqualTo("use asm");
}
Assignment* ExtractInitializerExpression(Statement* statement) {
auto* expr_stmt = statement->AsExpressionStatement();
if (expr_stmt == nullptr) {
// Done with initializers.
return nullptr;
}
auto* assign = expr_stmt->expression()->AsAssignment();
if (assign == nullptr) {
// Done with initializers.
return nullptr;
}
if (assign->op() != Token::INIT) {
// Done with initializers.
return nullptr;
}
return assign;
}
} // namespace
// 6.1 ValidateModule
AsmType* AsmTyper::ValidateModuleBeforeFunctionsPhase(FunctionLiteral* fun) {
DeclarationScope* scope = fun->scope();
if (!scope->is_function_scope()) FAIL(fun, "Not at function scope.");
if (!ValidAsmIdentifier(fun->name()))
FAIL(fun, "Invalid asm.js identifier in module name.");
module_name_ = fun->name();
// Allowed parameters: Stdlib, FFI, Mem
static const int MaxModuleParameters = 3;
if (scope->num_parameters() > MaxModuleParameters) {
FAIL(fun, "asm.js modules may not have more than three parameters.");
}
struct {
StandardMember standard_member;
} kModuleParamInfo[3] = {
{kStdlib}, {kFFI}, {kHeap},
};
for (int ii = 0; ii < scope->num_parameters(); ++ii) {
Variable* param = scope->parameter(ii);
DCHECK(param);
if (!ValidAsmIdentifier(param->name())) {
FAIL(fun, "Invalid asm.js identifier in module parameter.");
}
auto* param_info = VariableInfo::ForSpecialSymbol(
zone_, kModuleParamInfo[ii].standard_member);
if (!AddGlobal(param, param_info)) {
FAIL(fun, "Redeclared identifier in module parameter.");
}
}
FlattenedStatements iter(zone_, fun->body());
auto* use_asm_directive = iter.Next();
if (use_asm_directive == nullptr) {
FAIL(fun, "Missing \"use asm\".");
}
// Check for extra assignment inserted by the parser when in this form:
// (function Module(a, b, c) {... })
ExpressionStatement* estatement = use_asm_directive->AsExpressionStatement();
if (estatement != nullptr) {
Assignment* assignment = estatement->expression()->AsAssignment();
if (assignment != nullptr && assignment->target()->IsVariableProxy() &&
assignment->target()
->AsVariableProxy()
->var()
->is_sloppy_function_name()) {
use_asm_directive = iter.Next();
}
}
if (!IsUseAsmDirective(use_asm_directive)) {
FAIL(fun, "Missing \"use asm\".");
}
source_layout_.AddUseAsm(*use_asm_directive);
module_return_ = nullptr;
// *VIOLATION* The spec states that globals should be followed by function
// declarations, which should be followed by function pointer tables, followed
// by the module export (return) statement. Our AST might be rearraged by the
// parser, so we can't rely on it being in source code order.
while (Statement* current = iter.Next()) {
if (auto* assign = ExtractInitializerExpression(current)) {
if (assign->value()->IsArrayLiteral()) {
// Save function tables for later validation.
function_pointer_tables_.push_back(assign);
} else {
RECURSE(ValidateGlobalDeclaration(assign));
source_layout_.AddGlobal(*assign);
}
continue;
}
if (auto* current_as_return = current->AsReturnStatement()) {
if (module_return_ != nullptr) {
FAIL(fun, "Multiple export statements.");
}
module_return_ = current_as_return;
source_layout_.AddExport(*module_return_);
continue;
}
FAIL(current, "Invalid top-level statement in asm.js module.");
}
return AsmType::Int(); // Any type that is not AsmType::None();
}
AsmType* AsmTyper::ValidateModuleFunction(FunctionDeclaration* fun_decl) {
RECURSE(ValidateFunction(fun_decl));
source_layout_.AddFunction(*fun_decl);
return AsmType::Int(); // Any type that is not AsmType::None();
}
AsmType* AsmTyper::ValidateModuleFunctions(FunctionLiteral* fun) {
DeclarationScope* scope = fun->scope();
Declaration::List* decls = scope->declarations();
for (Declaration* decl : *decls) {
if (FunctionDeclaration* fun_decl = decl->AsFunctionDeclaration()) {
RECURSE(ValidateModuleFunction(fun_decl));
continue;
}
}
return AsmType::Int(); // Any type that is not AsmType::None();
}
AsmType* AsmTyper::ValidateModuleAfterFunctionsPhase(FunctionLiteral* fun) {
for (auto* function_table : function_pointer_tables_) {
RECURSE(ValidateFunctionTable(function_table));
source_layout_.AddTable(*function_table);
}
DeclarationScope* scope = fun->scope();
Declaration::List* decls = scope->declarations();
for (Declaration* decl : *decls) {
if (decl->IsFunctionDeclaration()) {
continue;
}
VariableDeclaration* var_decl = decl->AsVariableDeclaration();
if (var_decl == nullptr) {
FAIL(decl, "Invalid asm.js declaration.");
}
auto* var_proxy = var_decl->proxy();
if (var_proxy == nullptr) {
FAIL(decl, "Invalid asm.js declaration.");
}
if (Lookup(var_proxy->var()) == nullptr) {
FAIL(decl, "Global variable missing initializer in asm.js module.");
}
}
// 6.2 ValidateExport
if (module_return_ == nullptr) {
FAIL(fun, "Missing asm.js module export.");
}
for (auto* forward_def : forward_definitions_) {
if (forward_def->missing_definition()) {
FAIL_LINE(forward_def->source_location(),
"Missing definition for forward declared identifier.");
}
}
RECURSE(ValidateExport(module_return_));
if (!source_layout_.IsValid()) {
FAIL(fun, "Invalid asm.js source code layout.");
}
return AsmType::Int(); // Any type that is not AsmType::None();
}
namespace {
bool IsDoubleAnnotation(BinaryOperation* binop) {
// *VIOLATION* The parser replaces uses of +x with x*1.0.
if (binop->op() != Token::MUL) {
return false;
}
auto* right_as_literal = binop->right()->AsLiteral();
if (right_as_literal == nullptr) {
return false;
}
return right_as_literal->raw_value()->ContainsDot() &&
right_as_literal->raw_value()->AsNumber() == 1.0;
}
bool IsIntAnnotation(BinaryOperation* binop) {
if (binop->op() != Token::BIT_OR) {
return false;
}
auto* right_as_literal = binop->right()->AsLiteral();
if (right_as_literal == nullptr) {
return false;
}
return !right_as_literal->raw_value()->ContainsDot() &&
right_as_literal->raw_value()->AsNumber() == 0.0;
}
} // namespace
AsmType* AsmTyper::ValidateGlobalDeclaration(Assignment* assign) {
DCHECK(!assign->is_compound());
if (assign->is_compound()) {
FAIL(assign,
"Compound assignment not supported when declaring global variables.");
}
auto* target = assign->target();
if (!target->IsVariableProxy()) {
FAIL(target, "Module assignments may only assign to globals.");
}
auto* target_variable = target->AsVariableProxy()->var();
auto* target_info = Lookup(target_variable);
if (target_info != nullptr) {
FAIL(target, "Redefined global variable.");
}
auto* value = assign->value();
// Not all types of assignment are allowed by asm.js. See
// 5.5 Global Variable Type Annotations.
bool global_variable = false;
if (value->IsLiteral() || value->IsCall()) {
AsmType* type = nullptr;
VariableInfo::Mutability mutability;
if (target_variable->mode() == CONST) {
mutability = VariableInfo::kConstGlobal;
} else {
mutability = VariableInfo::kMutableGlobal;
}
RECURSE(type = VariableTypeAnnotations(value, mutability));
target_info = new (zone_) VariableInfo(type);
target_info->set_mutability(mutability);
global_variable = true;
} else if (value->IsProperty()) {
target_info = ImportLookup(value->AsProperty());
if (target_info == nullptr) {
FAIL(assign, "Invalid import.");
}
CHECK(target_info->mutability() == VariableInfo::kImmutableGlobal);
if (target_info->IsFFI()) {
// create a new target info that represents a foreign variable.
target_info = new (zone_) VariableInfo(ffi_type_);
target_info->set_mutability(VariableInfo::kImmutableGlobal);
} else if (target_info->type()->IsA(AsmType::Heap())) {
FAIL(assign, "Heap view types can not be aliased.");
} else {
target_info = target_info->Clone(zone_);
}
} else if (value->IsBinaryOperation()) {
// This should either be:
//
// var <> = ffi.<>|0
//
// or
//
// var <> = +ffi.<>
auto* value_binop = value->AsBinaryOperation();
auto* left = value_binop->left();
AsmType* import_type = nullptr;
if (IsDoubleAnnotation(value_binop)) {
import_type = AsmType::Double();
} else if (IsIntAnnotation(value_binop)) {
import_type = AsmType::Int();
} else {
FAIL(value,
"Invalid initializer for foreign import - unrecognized annotation.");
}
if (!left->IsProperty()) {
FAIL(value,
"Invalid initializer for foreign import - must import member.");
}
target_info = ImportLookup(left->AsProperty());
if (target_info == nullptr) {
// TODO(jpp): this error message is innacurate: this may fail if the
// object lookup fails, or if the property lookup fails, or even if the
// import is bogus like a().c.
FAIL(value,
"Invalid initializer for foreign import - object lookup failed.");
}
CHECK(target_info->mutability() == VariableInfo::kImmutableGlobal);
if (!target_info->IsFFI()) {
FAIL(value,
"Invalid initializer for foreign import - object is not the ffi.");
}
// Create a new target info that represents the foreign import.
target_info = new (zone_) VariableInfo(import_type);
target_info->set_mutability(VariableInfo::kMutableGlobal);
} else if (value->IsCallNew()) {
AsmType* type = nullptr;
RECURSE(type = NewHeapView(value->AsCallNew()));
target_info = new (zone_) VariableInfo(type);
target_info->set_mutability(VariableInfo::kImmutableGlobal);
} else if (auto* proxy = value->AsVariableProxy()) {
auto* var_info = Lookup(proxy->var());
if (var_info == nullptr) {
FAIL(value, "Undeclared identifier in global initializer");
}
if (var_info->mutability() != VariableInfo::kConstGlobal) {
FAIL(value, "Identifier used to initialize a global must be a const");
}
target_info = new (zone_) VariableInfo(var_info->type());
if (target_variable->mode() == CONST) {
target_info->set_mutability(VariableInfo::kConstGlobal);
} else {
target_info->set_mutability(VariableInfo::kMutableGlobal);
}
}
if (target_info == nullptr) {
FAIL(assign, "Invalid global variable initializer.");
}
if (!ValidAsmIdentifier(target_variable->name())) {
FAIL(target, "Invalid asm.js identifier in global variable.");
}
if (!AddGlobal(target_variable, target_info)) {
FAIL(assign, "Redeclared global identifier.");
}
DCHECK(target_info->type() != AsmType::None());
if (!global_variable) {
// Global variables have their types set in VariableTypeAnnotations.
SetTypeOf(value, target_info->type());
}
SetTypeOf(assign, target_info->type());
SetTypeOf(target, target_info->type());
return target_info->type();
}
// 6.2 ValidateExport
AsmType* AsmTyper::ExportType(VariableProxy* fun_export) {
auto* fun_info = Lookup(fun_export->var());
if (fun_info == nullptr) {
FAIL(fun_export, "Undefined identifier in asm.js module export.");
}
if (fun_info->standard_member() != kNone) {
FAIL(fun_export, "Module cannot export standard library functions.");
}
auto* type = fun_info->type();
if (type->AsFFIType() != nullptr) {
FAIL(fun_export, "Module cannot export foreign functions.");
}
if (type->AsFunctionTableType() != nullptr) {
FAIL(fun_export, "Module cannot export function tables.");
}
if (fun_info->type()->AsFunctionType() == nullptr) {
FAIL(fun_export, "Module export is not an asm.js function.");
}
return type;
}
AsmType* AsmTyper::ValidateExport(ReturnStatement* exports) {
// asm.js modules can export single functions, or multiple functions in an
// object literal.
if (auto* fun_export = exports->expression()->AsVariableProxy()) {
// Exporting single function.
AsmType* export_type;
RECURSE(export_type = ExportType(fun_export));
return export_type;
}
if (auto* obj_export = exports->expression()->AsObjectLiteral()) {
// Exporting object literal.
for (auto* prop : *obj_export->properties()) {
if (!prop->key()->IsLiteral()) {
FAIL(prop->key(),
"Only normal object properties may be used in the export object "
"literal.");
}
auto* export_obj = prop->value()->AsVariableProxy();
if (export_obj == nullptr) {
FAIL(prop->value(), "Exported value must be an asm.js function name.");
}
RECURSE(ExportType(export_obj));
}
return AsmType::Int();
}
FAIL(exports, "Unrecognized expression in asm.js module export expression.");
}
// 6.3 ValidateFunctionTable
AsmType* AsmTyper::ValidateFunctionTable(Assignment* assign) {
if (assign->is_compound()) {
FAIL(assign,
"Compound assignment not supported when declaring global variables.");
}
auto* target = assign->target();
if (!target->IsVariableProxy()) {
FAIL(target, "Module assignments may only assign to globals.");
}
auto* target_variable = target->AsVariableProxy()->var();
auto* value = assign->value()->AsArrayLiteral();
CHECK(value != nullptr);
ZoneList<Expression*>* pointers = value->values();
// The function table size must be n = 2 ** m, for m >= 0;
// TODO(jpp): should this be capped?
if (!base::bits::IsPowerOfTwo32(pointers->length())) {
FAIL(assign, "Invalid length for function pointer table.");
}
AsmType* table_element_type = nullptr;
for (auto* initializer : *pointers) {
auto* var_proxy = initializer->AsVariableProxy();
if (var_proxy == nullptr) {
FAIL(initializer,
"Function pointer table initializer must be a function name.");
}
auto* var_info = Lookup(var_proxy->var());
if (var_info == nullptr) {
FAIL(var_proxy,
"Undefined identifier in function pointer table initializer.");
}
if (var_info->standard_member() != kNone) {
FAIL(initializer,
"Function pointer table must not be a member of the standard "
"library.");
}
auto* initializer_type = var_info->type();
if (initializer_type->AsFunctionType() == nullptr) {
FAIL(initializer,
"Function pointer table initializer must be an asm.js function.");
}
DCHECK(var_info->type()->AsFFIType() == nullptr);
DCHECK(var_info->type()->AsFunctionTableType() == nullptr);
if (table_element_type == nullptr) {
table_element_type = initializer_type;
} else if (!initializer_type->IsA(table_element_type)) {
FAIL(initializer, "Type mismatch in function pointer table initializer.");
}
}
auto* target_info = Lookup(target_variable);
if (target_info == nullptr) {
// Function pointer tables are the last entities to be validates, so this is
// unlikely to happen: only unreferenced function tables will not already
// have an entry in the global scope.
target_info = new (zone_) VariableInfo(AsmType::FunctionTableType(
zone_, pointers->length(), table_element_type));
target_info->set_mutability(VariableInfo::kImmutableGlobal);
if (!ValidAsmIdentifier(target_variable->name())) {
FAIL(target, "Invalid asm.js identifier in function table name.");
}
if (!AddGlobal(target_variable, target_info)) {
DCHECK(false);
FAIL(assign, "Redeclared global identifier in function table name.");
}
SetTypeOf(value, target_info->type());
return target_info->type();
}
auto* target_info_table = target_info->type()->AsFunctionTableType();
if (target_info_table == nullptr) {
FAIL(assign, "Identifier redefined as function pointer table.");
}
if (!target_info->missing_definition()) {
FAIL(assign, "Identifier redefined (function table name).");
}
if (static_cast<int>(target_info_table->length()) != pointers->length()) {
FAIL(assign, "Function table size mismatch.");
}
DCHECK(target_info_table->signature()->AsFunctionType());
if (!table_element_type->IsA(target_info_table->signature())) {
FAIL(assign, "Function table initializer does not match previous type.");
}
target_info->MarkDefined();
DCHECK(target_info->type() != AsmType::None());
SetTypeOf(value, target_info->type());
return target_info->type();
}
// 6.4 ValidateFunction
AsmType* AsmTyper::ValidateFunction(FunctionDeclaration* fun_decl) {
FunctionScope _(this);
// Extract parameter types.
auto* fun = fun_decl->fun();
auto* fun_decl_proxy = fun_decl->proxy();
if (fun_decl_proxy == nullptr) {
FAIL(fun_decl, "Anonymous functions are not support in asm.js.");
}
Statement* current;
FlattenedStatements iter(zone_, fun->body());
size_t annotated_parameters = 0;
// 5.3 Function type annotations
// * parameters
ZoneVector<AsmType*> parameter_types(zone_);
for (; (current = iter.Next()) != nullptr; ++annotated_parameters) {
auto* stmt = current->AsExpressionStatement();
if (stmt == nullptr) {
// Done with parameters.
break;
}
auto* expr = stmt->expression()->AsAssignment();
if (expr == nullptr || expr->is_compound()) {
// Done with parameters.
break;
}
auto* proxy = expr->target()->AsVariableProxy();
if (proxy == nullptr) {
// Done with parameters.
break;
}
auto* param = proxy->var();
if (param->location() != VariableLocation::PARAMETER ||
param->index() != static_cast<int>(annotated_parameters)) {
// Done with parameters.
break;
}
AsmType* type;
RECURSE(type = ParameterTypeAnnotations(param, expr->value()));
DCHECK(type->IsParameterType());
auto* param_info = new (zone_) VariableInfo(type);
param_info->set_mutability(VariableInfo::kLocal);
if (!ValidAsmIdentifier(proxy->name())) {
FAIL(proxy, "Invalid asm.js identifier in parameter name.");
}
if (!AddLocal(param, param_info)) {
FAIL(proxy, "Redeclared parameter.");
}
parameter_types.push_back(type);
SetTypeOf(proxy, type);
SetTypeOf(expr, type);
}
if (static_cast<int>(annotated_parameters) != fun->parameter_count()) {
FAIL(fun_decl, "Incorrect parameter type annotations.");
}
// 5.3 Function type annotations
// * locals
for (; current; current = iter.Next()) {
auto* initializer = ExtractInitializerExpression(current);
if (initializer == nullptr) {
// Done with locals.
break;
}
auto* local = initializer->target()->AsVariableProxy();
if (local == nullptr) {
// Done with locals. It should never happen. Even if it does, the asm.js
// code should not declare any other locals after this point, so we assume
// this is OK. If any other variable declaration is found we report a
// validation error.
DCHECK(false);
break;
}
AsmType* type;
RECURSE(type = VariableTypeAnnotations(initializer->value()));
auto* local_info = new (zone_) VariableInfo(type);
local_info->set_mutability(VariableInfo::kLocal);
if (!ValidAsmIdentifier(local->name())) {
FAIL(local, "Invalid asm.js identifier in local variable.");
}
if (!AddLocal(local->var(), local_info)) {
FAIL(initializer, "Redeclared local.");
}
SetTypeOf(local, type);
SetTypeOf(initializer, type);
}
// 5.2 Return Type Annotations
// *VIOLATION* we peel blocks to find the last statement in the asm module
// because the parser may introduce synthetic blocks.
ZoneList<Statement*>* statements = fun->body();
do {
if (statements->length() == 0) {
return_type_ = AsmType::Void();
} else {
auto* last_statement = statements->last();
auto* as_block = last_statement->AsBlock();
if (as_block != nullptr) {
statements = as_block->statements();
} else {
// We don't check whether AsReturnStatement() below returns non-null --
// we leave that to the ReturnTypeAnnotations method.
RECURSE(return_type_ =
ReturnTypeAnnotations(last_statement->AsReturnStatement()));
}
}
} while (return_type_ == AsmType::None());
DCHECK(return_type_->IsReturnType());
for (Declaration* decl : *fun->scope()->declarations()) {
auto* var_decl = decl->AsVariableDeclaration();
if (var_decl == nullptr) {
FAIL(decl, "Functions may only define inner variables.");
}
auto* var_proxy = var_decl->proxy();
if (var_proxy == nullptr) {
FAIL(decl, "Invalid local declaration declaration.");
}
auto* var_info = Lookup(var_proxy->var());
if (var_info == nullptr || var_info->IsGlobal()) {
FAIL(decl, "Local variable missing initializer in asm.js module.");
}
}
for (; current; current = iter.Next()) {
AsmType* current_type;
RECURSE(current_type = ValidateStatement(current));
}
auto* fun_type = AsmType::Function(zone_, return_type_);
auto* fun_type_as_function = fun_type->AsFunctionType();
for (auto* param_type : parameter_types) {
fun_type_as_function->AddArgument(param_type);
}
auto* fun_var = fun_decl_proxy->var();
auto* fun_info = new (zone_) VariableInfo(fun_type);
fun_info->set_mutability(VariableInfo::kImmutableGlobal);
auto* old_fun_info = Lookup(fun_var);
if (old_fun_info == nullptr) {
if (!ValidAsmIdentifier(fun_var->name())) {
FAIL(fun_decl_proxy, "Invalid asm.js identifier in function name.");
}
if (!AddGlobal(fun_var, fun_info)) {
DCHECK(false);
FAIL(fun_decl, "Redeclared global identifier.");
}
SetTypeOf(fun, fun_type);
return fun_type;
}
// Not necessarily an error -- fun_decl might have been used before being
// defined. If that's the case, then the type in the global environment must
// be the same as the type inferred by the parameter/return type annotations.
auto* old_fun_type = old_fun_info->type();
if (old_fun_type->AsFunctionType() == nullptr) {
FAIL(fun_decl, "Identifier redefined as function.");
}
if (!old_fun_info->missing_definition()) {
FAIL(fun_decl, "Identifier redefined (function name).");
}
if (!fun_type->IsA(old_fun_type)) {
FAIL(fun_decl, "Signature mismatch when defining function.");
}
old_fun_info->MarkDefined();
SetTypeOf(fun, fun_type);
return fun_type;
}
// 6.5 ValidateStatement
AsmType* AsmTyper::ValidateStatement(Statement* statement) {
switch (statement->node_type()) {
default:
FAIL(statement, "Statement type invalid for asm.js.");
case AstNode::kBlock:
return ValidateBlockStatement(statement->AsBlock());
case AstNode::kExpressionStatement:
return ValidateExpressionStatement(statement->AsExpressionStatement());
case AstNode::kEmptyStatement:
return ValidateEmptyStatement(statement->AsEmptyStatement());
case AstNode::kIfStatement:
return ValidateIfStatement(statement->AsIfStatement());
case AstNode::kReturnStatement:
return ValidateReturnStatement(statement->AsReturnStatement());
case AstNode::kWhileStatement:
return ValidateWhileStatement(statement->AsWhileStatement());
case AstNode::kDoWhileStatement:
return ValidateDoWhileStatement(statement->AsDoWhileStatement());
case AstNode::kForStatement:
return ValidateForStatement(statement->AsForStatement());
case AstNode::kBreakStatement:
return ValidateBreakStatement(statement->AsBreakStatement());
case AstNode::kContinueStatement:
return ValidateContinueStatement(statement->AsContinueStatement());
case AstNode::kSwitchStatement:
return ValidateSwitchStatement(statement->AsSwitchStatement());
}
return AsmType::Void();
}
// 6.5.1 BlockStatement
AsmType* AsmTyper::ValidateBlockStatement(Block* block) {
FlattenedStatements iter(zone_, block->statements());
while (auto* current = iter.Next()) {
RECURSE(ValidateStatement(current));
}
return AsmType::Void();
}
// 6.5.2 ExpressionStatement
AsmType* AsmTyper::ValidateExpressionStatement(ExpressionStatement* expr) {
auto* expression = expr->expression();
if (auto* call = expression->AsCall()) {
RECURSE(ValidateCall(AsmType::Void(), call));
} else {
RECURSE(ValidateExpression(expression));
}
return AsmType::Void();
}
// 6.5.3 EmptyStatement
AsmType* AsmTyper::ValidateEmptyStatement(EmptyStatement* empty) {
return AsmType::Void();
}
// 6.5.4 IfStatement
AsmType* AsmTyper::ValidateIfStatement(IfStatement* if_stmt) {
AsmType* cond_type;
RECURSE(cond_type = ValidateExpression(if_stmt->condition()));
if (!cond_type->IsA(AsmType::Int())) {
FAIL(if_stmt->condition(), "If condition must be type int.");
}
RECURSE(ValidateStatement(if_stmt->then_statement()));
RECURSE(ValidateStatement(if_stmt->else_statement()));
return AsmType::Void();
}
// 6.5.5 ReturnStatement
AsmType* AsmTyper::ValidateReturnStatement(ReturnStatement* ret_stmt) {
AsmType* ret_expr_type = AsmType::Void();
if (auto* ret_expr = ret_stmt->expression()) {
RECURSE(ret_expr_type = ValidateExpression(ret_expr));
if (ret_expr_type == AsmType::Void()) {
// *VIOLATION* The parser modifies the source code so that expressionless
// returns will return undefined, so we need to allow that.
if (!ret_expr->IsUndefinedLiteral()) {
FAIL(ret_stmt, "Return statement expression can't be void.");
}
}
}
if (!ret_expr_type->IsA(return_type_)) {
FAIL(ret_stmt, "Type mismatch in return statement.");
}
return ret_expr_type;
}
// 6.5.6 IterationStatement
// 6.5.6.a WhileStatement
AsmType* AsmTyper::ValidateWhileStatement(WhileStatement* while_stmt) {
AsmType* cond_type;
RECURSE(cond_type = ValidateExpression(while_stmt->cond()));
if (!cond_type->IsA(AsmType::Int())) {
FAIL(while_stmt->cond(), "While condition must be type int.");
}
if (auto* body = while_stmt->body()) {
RECURSE(ValidateStatement(body));
}
return AsmType::Void();
}
// 6.5.6.b DoWhileStatement
AsmType* AsmTyper::ValidateDoWhileStatement(DoWhileStatement* do_while) {
AsmType* cond_type;
RECURSE(cond_type = ValidateExpression(do_while->cond()));
if (!cond_type->IsA(AsmType::Int())) {
FAIL(do_while->cond(), "Do {} While condition must be type int.");
}
if (auto* body = do_while->body()) {
RECURSE(ValidateStatement(body));
}
return AsmType::Void();
}
// 6.5.6.c ForStatement
AsmType* AsmTyper::ValidateForStatement(ForStatement* for_stmt) {
if (auto* init = for_stmt->init()) {
RECURSE(ValidateStatement(init));
}
if (auto* cond = for_stmt->cond()) {
AsmType* cond_type;
RECURSE(cond_type = ValidateExpression(cond));
if (!cond_type->IsA(AsmType::Int())) {
FAIL(cond, "For condition must be type int.");
}
}
if (auto* next = for_stmt->next()) {
RECURSE(ValidateStatement(next));
}
if (auto* body = for_stmt->body()) {
RECURSE(ValidateStatement(body));
}
return AsmType::Void();
}
// 6.5.7 BreakStatement
AsmType* AsmTyper::ValidateBreakStatement(BreakStatement* brk_stmt) {
return AsmType::Void();
}
// 6.5.8 ContinueStatement
AsmType* AsmTyper::ValidateContinueStatement(ContinueStatement* cont_stmt) {
return AsmType::Void();
}
// 6.5.9 LabelledStatement
// No need to handle these here -- see the AsmTyper's definition.
// 6.5.10 SwitchStatement
AsmType* AsmTyper::ValidateSwitchStatement(SwitchStatement* stmt) {
AsmType* cond_type;
RECURSE(cond_type = ValidateExpression(stmt->tag()));
if (!cond_type->IsA(AsmType::Signed())) {
FAIL(stmt, "Switch tag must be signed.");
}
int default_pos = kNoSourcePosition;
int last_case_pos = kNoSourcePosition;
ZoneSet<int32_t> cases_seen(zone_);
for (auto* a_case : *stmt->cases()) {
if (a_case->is_default()) {
CHECK(default_pos == kNoSourcePosition);
RECURSE(ValidateDefault(a_case));
default_pos = a_case->position();
continue;
}
if (last_case_pos == kNoSourcePosition) {
last_case_pos = a_case->position();
} else {
last_case_pos = std::max(last_case_pos, a_case->position());
}
int32_t case_lbl;
RECURSE(ValidateCase(a_case, &case_lbl));
auto case_lbl_pos = cases_seen.find(case_lbl);
if (case_lbl_pos != cases_seen.end() && *case_lbl_pos == case_lbl) {
FAIL(a_case, "Duplicated case label.");
}
cases_seen.insert(case_lbl);
}
if (!cases_seen.empty()) {
const int64_t max_lbl = *cases_seen.rbegin();
const int64_t min_lbl = *cases_seen.begin();
if (max_lbl - min_lbl > std::numeric_limits<int32_t>::max()) {
FAIL(stmt, "Out-of-bounds case label range.");
}
}
if (last_case_pos != kNoSourcePosition && default_pos != kNoSourcePosition &&
default_pos < last_case_pos) {
FAIL(stmt, "Switch default must appear last.");
}
return AsmType::Void();
}
// 6.6 ValidateCase
namespace {
bool ExtractInt32CaseLabel(CaseClause* clause, int32_t* lbl) {
auto* lbl_expr = clause->label()->AsLiteral();
if (lbl_expr == nullptr) {
return false;
}
if (lbl_expr->raw_value()->ContainsDot()) {
return false;
}
return lbl_expr->value()->ToInt32(lbl);
}
} // namespace
AsmType* AsmTyper::ValidateCase(CaseClause* label, int32_t* case_lbl) {
if (!ExtractInt32CaseLabel(label, case_lbl)) {
FAIL(label, "Case label must be a 32-bit signed integer.");
}
FlattenedStatements iter(zone_, label->statements());
while (auto* current = iter.Next()) {
RECURSE(ValidateStatement(current));
}
return AsmType::Void();
}
// 6.7 ValidateDefault
AsmType* AsmTyper::ValidateDefault(CaseClause* label) {
FlattenedStatements iter(zone_, label->statements());
while (auto* current = iter.Next()) {
RECURSE(ValidateStatement(current));
}
return AsmType::Void();
}
// 6.8 ValidateExpression
AsmType* AsmTyper::ValidateExpression(Expression* expr) {
AsmType* expr_ty = AsmType::None();
switch (expr->node_type()) {
default:
FAIL(expr, "Invalid asm.js expression.");
case AstNode::kLiteral:
RECURSE(expr_ty = ValidateNumericLiteral(expr->AsLiteral()));
break;
case AstNode::kVariableProxy:
RECURSE(expr_ty = ValidateIdentifier(expr->AsVariableProxy()));
break;
case AstNode::kCall:
RECURSE(expr_ty = ValidateCallExpression(expr->AsCall()));
break;
case AstNode::kProperty:
RECURSE(expr_ty = ValidateMemberExpression(expr->AsProperty()));
break;
case AstNode::kAssignment:
RECURSE(expr_ty = ValidateAssignmentExpression(expr->AsAssignment()));
break;
case AstNode::kUnaryOperation:
RECURSE(expr_ty = ValidateUnaryExpression(expr->AsUnaryOperation()));
break;
case AstNode::kConditional:
RECURSE(expr_ty = ValidateConditionalExpression(expr->AsConditional()));
break;
case AstNode::kCompareOperation:
RECURSE(expr_ty = ValidateCompareOperation(expr->AsCompareOperation()));
break;
case AstNode::kBinaryOperation:
RECURSE(expr_ty = ValidateBinaryOperation(expr->AsBinaryOperation()));
break;
}
SetTypeOf(expr, expr_ty);
return expr_ty;
}
AsmType* AsmTyper::ValidateCompareOperation(CompareOperation* cmp) {
switch (cmp->op()) {
default:
FAIL(cmp, "Invalid asm.js comparison operator.");
case Token::LT:
case Token::LTE:
case Token::GT:
case Token::GTE:
return ValidateRelationalExpression(cmp);
case Token::EQ:
case Token::NE:
return ValidateEqualityExpression(cmp);
}
UNREACHABLE();
}
namespace {
bool IsInvert(BinaryOperation* binop) {
if (binop->op() != Token::BIT_XOR) {
return false;
}
auto* right_as_literal = binop->right()->AsLiteral();
if (right_as_literal == nullptr) {
return false;
}
return !right_as_literal->raw_value()->ContainsDot() &&
right_as_literal->raw_value()->AsNumber() == -1.0;
}
bool IsUnaryMinus(BinaryOperation* binop) {
// *VIOLATION* The parser replaces uses of -x with x*-1.
if (binop->op() != Token::MUL) {
return false;
}
auto* right_as_literal = binop->right()->AsLiteral();
if (right_as_literal == nullptr) {
return false;
}
return !right_as_literal->raw_value()->ContainsDot() &&
right_as_literal->raw_value()->AsNumber() == -1.0;
}
} // namespace
AsmType* AsmTyper::ValidateBinaryOperation(BinaryOperation* expr) {
#define UNOP_OVERLOAD(Src, Dest) \
do { \
if (left_type->IsA(AsmType::Src())) { \
return AsmType::Dest(); \
} \
} while (0)
switch (expr->op()) {
default:
FAIL(expr, "Invalid asm.js binary expression.");
case Token::COMMA:
return ValidateCommaExpression(expr);
case Token::MUL:
if (IsDoubleAnnotation(expr)) {
// *VIOLATION* We can't be 100% sure this really IS a unary + in the asm
// source so we have to be lenient, and treat this as a unary +.
if (auto* Call = expr->left()->AsCall()) {
return ValidateCall(AsmType::Double(), Call);
}
AsmType* left_type;
RECURSE(left_type = ValidateExpression(expr->left()));
SetTypeOf(expr->right(), AsmType::Double());
UNOP_OVERLOAD(Signed, Double);
UNOP_OVERLOAD(Unsigned, Double);
UNOP_OVERLOAD(DoubleQ, Double);
UNOP_OVERLOAD(FloatQ, Double);
FAIL(expr, "Invalid type for conversion to double.");
}
if (IsUnaryMinus(expr)) {
// *VIOLATION* the parser converts -x to x * -1.
AsmType* left_type;
RECURSE(left_type = ValidateExpression(expr->left()));
SetTypeOf(expr->right(), left_type);
UNOP_OVERLOAD(Int, Intish);
UNOP_OVERLOAD(DoubleQ, Double);
UNOP_OVERLOAD(FloatQ, Floatish);
FAIL(expr, "Invalid type for unary -.");
}
// FALTHROUGH
case Token::DIV:
case Token::MOD:
return ValidateMultiplicativeExpression(expr);
case Token::ADD:
case Token::SUB: {
static const uint32_t kInitialIntishCount = 0;
return ValidateAdditiveExpression(expr, kInitialIntishCount);
}
case Token::SAR:
case Token::SHL:
case Token::SHR:
return ValidateShiftExpression(expr);
case Token::BIT_AND:
return ValidateBitwiseANDExpression(expr);
case Token::BIT_XOR:
if (IsInvert(expr)) {
auto* left = expr->left();
auto* left_as_binop = left->AsBinaryOperation();
if (left_as_binop != nullptr && IsInvert(left_as_binop)) {
// This is the special ~~ operator.
AsmType* left_type;
RECURSE(left_type = ValidateExpression(left_as_binop->left()));
SetTypeOf(left_as_binop->right(), AsmType::FixNum());
SetTypeOf(left_as_binop, AsmType::Signed());
SetTypeOf(expr->right(), AsmType::FixNum());
UNOP_OVERLOAD(Double, Signed);
UNOP_OVERLOAD(FloatQ, Signed);
FAIL(left_as_binop, "Invalid type for conversion to signed.");
}
AsmType* left_type;
RECURSE(left_type = ValidateExpression(left));
UNOP_OVERLOAD(Intish, Signed);
FAIL(left, "Invalid type for ~.");
}
return ValidateBitwiseXORExpression(expr);
case Token::BIT_OR:
return ValidateBitwiseORExpression(expr);
}
#undef UNOP_OVERLOAD
UNREACHABLE();
}
// 6.8.1 Expression
AsmType* AsmTyper::ValidateCommaExpression(BinaryOperation* comma) {
// The AST looks like:
// (expr COMMA (expr COMMA (expr COMMA (... ))))
auto* left = comma->left();
if (auto* left_as_call = left->AsCall()) {
RECURSE(ValidateCall(AsmType::Void(), left_as_call));
} else {
RECURSE(ValidateExpression(left));
}
auto* right = comma->right();
AsmType* right_type = nullptr;
if (auto* right_as_call = right->AsCall()) {
RECURSE(right_type = ValidateFloatCoercion(right_as_call));
if (right_type != AsmType::Float()) {
// right_type == nullptr <-> right_as_call is not a call to fround.
DCHECK(right_type == nullptr);
RECURSE(right_type = ValidateCall(AsmType::Void(), right_as_call));
// Unnanotated function call to something that's not fround must be a call
// to a void function.
DCHECK_EQ(right_type, AsmType::Void());
}
} else {
RECURSE(right_type = ValidateExpression(right));
}
return right_type;
}
// 6.8.2 NumericLiteral
AsmType* AsmTyper::ValidateNumericLiteral(Literal* literal) {
// *VIOLATION* asm.js does not allow the use of undefined, but our parser
// inserts them, so we have to handle them.
if (literal->IsUndefinedLiteral()) {
return AsmType::Void();
}
if (literal->raw_value()->ContainsDot()) {
return AsmType::Double();
}
// The parser collapses expressions like !0 and !123 to true/false.
// We therefore need to permit these as alternate versions of 0 / 1.
if (literal->raw_value()->IsTrue() || literal->raw_value()->IsFalse()) {
return AsmType::Int();
}
uint32_t value;
if (!literal->value()->ToUint32(&value)) {
int32_t value;
if (!literal->value()->ToInt32(&value)) {
FAIL(literal, "Integer literal is out of range.");
}
// *VIOLATION* Not really a violation, but rather a difference in
// validation. The spec handles -NumericLiteral in ValidateUnaryExpression,
// but V8's AST represents the negative literals as Literals.
return AsmType::Signed();
}
if (value <= LargestFixNum) {
return AsmType::FixNum();
}
return AsmType::Unsigned();
}
// 6.8.3 Identifier
AsmType* AsmTyper::ValidateIdentifier(VariableProxy* proxy) {
auto* proxy_info = Lookup(proxy->var());
if (proxy_info == nullptr) {
FAIL(proxy, "Undeclared identifier.");
}
auto* type = proxy_info->type();
if (type->IsA(AsmType::None()) || type->AsCallableType() != nullptr) {
FAIL(proxy, "Identifier may not be accessed by ordinary expressions.");
}
return type;
}
// 6.8.4 CallExpression
AsmType* AsmTyper::ValidateCallExpression(Call* call) {
AsmType* return_type;
RECURSE(return_type = ValidateFloatCoercion(call));
if (return_type == nullptr) {
FAIL(call, "Unanotated call to a function must be a call to fround.");
}
return return_type;
}
// 6.8.5 MemberExpression
AsmType* AsmTyper::ValidateMemberExpression(Property* prop) {
AsmType* return_type;
RECURSE(return_type = ValidateHeapAccess(prop, LoadFromHeap));
return return_type;
}
// 6.8.6 AssignmentExpression
AsmType* AsmTyper::ValidateAssignmentExpression(Assignment* assignment) {
AsmType* value_type;
RECURSE(value_type = ValidateExpression(assignment->value()));
if (assignment->op() == Token::INIT) {
FAIL(assignment,
"Local variable declaration must be at the top of the function.");
}
if (auto* target_as_proxy = assignment->target()->AsVariableProxy()) {
auto* var = target_as_proxy->var();
auto* target_info = Lookup(var);
if (target_info == nullptr) {
if (var->mode() != TEMPORARY) {
FAIL(target_as_proxy, "Undeclared identifier.");
}
// Temporary variables are special: we add them to the local symbol table
// as we see them, with the exact type of the variable's initializer. This
// means that temporary variables might have nonsensical types (i.e.,
// intish, float?, fixnum, and not just the "canonical" types.)
auto* var_info = new (zone_) VariableInfo(value_type);
var_info->set_mutability(VariableInfo::kLocal);
if (!ValidAsmIdentifier(target_as_proxy->name())) {
FAIL(target_as_proxy,
"Invalid asm.js identifier in temporary variable.");
}
if (!AddLocal(var, var_info)) {
FAIL(assignment, "Failed to add temporary variable to symbol table.");
}
return value_type;
}
if (!target_info->IsMutable()) {
FAIL(assignment, "Can't assign to immutable symbol.");
}
DCHECK_NE(AsmType::None(), target_info->type());
if (!value_type->IsA(target_info->type())) {
FAIL(assignment, "Type mismatch in assignment.");
}
return value_type;
}
if (auto* target_as_property = assignment->target()->AsProperty()) {
AsmType* allowed_store_types;
RECURSE(allowed_store_types =
ValidateHeapAccess(target_as_property, StoreToHeap));
if (!value_type->IsA(allowed_store_types)) {
FAIL(assignment, "Type mismatch in heap assignment.");
}
return value_type;
}
FAIL(assignment, "Invalid asm.js assignment.");
}
// 6.8.7 UnaryExpression
AsmType* AsmTyper::ValidateUnaryExpression(UnaryOperation* unop) {
// *VIOLATION* -NumericLiteral is validated in ValidateLiteral.
// *VIOLATION* +UnaryExpression is validated in ValidateBinaryOperation.
// *VIOLATION* ~UnaryOperation is validated in ValidateBinaryOperation.
// *VIOLATION* ~~UnaryOperation is validated in ValidateBinaryOperation.
DCHECK(unop->op() != Token::BIT_NOT);
DCHECK(unop->op() != Token::ADD);
AsmType* exp_type;
RECURSE(exp_type = ValidateExpression(unop->expression()));
#define UNOP_OVERLOAD(Src, Dest) \
do { \
if (exp_type->IsA(AsmType::Src())) { \
return AsmType::Dest(); \
} \
} while (0)
// 8.1 Unary Operators
switch (unop->op()) {
default:
FAIL(unop, "Invalid unary operator.");
case Token::ADD:
// We can't test this because of the +x -> x * 1.0 transformation.
DCHECK(false);
UNOP_OVERLOAD(Signed, Double);
UNOP_OVERLOAD(Unsigned, Double);
UNOP_OVERLOAD(DoubleQ, Double);
UNOP_OVERLOAD(FloatQ, Double);
FAIL(unop, "Invalid type for unary +.");
case Token::SUB:
// We can't test this because of the -x -> x * -1.0 transformation.
DCHECK(false);
UNOP_OVERLOAD(Int, Intish);
UNOP_OVERLOAD(DoubleQ, Double);
UNOP_OVERLOAD(FloatQ, Floatish);
FAIL(unop, "Invalid type for unary -.");
case Token::BIT_NOT:
// We can't test this because of the ~x -> x ^ -1 transformation.
DCHECK(false);
UNOP_OVERLOAD(Intish, Signed);
FAIL(unop, "Invalid type for ~.");
case Token::NOT:
UNOP_OVERLOAD(Int, Int);
FAIL(unop, "Invalid type for !.");
}
#undef UNOP_OVERLOAD
UNREACHABLE();
}
// 6.8.8 MultiplicativeExpression
namespace {
bool IsIntishLiteralFactor(Expression* expr, int32_t* factor) {
auto* literal = expr->AsLiteral();
if (literal == nullptr) {
return false;
}
if (literal->raw_value()->ContainsDot()) {
return false;
}
if (!literal->value()->ToInt32(factor)) {
return false;
}
static const int32_t kIntishBound = 1 << 20;
return -kIntishBound < *factor && *factor < kIntishBound;
}
} // namespace
AsmType* AsmTyper::ValidateMultiplicativeExpression(BinaryOperation* binop) {
DCHECK(!IsDoubleAnnotation(binop));
auto* left = binop->left();
auto* right = binop->right();
bool intish_mul_failed = false;
if (binop->op() == Token::MUL) {
int32_t factor;
if (IsIntishLiteralFactor(left, &factor)) {
AsmType* right_type;
RECURSE(right_type = ValidateExpression(right));
if (right_type->IsA(AsmType::Int())) {
return AsmType::Intish();
}
// Can't fail here, because the rhs might contain a valid intish factor.
//
// The solution is to flag that there was an error, and later on -- when
// both lhs and rhs are evaluated -- complain.
intish_mul_failed = true;
}
if (IsIntishLiteralFactor(right, &factor)) {
AsmType* left_type;
RECURSE(left_type = ValidateExpression(left));
if (left_type->IsA(AsmType::Int())) {
// *VIOLATION* This will also (and correctly) handle -X, when X is an
// integer. Therefore, we don't need to handle this case within the if
// block below.
return AsmType::Intish();
}
intish_mul_failed = true;
if (factor == -1) {
// *VIOLATION* The frontend transforms -x into x * -1 (not -1.0, because
// consistency is overrated.)
if (left_type->IsA(AsmType::DoubleQ())) {
return AsmType::Double();
} else if (left_type->IsA(AsmType::FloatQ())) {
return AsmType::Floatish();
}
}
}
}
if (intish_mul_failed) {
FAIL(binop, "Invalid types for intish * (or unary -).");
}
AsmType* left_type;
AsmType* right_type;
RECURSE(left_type = ValidateExpression(left));
RECURSE(right_type = ValidateExpression(right));
#define BINOP_OVERLOAD(Src0, Src1, Dest) \
do { \
if (left_type->IsA(AsmType::Src0()) && right_type->IsA(AsmType::Src1())) { \
return AsmType::Dest(); \
} \
} while (0)
switch (binop->op()) {
default:
FAIL(binop, "Invalid multiplicative expression.");
case Token::MUL:
BINOP_OVERLOAD(DoubleQ, DoubleQ, Double);
BINOP_OVERLOAD(FloatQ, FloatQ, Floatish);
FAIL(binop, "Invalid operands for *.");
case Token::DIV:
BINOP_OVERLOAD(Signed, Signed, Intish);
BINOP_OVERLOAD(Unsigned, Unsigned, Intish);
BINOP_OVERLOAD(DoubleQ, DoubleQ, Double);
BINOP_OVERLOAD(FloatQ, FloatQ, Floatish);
FAIL(binop, "Invalid operands for /.");
case Token::MOD:
BINOP_OVERLOAD(Signed, Signed, Intish);
BINOP_OVERLOAD(Unsigned, Unsigned, Intish);
BINOP_OVERLOAD(DoubleQ, DoubleQ, Double);
FAIL(binop, "Invalid operands for %.");
}
#undef BINOP_OVERLOAD
UNREACHABLE();
}
// 6.8.9 AdditiveExpression
AsmType* AsmTyper::ValidateAdditiveExpression(BinaryOperation* binop,
uint32_t intish_count) {
static const uint32_t kMaxIntish = 1 << 20;
auto* left = binop->left();
auto* left_as_binop = left->AsBinaryOperation();
AsmType* left_type;
// TODO(jpp): maybe use an iterative approach instead of the recursion to
// ValidateAdditiveExpression.
if (left_as_binop != nullptr && (left_as_binop->op() == Token::ADD ||
left_as_binop->op() == Token::SUB)) {
RECURSE(left_type =
ValidateAdditiveExpression(left_as_binop, intish_count + 1));
SetTypeOf(left_as_binop, left_type);
} else {
RECURSE(left_type = ValidateExpression(left));
}
auto* right = binop->right();
auto* right_as_binop = right->AsBinaryOperation();
AsmType* right_type;
if (right_as_binop != nullptr && (right_as_binop->op() == Token::ADD ||
right_as_binop->op() == Token::SUB)) {
RECURSE(right_type =
ValidateAdditiveExpression(right_as_binop, intish_count + 1));
SetTypeOf(right_as_binop, right_type);
} else {
RECURSE(right_type = ValidateExpression(right));
}
if (left_type->IsA(AsmType::FloatQ()) && right_type->IsA(AsmType::FloatQ())) {
return AsmType::Floatish();
}
if (left_type->IsA(AsmType::Int()) && right_type->IsA(AsmType::Int())) {
if (intish_count == 0) {
return AsmType::Intish();
}
if (intish_count < kMaxIntish) {
return AsmType::Int();
}
FAIL(binop, "Too many uncoerced integer additive expressions.");
}
if (left_type->IsA(AsmType::Double()) && right_type->IsA(AsmType::Double())) {
return AsmType::Double();
}
if (binop->op() == Token::SUB) {
if (left_type->IsA(AsmType::DoubleQ()) &&
right_type->IsA(AsmType::DoubleQ())) {
return AsmType::Double();
}
}
FAIL(binop, "Invalid operands for additive expression.");
}
// 6.8.10 ShiftExpression
AsmType* AsmTyper::ValidateShiftExpression(BinaryOperation* binop) {
auto* left = binop->left();
auto* right = binop->right();
AsmType* left_type;
AsmType* right_type;
RECURSE(left_type = ValidateExpression(left));
RECURSE(right_type = ValidateExpression(right));
#define BINOP_OVERLOAD(Src0, Src1, Dest) \
do { \
if (left_type->IsA(AsmType::Src0()) && right_type->IsA(AsmType::Src1())) { \
return AsmType::Dest(); \
} \
} while (0)
switch (binop->op()) {
default:
FAIL(binop, "Invalid shift expression.");
case Token::SHL:
BINOP_OVERLOAD(Intish, Intish, Signed);
FAIL(binop, "Invalid operands for <<.");
case Token::SAR:
BINOP_OVERLOAD(Intish, Intish, Signed);
FAIL(binop, "Invalid operands for >>.");
case Token::SHR:
BINOP_OVERLOAD(Intish, Intish, Unsigned);
FAIL(binop, "Invalid operands for >>>.");
}
#undef BINOP_OVERLOAD
UNREACHABLE();
}
// 6.8.11 RelationalExpression
AsmType* AsmTyper::ValidateRelationalExpression(CompareOperation* cmpop) {
auto* left = cmpop->left();
auto* right = cmpop->right();
AsmType* left_type;
AsmType* right_type;
RECURSE(left_type = ValidateExpression(left));
RECURSE(right_type = ValidateExpression(right));
#define CMPOP_OVERLOAD(Src0, Src1, Dest) \
do { \
if (left_type->IsA(AsmType::Src0()) && right_type->IsA(AsmType::Src1())) { \
return AsmType::Dest(); \
} \
} while (0)
switch (cmpop->op()) {
default:
FAIL(cmpop, "Invalid relational expression.");
case Token::LT:
CMPOP_OVERLOAD(Signed, Signed, Int);
CMPOP_OVERLOAD(Unsigned, Unsigned, Int);
CMPOP_OVERLOAD(Float, Float, Int);
CMPOP_OVERLOAD(Double, Double, Int);
FAIL(cmpop, "Invalid operands for <.");
case Token::GT:
CMPOP_OVERLOAD(Signed, Signed, Int);
CMPOP_OVERLOAD(Unsigned, Unsigned, Int);
CMPOP_OVERLOAD(Float, Float, Int);
CMPOP_OVERLOAD(Double, Double, Int);
FAIL(cmpop, "Invalid operands for >.");
case Token::LTE:
CMPOP_OVERLOAD(Signed, Signed, Int);
CMPOP_OVERLOAD(Unsigned, Unsigned, Int);
CMPOP_OVERLOAD(Float, Float, Int);
CMPOP_OVERLOAD(Double, Double, Int);
FAIL(cmpop, "Invalid operands for <=.");
case Token::GTE:
CMPOP_OVERLOAD(Signed, Signed, Int);
CMPOP_OVERLOAD(Unsigned, Unsigned, Int);
CMPOP_OVERLOAD(Float, Float, Int);
CMPOP_OVERLOAD(Double, Double, Int);
FAIL(cmpop, "Invalid operands for >=.");
}
#undef CMPOP_OVERLOAD
UNREACHABLE();
}
// 6.8.12 EqualityExpression
AsmType* AsmTyper::ValidateEqualityExpression(CompareOperation* cmpop) {
auto* left = cmpop->left();
auto* right = cmpop->right();
AsmType* left_type;
AsmType* right_type;
RECURSE(left_type = ValidateExpression(left));
RECURSE(right_type = ValidateExpression(right));
#define CMPOP_OVERLOAD(Src0, Src1, Dest) \
do { \
if (left_type->IsA(AsmType::Src0()) && right_type->IsA(AsmType::Src1())) { \
return AsmType::Dest(); \
} \
} while (0)
switch (cmpop->op()) {
default:
FAIL(cmpop, "Invalid equality expression.");
case Token::EQ:
CMPOP_OVERLOAD(Signed, Signed, Int);
CMPOP_OVERLOAD(Unsigned, Unsigned, Int);
CMPOP_OVERLOAD(Float, Float, Int);
CMPOP_OVERLOAD(Double, Double, Int);
FAIL(cmpop, "Invalid operands for ==.");
case Token::NE:
CMPOP_OVERLOAD(Signed, Signed, Int);
CMPOP_OVERLOAD(Unsigned, Unsigned, Int);
CMPOP_OVERLOAD(Float, Float, Int);
CMPOP_OVERLOAD(Double, Double, Int);
FAIL(cmpop, "Invalid operands for !=.");
}
#undef CMPOP_OVERLOAD
UNREACHABLE();
}
// 6.8.13 BitwiseANDExpression
AsmType* AsmTyper::ValidateBitwiseANDExpression(BinaryOperation* binop) {
auto* left = binop->left();
auto* right = binop->right();
AsmType* left_type;
AsmType* right_type;
RECURSE(left_type = ValidateExpression(left));
RECURSE(right_type = ValidateExpression(right));
if (binop->op() != Token::BIT_AND) {
FAIL(binop, "Invalid & expression.");
}
#define BINOP_OVERLOAD(Src0, Src1, Dest) \
do { \
if (left_type->IsA(AsmType::Src0()) && right_type->IsA(AsmType::Src1())) { \
return AsmType::Dest(); \
} \
} while (0)
BINOP_OVERLOAD(Intish, Intish, Signed);
FAIL(binop, "Invalid operands for &.");
#undef BINOP_OVERLOAD
UNREACHABLE();
}
// 6.8.14 BitwiseXORExpression
AsmType* AsmTyper::ValidateBitwiseXORExpression(BinaryOperation* binop) {
auto* left = binop->left();
auto* right = binop->right();
AsmType* left_type;
AsmType* right_type;
RECURSE(left_type = ValidateExpression(left));
RECURSE(right_type = ValidateExpression(right));
if (binop->op() != Token::BIT_XOR) {
FAIL(binop, "Invalid ^ expression.");
}
#define BINOP_OVERLOAD(Src0, Src1, Dest) \
do { \
if (left_type->IsA(AsmType::Src0()) && right_type->IsA(AsmType::Src1())) { \
return AsmType::Dest(); \
} \
} while (0)
BINOP_OVERLOAD(Intish, Intish, Signed);
FAIL(binop, "Invalid operands for ^.");
#undef BINOP_OVERLOAD
UNREACHABLE();
}
// 6.8.15 BitwiseORExpression
AsmType* AsmTyper::ValidateBitwiseORExpression(BinaryOperation* binop) {
auto* left = binop->left();
if (IsIntAnnotation(binop)) {
if (auto* left_as_call = left->AsCall()) {
AsmType* type;
RECURSE(type = ValidateCall(AsmType::Signed(), left_as_call));
return type;
}
// TODO(jpp): at this point we know that binop is expr|0. We could sinply
//
// RECURSE(t = ValidateExpression(left));
// FAIL_IF(t->IsNotA(Intish));
// return Signed;
}
auto* right = binop->right();
AsmType* left_type;
AsmType* right_type;
RECURSE(left_type = ValidateExpression(left));
RECURSE(right_type = ValidateExpression(right));
if (binop->op() != Token::BIT_OR) {
FAIL(binop, "Invalid | expression.");
}
#define BINOP_OVERLOAD(Src0, Src1, Dest) \
do { \
if (left_type->IsA(AsmType::Src0()) && right_type->IsA(AsmType::Src1())) { \
return AsmType::Dest(); \
} \
} while (0)
BINOP_OVERLOAD(Intish, Intish, Signed);
FAIL(binop, "Invalid operands for |.");
#undef BINOP_OVERLOAD
UNREACHABLE();
}
// 6.8.16 ConditionalExpression
AsmType* AsmTyper::ValidateConditionalExpression(Conditional* cond) {
AsmType* cond_type;
RECURSE(cond_type = ValidateExpression(cond->condition()));
if (!cond_type->IsA(AsmType::Int())) {
FAIL(cond, "Ternary operation condition should be int.");
}
AsmType* then_type;
RECURSE(then_type = ValidateExpression(cond->then_expression()));
AsmType* else_type;
RECURSE(else_type = ValidateExpression(cond->else_expression()));
#define SUCCEED_IF_BOTH_ARE(type) \
do { \
if (then_type->IsA(AsmType::type())) { \
if (!else_type->IsA(AsmType::type())) { \
FAIL(cond, "Type mismatch for ternary operation result type."); \
} \
return AsmType::type(); \
} \
} while (0)
SUCCEED_IF_BOTH_ARE(Int);
SUCCEED_IF_BOTH_ARE(Float);
SUCCEED_IF_BOTH_ARE(Double);
#undef SUCCEED_IF_BOTH_ARE
FAIL(cond, "Ternary operator must return int, float, or double.");
}
// 6.9 ValidateCall
namespace {
bool ExtractIndirectCallMask(Expression* expr, uint32_t* value) {
auto* as_literal = expr->AsLiteral();
if (as_literal == nullptr) {
return false;
}
if (as_literal->raw_value()->ContainsDot()) {
return false;
}
if (!as_literal->value()->ToUint32(value)) {
return false;
}
return base::bits::IsPowerOfTwo32(1 + *value);
}
} // namespace
AsmType* AsmTyper::ValidateCall(AsmType* return_type, Call* call) {
AsmType* float_coercion_type;
RECURSE(float_coercion_type = ValidateFloatCoercion(call));
if (float_coercion_type == AsmType::Float()) {
SetTypeOf(call, AsmType::Float());
return return_type;
}
// TODO(jpp): we should be able to reuse the args vector's storage space.
ZoneVector<AsmType*> args(zone_);
args.reserve(call->arguments()->length());
for (auto* arg : *call->arguments()) {
AsmType* arg_type;
RECURSE(arg_type = ValidateExpression(arg));
args.emplace_back(arg_type);
}
auto* call_expr = call->expression();
// identifier(Expression...)
if (auto* call_var_proxy = call_expr->AsVariableProxy()) {
auto* call_var_info = Lookup(call_var_proxy->var());
if (call_var_info == nullptr) {
// We can't fail here: the validator performs a single pass over the AST,
// so it is possible for some calls to be currently unresolved. We eagerly
// add the function to the table of globals.
auto* call_type = AsmType::Function(zone_, return_type)->AsFunctionType();
for (auto* arg : args) {
call_type->AddArgument(arg->ToParameterType());
}
auto* fun_info =
new (zone_) VariableInfo(reinterpret_cast<AsmType*>(call_type));
fun_info->set_mutability(VariableInfo::kImmutableGlobal);
AddForwardReference(call_var_proxy, fun_info);
if (!ValidAsmIdentifier(call_var_proxy->name())) {
FAIL(call_var_proxy,
"Invalid asm.js identifier in (forward) function name.");
}
if (!AddGlobal(call_var_proxy->var(), fun_info)) {
DCHECK(false);
FAIL(call, "Redeclared global identifier.");
}
SetTypeOf(call_var_proxy, reinterpret_cast<AsmType*>(call_type));
SetTypeOf(call, return_type);
return return_type;
}
auto* callee_type = call_var_info->type()->AsCallableType();
if (callee_type == nullptr) {
FAIL(call, "Calling something that's not a function.");
}
if (callee_type->AsFFIType() != nullptr) {
if (return_type == AsmType::Float()) {
FAIL(call, "Foreign functions can't return float.");
}
// Record FFI use signature, since the asm->wasm translator must know
// all uses up-front.
ffi_use_signatures_.emplace_back(
FFIUseSignature(call_var_proxy->var(), zone_));
FFIUseSignature* sig = &ffi_use_signatures_.back();
sig->return_type_ = return_type;
sig->arg_types_.reserve(args.size());
for (size_t i = 0; i < args.size(); ++i) {
sig->arg_types_.emplace_back(args[i]);
}
}
if (!callee_type->CanBeInvokedWith(return_type, args)) {
FAIL(call, "Function invocation does not match function type.");
}
SetTypeOf(call_var_proxy, call_var_info->type());
SetTypeOf(call, return_type);
return return_type;
}
// identifier[expr & n](Expression...)
if (auto* call_property = call_expr->AsProperty()) {
auto* index = call_property->key()->AsBinaryOperation();
if (index == nullptr || index->op() != Token::BIT_AND) {
FAIL(call_property->key(),
"Indirect call index must be in the expr & mask form.");
}
auto* left = index->left();
auto* right = index->right();
uint32_t mask;
if (!ExtractIndirectCallMask(right, &mask)) {
if (!ExtractIndirectCallMask(left, &mask)) {
FAIL(right, "Invalid indirect call mask.");
} else {
left = right;
}
}
const uint32_t table_length = mask + 1;
AsmType* left_type;
RECURSE(left_type = ValidateExpression(left));
if (!left_type->IsA(AsmType::Intish())) {
FAIL(left, "Indirect call index should be an intish.");
}
auto* name_var = call_property->obj()->AsVariableProxy();
if (name_var == nullptr) {
FAIL(call_property, "Invalid call.");
}
auto* name_info = Lookup(name_var->var());
if (name_info == nullptr) {
// We can't fail here -- just like above.
auto* call_type = AsmType::Function(zone_, return_type)->AsFunctionType();
for (auto* arg : args) {
call_type->AddArgument(arg->ToParameterType());
}
auto* table_type = AsmType::FunctionTableType(
zone_, table_length, reinterpret_cast<AsmType*>(call_type));
auto* fun_info =
new (zone_) VariableInfo(reinterpret_cast<AsmType*>(table_type));
fun_info->set_mutability(VariableInfo::kImmutableGlobal);
AddForwardReference(name_var, fun_info);
if (!ValidAsmIdentifier(name_var->name())) {
FAIL(name_var,
"Invalid asm.js identifier in (forward) function table name.");
}
if (!AddGlobal(name_var->var(), fun_info)) {
DCHECK(false);
FAIL(call, "Redeclared global identifier.");
}
SetTypeOf(call_property, reinterpret_cast<AsmType*>(call_type));
SetTypeOf(call, return_type);
return return_type;
}
auto* previous_type = name_info->type()->AsFunctionTableType();
if (previous_type == nullptr) {
FAIL(call, "Identifier does not name a function table.");
}
if (table_length != previous_type->length()) {
FAIL(call, "Function table size does not match expected size.");
}
auto* previous_type_signature =
previous_type->signature()->AsFunctionType();
DCHECK(previous_type_signature != nullptr);
if (!previous_type_signature->CanBeInvokedWith(return_type, args)) {
// TODO(jpp): better error messages.
FAIL(call,
"Function pointer table signature does not match previous "
"signature.");
}
SetTypeOf(call_property, previous_type->signature());
SetTypeOf(call, return_type);
return return_type;
}
FAIL(call, "Invalid call.");
}
// 6.10 ValidateHeapAccess
namespace {
bool ExtractHeapAccessShift(Expression* expr, uint32_t* value) {
auto* as_literal = expr->AsLiteral();
if (as_literal == nullptr) {
return false;
}
if (as_literal->raw_value()->ContainsDot()) {
return false;
}
return as_literal->value()->ToUint32(value);
}
// Returns whether index is too large to access a heap with the given type.
bool LiteralIndexOutOfBounds(AsmType* obj_type, uint32_t index) {
switch (obj_type->ElementSizeInBytes()) {
case 1:
return false;
case 2:
return (index & 0x80000000u) != 0;
case 4:
return (index & 0xC0000000u) != 0;
case 8:
return (index & 0xE0000000u) != 0;
}
UNREACHABLE();
return true;
}
} // namespace
AsmType* AsmTyper::ValidateHeapAccess(Property* heap,
HeapAccessType access_type) {
auto* obj = heap->obj()->AsVariableProxy();
if (obj == nullptr) {
FAIL(heap, "Invalid heap access.");
}
auto* obj_info = Lookup(obj->var());
if (obj_info == nullptr) {
FAIL(heap, "Undeclared identifier in heap access.");
}
auto* obj_type = obj_info->type();
if (!obj_type->IsA(AsmType::Heap())) {
FAIL(heap, "Identifier does not represent a heap view.");
}
SetTypeOf(obj, obj_type);
if (auto* key_as_literal = heap->key()->AsLiteral()) {
if (key_as_literal->raw_value()->ContainsDot()) {
FAIL(key_as_literal, "Heap access index must be int.");
}
uint32_t index;
if (!key_as_literal->value()->ToUint32(&index)) {
FAIL(key_as_literal,
"Heap access index must be a 32-bit unsigned integer.");
}
if (LiteralIndexOutOfBounds(obj_type, index)) {
FAIL(key_as_literal, "Heap access index is out of bounds");
}
if (access_type == LoadFromHeap) {
return obj_type->LoadType();
}
return obj_type->StoreType();
}
if (auto* key_as_binop = heap->key()->AsBinaryOperation()) {
uint32_t shift;
if (key_as_binop->op() == Token::SAR &&
ExtractHeapAccessShift(key_as_binop->right(), &shift) &&
(1 << shift) == obj_type->ElementSizeInBytes()) {
AsmType* type;
RECURSE(type = ValidateExpression(key_as_binop->left()));
if (type->IsA(AsmType::Intish())) {
if (access_type == LoadFromHeap) {
return obj_type->LoadType();
}
return obj_type->StoreType();
}
FAIL(key_as_binop, "Invalid heap access index.");
}
}
if (obj_type->ElementSizeInBytes() == 1) {
// Leniency: if this is a byte array, we don't require the shift operation
// to be present.
AsmType* index_type;
RECURSE(index_type = ValidateExpression(heap->key()));
if (!index_type->IsA(AsmType::Int())) {
FAIL(heap, "Invalid heap access index for byte array.");
}
if (access_type == LoadFromHeap) {
return obj_type->LoadType();
}
return obj_type->StoreType();
}
FAIL(heap, "Invalid heap access index.");
}
// 6.11 ValidateFloatCoercion
bool AsmTyper::IsCallToFround(Call* call) {
if (call->arguments()->length() != 1) {
return false;
}
auto* call_var_proxy = call->expression()->AsVariableProxy();
if (call_var_proxy == nullptr) {
return false;
}
auto* call_var_info = Lookup(call_var_proxy->var());
if (call_var_info == nullptr) {
return false;
}
return call_var_info->standard_member() == kMathFround;
}
AsmType* AsmTyper::ValidateFloatCoercion(Call* call) {
if (!IsCallToFround(call)) {
return nullptr;
}
auto* arg = call->arguments()->at(0);
// call is a fround() node. From now, there can be two possible outcomes:
// 1. fround is used as a return type annotation.
if (auto* arg_as_call = arg->AsCall()) {
RECURSE(ValidateCall(AsmType::Float(), arg_as_call));
return AsmType::Float();
}
// 2. fround is used for converting to float.
AsmType* arg_type;
RECURSE(arg_type = ValidateExpression(arg));
if (arg_type->IsA(AsmType::Floatish()) || arg_type->IsA(AsmType::DoubleQ()) ||
arg_type->IsA(AsmType::Signed()) || arg_type->IsA(AsmType::Unsigned())) {
SetTypeOf(call->expression(), fround_type_);
return AsmType::Float();
}
FAIL(call, "Invalid argument type to fround.");
}
// 5.1 ParameterTypeAnnotations
AsmType* AsmTyper::ParameterTypeAnnotations(Variable* parameter,
Expression* annotation) {
if (auto* binop = annotation->AsBinaryOperation()) {
// Must be:
// * x|0
// * x*1 (*VIOLATION* i.e.,, +x)
auto* left = binop->left()->AsVariableProxy();
if (left == nullptr) {
FAIL(
binop->left(),
"Invalid parameter type annotation - should annotate an identifier.");
}
if (left->var() != parameter) {
FAIL(binop->left(),
"Invalid parameter type annotation - should annotate a parameter.");
}
if (IsDoubleAnnotation(binop)) {
SetTypeOf(left, AsmType::Double());
return AsmType::Double();
}
if (IsIntAnnotation(binop)) {
SetTypeOf(left, AsmType::Int());
return AsmType::Int();
}
FAIL(binop, "Invalid parameter type annotation.");
}
auto* call = annotation->AsCall();
if (call == nullptr) {
FAIL(
annotation,
"Invalid float parameter type annotation - must be fround(parameter).");
}
if (!IsCallToFround(call)) {
FAIL(annotation,
"Invalid float parameter type annotation - must be call to fround.");
}
auto* src_expr = call->arguments()->at(0)->AsVariableProxy();
if (src_expr == nullptr) {
FAIL(annotation,
"Invalid float parameter type annotation - argument to fround is not "
"an identifier.");
}
if (src_expr->var() != parameter) {
FAIL(annotation,
"Invalid float parameter type annotation - argument to fround is not "
"a parameter.");
}
SetTypeOf(src_expr, AsmType::Float());
return AsmType::Float();
}
// 5.2 ReturnTypeAnnotations
AsmType* AsmTyper::ReturnTypeAnnotations(ReturnStatement* statement) {
if (statement == nullptr) {
return AsmType::Void();
}
auto* ret_expr = statement->expression();
if (ret_expr == nullptr) {
return AsmType::Void();
}
if (auto* binop = ret_expr->AsBinaryOperation()) {
if (IsDoubleAnnotation(binop)) {
return AsmType::Double();
} else if (IsIntAnnotation(binop)) {
return AsmType::Signed();
}
FAIL(statement, "Invalid return type annotation.");
}
if (auto* call = ret_expr->AsCall()) {
if (IsCallToFround(call)) {
return AsmType::Float();
}
FAIL(statement, "Invalid function call in return statement.");
}
if (auto* literal = ret_expr->AsLiteral()) {
int32_t _;
if (literal->raw_value()->ContainsDot()) {
return AsmType::Double();
} else if (literal->value()->ToInt32(&_)) {
return AsmType::Signed();
} else if (literal->IsUndefinedLiteral()) {
// *VIOLATION* The parser changes
//
// return;
//
// into
//
// return undefined
return AsmType::Void();
}
FAIL(statement, "Invalid literal in return statement.");
}
if (auto* proxy = ret_expr->AsVariableProxy()) {
auto* var_info = Lookup(proxy->var());
if (var_info == nullptr) {
FAIL(statement, "Undeclared identifier in return statement.");
}
if (var_info->mutability() != VariableInfo::kConstGlobal) {
FAIL(statement, "Identifier in return statement is not const.");
}
if (!var_info->type()->IsReturnType()) {
FAIL(statement, "Constant in return must be signed, float, or double.");
}
return var_info->type();
}
FAIL(statement, "Invalid return type expression.");
}
// 5.4 VariableTypeAnnotations
// Also used for 5.5 GlobalVariableTypeAnnotations
AsmType* AsmTyper::VariableTypeAnnotations(
Expression* initializer, VariableInfo::Mutability mutability_type) {
if (auto* literal = initializer->AsLiteral()) {
if (literal->raw_value()->ContainsDot()) {
SetTypeOf(initializer, AsmType::Double());
return AsmType::Double();
}
int32_t i32;
uint32_t u32;
AsmType* initializer_type = nullptr;
if (literal->value()->ToUint32(&u32)) {
if (u32 > LargestFixNum) {
initializer_type = AsmType::Unsigned();
SetTypeOf(initializer, initializer_type);
} else {
initializer_type = AsmType::FixNum();
SetTypeOf(initializer, initializer_type);
initializer_type = AsmType::Signed();
}
} else if (literal->value()->ToInt32(&i32)) {
initializer_type = AsmType::Signed();
SetTypeOf(initializer, initializer_type);
} else {
FAIL(initializer, "Invalid type annotation - forbidden literal.");
}
if (mutability_type != VariableInfo::kConstGlobal) {
return AsmType::Int();
}
return initializer_type;
}
if (auto* proxy = initializer->AsVariableProxy()) {
auto* var_info = Lookup(proxy->var());
if (var_info == nullptr) {
FAIL(initializer,
"Undeclared identifier in variable declaration initializer.");
}
if (var_info->mutability() != VariableInfo::kConstGlobal) {
FAIL(initializer,
"Identifier in variable declaration initializer must be const.");
}
SetTypeOf(initializer, var_info->type());
return var_info->type();
}
auto* call = initializer->AsCall();
if (call == nullptr) {
FAIL(initializer,
"Invalid variable initialization - it should be a literal, const, or "
"fround(literal).");
}
if (!IsCallToFround(call)) {
FAIL(initializer,
"Invalid float coercion - expected call fround(literal).");
}
auto* src_expr = call->arguments()->at(0)->AsLiteral();
if (src_expr == nullptr) {
FAIL(initializer,
"Invalid float type annotation - expected literal argument for call "
"to fround.");
}
// ERRATA: 5.4
// According to the spec: float constants must contain dots in local,
// but not in globals.
// However, the errata doc (and actual programs), use integer values
// with fround(..).
// Skipping the check that would go here to enforce this.
return AsmType::Float();
}
// 5.5 GlobalVariableTypeAnnotations
AsmType* AsmTyper::NewHeapView(CallNew* new_heap_view) {
auto* heap_type = new_heap_view->expression()->AsProperty();
if (heap_type == nullptr) {
FAIL(new_heap_view, "Invalid type after new.");
}
auto* heap_view_info = ImportLookup(heap_type);
if (heap_view_info == nullptr) {
FAIL(new_heap_view, "Unknown stdlib member in heap view declaration.");
}
if (!heap_view_info->type()->IsA(AsmType::Heap())) {
FAIL(new_heap_view, "Type is not a heap view type.");
}
if (new_heap_view->arguments()->length() != 1) {
FAIL(new_heap_view, "Invalid number of arguments when creating heap view.");
}
auto* heap = new_heap_view->arguments()->at(0);
auto* heap_var_proxy = heap->AsVariableProxy();
if (heap_var_proxy == nullptr) {
FAIL(heap,
"Heap view creation parameter should be the module's heap parameter.");
}
auto* heap_var_info = Lookup(heap_var_proxy->var());
if (heap_var_info == nullptr) {
FAIL(heap, "Undeclared identifier instead of heap parameter.");
}
if (!heap_var_info->IsHeap()) {
FAIL(heap,
"Heap view creation parameter should be the module's heap parameter.");
}
DCHECK(heap_view_info->type()->IsA(AsmType::Heap()));
return heap_view_info->type();
}
bool IsValidAsm(Isolate* isolate, Zone* zone, Script* script,
FunctionLiteral* root, std::string* error_message) {
error_message->clear();
AsmTyper typer(isolate, zone, script, root);
if (typer.Validate()) {
return true;
}
*error_message = typer.error_message();
return false;
}
} // namespace wasm
} // namespace internal
} // namespace v8